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Abstract. We present a method that checks Query Containment for queries with negated IDB 
predicates. Existing methods either deal only with restricted cases of negation or do not check 
actually containment but uniform containment, which is a sufficient but not necessary 
condition for containment. Additionally, our queries may also contain equality, inequality and 
order comparisons. The generality of our approach allows our method to deal straightforwardly 
with query containment under constraints. Our method is sound and complete both for success 
and for failure and we characterize the databases where these properties hold. We also state the 
class of queries that can be decided by our method. 

1   Introduction 

Query Containment (QC) is the problem concerned with checking whether the answers that a query 
obtains are a subset of the answers obtained by another query for every database. QC Checking is applied 
as a base technique in several contexts: query optimization [Ull89], rewriting queries using views 
[Hal01], detecting independence of queries from database updates [LS93], constraint verification 
[GSUW94, LR98], etc. 

QC was first studied for the class of conjunctive queries [CM77, CR97]. QC of conjunctive queries 
with order comparisons was studied in [Klu88, LS93, Ull97]. Conjunctive QC with safe negated EDB 
atoms was investigated in [LS93, Ull97, WL03]. EDB stands for extensional database, that is, the 
database’s stored relations whereas IDB means intensional database, that is, the relations constructed by 
deductive rules. 

The methods that deal with negated IDB subgoals can be classified into two different approaches. The 
first one is taken by those methods that check QC for query classes where negation is used in a restrictive 
way [HMSS01, LS95]. The second approach is represented by those methods that do not check “true” QC 
but another related property called Uniform QC [LS93, DS96], which is a sufficient but not necessary 
condition for QC [Sag88]. 

When considering integrity constraints, the containment relationship between two queries does not 
need to hold for any state of the database but only for those that satisfy the integrity constraints. This idea 
is captured by the notion of Query Containment under Constraints (QCuC). QCuC checking was 
investigated for conjunctive queries under integrity constraints expressing functional dependencies 
[ASU79, JK84], inclusion dependencies [JK84] or object database schemas [Cha92, BJNS94, LS97]; for 
datalog queries, without negation, under integrity constraints expressing tuple -generating dependencies 
was addressed in  [Sag88, DS96] by taking the uniform containment approach; and also in the context of 
hybrid systems combining conjunctive or datalog queries and constraints expressed in a Description 
Logic language [BJNS94, LR96, CDL98]. 

In [FTU99] we sketched a method, named Constructive Query Containment method (CQC for short), 
to check “true” QC and QCuC in the presence of negation on IDB subgoals. Intuitively, the aim of our 
CQC method was to construct a counterexample  that proves that there is no QC (or QCuC). This method 
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used different Variable Instantiation Patterns (VIPs), according to the syntactic properties of the queries 
and the databases considered in each test. Such a customization only affects the way that the facts to be 
part of the counterexample are instantiated. The aim was to prune the search of the counterexample by 
generating only the relevant facts.  

We extend here our previous work by: 

− providing not just an intuitive idea but also the full formalization of the CQC method. 

− proving two additional theorems that hold when there are no recursively defined IDB relations: 
failure soundness, which guarantees that containment holds if the method terminates without 
building any counterexample; and failure completeness, which ensures that if containment holds 
between two queries then our method fails finitely (and terminates).  

− ensuring termination when checking containment for conjunctive queries with safe EDB negation 
and built-in literals.  

− showing that the CQC method is not less efficient than other methods that deal with conjunctive 
queries with or without safe EDB negation. We propose an additional VIP, the simple VIP, to 
perform such a comparison. 

− decomposing the General VIP in two: the discrete order VIP and  the dense order VIP that allow 
us to deal with built-in literals assuming both discrete and dense order domains. 

It follows from these new results that the method we propose here improves previously proposed 
algorithms since it provides an efficient decision procedure for known decidable cases and can also be 
applied for more general forms of queries that were not handled by previous algorithms. In these more 
general cases our method is semidecidable because it can not be guaranteed termination under the 
presence of infinite counterexamples. Nevertheless, if there is a finite counterexample our method finds it 
and terminates and if containment holds our method fails finitely and terminates. 

Section 2 sets the base concepts used through the paper. In Section 3, we introduce our method and 
Section 4 formalizes it. In Section 5, we present the main correctness results of our method. In Section 6, 
we discuss the decidability issues regarding our method. In Section 7, we compare our method with 
related work. The paper ends with the conclusions, Section 8, and references. For a more detailed 
formalization and detailed proofs, we refer to [FTU02]. 

2   Base Concepts 

A deductive rule has the form: 

p(X̄) ← r1(X̄1) ∧ … ∧ rn(X̄n) ∧ ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct 

where p and r1, …, rm are predicate (also called relation) names. The atom p(X̄) is called the head of the 
rule, and r1(X̄1), …, rn(X̄n), ¬rn+1(Ȳ1), …, ¬rm(Ȳs) are the positive and negative ordinary literals in the body 
of the rule. The tuples X̄, X̄1, …, X̄n, Ȳ1, …, Ȳs contain terms, which are either variables or constants. Each 
Ci is a built-in literal in the form of A1 θ A2, where A1 and A2 are terms. Operator θ is <, =, >, =, = or ?. 
We require that every rule be safe, that is, every variable appearing in X̄, Ȳ1, …, Ȳs, C1 , … or Ct must also 
appear in some X̄i. 

The predicate names in a deductive rule range over the extensional database (EDB) predicates, which 
are the relations stored in the database, and the intensional database (IDB) predicates (like p above), 
which are the relations defined by the deductive rules. EDB predicates must not appear in the head of a 
deductive rule. 

A set of deductive rules P is hierarchical if there is a partition P = P1 ∪ … ∪ Pn such that for any 
ordinary atom r(X̄) occurring positively or negatively (as ¬r(X̄)) in the body of a clause in Pi, the 
definition of r is contained within Pj with j < i. Note that a hierarchical set of deductive rules contains no 
recursive definitions about IDB relations. 
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A condition has the denial form of:  

← r1(X̄1) ∧ … ∧ rn(X̄n) ∧ ¬rn+1(Ȳ1) ∧ … ∧ ¬rm(Ȳs) ∧ C1 ∧… ∧ Ct 

where r1(X̄1), …, rn(X̄n), ¬rn+1(Ȳ1), …, ¬rm(Ȳs) are the (positive and negative) ordinary literals; and C1, …, 
Ct are built-in literals. If Z̄ is the set of the variables occurring in in Ȳ1, …, Ȳs, C1 , … or Ct, the we require 
that each variable in Z̄ must also occur in some X̄i. Roughly, a condition in denial form expresses a 
prohibition: a conjunction of facts (literals in the body) that must no hold on the database all at once. 
Therefore, a condition is violated (not satisfied), whenever ∃Z̄ (r1(X̄1) ∧ … ∧ rn(X̄n) ∧ ¬rn+1(Ȳ1) ∧ … ∧ 
¬rm(Ȳs) ∧ C1 ∧… ∧ Ct) is true on the database.  

A query Q is a finite set of deductive rules that defines a dedicated n-ary query predicate q. Without 
loss of generality, other predicates than q appearing in Q are EDB or IDB predicates.  

A query Q1 is contained in a query Q2, denoted by Q1 S Q2, if the set of answers of Q1(D) is a subset of 
those of Q2(D) for any database D. Moreover, Q1 is contained in Q2 wrt IC, denoted by Q1 SIC Q2, if the 
set of answers of Q1(D) is a subset of those of Q2(D) for any database D satisfying a finite set IC of 
conditions (integrity constraints). 

3   The Constructive Query Containment (CQC) Method 

The containment relationship between two queries must hold for the whole set of possible databases in 
the general case. A suitable way of checking QC is to check the lack of containment, that is, to find just 
one database where the containment relationship that we want to check does not hold: Q1 is not contained 
in Q2, written Q1 c Q2, if there is at least one database D such that Q1(D) ⊄ Q2(D). 

Given Q1 and Q2 two queries, the CQC method is addressed to construct the extensional part of a 
database (EDB) where the containment relationship does not hold. It requires two main inputs: the goal to 
attain and the set of conditions to enforce. Initially, the goal is defined G0 = ← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., 
Xn), meaning that we want to construct a database where (X1, ..., Xn) could be instantiated in such a way 
that q1(X1, ..., Xn) is true and q2(X1, ..., Xn) is false. The set of conditions to enforce is F0 = ∅, meaning that 
there is no initial integrity constraint to take care about. 

