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Abstract 

We have developed an individual-based model for denitrifying bacteria. The model, called 

INDISIM-Paraccocus, embeds a thermodynamic model for bacterial yield prediction inside 

the individual-based model INDISIM, and is designed to simulate the bacterial cell 

population behaviour and the product dynamics within the culture. The INDISIM-Paracoccus 

model assumes a culture medium containing succinate as a carbon source, ammonium as a 

nitrogen source and various electron acceptors such as oxygen, nitrate, nitrite, nitric oxide 

and nitrous oxide to simulate in continuous or batch culture the different nutrient-dependent 

cell growth kinetics of the bacterium Paracoccus denitrificans. The individuals in the model 

represent microbes and the individual-based model INDISIM gives the behaviour-rules that 

they use for their nutrient uptake and reproduction cycle. Three previously described 

metabolic pathways for P. denitrificans were selected and translated into balanced chemical 

equations using a thermodynamic model. These stoichiometric reactions are an intracellular 

model for the individual behaviour-rules for metabolic maintenance and biomass synthesis 

and result in the release of different nitrogen oxides to the medium. The model was 

implemented using the NetLogo platform and it provides an interactive tool to investigate the 

different steps of denitrification carried out by a denitrifying bacterium. The simulator can be 

obtained from the authors on request. 

 

Keywords: denitrification, Paracoccus denitrificans, bacterial yield prediction, individual-

based model, Thermodynamic Electron Equivalents Model, NetLogo, INDISIM. 
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1. Introduction

Denitrification is one of the key processes of the global nitrogen cycle driven by bacteria 

(Blackburn, 1990; Zumft, 1997). One of the reasons for studying denitrification is that it 

contributes to nitrous oxide (N2O) emissions when denitrifying bacteria do not complete the 

metabolic pathway implicated (Davidson et al., 1991; Snyder et al., 2009). The global 

warming potential of N2O is 296 times greater than a unit of CO2 (Richardson et al., 2009). In 

agricultural soils, N2O emissions are of great importance due to the large amount of N-

fertilizer in crops and soil organic matter mineralization which depends on the conditions the 

microorganism encounters in its surrounding environment (Snyder et al., 2009; Woolfenden 

et al., 2013).  

In conditions of low oxygen (O2) availability, such as waterlogged soils, certain bacteria are 

able to use nitrate (NO3
-) as a final electron acceptor and carry out respiratory metabolism in 

anaerobic conditions (denitrification). These bacteria are known as heterotrophic denitrifying 

bacteria and are widespread in agricultural soils (Felgate et al., 2012; Richardson et al., 

2009). The bacterium Paracoccus denitrificans is one of the best-characterized prokaryotes 

and one of the paradigm species for studies of the biochemistry and regulatory biology of 

denitrification (Bergaust et al., 2010; Caspi et al., 2012).  

To model the dynamics of a bacterial denitrification system with P. denitrificans at least three 

metabolic pathways must be considered as follows. In the aerobic phase it can execute 

“Aerobic respiration” with the oxygen (O2) as the electron acceptor, and “Nitrate reduction - 

Dissimilatory” with nitrate (NO3
-) as the electron acceptor (Baker et al., 1998; Beijerinck 

MW, 1910; Caspi et al., 2012), and in anoxic conditions it executes the “Nitrate reduction - 

Denitrification process” because it is capable of anaerobic growth in the presence of NO3
-, 

nitrite (NO2
-), nitric oxide (NO) or N2O as electron acceptors (Baumann et al., 1996; 
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Bergaust et al., 2010; Bergaust et al., 2012; van Verseveld et al., 1983).  

The choice of a modeling approach to study a bacterial system, either population-level (top-

down, usually continuous with differential equations) or individual-based (bottom-up, 

discrete and computational model) is an important decision depending on the project’s 

specific aspects, the characteristics of the system and the questions to be answered (Ferrer et 

al., 2008). A number of denitrification models have been reviewed by Heinen (2006). Most of 

them incorporate a large number of parameters including NO3
-, soil moisture, soil 

temperature and pH. The simplest models are obtained by adjusting empirical functions to the 

experimental results used for their studies. More recently, Kampschreur et al. (2012) and 

Woolfenden et al. (2013) published specific denitrification models describing the process 

carried out by microbes in terms of a set of differential equations according to Monod and 

Michaelis-Menten kinetics. Therefore, the population-level models deal with population 

variables and fix a set of governing laws (equations) which are based on, or at least consistent 

with, an assemblage of assumptions about the individual behaviour of microbes. 

