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Similarity Rules for Nonlinear Ken-like Slab Optical 
Waveguides 

Lluis Tomer and Juan P. Torres 

Abstract-We have shown that the stationary waveguiding 
properties of TE guided waves in a slab optical waveguide with 
a nonlinear Kerr-like bounding medium can be described in a 
compact way by means of the usual normalized effective modal 
index (h) and a set of only four independent normalized param- 
eters: the well-known normalized thickness ( V )  and asymmetry 
measure (a)  of the waveguide, the generalized aspect ratio be- 
tween film, and substrate refractive indexes and a new guided 
power measure. From an analysis starting on Buckingham’s 
n-theorem, we have investigated the similarity rules existing 
between the above waveguiding structures. Allowed and for- 
bidden regions in the {b,  V ,  a}-space in order that a stationary 
guided solution exists, have been recognized and classified, with 
the marginal loci separating different regions being a function 
of only V and a .  As a further application of the normalized 
parameters, we focus on the cutoff properties of the TEO guided 
wave. Both self-focusing and self-defocusing bounding media 
have been considered. 

I. INTRODUCTION 

ONLINEAR optical waveguides exhibit a great num- N ber of interesting properties that have been exten- 
sively studied over the last years (for a review see, for 
example, [ 11-[7]) because of their potential applications 
in all-optical signal processing. Switches, upper and lower 
threshold devices, optical limiters, nonlinear directional 
couplers, among other new devices, have been identified 
and demonstrated. The key point is the inclusion of wave- 
guide media with intensity-dependent refractive indexes. 
Most of the attention has been devoted to Kerr-like ma- 
terials, but more general nonlinearities [8], [9], including 
saturable media [lo], [ 1 11, have been also analyzed. 

Crucial in the design of the above devices is the deter- 
mination of the waveguiding properties of the involved 
nonlinear waveguides. This problem is much more com- 
plicated than its linear counterpart, due basically to the 
following three reasons. 1) Failure of the superposition 
principle; 2) the fact that the solutions of the nonlinear 
wave equation are difficult to find and cumbersome to 
handle; 3) the number of parameters characterizing the 
waveguide structure is greater than in the linear case, since 
nonlinear coefficients of various waveguide media and the 
total amount of guided wave power must be specified, in 

Manuscript received June 7,  1991; revised November 22, 1991. 
The authors are with the Department of Signal Theory and Communi- 

IEEE Log Number 9107786. 
cations, Polytechnic University of Catalonia, 08080-Barcelona, Spain. 

addition to the linear refractive indexes, the thickness of 
the waveguide and the wavelength of the used radiation. 
In this paper we address this last point in the case of a 
slab waveguide in which the substrate or cladding exhibits 
a Kerr-like nonlinearity. Our goal is to show that the sta- 
tionary waveguiding properties of such a structure can be 
described by means of a set of only four independent nor- 
malized variables. Scaling rules, universal results, and 
similarity rules between different waveguides will emerge 
from this analysis. 

Concepts of scaling and universality, which are an ex- 
tension of Fourier’s [12] idea of dimension, have played 
an important role in most fields. They start from Buck- 
ingham’s II-theorem [13] which is the root of modern di- 
mensional analysis and, as is well-known, in spite of being 
an elementary result, has an extraordinary range of appli- 
cations [14]. Scaling rules in optical waveguides where 
analyzed first by Kogelnik and Ramaswamy. In a paper 
which has become classic [15], they showed that the 
waveguiding properties of the linear slab waveguide can 
be described in a very compact and elegant way by means 
of only three parameters: a normalized effective index (b) ,  
a normalized waveguide thickness ( V ) ,  and an asymmetry 
measure of the waveguide (a). This same idea was ex- 
tended later to more complicated structures, such as 
graded-index waveguides [ 161-[ 191, multilayer step-in- 
dex structures [20] and bidimensional waveguides [21]. 
Similarity rules between diverging or nonparallel wave- 
guides have also been investigated recently [22]. To our 
knowledge, the first attempt addressed to obtain universal 
results in nonlinear waveguides was made by Chelkowski 
and Chrostowski [23] in the case of a Kerr-like substrate 
or cover. Their analysis was extended by Fontaine [24] to 
waveguides with a nonlinear film. In this paper four nor- 
malized parameters are used: b, V ,  a, and a normalized 
power measure, b,. Unfortunately bl contains the value of 
the electric field of the guided solution at the film-sub- 
strate interface. Thus, when related to the guided wave 
power, bl becomes b dependent, so its usefulness for 
practical purposes is limited. 

We avoid this important difficulty by introducing a new 
normalized power measure e, which is linear on the guided 
wave power and no longer depends on the other normal- 
ized variables. Moreover, e, relates directly to the wave- 
guide parameters and, consequently, to the design vari- 
ables. The use of e, instead of another b-dependent power 
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measure requires the introduction of an additional param- 
eter 6,, which is usual in linear waveguide problems. 
These normalized parameters enable us to identify the 
similarity rules existing between different waveguides and 
to obtain universal plots showing their stationary TE 
waveguiding properties. As we will show later on, an ad- 
ditional interesting feature of the above normalized pa- 
rameters comes from the fact that in the case we are deal- 
ing with here, the possible values of the normalized 
effective index, in order that a stationary guided solution 
exists, define allowed and forbidden bands in the {b ,  V ,  
a}-space. When considering a self-focusing substrate, al- 
lowed bands subdivide themselves into three regions, cor- 
responding to the different types of guided solutions. The 
point is that the marginal loci separating the different al- 
lowed from the forbidden regions are determined through 
only the parameters V and a .  