When considering a set IC of integrity constraints, we say that Q1 is not contained in Q2 wrt IC, written 
Q1 cIC Q2, if there is at least one database D satisfying IC, such that Q1(D) ⊄ Q2(D). In this case, the EDB 
that the CQC method has to construct to refute the containment relationship must also satisfy the 
conditions in IC. This is guaranteed by making the initial set of conditions to enforce F0 = IC together 
with the goal G0 = ← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn). 

3.1   Example: Q1 c Q2 

The following example is adapted from the one in [FTU99] by introducing double negation on IDB 
predicates. It allows illustrating the main ideas of our method and to show its behavior under these 
complex cases. Let Q1 and Q2 be two queries: 

Q1 = { sub1(X) ← emp(X) ∧ ¬chief(X) } 

Q2 = { sub2(X) ← emp(X) ∧ ¬boss(X) } 

where emp is an EDB predicate and chief and boss are IDB predicates defined by a set DR of deductive 
rules:  

DR = {boss(X) ← worksFor(Z, X)  

 chief(X) ← worksFor(Y, X) ∧ ¬boss(Y) } 

where worksFor is another EDB predicate.  
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Intuitively, we can see that Q1 is less restrictive than Q2 because Q2 does not retrieve those employees 
having anyone working for them, while Q1 allows retrieving employees having some boss working for 
them. Hence, we can find a database containing EDB relations such as emp(joan), worksFor(mary, joan) 
and worksFor(ann, mary), where sub1(joan) is true but sub2(joan) is false (chief(joan) is false because 
boss(mary) is true whereas boss(joan) is true). Therefore, Q1 is not contained in Q2. Note that an even 
smaller EDB containing just emp(joan) and worksFor(joan, joan) would have lead us to the same 
conclusion. 

A CQC-derivation that constructs an EDB that proves Q1 c Q2 are shown in figure 3.1. Each row on 
the figure corresponds to a CQC-node that contains the following information (columns): 

1. The goal to attain: the literals that must be made true by the EDB under construction. When the 
goal is [] it means that no literal needs to be satisfied. Here, the initial CQC-node contains the 
goal G0 = ← sub1(X) ∧ ¬sub2(X). That is, we want the CQC method to construct a database where 
exists at least a constant k such that both sub1(k) and ¬sub2(k) are true 

2. The conditions to be enforced: the set of conditions that the constructed EDB is required to 
satisfy. Recall that a condition is violated whenever all of its literals are evaluated as true. Here, 
the initial CQC-node contains the set of conditions to enforce F0 = ∅. 

3. The EDB under construction. The initial CQC-Nodes has always an empty EDB. 

4. The conditions to be maintained: the set containing those conditions that are known to be satisfied 
in the current CQC-node and that must remain satisfied until the end of the CQC-derivation. 
Initial CQC-Nodes have always this set empty. 

5. The account of constants introduced in the current and/or the ancestor CQC-nodes to instantiate 
the EDB facts in the EDB under construction. Initially, such a set contains always the constants 
appearing already in DR∪Q1∪Q2∪G0∪F0. 

The transition between two consecutive CQC-nodes, i.e. between an ancestor node and its successor, is 
a CQC-step that is performed by applying a CQC-expansion rule to a selected literal of the ancestor CQC-
node. The selection of literals in the CQC-derivation of figure 3.1 is nearly arbitrary: the only necessary 
criterion is to avoid picking a non-ground negative-ordinary or built-in literal. In figure 3.1, the CQC-
steps are labeled with the name of the CQC-expansion rule that is applied and the selected literal in each 
step is underlined. We refer to Section 4.2 for a proper formalization of the CQC-expansion rules. 

The first step unfolds the selected literal, the IDB atom sub1(X) from the goal part, by substituting it 
with the body of its defining rule . At the second step, the selected literal from the goal part is emp(X), 
which is a positive EDB literal. To get a successful derivation, i.e. to obtain an EDB satisfying the initial 
goal, emp(X) must be true on the constructed EDB. Hence, the method instantiates X with a constant and 
includes the new ground EDB fact in the EDB under construction. The procedure assigns an arbitrary 
constant to X, e.g. 0. So emp(0) is the first fact included in the EDB under construction. 

¬chief(0) is the selected literal in step 3. To get success for the derivation, chief(0) must not be true on 
the EDB. This is guaranteed by adding ← chief(0) as a new condition to be enforced. Step 4 is similar to 
step 3, yielding ← sub2(0) to be considered as another condition to be enforced. After performing this 
later step, we get a CQC-node with a goal like []. However, the work is not done yet, since we must 
ensure that the two conditions ← sub2(0) and ← chief(0) are not violated by the current EDB. In other 
words, we must make both chief(0) and sub2(0) false. 

Step 5 unfolds the selected literal chief(0) from one of the two conditions, getting ←  worksFor(Y, 0) ∧ 
¬boss(Y) as a new condition that replaces ←  chief(0). At least one of the two literals of this condition 
must be false. In step 6, the selected literal is the positive EDB literal is worksFor(Y, 0). Since it matches 
with no EDB atom in the EDB under construction, worksFor(Y, 0) is false and, consequently, the whole 
condition ← worksFor(Y, 0) ∧ ¬boss(Y) is not violated by the current EDB. For this reason, such a 
condition is moved from the set of conditions to enforce to the set of conditions to maintain. 
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Step 7 unfolds the selected IDB atom sub2(0) from the remaining condition to enforce. The EDB atom 
emp(0) is the selected literal in step 8. Since emp(0) is also present in the EDB under construction, it 
cannot be false. So this literal is dropped from the condition because it does not help to enforce the 
condition. In step 9 the selected literal is the negative literal ¬boss(0). Since it is the only literal of the 
condition, it must be made false necessarily. So boss(0) becomes a new (sub)goal to achieve and is 
transferred, thus, to the goal part. 

 

 

{emp(0)} 

← sub1(X) ∧ ¬sub2(X) 

← emp(X) ∧ ¬chief(X)  
               ∧ ¬sub2(X) 

← ¬chief(0) ∧ ¬sub2(0) 

Goal to attain 

{← emp(0) ∧ ¬boss(0) } 

← boss(0) 

{← chief(0)} 

{← ¬boss(0)} 

∅ 

{emp(0)} 

{emp(0)} 

{emp(0)} 

{emp(0)} 

{emp(0)} 

  [] {emp(0), 
worksFor(0,0)} 

  [] 

EDB Conditions  
to mantain 

 1:A1 

← worksFor(Z,0) ∅ 

  [] 

∅ 

{← worksFor(Y,0) ∧ ¬boss(Y), 
  ← sub2(0) } 

{← worksFor(Y,0) 
       ∧ ¬boss(Y)} 

{← sub2(0)} 

{← worksFor(Y,0) ∧ ¬boss(Y)} 

← boss(0) 

← worksFor(Z,0) ∅ 

∅ 

∅ 

{emp(0), 
worksFor(0,0)} 
{emp(0), 
worksFor(0,0)} 
{emp(0), 
worksFor(0,0)} 

{emp(0)} 

{emp(0)} 

∅ 

∅ {emp(0), 
worksFor(0,0)} 

  [] 

  [] 

  [] 

  [] 

← ¬sub2(0) 

{← worksFor(Y,0) 
       ∧ ¬boss(Y)} 
{← worksFor(Y,0) 
       ∧ ¬boss(Y)} 
{← worksFor(Y,0) 
       ∧ ¬boss(Y)} 
{← worksFor(Y,0) 
       ∧ ¬boss(Y)} 

{← worksFor(Y,0) 
       ∧ ¬boss(Y)} 
{← worksFor(Y,0) 
       ∧ ¬boss(Y)} 

{← worksFor(Y,0) 
       ∧ ¬boss(Y)} 
{← worksFor(Y,0) 
       ∧ ¬boss(Y)} 

∅ 

∅ 

∅ 

∅ 

∅ 

{← ¬boss(0)} 

 5:B1 

 2:A2 

 3:A3 

 6:B2 

 7:B1 

 8:B2 

 9:B3 

10:A1 

11:A2 

15:A2 

12:B2 

13:B3 

14:A1 

{← chief(0), ← sub2(0)} {emp(0)} ∅ 
 4:A3 

  [] 

∅ 

∅ 

∅ 

Conditions  
to enforce 

Used 
constants 

∅ 

∅ 

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

{ 0 }  

 
Fig. 3.1.  