Alternatively, it is possible to simulate the interactions of autonomous agents (individual and 

collective entities) and their environment, using agent-based models or, more specifically, 

Individual-Based Models (IBMs) that are defined by agents which model living entities 

(Grimm, 1999). IBMs have the ability to simulate variability among individuals, local 

interactions, complete life cycles and individual behaviour according to the changing 

individual internal and external conditions, linking mechanisms at the individual level to 

behaviour at the population level (Grimm, 1999; Mantzaris, 2007). IBMs consider individuals 

as discrete entities that follow behaviour-rules that drive how the individuals interact with 

their surrounding environment and other individuals, so that the individual and the 

environment can change and adapt their characteristics over time. This makes it possible to 
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explore connections between micro-level behaviours of individuals to macro-level patterns 

that emerge from their interactions (Prats et al., 2008; Wilensky, 1999). 

The two approaches, the continuous-macroscopic and the discrete-microscopic approaches, 

are not incompatible or exclusive, but are complementary. Population-level approaches are 

mostly used for predictive purposes, due to their simplicity and computational efficiency. 

Moreover, they have been widely tested and, nowadays, many modelling frameworks exist. 

IBMs have had their own place in microbial research and have also been used for some 

predictive purposes, but their strength lies in the means they offer to disentangle and 

understand the dynamics of bio-systems (Hellweger and Bucci, 2009; Kreft et al., 2013).  

In summary, in addition to the characteristics just described, IBMs are useful to study the 

relations between experimental data and theoretical proposals, allowing testing of the 

consistency of different microbial models, and supplying holistic knowledge of the systems 

under study (Ferrer et al., 2008).  

Ginovart et al. (2002) developed a discrete simulation model to study bacterial cultures called 

INDISIM. This model has been used as the core for other models such as INDISIM-SOM 

(Ginovart et al., 2005), INDISIM-YEAST (Ginovart and Cañadas, 2008), INDISIM-COMP 

(Prats et al., 2010) and INDISIM-Saccha (Portell et al., 2014) to deal with soil organic matter 

dynamics, to study yeast fermentations and multi-species composting, and to analyze the 

dynamics of Saccharomyces cerevisiae anaerobic cultures, respectively. For a review of some 

microbial system evolutions using the IBM methodology see, for instance, Bley, 2011; Ferrer 

et al., 2008; Hellweger and Bucci, 2009; Kreft et al., 2013; Lee et al., 2009, and Resat et al., 

2012.  

Several approaches have been reported to develop a rigorous thermodynamic description for 

biomass yield prediction (Christensen and McCarty, 1975; Heijnen and Van Dijken, 1992; 
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Liu et al., 2007; Maskow and von Stockar, 2005; McCarty, 1971; Rittmann and McCarty, 

2001; Tijhuis et al., 1993; von Stockar and van der Wielen, 1997; Xiao and VanBriesen, 

2006). These approaches consider the Gibbs energy for cell synthesis from C-sources and N-

sources, the energy available from substrate transformation, the specific Gibbs energy 

consumption for cellular maintenance, and the energy efficiency transfer to the overall 

process to describe growth of micro-organisms in a standard mathematical and 

thermodynamic model.  

To tackle and understand the environmental factors that control the denitrification process it 

is convenient to investigate the bacterial denitrification dynamics in a controlled environment 

such as a bioreactor (Baker et al., 1998; Baumann et al., 1996; Felgate et al., 2012; 

Richardson et al., 2009). In this paper we will: i) Design, implement, and parameterize 

thermodynamic behaviour-rules for a P. denitrificans model in the INDISIM methodology 

context; ii) Simulate a bioreactor containing a culture medium where P. denitrificans develop 

and grow in order to mimic the experimental protocols presented by Felgate et al. (2012); and 

iii) Investigate the effects of the priority in the use of different electron acceptors at the 

microbial level formulating two hypotheses about the order in which the reactions are 

followed by the bacteria P. denitrificans while the denitrification process occurs, and test 

these hypotheses with the simulator developed, comparing the simulation outputs with 

experimental data reported in Felgate et al. (2012).  