This paper is organized as follows. Section I1 is de- 
voted to the determination of the natural scaling rules of 
our problem arising from 11-theorem and to the discussion 
of the similarity rules infered from them. In Section I11 
we show that the stationary waveguiding properties of the 
structure we are analyzing can be completely described 
by means of the normalized variables. In Section IV we 
obtain and discuss the universal plots coming from the 
normalized eigenvalue equation. Allowed and forbidden 
regions in the {b ,  V ,  a}-space are identified and classified 
following the scheme reported by Boardman and Egan [5] .  
Also, the relationship between both power measures b, 
and e, is discussed in various cases. As a further appli- 
cation of the normalized parameters, at the end of Section 
IV we obtain the expression of the normalized cutoff 
power (e,,,,,,,) in order that guided propagation occurs. 
In the case of a self-focusing substrate, is a lower 
threshold power and depends on the parameters V ,  a,  and 
a,,, but for a self-defocusing material, which now 
stands for the maximum allowed guided power, is found 
to be a function of only I/ and a. Finally, in the last sec- 
tion we briefly discuss the generalization of the reported 
procedure to other nonlinear structures and we stress our 
main results. 

11. 11-THEOREM 
The waveguide structure we will consider here is shown 

in Fig. 1. It consists of a thin, optically linear, film with 
thickness D and refractive index nf, surrounded by a linear 
cover with refractive index n, and an intensity-dependent 
Kerr-like substrate with linear refractive index n, and non- 
linear coefficient a, = n ~ ~ ~ c n ~ ~ ,  with eo and c being the 
characteristic permittivity of free space and the speed of 
light in vacuo, respectively. We will consider monochro- 
matic TE waves travelling in the x direction, so the elec- 
tric field has the form €y(x, z) = (1 /2) E,(z) exp [ j (  /3x 
- ut)] + C.C. Finally, here we will limit ourselves to the 
case nf > n, 1 n,. 

The study of the stationary waveguiding properties of 
the above structure requires the determination of the al- 

F. r‘” 
nonlinear nf + a. EZ 

Fig. 1. Schematic structure of a slab optical waveguide with a nonlinear 
Ken-like bounding medium. 

lowed values of the propagation constant p for guided so- 
lutions as a function of the waveguide parameters. In a 
linear waveguide these parameters are nf,  n,, n,, D ,  and 
the wavelength X. Since in our case the substrate is an 
intensity-dependent material, the solution will also de- 
pend on the nonlinear coefficient nZs and on the total 
guided wave power P.  Accordingly, in this case the so- 
lution of the problem for the propagation constant can be 
formally expressed as 

(1) 

where N = P / k 0  is the effective modal index, with ko 
being the free-space wavenumber. Generally speaking 32. 
will be a complicated transcendental function. The point 
is that if we understand 32 to be a function of the above 
seven variables, it contains some redundant information. 
This statement follows from elementary dimensional 
analysis. 

Since the effective index is a dimensionless quantity, 
the well-known Buckingham It-theorem states that it must 
be expressed as a function of only dimensionless quan- 
tities, which are referred to as 11-monomials. It is easy to 
verify that the only independent dimensionless mono- 
mials which can be made with dimensional parameters ap- 
pearing in (l),  {nZs,  P ,  D ,  A}, are 

N = 32.@, n,, n,, n2,, P ,  D, A> 

1 1 1  = koD ( 2 )  

and 

n -2s. n P  
D 2 -  (3) 

The monomial II, makes clear the well-known scaling rule 
between D and X which occurs in optical waveguides made 
in optically linear materials. On the other hand, 112 con- 
tains three parameters which play a crucial role in the 
nonlinear behavior of the guided waves: the nonlinear na- 
ture of the material forming the substrate, the total amount 
of guided power, and the thickness of the waveguide, re- 
lated to the fraction of the total guided power which is 
carried by the nonlinear medium. Equations (2)-(4) point 
out how the nonlinear nature of one medium forming the 
waveguide causes the similarity rule stated by 111 in linear 
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waveguides to break, since now for a given value of this 
monomial, a change in D and h must be balanced by an 
identical variation on the product n2sP to maintain 112, as 
well as N ,  at a fixed value. This means that for a given 
value of II,, when the waveguide thickness increases, a 
progressively larger guided wave power is required to ob- 
tain a prefixed value of the effective index N .  

In fact, 112 states a new similarity rule between nonlin- 
ear Kerr-like waveguides. For instance, it is obvious from 
(3) that as far as the effective index N is concerned, a 
change in the nonlinear coefficient n2s is exactly counter- 
balanced by the inverse variation in the guided power €'. 
Then, we conclude that regarding the effective indexes of 
guided solutions, monomial IT2 establishes an equivalence 
relation between similar waveguides with different char- 
acteristic parameters but equal &. Notice that this is true 
for the waveguides in which the substrate or cladding is a 
nonlinear material, but also for those in which the nonlin- 
ear medium constitutes the film. 