Step 10 unfolds the selected literal boss(0) from the goal part as in step 1. worksFor(z, 0) is the selected 
literal in step 11. As in step 2, the method should instantiate Z with a constant. In this case, the chosen 
constant is 0 again, so worksFor(0, 0) is added to the EDB under construction. Moreover, the condition 
←  worksFor(Y, 0) ∧ ¬boss(Y) is moved back to the set of conditions to enforce to avoid that the new 
inclusion of worksFor(0, 0) in the EDB violates it.  

In step 12, the selected literal is the positive EDB literal is worksFor(Y, 0) from the remaining 
condition to enforce. Now, it matches with the current contents of the EDB with Y = 0. As in step 8, such 
a literal is dropped from the condition. However, the whole condition ←  worksFor(Y, 0) ∧ ¬boss(Y) is 
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moved again to the set of conditions to maintain in order to prevent further inclusions of new facts about 
worksFor in the EDB from violating it. 

Steps 13 and 14 are identical to steps 9 and 10. In step 15, the constant 0 is selected again to instantiate 
worksFor(Z, 0). Since worksFor(0, 0) is already included in the EDB, there is no need to transfer back 
any condition from the set of conditions to maintain to the set of conditions to enforce. 

The CQC-derivation ends successfully since it reaches a CQC-node where the goal to attain is [] and 
the set of conditions to satisfy is empty. In other words, we can be sure that its EDB, {emp(0), 
worksFor(0, 0)}, contains a set of facts that makes the database satisfy the goals and conditions of all 
preceding CQC-nodes, including, naturally, the first CQC-node. Then we conclude Q1 c Q2. 

3.2   Variable Instantiation Patterns  

When a CQC-derivation terminates successfully, we obtain a proof, the constructed EDB, which shows 
that the containment relationship is not true. On the contrary, when a derivation ends unsuccessfully, that 
is, it terminates but it fails to construct a counterexample, we cannot conclude that containment holds 
based on a single result. Then the question is how many derivations must be considered before achieving 
a reliable conclusion. Indeed, rather than the account of all possible derivations, the real point is to know 
how many variable instantiation alternatives must be considered when adding new facts to the EDB under 
construction. Since the set of possible combinations of alternative constant assignments to instantia te 
EDB facts is what determines the set of different EDBs that can be constructed. 

The aim of the CQC method is to test only the variable instantiations that are relevant without losing 
completeness. The “strategy” for instantiating the EDB facts to be included in the EDB under 
construction is connected to, indeed it is inspired by, the concept of canonical databases found in [Klu88, 
LS93, Ull97]. This concept is based on the idea that it is not necessary to check the whole (infinite) set of 
possible EDBs to prove containment but only a (finite) subset of them, the set of canonical EDBs. In this 
way, if it is proved that a containment relationship holds on any canonical EDB, then QC holds for any 
EDB. The soundness of this approach is guaranteed by proving that any possible EDB is represented by 
one canonical EDB and that this correspondence preserves the containment relationship. 

In contrast to [Klu88, LS93, Ull97], our method does not need to generate the whole set of canonical 
databases in advance. Our containment tests end as soon as a successful a CQC-derivation leading to a 
canonical counterexample is found. It is only in the worst case, when no counterexample exists, when the 
complete tree of failed CQC-derivations will have test every canonical database. However, even in this 
case, recreating completely each canonical database may not be always required before discarding it 
since, for instance, it is early detected that some condition is violated with no possible repair. 

Since the canonical databases to be taken into account depend on the concrete subclass of queries that 
are considered, we distinguish three different variable instantiation patterns, VIPs for shorthand. Each of 
them defines how the CQC method has to instantiate the EDB facts to be added to the EDB under 
construction. The following three VIPs are formalized in Appendix A: Simple VIP, Negation VIP (as 
considered in [FTU99]), Dense Order VIP and Discrete Order VIP. 

The CQC method uses the Simple VIP when checking containment but not QC under constraints. 
Moreover, the deductive rules defining query predicates as well as IDB predicates must satisfy the 
following conditions: they must not have any negative or built-in literal1 in their rule bodies; they must 
not have constants in their heads; and they must not have any variable appearing twice or more times in 
their heads. According to the Simple VIP, each distinct variable is bound to a distinct new constant. 

The CQC method uses the Negation VIP when checking QCuC or when checking containment under 
the presence of negated IDB subgoals, negated EDB subgoals and/or (in)equality comparisons (=, ?). In 

                                                 
1 However, note that if a deductive rule has a literal of the form z = k or z = x in its body such that z does not appear in the head, 

then that literal can be omitted by replacing each occurrence of z in the rule body by k or x, respectively. 
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any case, order comparisons (<, =, >, =) are not allowed. EDBs generated and tested with this VIP 
correspond to the canonical EDBs considered in [LS93, Ull97] for the conjunctive query case with 
negated EDB subgoals. The intuition behind this VIP is clear: Each new variable appearing in a EDB fact 
to be grounded is instantiated with either some constant previously used or a constant never used before. 
This is the pattern used in the CQC-derivation showed in the figure 3.1. 

The other two VIPs, Dense Order VIP and Discrete Order VIP, are applied when there are order 
comparisons (<, =, >, =) in the deductive rules, with or without negation. In this case, each distinct 
variable must be bound to a constant according to either a former or a new location in the total linear 
order of constants introduced previously [Klu88, LS93, NSS98, Ull97]. The election between to apply 
either the Dense Order VIP or the Discrete Order VIP depends on whether the comparisons are 
interpreted on a dense order (e.g. rational and real numbers) or on a discrete  order (e.g. integer numbers). 

4   Formalization Of The CQC Method 

Let Q1 and Q2 be two queries, DR the set of deductive rules defining the database IDB relations and IC a 
finite set of conditions expressing the database integrity constraints. If the CQC method performs a 
successful CQC-derivation from (← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn) ∅ ∅ ∅ K) to ([] ∅ T C K’) then Q1 c 
Q2, where K is the set of constants appearing in DR∪Q1∪Q2. Moreover, if the CQC method performs a 
successful CQC-derivation from (← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn) IC ∅ ∅ K’’) to ([] ∅ T C K’’’) then 
Q1 cIC Q2, where K’’ is the set of constants appearing in DR∪Q1∪Q2∪IC. 

CQC-derivations start from a 5-tuple (G0 F0 T0 C0 K0) consisting of the goal G0 = ← q1(X1, ..., Xn) ∧ 
¬q2(X1, ..., Xn), the set of conditions to enforce F0 = ∅ or IC, the initially-empty EDB T0 = ∅, the empty 
set of conditions to maintain C0 = ∅ and the set K0 of constant values appearing in DR∪Q1∪Q2[∪IC]. 

A successful CQC-derivation reaches a 5-tuple (Gn Fn Tn Cn Kn) = ([] ∅ T C K’), where the empty goal 
Gn = [] means that we have reached the goal G0 we were looking for. The empty set Fn = ∅ means that no 
condition is waiting to be satisfied. Tn = T is an EDB that satisfies G0 as well as F0. Cn = C is a set of 
conditions recorded along the derivation and that T also satisfies. Kn = K’ is the set of constant values 
appearing in DR∪Q1∪Q2[∪IC]∪T. 

On the contrary, if every “fair” CQC-derivation starting from (← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn) ∅ 
[∪IC] ∅ ∅ K) is finite but does not reach ([] ∅ T C K’), it will mean that no EDB satisfies the goal G0 = 
← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn) together with the set of conditions F0 = ∅ [∪IC], concluding that Q1 S 
Q2 (Q1 SIC Q2). Section 5 below provides the complete results and proofs regarding the soundness and 
completeness of the CQC method. 

4.1   CQC-Nodes, CQC-Trees and CQC-Derivations  

Let Q1 and Q2 be two queries, DR be the set of deductive rules defining the database IDB relations and IC 
be a finite set of conditions expressing the database integrity constraints. A CQC-node is a 5-tuple of the 
form (Gi Fi Ti Ci Ki), where Gi is a goal to attain; Fi is a set of conditions to enforce; Ti is a set of ground 
EDB atoms, an EDB under construction; Ci is a set of conditions that are currently satisfied in Ti and must 
be maintained; and Ki is the set of constants appearing in R = DR∪Q1∪Q2[∪IC] and Ti. 

A CQC-tree is inductively defined as follows: 

1. The tree consisting of the single CQC-node (G0 F0 ∅ ∅ K) is a CQC-tree. 

2. Let E be a CQC-tree, and (Gn Fn Tn Cn Kn) a leaf CQC-node of E such that Gn ? [] or Fn ? ∅. Then 
the tree obtained from E by appending one or more descendant CQC-nodes according to a CQC-
expansion rule applicable to (Gn Fn Tn Cn Kn) is again a CQC-tree. 