2. Materials and Methods 

2.1 INDISIM 

The IBM approach to studying bacterial cultures called INDISIM was proposed by Ginovart 

et al. (2002) in order to simulate the growth and behaviour of bacterial populations. Using 

this as a core, we establish the INDISIM-Paracoccus model in which each simulated 
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individual represents a single bacterial cell of P. denitrificans, each of them follows the 

individual behaviour-rules concerning their motion, nutrient uptake and reproduction in the 

INDISIM framework. 

2.2 Thermodynamic approach  

With the word metabolism we could summarize all the biochemical and physiochemical 

processes that happen within a microbial cell. In brief, the microbial metabolism is comprised 

of two general sub-processes, catabolism and anabolism. Catabolism is all the processes 

involved in the substrates oxidation or in the use of sunlight in order to gain metabolic 

energy, and anabolism is the synthesis of cellular components from C-sources and N-sources 

through the catabolic energy coupling. Therefore, the energy required by the anabolic 

processes could come from catabolic processes (Heijnen, 1999). The micro-organisms obtain 

this energy for maintenance and cell growth from biochemical reactions that involve several 

chemical species, usually an electron donor and an electron acceptor.  

The second version of the Thermodynamic Electron Equivalents Model (TEEM2) (McCarty, 

2007) can make an adjustment between cell synthesis reaction (Rs), which represents the 

microbial anabolism, and the energy reaction (Re), which represents the microbial catabolism 

to predict bacterial yield (Yc/c) with the associated Gibbs free energies for these reactions.  

Re is the combination of the reduction-half-reaction for the electron donor (Rd) with the 

reduction-half-reaction for the electron acceptor (Ra). Rs is the combination of Rd with the 

half-reaction for the biomass synthesis (Rc) which considers ammonium or other nitrogen 

sources for new biomass generation (Rittmann and McCarty, 2001).  

TEEM2 is based on terms from the Gibbs free energy involved in how the energy between 

catabolism and anabolism is coupled using a term of energy-transfer-efficiency (ε) and the 

relation with the electrons involved in both processes. The electrons that come from the 
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electron-donor will be divided into two portions. The first portion (feo) is transferred to the 

electron acceptor to generate energy (catabolism) and the other portion of electrons (fso) is 

transferred to the N-source for cell synthesis (anabolism). TEEM2 calculates the relationship 

between feo and fso using: i) Gibbs standard free energy of Rd, Ra and Rc, ii) other Gibbs 

energy potential terms, and iii) a term for energy-transfer efficiency (ε). This term is included 

because TEEM2 considers that a fraction of the thermodynamic free energy involved is lost 

at each energy transfer between catabolism and anabolism. The ε value is considered by 

McCarty (1971) to be in the range between 0.2 and 0.8. Christensen and McCarty (1975) and 

VanBriesen (2002) suggested a value of 0.2 to 0.3 for aerobic heterotroph micro-organisms, 

and McCarty (2007) and Xiao and VanBriesen (2006, 2008) proposed a value between 0.4 

and 0.7 for anaerobic heterotroph microorganisms. Figure 1 shows the TEEM schematic 

diagram. 

2.3 Experimental data  

To examine the denitrification process, Felgate et al. (2012) cultured P. denitrificans in a 

bioreactor growing under batch conditions in an oxygen-saturated medium for 24h. The 

aeration was then shut down and the system switched to continuous culture with a dilution 

rate of 0.05 h-1. Under these conditions two experiments took place, one in which the 

reservoir medium feed contained 20 mM NO3
-, 5 mM succinate and 10 mM NH4

+ which was 

designed to achieve an electron donor-limited/electron acceptor-sufficient steady state 

(succinate-limited/NO3
--sufficient). In the other experiment the reservoir medium feed 

contained 5 mM NO3
-, 20 mM succinate and 10 mM NH4

+ to achieve an electron donor-

sufficient/electron acceptor-limited steady state (succinate-sufficient/NO3
--limited). The data 

was collected from 0 to 120 h (Felgate et al., 2012). 