The monomials HI and 112 point out the natural scaling 
rules of our system, and therefore, should be retained in 
the definition of the variables describing it. 

111. FORMAL APPROACH 
II-theorem does not inform us as to how the refractive 

indexes n,, nS, and n,. intermix with II, and 112 in the ar- 
guments of the function 37.. To investigate this point we 
will only remember that the function 37. can be obtained 
from the resolution of the wave equation with the required 
boundary conditions at the dielectric interfaces. In the case 
we are dealing with here, the wave equation reads 

{a; + k;[n: - N21)EJz) = 0, z < 0 

0 < z < D 

(5)  

(6) {a: + ki[n,? - N 2 ] } E y ( z )  = 0, 

{a: + kt[n:  - N 2  + a,yE;(z)]}E,.(z) = 0,  D < z 
(7) 

and boundary conditions require the continuity of Ey ( z )  
and a, E,, ( z )  at z = 0 and z = D. Because of the nonlinear 
nature of the material forming the substrate, these equa- 
tions are not enough to completely describe our problem 
and so, we must also specify the total amount of guided 
wave power 

P = Nc0c im E;(z)  dz.  (8) 
-m 

We will rewrite these expressions using the dimensionless 
coordinate E = z/D and the dimensionless electric field 
function !If([) = ,!$(,$)/Eo, with Eo being a constant 
which will be specified later on. In terms of these new 
variables and keeping in mind the case of the linear wave- 
guide, (5)-(7) become 

{a: - V2[a + b]}*([)  = 0,  

{a: - v2b + e.T*2($)}*($) = 0, 

4 < 0 

0 < 4 < 1 

1 < E .  

(9) 

(10) 

(1 1) 

{a t  + V2[1  - b])*(.$) = 0,  

Moreover, now the boundary conditions require the con- 
tinuity of *([) and a, *([) at [ = 0 and [ = 1 .  In these 
expressions we have made use of the usual definitions of 
the normalized effective index [15] 

the normalized thickness 

V = I I l m  (13) 

and the asymmetry measure 

Finally, the parameter e, is defined as 

e, = I I?CI,E~.  (15) 

The meaning of this new parameter depends on the defi- 
nition of the constant Eo. This is a somewhat arbitrary but 
also crucial choice, since it states the actual usefulness of 
e,. If one takes Eo = Ey ( z  = D), e, becomes proportional 
to the parameter bl used by Chelkowski and Chrostowski 
but then, when related to the guided wave power, it be- 
comes b dependent. Instead of this, we have taken a def- 
inition based on the following three requirements. First, 
we must take into account that e, should be a power mea- 
sure and, if it is possible, a simple one. Second, the def- 
inition of e, must allow us to rewrite (8) for the guided 
wave power in terms of only dimensionless parameters. 
Finally, e, must be an independent parameter, i.e., not 
depending on the normalized effective index b. Accord- 
ingly, we have taken the definition 

Substituting this expression into (15) one arrives at 

e, = 2n,]l1?11~. (17) 

This expresssion shows that the parameter e, is a power 
measure. Moreover, according to the definition of 112, e, 
depends linearly on the power P.  It is also worth noticing 
that the parameter e, given by (17) is proportional to the 
power measure used by Boardman and Egan [ 5 ] ,  
( P / P o ) B - E  = Pn2,n:ko/2, among other authors [SI. In 
fact, one has 

On the other hand, rearranging (8) in terms of E and !If(.$) 
and using (16), one arrives at 

where 
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Then, in view of (9), (lo), ( l l ) ,  (19), and the boundary 
conditions at 4 = 0, 1, we conclude that 

(21) 
The ratio 6, is an usual parameter in linear waveguide 

problems, since it appears in the analysis of the TM modes 
of the slab waveguide and it is used also as a generalized 
aspect ratio in bidimensional geometries. However, in our 
case, 6, enters the problem due to the nonlinear nature of 
the material forming the substrate. When the power mea- 
sure e, vanishes, the nonlinear term in (1 l )  disappears and 
thus (19) becomes unnecessary to specify the whole dif- 
ferential problem defined by (9)-( 1 1). Therefore, in this 
case the 6, dependence of U3, disappears also and (21) 
reduces to the function bL = a3,(V, a )  given by 

b = @,(V, a, e,, 6,). 

I I 

(22) 
with bL being the normalized effective index of the linear 
or low-power waveguide. In most practical applications 
the difference between the film and substrate refractive 
indexes amount to a small value, so typically one has 
(6; - 1) << 1. Also, we can assume that for small guided 
wave powers, b < 1. Therefore in these conditions, (19) 
becomes weakly 6, dependent and, accordingly, one can 
take b = (A,(V, a ,  e,). On the contrary, we expect that 
the dependence of the function (A, on the parameter 6, will 
increase as the power measure e, grows. 

On the other hand, according to ( 1  3), (14), (17), and 

numerical values of the parameter e, which would be taken 
as reasonable from (15), in fact cannot be reached in prac- 
tice with a finite guided power. In contrast, (17) contains 
essentially the monomials II, and 112, and thus the nu- 
merical values of e, can be directly related to the actual 
characteristic parameters of the waveguide and, conse- 
quently, to the design variables. 