It may happen that the application of a CQC-expansion rule on a leaf CQC-node (Gn Fn Tn Cn Kn) does 
not obtain any new descendant CQC-node to be appended to the CQC-tree because some necessary 
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constraint defined on the CQC-expansion rule is not satisfied. In such a case, we say that (Gn Fn Tn Cn Kn) 
is a failed CQC-node. 

Each branch in a CQC-tree is a CQC-derivation consisting of a (finite or infinite) sequence (G0 F0 T0 
C0 K0), (G1 F1 T1 C1 K1), … of CQC-nodes. 

A CQC-derivation is finite  if it consists of a finite sequence of CQC-nodes; otherwise it is infinite. A 
CQC-derivation is successful if it is finite and its last (leaf) CQC-node has the form ([] ∅ Tn Cn Kn). That 
is, both the goal to attain and the set of conditions to satisfy are empty. A CQC-derivation is failed if it is 
finite and its last (leaf) CQC-node is failed. 

A CQC-tree is successful when at least one of its branches is a successful CQC-derivation. A CQC-tree 
is finitely failed when each one of its branches is a failed CQC-derivation. 

Table 4.1. CQC-expansion rules: A#-rules. 

A1) P(Gi) = d(X̄) is a positive IDB atom:

(Gi Fi Ti Ci Ki)
(Gi+1,1 Fi Ti Ci Ki) | … | (Gi+1,m Fi Ti Ci Ki)

only if m ≥ 1 and each Gi+1,j is the resolvent for Gi and some deductive rule d(Ȳ) ← M1
∧…∧ Mq in R.

A2) P(Gi) = b(X̄) is a positive EDB atom:

(Gi Fi Ti Ci Ki)
((Gi\b(X̄))σ1 Fi+1,1 Ti+1,1 Ci+1,1 Ki+1,1)  |  …  |  ((Gi\b(X̄))σm Fi+1,m Ti+1,j Ci+1,m Ki+1,m)

such that Fi+1,j = Fi∪Ci, Ti+1,j = Ti∪{b(X̄)σj} and Ci+1,j = ∅ if b(X̄)σj ∉ Ti; otherwise Fi+1,j

= F i, Ti+1,j = Ti and Ci+1,j = Ci. Each σj  is one out of m possible distinct ground
substitutions, obtained via a variable instantiation procedure from (vars(X̄), ∅, Ki) to (∅,
σj, Ki+1,j) according to the appropriate variable instantiation pattern, that assigns a
constant from Ki+1,j to each variable in vars(X̄). See more details in Appendix A.

A3) P(Gi) = ¬p(X̄) is a ground negated atom:

(Gi Fi Ti Ci Ki)
(Gi\¬p(X̄) Fi∪{← p(X̄)} Ti Ci Ki)

A4) P(Gi) =L is a ground built-in literal:

(Gi Fi Ti Ci Ki)
(Gi\L Fi Ti Ci Ki)

only if L is evaluated true.
 

4.2   The CQC-Expansion Rules 

The nine CQC-expansion rules are listed in tables 4.1 and 4.2. For the sake of notation, if Gi = ← L1 ∧ … 
∧ Lj-1 ∧ Lj ∧ Lj+1 ∧ … ∧ Lm then Gi\Lj = ← L1 ∧ … ∧ Lj-1 ∧ Lj+1 ∧ … ∧ Lm. If Gi = ← L1 ∧ … ∧ Lm then 
Gi∧p(X̄) = ← L1 ∧ … ∧ Lm ∧ p(X̄). 

The application of a CQC-expansion rule on a given CQC-node (Gi Fi Ti Ci Ki) may result in none, one 
or several alternative (branching) descendant CQC-nodes depending on the selected literal P(Ji) = L. 
Here, Ji is either the goal Gi or any of the conditions Fi,j in Fi. L is selected according to a safe 
computation rule P [Llo87], which selects negative and built-in literals only when they are fully 
grounded. To guarantee that such literals are sooner or later selected we require deductive rules and goals 
to be safe. 
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Once a literal is selected, only one of the CQC-expansion rules can be applied. We distinguish two 
classes of rules: A-rules and B-rules. A-rules are those where the selected literal belongs to the goal Gi. 
Instead, B-rules correspond to those where the selected literal belongs to any of the conditions Fi,j in Fi. 
Inside each class of rules, they are differentiated with respect to the type of the selected literal. 

In each CQC-expansion rule, the part above the horizontal line presents the CQC-node to which the 
rule is applied. Below the horizontal line is the description of the resulting descendant CQC-nodes. 
Vertical bars separate alternatives corresponding to different descendants. Some rules like A1, A5, B2 
and B4 include also an “only if” condition that constraints the circumstances under which the expansion 
is possible. If such a condition is evaluated false, the CQC-node to which the rule is applied becomes a 
failed CQC-node. 

Finally, note that three CQC-expansion rules, namely A1, B1 and B2, use the resolution principle as is 
defined in [Llo87]. 

Table 4.2. CQC-expansion rules: B#-rules. 

B1) P(Fi,j) = d(X̄) is a positive IDB atom:

(Gi {Fi, j}∪F i Ti Ci Ki)
(Gi S∪Fi Ti Ci Ki)

where S is the set of all resolvents Su for clauses in R and Fi,j on d(X̄). S may be empty.

B2) P(Fi,j) = b(X̄) is a positive EDB atom:

(Gi {Fi, j}∪F i Ti Ci Ki)
(Gi S∪F i Ti Ci+1 Ki)

only if  [] ∉ S.
Ci+1 = Ci if X̄ contains no variables and b(X̄) ∈ Ti; otherwise, Ci+1 = Ci∪{Fi,j}
S is the set of all resolvents of clauses in Ti with Fi,j on b(X̄). S may be empty, meaning
that b(X̄) cannot be unified with any atom in Ti.

B3) P(Fi,j) = ¬p(X̄) is a ground negative ordinary literal:

(Gi {Fi, j}∪F i Ti Ci Ki)
(Gi {← p(X̄)}∪{Fi,j\¬p(X̄)}∪Fi Ti Ci Ki) only if Fi,j\¬p(X̄) ≠ []    |    (Gi∧p(X̄) Fi Ti Ci Ki)

B4) P(Fi,j) = L is a ground built-in literal that is evaluated true:

(Gi {Fi, j}∪F i Ti Ci Ki)
(Gi {Fi, j\L}∪Fi Ti Ci Ki)

only if Fi\L ≠ [].

B5) P(Fi,j) = L is a ground built-in literal that is evaluated false:

(Gi {Fi, j}∪F i Ti Ci Ki)
(Gi F i Ti Ci Ki)

 

5   Correctness Results For The CQC Method 

In this Section, we summarize and sketch the new proofs of correctness of the CQC method. We refer the 
reader to [FTU02] for the detailed proofs. We also state the class of queries that can be actually decided 
by the CQC method. Before proving these results, we need to make explicit the model-theoretic semantics 
to with respect those results are established.  
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We view the CQC method as an extension of SLDNF-resolution [Cla77, Llo87]. However, there is an 
important difference between both methods. When applying SLDNF-resolution, the input set of 
information, the logic program and the goal to attain, is closed, that is, neither new facts nor rules are 
added on behalf of a SLDNF-resolution procedure. Instead, the CQC method enforces the addition of new 
information, in terms of EDB facts, on behave of the method, if it is considered necessary for assuring the 
satisfaction of the non-containment goal. This key difference will be reflected on the semantics that 
founds each method. 

The model-theoretic counterpart of the procedural semantics of SLDNF-resolution is Clark’s 
completion [Cla77, Llo87]. In this way, the soundness and completeness results of SLDNF-resolution are 
established with respect to the semantics of the completed logic programs taken as a input. In a similar 
way, we introduce the notion of partial completion of deductive rules to provide a model-theoretic 
foundation to prove the soundness and completeness of the CQC method. 

Let R be a set of deductive rules. We define the partial completion of R, denoted by pComp(R), as the 
collection of completed definitions [Cla77, Llo87] of IDB predicates in R together with an equality 
theory. This later one includes a set of axioms stating explicitly the meaning of the built-in predicate = 
introduced in the completed definitions. 