Therefore, the bacteria in our model will grow and develop in two different conditions: the 



9 

 

first during the aerobic phase (from 0 to 24 hours) in a batch culture, and the second one 

during the anaerobic phase (from 24 to 120 hours) in a continuous culture. Also the bacteria 

will be handled in two different experiments: i) in conditions of succinate-sufficient/NO3
--

limited (experiment E1), and ii) in conditions succinate-limited/NO3
--sufficient (experiment 

E2). The two hypotheses proposed (the metabolic hypothesis and the Gibbs' hypothesis) will 

be tested using the model and taking into account all these laboratory conditions. 

2.4 Programming environment and model analysis  

The model is implemented in the widely used, free and open source IBM software platform 

NetLogo, a multi-agent programming language and modelling environment for simulating 

natural phenomena (Wilensky, 1999).  

Given that the main purposes of the virtual experiments with the computational model 

obtained are principally exploratory as to the nature and dynamics of the bio-system, the 

model is not designed for predictive purposes; a best-fit calibration (i.e., a calibration aiming 

for one unique set of parameter values giving model results best matched to some exact 

criteria) was avoided. Instead a categorical calibration, which searches for parameter values 

producing results within a category or range defined as acceptable was performed (Railsback 

and Grimm, 2012).  

The multiple outputs used to test models is one of the main features of the pattern-oriented 

modelling strategy and very valuable for IBMs. Once a system representation is built, a depth 

exploration of how well the model really explains observed phenomena can be carried out 

with a quantitative analysis (Thiele et al., 2014). To assess the two hypotheses (the metabolic 

hypothesis and the Gibbs' hypothesis) and to facilitate parameter estimation, we established 

multiple fitting criteria using the parameter uptake-rate for all nutrients involved with the 

experimental data of Felgate et al. (2012). The basic idea is to find ranges of these uptake-rate 
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values that make it possible to roughly reproduce the evolution of a set of focus variables or 

patterns observed in the two experiments.  

Taking into account that the bacteria grow in aerobic and anaerobic conditions, to calibrate 

the model in aerobic conditions we combined the uptake-rates for succinate (uSuccinate) and 

nitrate in aerobic phase (uNitrate-a). To calibrate the model in anaerobic conditions we first 

combined the uptake-rates for succinate and nitrate in anaerobic phase (uNitrate-x). After that 

we combined the uptake-rate of nitrate-x with the uptake-rates of nitrite, nitric oxide and 

nitrous oxide. Then we combined the uptake-rate of nitrite with the uptake-rates of nitric 

oxide and nitrous oxide. And finally we combined the uptake-rate of nitric oxide with the 

uptake-rate of nitrous oxide. Therefore, the parameters are combined in pairs, and in all cases 

two parameters change and the others remain constant. 

To assess whether a certain combination of parameter values leads to acceptable model 

output, we calculate a score based on the evaluation of the seven patterns controlled for each 

of the experiments E1 and E2. Therefore, to appraise: i) in each of the temporal evolutions of 

microbial biomass, nitrate, nitrite and nitrous oxide, if the simulation result agrees well with 

the experimental data 1 point is assigned, if agreement is fair 0.5 points are assigned and if 

agreement is poor 0 points are assigned, ii) the NO concentration in the culture medium, 1 

point is assigned if the maximum NO value is under 10-3 mM, 0.5 points if the value is in the 

range [10-3, 0.5] mM and 0 points in all other cases, iii) the N2 production, 1 point is assigned 

if the N2 production is in the range reported by Felgate et al. (2012) and 0 points in other 

cases, and iv) the role of succinate or nitrate as a limited-nutrient during the steady state, if 

the simulation result agrees well with the experimental data 1 point is assigned, if agreement 

is fair 0.5 points are assigned and if agreement is poor 0 points are assigned.  

Taking into account the sum of points achieved for each combination and each experiment (7 
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patterns x 2 experiments = 14 items assessed), we use a percentage to represent a global 

model adequacy for the experimental data. This percentage is represented using bubble 

graphs, where the bubble radius is proportional to the percentage. The tool “Behavior-Space” 

incorporated in NetLogo was used for running simulation experiments with varying 

parameters and writing model outputs to files that were used for the fitting criteria. 