IV. DISCUSSION 
A .  Normalized Eigenvalue Equation 

In this section we will deal with the universal plots for 
the guiding properties of the waveguide in Fig. 1 obtained 
by means of the above introduced normalized parameters. 

The solution of the differential equations (9)-( 11) is 
now well-known [ 11-[7], [25], [26]. For a self-focusing 
substrate (n2,  > 0 or 112 > 0), in terms of the normalized 
variables, one has 

(20) we can take every one Of the four parameters a, where use has been made of the definition A E 

(a + b)/(l  - b). The constants \Eo and to follow from J 
the boundary conditions at 4 = 1, and are obtained, re- 
spectively , through the expressions 

e,, and 6, as independent of each other. Moreover, in the 
case we are considering here (nf > n, I nc), the normal- 
ized variables V ,  a ,  and e, can take any positive value. 
On the contrary, for a given, positive value of the asym- 

V 

cosh ( V h  go) 
9 0  = J2b metry measure- there is-a maximum allowed value of the 

parameter 6,. From (14) it is found to be 

I 

and 1 < 6, < 6,,,,,. When a - 0, one has 6,,,,, >> 1, 
and thus the possible values of 6, are not restricted in 
practice. However in the case of asymmetric waveguides 
6,, max - 1, and thus the existence of this maximum value 
has deep implications since one has (6; - 1) < (6;,max - 
1) = l / a .  Therefore when a >> 1, the term containing 
the parameter 6, in (19) amounts to a negligible value un- 
less b - a. In these conditions the dependence of the 
function 63, on 6, can be neglected and one gets b = 
(A, (V, a ,  e,), as above. Clearly, this will be no longer true 
for guided solutions having b >> 1. 

Finally, we wish to emphasize that the relationship be- 
tween the parameter e, and P stated through (16) is cru- 
cial. Without it, the meaning of the definition (15) would 
not be clear in some cases. to such an extent that some 

(27) 
1 

cos (v-) + A sin (~J1-b) 
tanh (v& io> 

1 - b sin (~J1-b) - A cos (~J1-b) 
= /; cos (v-1 + A sin (~-1' 

(28) 

The substitution of (24)-(26) into (19) yields the expres- 
sion for the guided wave power in terms of e,. One arrives 
at 

e, = J 1  + (6; - l ) b  { Ic  + If+ I,} (29) 

with 

*: 
IC = 2 v J i - X  
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J$ = 2 ~ h  11 - tanh (v& to>]. (32) 
The same expressions hold for a self-defocusing substrate 
(nz,, < 0 or 112 < 0), provided that e, is replaced every- 
where by \e,Tl, each of the hyperbolic functions cosh or 
sinh is replaced by sinh or cosh, respectively, in (26), 
(27), (28), and (32), and I ,  is replaced by - I ,  in (32). 
Further attention must be devoted to the expression equiv- 
alent to (28), which accordingly with the above rule now 
writes 

tanh ( V &  to) 

(33) 

since, in this case, we must also take into account the 
condition to > 0, to ensure the right behavior of !If,(,$) 
everywhere at 4 > 1. Finally, in the case of a self-focus- 
ing medium, (24)-(32) hold for both complementary cases 
h I 1 and b > 1, provided that the properties of the 
trigonometric functions for pure imaginary arguments are 
used. 

B. Allowed Regions in the b-V Plane 

Equation (29) constitutes the implicit function b = 
@,,(V, a ,  e,y, 6,J defined in (21); therefore it is the nor- 
malized eigenvalue equation. However, when we solve it 
to obtain the allowed normalized effective indexes b for 
the guided solutions, we must always verify that the ob- 
tained values satisfy the conditions (28) or (33), in the 
case of a self-focusing or a self-defocusing substrate, re- 
spectively. Then, since the hyperbolic tangent function 
appearing in the left-hand side of these expressions veri- 
fies -1 < tanh ( V h  to) < 1 ,  for V h  to E (-03, a), 
we conclude that there are some forbidden values of the 
normalized effective index b which make the right-hand 
side of (28) or (33) fall outside this range. The point is 
that the locus in the {b ,  V ,  a ,  e,, &}-space separating 
allowed from forbidden regions is determined only 
through b ,  V ,  and a ,  since it comes simply from the lim- 
iting cases tanh ( V h  to) -, f 1, and the RHS of (28) and 
(33) ,  where these limits must be calculated, are functions 
of only these three parameters. 

As usual in the linear regime we will draw universal 
plots for the normalized effective index by plotting b as a 
function of V ,  for different values of a ,  e,, and 6,. Then, 
in such charts the regions of allowed and forbidden values 
of b in order that a stationary guided solution exists, will 
be referred to as the allowed and forbidden regions in the 

b-Vplarze, respectively, for each value of the asymmetry 
measure a.  The marginal loci separating both regions 
come easily from (28) and (33). For a self-focusing sub- 
strate, the condition that the RHS of (28) be equal to f 1 
yields 

(34) 
for b, 5 1. The upper sign corresponds to the positive 
limit (+ 1) and the lower to the negative one (- l), with 
6, standing for the critical value at which (34) holds. For 
given V and a ,  these values will be referred to as b,, and 
b,-, according to the corresponding sign which has been 
taken in (34). Notice that for the positive sign, (34) is 
nothing but the normalized eigenvalue equation for the 
linear or low-power waveguide given by (22). In Fig. 2 
the set of allowed regions defined by (34) are shown for 
an asymmetric waveguide. 