Our partial completion is defined similarly to Clark’s completion, Comp(R), but without including the 
axioms of the form ∀x(¬bi(X̄)) for each predicate bi which only appear in the body of the clauses in R.  
We assume that these predicates are EDB predicates that, obviously, are not defined in R.  

If Q1 and Q2 are two queries, DR is the set of deductive rules defining the database IDB relations and 
IC be a finite set of conditions expressing the database integrity constraints, we consider that problem of 
knowing whether Q1 S Q2 (Q1 SIC Q2) is equivalent to the problem of proving that pComp(R)[∪ ∀IC] \ 
∀X1…Xn  q1(X1,…,Xn) → q2(X1,…,Xn) is true, where R = DR∪Q1∪Q2. If we define the initial goal G0 = ← 
q1(X1,…,Xn) ∧ ¬q2(X1,…,Xn) then testing Q1 S Q2 (Q1 SIC Q2) is equivalent to proving pComp(R)[∪∀IC] \ 
G0. This proof is tackled by the CQC method, which tries to refute pComp (R)[∪∀IC] \ G0 by constructing 
an EDB T such that R(T) is a model for pComp (R) [∪∀IC] ∪ {∃X1...∃Xn (q1(X1,…,Xn) ∧ ¬q2(X1,…,Xn))}. 

In the following theorems, let G0 = ← q1(X1, ..., Xn) ∧ ¬q2(X1, ..., Xn) be the initial goal, F0 = ∅ [∪IC] 
be the initial set of conditions to enforce and K be the set of constants appearing in DR∪Q1∪Q2∪F0. 

Before proving results related to failure of the CQC method, we review the results related to finite 
success already stated in [FTU99]. 

Theorem 5.1 (Finite Success Soundness) 
If there exists a finite successful CQC-derivation starting from (G0 F0 ∅ ∅ K) then Q1 c Q2 (Q1 c IC Q2) 
provided that {G0}∪F0∪DR∪Q1∪Q2 is safe and hierarchical. 

Theorem 5.2 (Finite Success Completeness) 
If Q1 c Q2 (or Q1 cIC Q2) then there exists a successful CQC-derivation from (G0 F0 ∅ ∅ K) to ([] ∅ T C 
K’) provided that {G0}∪F0∪DR∪Q1∪Q2 is safe and either hierarchical or strict-stratified [CL89]. 

These results ensure that, in the absence of recursive IDB predicates, if the method builds a finite 
counterexample, then containment does not hold (Theorem 5.1); and that if there exists a finite 
counterexample, then our method finds it and terminates (Theorem 5.2). We extend these results by 
assessing the properties regarding failure of our method. In this sense, we prove failure soundness 
(Theorem 5.3) which guarantees that if the method terminates without building any counterexample then 
containment holds; and failure completeness (Theorem 5.5) which states that if containment holds 
between two queries then our method fails finitely. 

Theorem 5.3 (Failure Soundness) 
If there exists a finitely failed CQC-Tree rooted at (G0 F0 ∅ ∅ K) then Q1 S Q2 (Q1 SIC Q2) provided that 
the deductive rules and conditions in DR∪Q1∪Q2[∪IC] are safe. 

The proof of Theorem 5.3 is made by using the principle of contradiction and may be intuitively 
explained as follows. Le us suppose that we have a finitely failed CQC-tree but Q1 c Q2 (Q1 cIC Q2). If Q1 
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c Q2 (Q1 cIC Q2) it means for us that pComp(R) [∪∀IC] ∪ {∃X1...∃Xn (q1(X1,…,Xn) ∧ ¬q2(X1,…,Xn))} has a 
model. However, if this is true, we prove that there is at least one CQC-derivation not finitely failed.  

Lemma 5.4 is needed for proving Theorem 5.5. Before stating it, we need some new definitions. 

A CQC-derivation is open when it is not failed. That is, when the derivation is either infinite or finite 
with its last (leaf) CQC-node having the form of ([] ∅ Tn Cn Kn). A CQC-derivation θ is saturated for the 
CQC-expansion Rules if for every CQC-node (Gi Fi Ti Ci Ki) in θ the following properties hold: 

1. For each literal Li,j ∈ Gi there exists a  node (Gn Fn Tn Cn Kn), n = i, such that P(Gn) = Li,jσi+1…σn 
is the selected literal on that node to apply a CQC A-rule, where σi+1…σn is the composition of the 
substitutions used in the intermediate nodes. 

2. For each condition Fi,j i
 ∈ Fi there exists a node (Gn Fn Tn Cn Kn), n = i, such that Fn,jn

 ∈ Fn is the 
selected condition on that node to apply a CQC B-rule and Fn,jn

 = Fi,j i
. 

A CQC-derivation is said to be fair when it is either failed or open and saturated for the CQC-
expansion Rules. A CQC-tree is fair if each one of its CQC-derivations (branches) is fair. Note that a 
finitely failed CQC-tree is always fair, but the inverse is not necessarily true. 

Lemma 5.4 
Let R be a set of deductive rules, G = ← L1 ∧ … ∧ Lk be a goal, F be a set of conditions and K be the set 
of constants in {G0}∪F0∪R. If there exists a saturated open CQC-derivation starting from (G0 F0∅ ∅ K) 
then pComp(R) ∪ {∃(L1 ∧ … ∧ Lk)} ∪ ∀F0 has a model provided that {G0}∪F0∪R is safe and 
hierarchical. 

Theorem 5.5 (Failure Completeness) 
If Q1 S Q2 (Q1 SIC Q2) then every fair CQC-Tree rooted at (G0 F0 ∅ ∅ K) is finitely failed provided that 
{G0}∪F0∪DR∪Q1∪Q2 is safe and hierarchical. 

The proof is made by contradiction and may be intuitively explained as follows. If Q1 S Q2 (Q1 SIC Q2) 
then pComp(R) [∪∀IC] ∪ {∃X1…Xn  q1(X1,…,Xn) ∧ ¬q2(X1,…,Xn)} cannot have a model. Assuming that it 
is true, let us suppose that we have a non-failed CQC-derivation starting from (G0 F0 ∅ ∅ K). However, 
lemma 5.4 shows that this derivation would indeed construct a model for pComp(DR)  [∪∀IC] ∪ 
{∃X1...∃Xn (q1(X1,…,Xn) ∧ ¬q2(X1,…,Xn))}. 

6   Decidability Results 

The QC problem is undecidable for the general case of queries and databases that the CQC Method 
covers AHV95]. One possible source of undecidability is the presence of recursively-defined derived 
predicates that could make the CQC Method build and test an infinite number of EDBs. In this sense, the 
CQC Method excludes explicitly the presence of any type of recursion as we have seen in the proofs of 
the failure completeness (Theorem 5.5) and the finite success soundness and completeness (Theorems 5.1 
and 5.2). 

Another reason for undecidability is the presence of “axioms of infinity” [BM86] or “embedded 
TGD's” [Sag88]. In this case, the initial goal to attain could only be satisfied on an EDB with an infinite 
number of facts because each new addition of a fact to the EDB under construction triggers a condition to 
be repaired with another insertion on the EDB.  

For this reason, the CQC Method is semidecidable for the general case, in the sense that if either there 
exist one or more finite EDBs for which containment does not hold or there is no EDB (finite or infinite), 
the CQC Method terminates according to our completeness results (Theorems 5.2 and 5.5). Nevertheless, 
we can not guarantee termination under the presence of infinite counterexamples. 

One of the forms to assure always termination when using the CQC Method is to delimit a priori the 
type of schemas and queries for which it is guaranteed that infinite non-containment counterexamples 
never exist. It is well known that this is the case of all the different classes of conjunctive queries, 
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including those allowing negated EDB atoms and built-in atoms. Then, we can guarantee that our method 
will always terminate in these cases. 

7   Related Work 

This section is devoted to compare the CQC method with previous research in the field. This comparison 
is intended to point out that the CQC method performs containment tests for more and broader cases of 
queries and database schemas than previous methods (see Section 7.1.) and that it is not less efficient than 
other methods for those cases that they already covered (see Section 72.). 

7.1   Queries and Database Schemas Handled by the Methods  

As we have seen, the CQC method deals with queries and database schemas that include negation on IDB 
predicates, integrity constraints and built-in order predicates. Previous methods that deal with negated 
IDB subgoals can be classified in two different approaches: either they check Uniform Query 
Containment or they consider just restricted cases of negation. 