Additionally, in order to compare the simulation results with the experimental data we also 

used the geometric reliability index (GRI) values, a statistical method to determine the 

reliability of a model (Jachner et al., 2007). This coefficient can deal with precise notions of 

model accuracy. For models with simulation results reasonably close to experimental 

observations this GRI shows a resulting factor of 1 to 3, with 1 corresponding to 100% 

accuracy (Leggett and Williams, 1981). 

3. INDISIM-Paracoccus modelling 

3.1 Metabolic reactions 

To develop the individual behaviour-rule for cell maintenance it is necessary to write the 

energy reactions for aerobic and anaerobic conditions. For the aerobic phase we consider the 

reaction between succinate (which is always the electron donor) and oxygen (as electron 

acceptor), while for the anaerobic phase the electron acceptors are nitrogen oxides. To 

formulate maintenance reactions and calculate the corresponding stoichiometric coefficients, 

we used the reduction-half-reactions for Rd and different Ra shown in Table I to write the 

energy reactions (Table II). With these energy reactions and appropriate maintenance 

requirements, we then designed the individual rule for cell maintenance (see supplementary 

material for details).  

To develop the individual behaviour-rule for biomass synthesis it is necessary to write the 

metabolic pathways for aerobic and anaerobic conditions. To formulate these reactions (R1 to 
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R6) and calculate the corresponding stoichiometric coefficients we used the TEEM2 

methodology. In all reactions succinate is the universal electron donor (Rd) and C-source, and 

ammonia is the universal N-source to the cell synthesis (Rc), and the nutrients used as 

electron acceptors (Ra) are different, in aerobic conditions they are O2 and NO3
- and in 

anaerobic conditions they are NO3
-, NO2

-, NO and N2O (Table I). The stoichiometric 

coefficients for each metabolic pathway were obtained (Table III) from Gibbs free energy for 

each half-reaction with a different assigned ε value for each reaction in the range proposed 

for McCarty (1971, 2007) and Rittmann and McCarty (2001). With TEEM2 methodology 

each metabolic pathway accomplishes balances for carbon, nitrogen, electron and energy (see 

supplementary material for details).  

3.2 INDISIM-Paracoccus model description 

To describe our model we use the ODD protocol (“Overview, Design concepts, and Details”) 

which helps to ensure that the model explanation is complete (Grimm, 1999; Grimm et al., 

2010; Railsback and Grimm, 2012). 

3.2.1 Purpose 

To develop a computational model for the denitrification process carried out by the bacteria 

P. denitrificans growing in batch and continuous culture, in aerobic and anaerobic growing 

conditions, in order to reproduce a bioreactor experimental protocol and explore the 

consequence of different priorities in the individual use of nutrients on the system dynamics. 

The first hypothesis (the Gibbs hypothesis) is that the denitrification reactions succeed 

sequentially according to their standard Gibbs energy, assuming that the bacterium goes first 

for the more spontaneous reactions. Reactions with lower Gibbs energy are expected to occur 

first. In this case the order is: R3, R6, R5 and R4 (see supplementary material for details). 

The second hypothesis (the metabolic hypothesis) is that the bacterial cell prioritizes the use 
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of those nitrogen oxides with a higher degree of oxidation over others, which is the common 

order established in the denitrification pathway (Caspi et al., 2012). In this case the order is: 

R3, R4, R5 and R6. 

3.2.2 Entities, State Variables, and Scales  

The INDISIM-Paracoccus model has two types of entities: individuals and square patches of 

culture medium. Each individual represents a unique bacterium of P. denitrificans and has the 

variables: unique identification number, location (XY grid cell coordinates of where it is), 

mass, reproduction mass, and counters for each metabolic pathway and reproduction cycle. 

Therefore, the model assumes that the smallest individual represents a bacterium with a 

diameter of ~ 0.5 µm and the largest one a bacterium with a diameter of ~ 0.9 µm (Holt et al., 

1994). All bacteria have spherical shape and their individual mass is deduced from cell 

volume by assuming the microbial mass density equal to 1.1 g·cm-3, which has been used in 

previous INDISIM models (Gras et al., 2011). In order to characterize the composition of the 

microbial cells, the model uses the empirical formula C3H5.4N0.75O1.45 (van Verseveld et al., 

1979, 1983) so that each bacterium is assumed to have this elementary cell composition. 