The allowed regions in the b-V plane contain the three 
possible types of guided waves. These types of guided 
solutions differentiate from each other by the shape of the 
corresponding electric field function. They are [ 5 ] :  

1) Trigonometric functions in the film; purely expo- 
nential decay in the substrate. The maximum of the 
electric field at the substrate occurs at 4 = 1. This 
is a pure guided wave solution. 

2) Trigonometric functions in the film; bulged expo- 
nential decay in the substrate. The maximum of the 
electric field at the substrate takes place at t > 1. 
This is a bulged guided wave solution. 

3 )  Hyperbolic functions in the film. The maximum of 
the electric field occurs at the substrate. This is a 
surface wave solution. 

The surface waves occur above the line b = 1 in the 
b-V charts. On the other hand, the locus in the b-V plane 
separating pure from bulged guided wave solutions come 
again from (28). In view of (26), we realize that if to > 
0, the field solution at the substrate, !Ps(t), decays ex- 
ponentially from 4 = 1 and thus corresponds to a pure 
guided wave solution. On the contrary, when to < 0, 
!P,(t) reaches its maximum value at 4 = 1 - to > 1, 
and therefore corresponds to a bulged guided wave. We 
conclude that the marginal loci in the b-V plane separat- 
ing both types of guided waves are obtained from the con- 
dition to = 0. Taking this value in (28) one arrives at 

Consistently with the definition of b,, and b,- , the values 
of b which verify this equation for given V and a are de- 
noted as bCo. The curve b,,(V) has also been plotted in 
Fig. 2. 

For an asymmetric waveguide, Fig. 2 shows that when 
the normalized thickness is greater than the low-power 
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Fig. 2. Allowed regions in the b-V chart for T E  guided propagation in an 
asymmetric waveguide (a = 10) with a self-focusing bounding medium. 
Labels F indicate forbidden regions whereas G ,  B, and S correspond to 
allowed regions for pure guided waves, bulged guided waves, and surface 
waves, respectively. The marginal curves b ,  + ( V ) ,  b ,  _ ( V ) ,  and b , , (V)  sep- 
arating different regions start at V = VL,cu,aR. The characteristic normalized 
thickness VcT discussed in the text has been also indicated. 

cutoff thickness (VL,cutoff = mn + tan-' &), the three 
types of TEo guided solutions are possible, the actual oc- 
currence of one of them depending on the values of e, and 
6,, and on the excitation conditions. However, when V < 
VL, cutoff the pure guided wave solutions become no longer 
possible. In addition, there is still another important char- 
acteristic normalized thickness, VCs. Below it, only sur- 
face waves are allowed in the nonlinear waveguide. The 
point is that, like VL,cutoff, the value of V,, only depends 
on the asymmetry measure of the waveguide. According 
to Fig. 2, V,, is obtained by taking the limit 6,- -+ 1 in 
(34). One simply gets 

When a -+ 0, one also has V,, -+ 0, whereas for strongly 
asymmetric waveguides, V,, reaches its maximum value: 
Vo(a >> 1) -+ 1. 

Contrary to the former case, in a symmetric waveguide 
(a  = 0) the low-power normalized cutoff thickness van- 
ishes, i.e., VL,cutoff = 0. Therefore in such a waveguide, 
the three types of TEo guided solutions become allowed 
for any value of the normalized thickness. 

We will look now at a self-defocusing substrate. In this 
case the condition tanh ( V &  to) -+ - 1 makes no sense, 
since as we have already mentioned, in this case to must 
take positive values. Therefore, now the marginal loci 
separating allowed and forbidden regions in the b- V 
plane are defined by the conditions tanh 
( V &  to) -+ 1 and tanh ( V A C  to) -+ 0. Using (33), the 
first limit leads back to (34) for b,+, whereas the second 

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 28 .  NO. 6. JUNE 1991 

1.0 1 I 

b 

0.5 

0.0 

Fig. 3 .  Allowed (A) and forbidden (F) regions in the b-V chart for TE 
guided propagation in an asymmetric waveguide with a self-defocusing 
bounding medium. The characteristic normalized thickness Vcd has only 
been indicated for the TE,-band. 

one yields b, = 0, for V,, I V I VL,cutoff, and 

1 - bd0 v~F'& = (m + ~ ) . r r  - tan-' J-- ~ (37) 

for V I Vcd, with bdO being defined by this equation. Here 
V,, stands for the new characteristic normalized thickness 

(38) 

Below Vcd, the minimum allowed value of the normalized 
effective index to ensure that the solutions be guided is b 
= 0, whereas when V 2 Vcd, one has b,, > b > bdO. 
The corresponding allowed regions in the b-V chart are 
shown in Fig. 3. 