[LS93, ST96, DS96] check Uniform QC for queries and databases with safe negated IDB atoms. The 
problem is that, as pointed out in [Sag88], Uniform QC (written Q1 Su Q2) is a sufficient but not 
necessary condition for query containment. That is, if for a given pair of queries Q1 and Q2 we have that 
Q1 Su Q2, then Q1 S Q2. On the other hand, if the result is that Q1 cu Q2, then nothing can be said about 
whether or not Q1 S Q2 holds. In contrast, we have seen that the CQC method always checks “true” query 
containment. 

The rest of the methods that handle negation restrict the classes of queries and database schemas they 
are able to deal with. Thus, we have that [Ull97, WL03] consider only conjunctive queries with negated 
EDB predicates, while [LS95] checks containment of a datalog query in a conjunctive query with negated 
EDB predicates. [HMSS01] deals with negated IDB subgoals for databases with only 1-ary EDB 
predicates. [CDL98] cannot express simple cases of negation on IDB predicates since it is not possible to 
define negation in the regular expression they consider. Finally, [BEST98] admits that ‘there may also be 
rules defining views’. However, it provides very poor information of how IDB atoms must be handled. 
They only say that IDB rules are consider as integrity constraints, assuming that there is no a ‘strict 
separation between extensional and intensional database’. Nevertheless, it is not clear how this translation 
must be done if IDB rules are expressed as integrity constraints. In the field of Description Logics (DL),  
[DLNN97] performs subsumption checking, a similar problem to query containment, of DL concepts 
which allow negation to be applied only to unary IDB predicates. 

7.2   Efficiency of the Proposed Techniques 

To show that the CQC method is not less efficient than other methods, we select two outstanding 
methods, [Ull97] and [WL03], and we show by means of a an example the correspondence between the 
procedure followed by the CQC method and the one defined in these proposals. This comparison will 
allow also to determine that in the CQC method the simple VIP may always replace the negation VIP in 
the presence of negated EDB predicates, without loosing completeness. 

7.2.1   Comparison with [Ull97] 

The procedure of [Ull97] is an adaptation of the uniform equivalence checking method of [LS93] for the 
class of conjunctive queries with negated EDB atoms. Conjunctive queries are those queries that do not 
have any literal about IDB predicates in their defining rule bodies. We show by means of an example that 
the CQC Method and the one in [Ull97] generate and test the same EDB to check whether a query is 
contained in another one.  
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Example 7.1 

Let Q1 and Q2 be two queries defining the same 2-ary query predicate p: 

Q1 = { p(X, Y) ← a(X, Z) ∧ a(Z, Y) ∧ ¬a(X, Y) } 

Q2 = { p(X, Y) ← a(X, Z) ∧ a(Z, Y) ∧ a(Z, W) ∧ ¬a(X, W) } 

where a fact like a(0, 1) is an EDB fact that is true whenever an arc connects 0 with 1. 

As stated before, the CQC Method is intended to prove that Q1 S Q2 is not true by constructing an EDB 
for which such a relationship does not hold.  

Different CQC-derivations starting from G0 = ← p1(X, Y) ∧ ¬p2(X, Y) and considering all the relevant 
variable instantiations are partially shown in figure 7.1. Note that the CQC Method applies the Negation 
VIP. Since none of the CQC-derivations ends successfully, Q1 S Q2. 

 

 

 ← ¬a(0, 0) ∧  
      ¬p2(0, 0) 

 ← ¬a(0, 2) ∧  
      ¬p2(0, 2) 

 ← ¬a(0, 1) ∧  
      ¬p2(0, 1) 

 ← ¬a(0, 0) ∧ 
      ¬p2(0, 0) 

 ← ¬a(0, 1) ∧
     ¬p2(0, 1) 

 ← a(0, Y) ∧ ¬a(0, Y) ∧¬p2(0, Y)  ← a(1, Y) ∧ ¬a(0, Y) ∧¬p2(0, Y) 

 ← a(X, Z) ∧ a(Z, Y) ∧ ¬a(X, Y) ∧¬p2(X, Y) 

 ← p1(X, Y) ∧ ¬p2(X, Y) 

A2  2a  2b 

A1  1 

 X = Z = 0 
 T = {a(0, 0)} 

 X = 0,  Z =1 
 T = {a(0, 1)} 

 X = Z = 0,  
 Y = 1 

 X = 0,   
 Z = Y = 1 

 X = 0,   
 Z = 1,   
 Y = 2 

A2  3ba  3bb  3ab  3bc 

 T3ba = {a(0, 1),  
         a(1, 0)} 

 T3bb = {a(0, 1), 
         a(1, 1)} 

 T3aa = {a(0, 0)}  T3ab = {a(0, 0), 
          a(0, 1)} 

 ST1 

 fail 

 T3bc = {a(0, 1), 
         a(1, 2)} 

 X = Y = 0, 
 Z = 1 

 X = Z = Y = 0 
A2  3aa

 ST2 

 fail 

 ST2 

 fail 

 ST4 

 fail 

 ST5 

 fail 
 

Fig. 7.1  

The CQC-(sub)derivation ST1 , which continues with ← ¬a(0, 0) ∧ ¬p2(0, 0) as the goal to attain and 
{a(0, 0)} as the constructed EDB by then, is shown in figure 7.2. This derivation fails mainly because the 
content of EDB itself cannot satisfy p1 even before enforcing p2 to be false, because ¬a(0, 0) cannot be 
made false with {a(0, 0)}. ST2 and ST4 fail in a similar way for the same reason. 
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← ¬a(0, 0) ∧ ¬p2(0, 0) 

Goal to attain 

∅

Conditions 
to enforce 

EDB 

4aa:A3 
{a(0, 0)} 

Avail. 
consts 

Conditions 
to maintain

∅

∅

{0} 

← ¬p2(0, 0) { ← a(0, 0) } {a(0, 0)} {0} 

 
Fig. 7.2  

The CQC-(sub)derivation ST5, which continues with ← ¬a(0, 2) ∧ ¬p2(0, 2) as the goal to satisfy and 
{a(0, 1), a(1, 2)} as the constructed EDB by then, is shown in figure 7.3. Although an EDB satisfying p1, 
e.g. p1(0, 2) is true, is constructed , the CQC-derivation fails because p2(0, 2) cannot be made false. Note 
that p2(0, 2) is attempted to be made false by adding a(0, 2), but such an inclusion would also make p1(0, 
2) false. ST3 fails in a similar way for the same reason. 

 

 

← ¬a(0, 2) ∧ ¬p2(0, 2) 

Goal to attain 

∅

Conditions 
to enforce 

EDB 

4bc:A3 

6bc:A3 

7bc:B1 

∅

Avail. 
consts 

Conditions 
to maintain

∅

∅

{0, 1, 2} 

← ¬p2(0, 2) { ← a(0, 2) [C1]}

[] 

[] 

[] 

∅

{a(0, 1), 
 a(1, 2)} 

{ ← a(0, Z) ∧ a(Z, 2) 
    ∧ a(Z, W) ∧ ¬a(0, W) [C2]} 

{C1} 

{C1, C2} 

[] 

5bc:B2 

8bc:B2 

{a(0, 1), 
 a(1, 2)} 

← ¬p   2(0, 2) 
{a(0, 1), 
 a(1, 2)} 

{ ← p   2(0, 2) } {C1} 
{a(0, 1), 
 a(1, 2)} 

{C1} 
{a(0, 1), 
 a(1, 2)} 

{ ← a(1, 2) ∧ a(1, W)  
    ∧ ¬a(0, W)} 

{a(0, 1), 
 a(1, 2)} 

{ ← a(1, W) ∧ ¬a(0, W) [C3]} {C1, C2} 
{a(0, 1), 
 a(1, 2)} 

[] { ← ¬a(0, 2) } {C1, C2, C3}
{a(0, 1), 
 a(1, 2)} 

← a(0, 2) {C1, C2, C3}
{a(0, 1), 
 a(1, 2)} 

[] { ← a(0, 2), C2, C3} {a(0, 1), a(1, 2),
 a(0, 2)} 

∅

9bc:B2 

10bc:B2 

11bc:B3 

12bc:A3 

{0, 1, 2} 

{0, 1, 2} 

{0, 1, 2} 

{0, 1, 2} 

{0, 1, 2} 

{0, 1, 2} 

{0, 1, 2} 

{0, 1, 2} 

{0, 1, 2} 
 

Fig. 7.3.  