A two-dimensional lattice of 25 x 25 grid cells represents the bioreactor that contains the 

culture medium; each cell represents 1 pl, so that the total bioreactor volume is 625 pl. The 

spatial cell variables are: unique position identifier in XY coordinates, total amount of each 

nutrient: succinate, NH4
+, O2, NO3

-, and metabolic products, NO2
-, NO, N2O, N2 and CO2. 

All microbial and culture medium processes are discretized in time steps. One time step 

represents 5 min; for the current work the simulations were run for 1440 time steps (120 h). 

With these units, graphical and numerical model outputs are the molar concentration of 

nutrients and metabolic products expressed in millimolar (mM) or micromolar (µM) and dry 

mass in mg·ml-1. 
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3.2.3 Process Overview and Scheduling 

The initial configuration of our model has two parts: the first one for the system and the 

second one for the entities (culture medium and bacteria). The initial system setup sets the 

world size and topology, and the time scaled factor (time step). The topology of the world is 

programmed using the torus mode; therefore, rectangular periodic boundary conditions were 

used. The initial culture medium concentrations and the initial bacterial population are 

established using random variables, normal probability distributions with mean values that 

are determined by the experimental procedure (Felgate et al., 2012).  

At each time step a group of individuals are controlled using a set of time-dependent 

variables for each bacterium. All individuals perform the following processes: nutrient 

uptake, cellular maintenance, biomass synthesis, metabolic products generation and 

bipartition. Culture medium processes are different depending on the management bioreactor 

protocol, but in any case the culture medium is randomly homogenized to simulate chemostat 

agitation. At the beginning of the simulation the bioreactor works as a batch culture with 

oxygen saturated conditions (236 µM), and the user can choose at what time to end this 

phase, and switch to continuous culture in anoxic conditions, with input-output culture media 

(with nutrients, metabolic products and micro-organisms) according to the dilution rate fixed. 

For each time step the time-dependent variables of microorganisms and culture medium are 

calculated, updating the graphics and digital outputs according to the time scale proposed. 

The model also controls the whole carbon and nitrogen mass inside and outside of the system 

to ensure the carbon and nitrogen are balanced. During the simulation processes the bacteria 

are called in a different random order in each time step and the state variables changes are 

immediately assigned generating an asynchronous update. Figure 2 shows the INDISIM-

Paracoccus schematic diagram.  
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3.2.4 Design Concepts 

3.2.4.1 Basic Principles: The model has two kinds of behaviour-rules, rules for the 

individuals (bacteria) and different rules for the environment (culture medium). The set of 

individuals and the environment is called the system (bioreactor). All of the rules are used at 

the level of the sub-models and they are explained in the corresponding section. The 

individual rules are: i) nutrient uptake, ii) cellular maintenance (Table II), iii) cellular growth 

when a micro-organism executes any of the metabolic reactions adjusted by TEEM2 (Table 

III), and iv) cellular division following binary fission. The system rules are those that mimic 

the general bioreactor procedures when it works as: i) a batch culture with constant 

oxygenation, with O2 input flow, ii) a continuous culture with a dilution rate, with the 

entrance of fresh medium, and output of medium and bacteria, and iii) the stirring culture, 

with redistribution of compounds, which permits the exclusion of local diffusion limitations. 

3.2.4.2 Emergence: The system dynamics emerge as the result of the interaction between 

bacteria and the culture medium that they find inside of the bioreactor. The model outputs 

are: the biomass evolution, nutrient consumption, metabolic and/or denitrification products 

generation, or other parameters that appear at the system level as a consequence, and from, 

the individual bacterial activity. 

3.2.4.3 Adaptation: All the individuals (bacteria) are programmed with the same rules, some 

of these rules will be executed and others not, depending on the internal changes of the 

individuals and/or the characteristics of their local environments. Individuals act one after 

another, not in parallel. Hence, after one individual carries out all of its actions the 

composition of the spatial cell where it lives changes and the next individual meets a different 

medium composition in relation to the previous acting or post-acting individuals. In 

particular, the metabolic pathway that it might employ could be different. The first individual 
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rule is how to respond to the O2 dissolved level in the culture medium: if the O2 dissolved 

level in the spatial cell is lower than a threshold value (O2-MIN) the bacterium uses the 

anaerobic metabolism and otherwise it uses the aerobic metabolism. The second individual 

rule is performing biomass synthesis (Table III) to growth and metabolic product generation. 