Figs. 2 and 3 deserve an additional comment. Accord- 
ing to the plots we must emphasize that the allowed re- 
gions in the b-V plane corresponding to TE guided solu- 
tions of different order do not overlap. This statement 
holds for both self-focusing and self-defocusing media and 
implies that for a fixed value of the asymmetry measure 
of the waveguide, an arbitrary, allowed pair of values of 
V and b can only occur for a single TE, guided wave. 

In Figs. 4-7 we have plotted the normalized effective 
index of the lowest order TE guided wave as a function 
of the normalized thickness for different values of the 
power measure e,. Figs. 4 and 5 correspond to a self-fo- 
cusing medium whereas Figs. 6 and 7 to a self-defocusing 
case. To illustrate the effects due to a nonvanishing asym- 
metry measure, a perfectly symmetric waveguide (a  = 0) 
and an asymmetric one (a  = 10) have been considered. 
The plots show how, starting from the curve b,+(V), the 
values of b as a function of V go over all the allowed 
region as the power measure increases from e, = 0. How- 
ever there is a crucial difference between symmetric and 

a + bdO 

1 vCd = (m + 1)a - tan-' - 
&' 
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Fig. 4 .  Normalized effective index of the TE, guided wave as a function 
of the normalized thickness in a perfectly symmetric waveguide with a self- 
focusing substrate, for different values of the power measure. Curves la- 
hcled a. b,  c ,  d. and e correspond to e ,  = 1 ,  3,  10,20, and 50, respectively. 
In all cases 6,, = 1.013. The curve b,.+(V) corresponding to the linear or 
low-power limit has been plotted with a dashed line. There is not cutoff for 
thc TEo guided wave. 
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Fig. 5 .  Same as in Fig. 4 but for an asymmetric waveguide. Dashed lines 
correspond to the curves b,+(V) and b,.-(V). Contrary to the symmetric 
case, below VL,cu,oR there is a lower threshold value of e,  in order that 
guided propagation be allowed. Cutoff occurs at b = bc- .  

asymmetric waveguides [ 11-17]. According to Figs. 4 and 
6 in  a perfectly symmetric waveguide there is not cutoff 
for the TEo guided wave. On the contrary, Figs. 5 and 7 
show that this is no longer true in the case of asymmetric 
structures. We will deal with this important fact in next 
section. 

Fig. 8 illustrates the dependence of the normalized ef- 
fective index of the TEo guided solution on the parameter 
6,,, in an asymmetric waveguide with a self-focusing sub- 
strate. As expected (since 6,,,,, = &), away from the 
cutoff point, the normalized effective index depends very 

b 

0.5 

Fig. 6 .  Normalized effective index of the TE, guided wave as a function 
of the normalized thickness in a perfectly symmetric waveguide with a self- 
defocusing substrate. Labels a ,  b,  c ,  and d correspond to ( e , (  = 1, 10, 50, 
and 100, respectively, and here also 6, = 1.013. Dashes correspond to the 
curves b,+(V) and b,(V). 

1 .o 

b 

0.5 

V 
Fig. 7. Same as in Fig. 6 but for an asymmetric waveguide. In the range 
V, ,  > V > VL,cutof, cutoff occurs at b = 0. Above V,, there is not cutoff. 

smoothly on 6,. Also, from the plot we verify that when 
6, increases, b approaches its linear value bL. This is so 
Gecause, for a given value of the power measure, the rel- 
ative importance of the self-focusing effect at the sub- 
strate becomes lower as the ratio nf/ns increases. Finally, 
note that the different values of 6, in Fig. 8 render very 
similar values of the normalized effective index in the 
range V > VL,cutoff, but modify the value of b at which 
the nonlinear guided wave reaches its cutoff. We will re- 
turn to this question in Fig. 12. 

To end this section, in Figs. 9 and 10 we have analyzed 
the relationship between the b dependent power measure 
bI and e,, in some typical cases. As expected, since e, is 
a linear power measure, bI depends linearly on e, as well 
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Fig. 8. This plot illustrates the dependence of the normalized effective in- 
dex of the TEo guided wave on the parameter &,, in the case of an asym- 
metric waveguide with a self-focusing bounding medium, for two different 
values of the power measure ( e ,  = 1.5 and e ,  = 3.0). The four curves 
drawn for each value of e ,  correspond, from left to right, to 6., = 1.01. 
1.1, 1.3,  and 1.4. 
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Fig. 9. The b-dependent power measure b, is plotted versus e ,  for the TE, 
guided wave in a waveguide with a self-focusing substrate, for different 
values of the normalized thickness. Continuous line: perfectly symmetric 
waveguide (a = 0) ;  dashed line: asymmetric waveguide with a = 10. La- 
bels a, b, c, and d stand for V = 1, 2, 3 ,  and 4, respectively, and in all 
cases 6, = 1.013. 

for small values of e,. However, this becomes no longer 
true out of this range. In Fig. 9 the curve corresponding 
to the asymmetric waveguide with V = 1 does not start at 
e, = 0 since this normalized thickness is less than VL,cutoff 
and thus for low powers, the TEo guided wave is cutoff. 
Likewise, in Fig. 10 the curve corresponding to V = 1 
and a = 10 does not appear since in the self-defocusing 
case, the TE, guided wave is always cutoff for this nor- 
malized thickness. Fig. 10 shows also that, for given typ- 
ical values of I/, a, and a,, great values of 6,  can only be 
reached with enormous e,. 
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Fig. I O .  Same as in Fig. 9 but for a self-defocusing bounding medium. 