Table 7.1 summarizes the steps followed to check that Q1 S Q2 holds according to the procedure 
described in [Ull97]:  

1. Construct the set of basic canonical EDBs that correspond to all the partitions of the set of 
variables in Q1. For each variable partition, define a variable substitution σi that assigns a unique 
constant to each block of the partition. For each resultant σi construct a canonical database by 
applying σi to the positive atoms of the Q1 rule body. In this example, a canonical EDB is 
obtained for each one of the five possible partitions of the variables X, Z, and Y from Q1.  

2. For each canonical EDB CDi check that if Q1(CDi) contains the frozen head of Q1, p(X, Y)σi, then 
so does Q2(CDi). On CD1, CD2 and CD4, p(X, Y)σi does not hold for Q1 because the negative 
literal ¬a(X, Y) becomes false according to σi, i.e. a(X, Y)σi is true. These three CDi are discarded 
for the following steps. 

3. For the remaining canonical EDBs, CD3 and CD5, construct the set of extended canonical EDBs, 
ECD3 and ECD5, by adding to these CDi other ground facts about A formed from all possible 
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combinations with the constant values in σi, but not these ones that would make a(X, Y)σi true. 
For instance, a(1,1) but not a(0,0) has been added to ECD3. 

4. For ECD3 and ECD5, check that if Q1(ECDi) contains p(X, Y)σi then so does Q2(ECDi). In this 
case, it is true for the two extended canonical EDBs and it proves that Q1 S Q2 is true (see [Ull97, 
LS93] for more details). 

It is easy to see that there is a clear correspondence between the CQC Method and the procedure 
described in [Ull97] for this example. In particular, looking at figure 7.1, it can be noticed that each EDB 
constructed at the 3rd-level steps of the CQC-derivations correspond to one of the canonical EDBs build at 
the 1st step of table 7.1. Moreover, CQC-derivations ST1, ST2 and ST4 fail because ¬a(X, Y)σi is false and 
it makes p1(X, Y)σi be false too, as it happens when Q1 is evaluated on canonical EDBs CD1, CD2 and 
CD4, in step 2 in table 7.1. In addition, the CQC-derivations for ST3 and ST5 correspond to the steps 2-4 
followed for the canonical EDBs CD3 and CD5, respectively. In particular, both methods use the concept 
of eXtended EDBs, but in a slightly different way. [Ull97] extends their canonical EDBs by adding new 
facts that keep p1(X, Y)σi true to check if p2(X, Y)σi still holds. In contrast, since the CQC Method wants 
to prove the non-containment relationship, it tries to extend T by adding a new fact that will make p2(X, 
Y)σi be false. However, such an addition also makes p1(X, Y)σi be false, and thus, it cannot be performed. 
Therefore, ST3 and ST5 fail while p2(X, Y)σi still holds on ECD3 and ECD5. 

Table 7.1  

 Step 1 Step 2 Step 3 Step 4 

 Variable 
Partitions 

Canonical 
Databases 

CDi 

p(X,Y)σi ∈Q1(CDi) 
⇒ 

p(X,Y)σi ∈Q2(CDi) 

Extended 
Canonical 

Databases ECDi 
s.t. a(X,Y)σi ∉ 

ECDi 

p(X,Y)σi ∈Q1(ECDi) 
⇒ 

p(X,Y)σi ∈Q2(ECDi) 

1) {X, Z, Y} {a(0,0)} p(0,0) ∉ Q1(CD1) - - 

2) {X, Z} {Y} {a(0,0), 
a(0,1)} p(0,1) ∉ Q1(CD2) - - 

3) {X, Y} {Z} {a(0,1), 
a(1,0)} 

p(0,0) ∈ Q1(CD3) 
and 

p(0,0) ∈ Q2(CD3) 

{a(0,1), a(1,0), 
a(1,1)} 

OK: p(0,0) ∈ Q1(ECD3) 
and p(0,0) ∈ Q2(ECD3) 

4) {X}  {Z, Y} {a(0,1), 
a(1,1)} p(0,1) ∉ Q1(CD4) - - 

5) {X}{Z}{Y} {a(0,1), 
a(1,2)} 

p(0,2) ∈ Q1(CD5) 
and 

p(0,2) ∈ Q2(CD5) 

{a(0,1), a(1,2), 
a(0,0), a(1,0), 
a(1,1), a(2,0), 
a(2,1), a(2,2)} 

OK: p(0,2) ∈ Q1(ECD5) 
and p(0,2) ∈ Q2(ECD5) 

 

The previous comparison illustrates that both the CQC Method and the algorithm of [Ull97] achieve 
the same results for conjunctive queries with negated EDB atoms, but their strategies are different. The 
CQC builds and tests canonical EDBs dynamically since it finds one that fulfils the initial goal to attain or 
since no canonical EDB, with or without extension, satisfies the goal after having built all. Instead, the 
method of [Ull97] first builds all the canonical EDBs and then, it tests if each of them accomplishes the 
containment relationship. However, this latter approach is not intended to be used when there are derived 
literals in the bodies of the rules that define the queries.  

Finally, the approach of [Ull97] can be easily extended to consider order predicates in the rule bodies 
of conjunctive queries over the two types of interpretations, dense or discrete. In this case, the canonical 
databases that would be built in step1 of the algorithm should take into account every possible total 
ordering of variables appearing in Q1. Again, the CQC Method not only covers this class of queries but 
also constructs similar (canonical) EDBs. 

7.2.2   Comparison with [WL03] 

The algorithm proposed in [WL03] to check conjunctive query containment with safe negated EDB atoms 
improves efficiency of [Ull97] because it is able to prove either Q1 c Q2 or Q1 S Q2 without generating 
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necessarily the complete set of canonical EDBs that the method of [Ull97] needs to construct. We apply 
the theoretical results in which this algorithm is based to show that the Simple VIP may replace the 
Negation VIP when using the CQC Method to check QC for conjunctive queries with negated EDB atom, 
without any loss of completeness. Applying the Simple VIP we do not to generate all the canonical EDBs 
that the Negation VIP and [Ull97] would consider to prove Q1 S Q2 and we can conclude that the CQC 
method + Simple VIP is as efficient as the algorithm in [WL03] for the cases covered by this method. 

Let Q1 and Q2 be two conjunctive queries with negated EDB atoms: 

Q1 = { q(X̄) ← p1(X̄1) ∧ … ∧ pn(X̄n) ∧ ¬s1(Ȳ1) ∧ … ∧ ¬sm(Ȳm) } 

Q2 = { q(Ū) ← r1(Ū1) ∧ … ∧ rh(Ūh) ∧ ¬t1(W̄1) ∧ … ∧ ¬tk(W̄k) } 

According to [WL03, Theorem 2], Q1 S Q2 if and only if the following two conditions get satisfied: 

1. There is a containment mapping ? from Q2
+ to Q1

+ such that Q1
+ S Q2

+, where  

Q1
+ = { q(X̄) ← p1(X̄1) ∧ … ∧ pn(X̄n) } 

Q2
+ = { q(Ū) ← r1(Ū1) ∧ … ∧ rh(Ūh) } 

2. For each j, 1 = j = k, Pj S Q2 holds, where  

Pj = { q(X̄) ← p1(X̄1) ∧ … ∧ pn(X̄n) ∧ ?(tj(W̄j)) ∧ ¬s1(Ȳ1) ∧ … ∧ ¬sm(Ȳm) } 

Notice that this result has an intrinsic recursive structure: each test for Pj S Q2 may require re-
evaluating the two conditions just defined. There are two base cases that stop recursion. The first one 
occurs when Pj is unsatisfiable since ?(tj(W̄j)) = ¬¬si(Ȳi), for some i, 1 = i = m. Consequently, Pj S Q2 
holds trivially. The second base case occurs when Pj c Q2 since for each pi being a containment mapping 
from Q2

+ to Pj
+ there exists at least one g, 1 = g = k, such that pi(tg(W̄g)) ∈ {p1(X̄1), …, pn(X̄n), ?(tj(W̄j))} 

[WL03, Theorem 1]. When this latter occurs, Q1 c Q2. 
In the previous section, example 7.1 helped to show that the CQC Method + Negation VIP operates 

similarly than the method of [Ull97] when checking conjunctive query containment with negated EDB 
atoms. Now, the same example will help to grasp these new results from [WL03] as well as to show how 
they are applied inherently by the CQC Method + Simple VIP. 

Example 7.2 

Recall Q1 and Q2 being two queries defining the same 2-ary query predicate p: 
Q1 = { p(X, Y) ← a(X, Z) ∧ a(Z, Y) ∧ ¬a(X, Y) } 

Q2 = { p(X, Y) ← a(X, Z) ∧ a(Z, Y) ∧ a(Z, W) ∧ ¬a(X, W) } 

where a is, of course, an EDB relation. 

In this example, there is just one containment mapping from Q2
+ to Q1

+ which proves Q1
+ S Q2

+:  
? = { XQ2 → XQ1, YQ2 → YQ1, ZQ2 → ZQ1, WQ2 → YQ1}, 

According to [WL03, Theorem 2] only one of all possible containment mappings suffices to 
accomplish the second condition of the theorem. Obviously, any algorithm claiming completeness must 
systematically test all containment mappings before concluding that none is the “elected” one. 
Nevertheless, in this example it is enough to explore just one alternative and not many of them. 
Moreover, since Q2 only contains a negated atom, ¬a(X, W), only one new conjunctive query P1 needs to 
be generated: 

P1 = { p(X, Y) ← a(X, Z) ∧ a(Z, Y) ∧ a(X, Y) ∧ ¬a(X, Y) } 

where a(XQ1, YQ1) comes from ?(a(XQ2, WQ2)). 

Clearly, P1 is unsatisfiable since it contains both a(X, Y) and ¬a(X, Y) and, thus, it computes no answer 
in any database. Consequently, P1 S Q2, so Q1 S Q2. 
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Now, consider again the CQC-derivation depicted partially in figure 7.1 as the most-right branch in the 
CQC-Tree sketched there, and then concluded in figure 7.3. This derivation introduces a new constant 
each time that a distinct variable requires to be instantiated, so it can be thought of implementing the 
Simple VIP. In fact, constructing and then testing a canonical EDB with the Simple VIP is an indirect 
method to find out containment mappings. 

In this way, steps 2b and 3bc in the CQC-tree shown in figure 7.1 construct a canonical EDB for Q1
+ 

according to the Simple VIP: {a(0, 1), a(1, 2)} . Conversely, steps 8bc, 9bc and 10bc in figure 7.3 
successfully match the atoms in Q2

+ with the constructed EDB, so the containment mapping ? can be 
derived straightforwardly: {XQ2 → 0 → XQ1, YQ2 → 2 → YQ1, ZQ2 → 1 → ZQ1, WQ2 → 2 → YQ1}. 

The second part of the test, that is, whether P1 S Q2 holds, can also be tracked easily on the CQC-
derivation in figure 7.3. The generation itself of the new query P1 by adding ?(a(XQ2, WQ2)) = a(XQ1, YQ1) 
to the body of Q1 has its “CQC-counterpart” in the addition of a(0, 2) = a(XQ2, WQ2){XQ2\0, WQ2\2} to the 
goal part, in step 11bc, which was “inhabited” previously by the atoms coming from the body of Q1. The 
unsatisfiability of P1 is detected as soon as a(0, 2) is added to the EDB and condition C1 is triggered and 
evaluated. Notice that the EDB constructed by then is nothing but the “frozen” body of P1

+. Moreover, if 
P1 had not been unsatisfiable then the triggering and later evaluation of condition C2 = ← a(0, Z) ∧ a(Z, 
2) ∧ a(Z, W) ∧ ¬a(X, W) would have determined whether there existed a containment mapping from Q2

+ 
to P1

+ in order to prove P1
+ S Q2

+ as a first step towards proving P1 S Q2. 

8   Conclusions  

In this paper we have presented the Constructive Query Containment (CQC) method for QC Checking 
which ckecks “true” QC and QcuC for queries over databases with safe negation in both IDB and EDB 
subgoals and with or without built-in predicates. As far as we know, ours is the first proposal that covers 
all these features in a single method and in a uniform and integrated way. 

We have proved several properties regarding the correctness of the CQC method: finite success 
soundness for hierarchical queries and databases, failure soundness, finite success completeness for strict-
stratified queries and databases and failure completeness for hierarchical queries and databases. From 
these results, and from previous results that showed that infinite non-containment counterexamples never 
exist in the particular case of checking QC for conjunctive queries with safe EDB negation and built-in 
predicates, we can ensure termination, and thus decidability, of our method for those cases. 

The main contributions of this paper are twofold. First, we have shown that the CQC method performs 
containment tests for more and broader cases of queries and database schemas than previous methods. 
Second, we have also shown that the CQC method is decidable and not less efficient than other methods 
to check query containment of conjunctive queries with or without safe negated EDB predicates. 

As a further work we plan to characterize other classes of queries and deductive rules for which our 
method always terminates. 
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Appendix A: Variable Instantiation Procedure  

A variable instantiation procedure from ({X1, X2, …, Xn} θ0 K0) to (Ø θn Kn) is a sequence ({X1, X2, …, Xn 
} θ0 K0), ({X2, …, Xn } θ1 K1), …, (Ø θn Kn) such that for each 0 = i = n, θi is a ground substitution and Ki 
is a set of constants. 

A variable instantiation step performs a transition from (X̄i θi Ki) to (X̄i+1 θi+1 Ki+1) that instantiates the 
variable Xi+1 of X̄i according to one of the VIP-rules defined by selected variable  instantiation pattern 
(VIP). The application of the appropriate VIP to a given class of queries and databases ensures the 
completeness of the CQC method with respect to that class. 

The formalization of the VIP-rules is given below. We denote constants as k, knew and ki. max and min  
are two functions that range over sets of constants and they return the constants having the greatest value 
and the least value, respectively, of those sets. 

VIP-rule for the Simple VIP 

S. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/knew} and Ki+1 = Ki∪{knew}, where knew ∉ Ki. 

VIP-rules for the Negation VIP 

N1. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/k} and Ki+1 = Ki, where k ∈ Ki. 

N2. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/knew} and Ki+1 = Ki∪{knew}, where knew ∉ Ki. 

VIP-rules for the Dense Order VIP 

Den1. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/k} and Ki+1 = Ki, where k ∈ Ki. 

Den2. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/knew} and Ki+1 = Ki∪{knew}, where knew < min(Ki). 

Den3. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/knew} and Ki+1 = Ki∪{knew}, where kj < knew < kj+1, {kj,kj+1} ⊆ Ki 
and there is no kh ∈ Ki such that kj < kh < kj+1. 

Den4. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/knew} and Ki+1 = Ki∪{knew}, where max(Ki) < knew. 

VIP-rules for the Discrete Order VIP 

The formalization of the rules for this VIP requires supplementary definitions. A virtual constant 
[NSS98] is a discrete constant whose value is not determinated by a numeric quantity but by its relative 
position in a linear ordering of constants. Let from now on static constant stand for a discrete constant 
that is not a virtual constant. We explicitly denote virtual constants as dnew and di, and static constants 
from R as c i, cmin and cmax. Select and apply one of the following six rules: 

Dis1. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/k} and Ki+1 = Ki, where k ∈ Ki. 

Dis2. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/dnew} and Ki+1 = Ki∪{dnew}, where dnew is a new virtual constant 
such that dnew < min(Ki). 

Dis3. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/dnew} and Ki+1 = Ki∪{dnew}, where dnew is a new virtual constant s.t.  

− min(Ki) = dj < dnew < kj+1 = cmin, {dj, kj+1, cmin} ⊆ Ki, 

− there is no virtual constant dh ∈ Ki such that dj < dh < kj+1 and 

− there is no static constant cp ∈ Ki such that cp < cmin. 

Dis4. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/dnew} and Ki+1 = Ki∪{dnew}, where dnew is a new virtual constant s.t.   

− cj = kj < dnew < kj+1 = cj+1, {cj, kj, kj+1, cj+1} ⊆ Ki, 

− there is no virtual constant dh ∈ Ki such that kj < dh < kj+1, 
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− there is no static constant cp ∈ Ki such that cj < cp < cj+1 and 

− |{dq | dq ∈ Ki and cj < dq < cj+1}| < |cj+1−cj|−1 

Dis5. X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/dnew} and Ki+1 = Ki∪{dnew}, where dnew is a new virtual constant s.t.  

− cmax = kj < dnew < dj+1 = max(Ki), {cmax, kj , dj+1} ⊆ Ki, 

− there is no virtual constant dh ∈ Ki such that kj < dh < dj+1 and 

− there is no static constant cp ∈ Ki such that cmax < cp 

X̄i+1 = X̄i\Xi+1, θi+1 = θ1∪{Xi+1/dnew} and Ki+1 = Ki∪{dnew}, where dnew is a new virtual constant such that 
max(Ki) < dnew. 

 