C. Cutof Power 
As has been pointed out by numerous authors [1]-[7], 

one of the most interesting features of the optical wave- 
guides with a nonlinear substrate is that they can act as 
power limiters. For a self-focusing material this possibil- 
ity arises from the fact that if the waveguide thickness is 
less than the low-power cutoff thickness, there is a mini- 
mum value of the guided wave power in order that a 
guided solution be allowed. This behavior can be clearly 
seen in Figs. 5 and 8. On the other hand, for a self-de- 
focusing material, there is an upper value of the guided 
power to allow a guided solution, as can be seen in Figs. 
6 and 7. Both these critical powers can be easily calcu- 
lated and expressed in a very compact way be means of 
the normalized parameters. We will limit ourselves to the 
TEo guided wave. 

We will start with a self-focusing substrate. In this case, 
according to our discussion in Section IV-B, below the 
low-power normalized cutoff thickness, the minimum 
value of b for given V and a is bc-. Then, by taking the 
limit b + b,- in the eigenvalue equation (29), we obtain 
the lower threshold e, value for guided propagation to oc- 
cur. One arrives at 

(39) 

which 6,- coming from (34). As mentioned above, this 
expression holds only for V < tan-' &. In the neigh- 
borhood of VL,cutoff, one has b,- << 1; thus, since in most 
cases it is also true that (6; - 1) << 1 (for instance, in 
strongly asymmetric waveguides one has 6,,,,, - 1 and 
thus this condition is always fulfilled), we can write with 
a high degree of approximation es,cutoff = 4 V c ,  for 
values of V in this range. Since bc- only depends on V 
and a ,  we conclude that this last expression is also a func- 
tion of only these two parameters. 

as a function of V for different 
values of a and 6, is shown in Figs. 11 and 12, respec- 

= 4 V a  41 + (6; - l )bc-  

The behavior of 
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Fig. 1 I .  Normalized cutoff power (TE,) as a function of the normalized 
thickness, for different values of the asymmetry measure: (a) a = 1, (b) a 
= 10. and (c) a = 30. Self-focusing bounding medium. Dashes indicate 
the value of V,., corresponding to the different cases. Above V,,T cutoff takes 
place through a bulged guided wave and when V < Vcs it occurs through 
a surface wave. 
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Fig. 12. Normalized cutoff power (TE,) versus the normalized thickness 
in an asymmetric waveguide with a self-focusing substrate, for different 
values of the parameter 6,. From left to right: 6,, = 1.01, 1.02, 1.03, and 
1.04. Dashes indicate the value of Vcs. 

tively. As expected from Fig. 2, for a given value of the 
normalized thickness, the threshold value of e, that en- 
sures guided propagation grows as the asymmetry mea- 
sure of the waveguide increases. In the range VL,cutoR > 
V > V,,, cutoff occurs through a bulged guided wave, 
whereas when V < V,, it takes place through a surface 
wave. When the normalized thickness approaches V = 0, 

grows very quickly, but for VL,cutoff > V > V,, it 
amounts to relatively small values. On the other hand, 
Fig. 12 shows that in an asymmetric waveguide, for a 
given value of the normalized thickness, e,, cutoff increases 
with 6,, although at a slow rate. This behavior agrees with 

the plots in Fig. 8 and comes from the fact that when 6, 
increases the self-focusing effect at the substrate must be 
more and more important in order that there be an allowed 
guided solution below the low-power cutoff thickness. Fi- 
nally, according to the expression of obtained for 
values of V near VL,cutoff, the plots in Fig. 12 correspond- 
ing to different values of 6, practically coincide in this 
range. 

In the case of a self-defocusing substrate, the cutoff oc- 
curs when b + 0. Taking this limit into the corresponding 
eigenvalue equation, the critical maximum value of I e, I 
in order that guided propagation occurs is found to be 

tan (v )  - 4i 
1 + &tan (VI  

les,cutoffl = 2V 

[sin (v)  - & cos ( ~ 1 1 ~  
[cos ( V I  + & sin (v)14 + 2V2 

1 + a 1 - a sin (2V) +-+------- 
2 2V 

1 

In contrast to (39), this expression applies in the range V,d 
> V 2 VL,cutoff. The upper limit for V is due to the fact 
that when the normalized thickness is greater than Vcd, 
there is not critical power. In fact, it is easy to verify that 
when b -+ bdO, the expression of I, corresponding to the 
self-defocusing case diverges. This fact indicates that for 
given values of the asymmetry measure and the parame- 
ters 6,, when le,l + 03, the curve b ( C  e,) approaches 
asymptotically to the curve bdO(V) defined by (37). We 
must also note that (40) makes no sense in the case of a 
symmetric (a  = 0) waveguide. This is so because, as has 
been pointed out in [26], in the case of a = 0, when the 
guided wave reaches its cutoff, the guided power di- 
verges. The behavior of les,cutoffl as a function of V is 
shown in Fig. 13 for different values of a .  Since les,cutoffl 
no longer depends on 6,, this is a universal plot. 

V. CONCLUDING REMARKS 
In previous sections we have shown that normalized 

variables provide a powerful tool for the description of 
the waveguiding properties of a slab waveguide with a 
nonlinear Kerr-like substrate or cladding. We have dem- 
onstrated that the stationary waveguiding properties of TE 
waves guided by such a structure can be completely de- 
scribed in terms of one dependent (b)  and four indepen- 
dent parameters (V ,  a ,  e,, and S,), 6, playing only a rel- 
evant role in some special situations. These variables 
enable us to identify in a very simple way the similarity 
rules existing between different waveguides and the ob- 
taining of universal results showing the above-mentioned 
waveguiding properties by means of a few plots. In ad- 
dition, V ,  a ,  e,, and 6, can be directly related to the actual 
parameters of the waveguide and thus with the design 
variables. 
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V 
Fig. 13. Normalized cutoff power (TE,) as a function of the normalized 
thickness, for different values of the asymmetry measure: (a) a = 0.1, (b) 
a = 1,  (c) a = 10, and (d) a = 100. Self-defocusing bounding medium. 

In the b-Vcharts, allowed and forbidden bands in order 
to stationary guided propagation occurs have been rec- 
ognized and classified, with the marginal loci separating 
different regions being a function of only the parameters 
V and a .  This makes possible to partition the parameter 
space into regions of similar behavior, in such a way that 
the number and type of possible nonlinear stationary 
waves guided by a particular waveguide can be read off 
inmediately from the corresponding b- V diagram. 

This fact has interesting implications. For instance, we 
conclude that, in the case of a self-focusing substrate, the 
value of the normalized thickness V determines by itself 
the different types of possible guided solutions which are 
allowed in a particular waveguide. If I/ > VL,cutoff, all 
surface wave, bulged guided wave and pure guided wave 
solutions are possible; when VL,cutoff > V > V,,, only 
surface wave and bulged guided wave solutions can exist 
in the waveguide; finally, when V < Vc,y, both bulged and 
pure guided wave solutions become no longer allowed and 
only surface wave solutions remain possible. We must 
also emphasize that the critical value V,,, like VL,cutoff, has 
been found to depend only on the asymmetry measure of 
the waveguide and vanishes in the case of a perfectly sym- 
metric structure (a = 0). 

When considering self-defocusing materials, another 
a-dependent critical normalized thickness arises, Vcd. Be- 
low it, V,, > V > VL,cutoff, there is a maximum allowed 
guided power, but when V > V,, the guided wave power 
can take any value. Thus, V,, separates the region in the 
parameter space where the nonlinear waveguide can act 
as a power limiter from the region where it cannot. 

We have obtained the analytic expressions of the mar- 
ginal loci separating the different allowed from the for- 
bidden regions in the b-V plane. The knowledge of these 
critical values, b,+, b,-, bcO, and b,,, has enabled us to 
calculate the expression of the normalized cutoff power 

(threshold power in the case of self-focusing media and 
maximum power for self-defocusing media) in order to 
guided propagation occurs, as a function of the waveguide 
parameters. 

Here we have mainly limited ourselves to the lowest 
order TE solution, but the analysis of higher-order TE, 
guided waves goes as well. Likewise, in this paper we 
have addressed the case of a waveguide with a nonlinear 
bounding medium, but the approach used is intended to 
be more general. For instance, the reported set of nor- 
malized variables hold as well in the case of a structure 
with a nonlinear film, provided that film parameters are 
used in the definition of the normalized power measure 
(to differentiate both cases now it will be denoted as ef). 
According to (1 7) one has 

n2f lJ 
ej = 2njn: - D 

and b = a f ( V ,  a ,  ef, 6,J. The reported normalized param- 
eters can be used also when both substrate and film (or 
substrate and cover) materials are nonlinear. In this case 
the additional generalized aspect ratio 

n2s 

will only be required. 
Similarity rules existing between waveguides with other 

than Kerr-like nonlinearities may be investigated by the 
proposed procedure. This seems to be a very attractive 
goal, since in most cases for such nonlinearities an ana- 
lytical solution of the nonlinear wave equation is not 
available and thus the use of general numerical methods 
is needed [27]-[30]. Saturable nonlinearities are good 
candidates since results similar to those obtained for the 
Kerr-like case are expected. 

Finally, similarity rules can provide a potential tool for 
the study of stability of nonlinear guided modes. This is 
complicated subject and to date the analysis is usually 
performed by means of numerical methods (the beam 
propagation method or solution of the nonlinear Schro- 
dinger equation using numerical techniques) involving to 
launch the stationary solutions into the waveguide. This 
approach require a great volume of calculations, so an 
exhaustive analysis of the stability of a particular class of 
nonlinear guided waves require a heavy computational ef- 
fort. This fact suggests that stability analysis would greatly 
benefit if the tested stationary solutions could be ex- 
pressed in terms of a minimal number of independent pa- 
rameters, as has been done for the particular case treated 
here, so that the degrees of freedom of the problem be- 
come as small as possible. This statement is particularly 
true in order to obtain the locus of marginal stability (sep- 
arating stable from unstable solutions) in the waveguide 
parameter space, which is the final goal of the stability 
analysis. 
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