This rule is executed only when the amounts of nutrients taken in the uptake are enough to 

accomplish the maintenance requirement (Table II) and after updated amounts also allow 

execution of the corresponding synthesis reaction (Table III) in the aerobic or anaerobic 

phase. The third individual rule is whether to divide or not, depending on whether or not it 

has reached the minimum reproduction mass. The reproduction mass (mR) is the mass the 

bacterium must reach to start the bipartion (mR is obtained from a normal random distribution 

with a mean value of 75% of the larger bacterium size) (Table IV). 

3.2.4.4 Interaction: P. denitrificans is the only bacteria species in the virtual bioreactor. The 

micro-organisms interact with the culture medium; therefore there is an indirect interaction in 

which nutrient competition takes place among the bacteria that share the same spatial cell.  

3.2.4.5 Collective: The simulated bacteria do not form aggregates; each individual acts 

uniquely. 

3.2.4.6 Stochasticity: Several processes are modeled on criteria of randomness: i) the 

reproduction sub-model, ii) a portion of the uptake sub-model, iii) some parameters involved 

in the bioreactor management or operating protocol, and iv) a part of the initial system 

configuration. Inside of the reproduction sub-model we consider that the reproduction 

threshold biomass for each bacterium is determined using a value from a normal random 

distribution (Table IV). For the physical separation of the two bacteria the original mass is 

separated into two new bacteria with masses according to a value from the normal random 

distribution with mean value 0.5 and standard deviation 0.075  (Table IV). Thus, the mass of 



17 

 

the original bacterium does not divide exactly in the proportion 50-50.  

Inside the uptake sub-model we consider that at each time step, each individual nutrient 

uptake-rate (ui ) for each nutrient is established from a normal random distribution with the 

mean value shown in Table IV and a standard deviation of 5% of this value. Regarding the 

bioreactor management: i) the dilution rate parameter, for each input-output, is obtained by 

using the normal random distribution with mean value 0.05 h-1 and standard deviation 0.0025, 

in order to represent experimental error, and ii) each bacterium position randomly changes at 

some time steps in order to represent the mixing effects from the stirred tank. For the initial 

system configuration we consider that the initial culture medium composition, the initial 

population biomasses and O2-MIN threshold value are established from normal distributions 

with mean values determined by the experimental procedure (Table IV) and standard 

deviations of 5% of these values. To represent the small reactor with constant agitation, we 

introduce a redistribution of nutrients and metabolic products in random time steps. When the 

simulation starts each bacterium has a position randomly assigned in the culture medium.  

3.2.4.7 Observation: The graphical and numerical outputs of the model are the concentration 

(mmol·l-1 or umol·l-1) of each culture medium component (succinate, NH4
+, O2, NO3

- CO2, 

HCO3
-, NO2

-, NO, N2O and N2), microbial biomass (mg·ml-1) and the population biomass 

distribution at each time step (the user can obtain all simulated data in the output file with the 

extension “.txt”). 

3.2.5 Initialization 

The user can adjust: i) the culture medium composition (mmol·l-1) of succinate, NH4
+, O2 and 

NO3
-, ii) O2-MIN value which is in the range of 0.01 to 0.31 mM O2, iii) dilution rate (h-1), iv) 

initial amount of viable micro-organisms (bacteria), v) total simulation time (h), vi) step time 

(min), vii) time (h) for shutdown O2 input flow, and viii) the maintenance energy requirement 
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for aerobic and anaerobic phases (gCdonor·gCmic
-1·h-1). 

3.2.6 Sub models 

The bipartition reproduction process is a sub model that is taken from INDISIM, the generic 

and core bacterial model (Ginovart et al., 2002). Thus, we only describe the individual sub-

models that we designed particularly for the P. denitrificans.  

3.2.6.1 Uptake: Each nutrient uptake depends on the individual capacity to capture nutrients 

through the cell membrane-associated proteins (Button, 1998) and on the nutrient availability 

in the medium (Gras et al., 2011). In our model, to determine the amount of each nutrient 

captured (absorbed) by each bacterium at each time step, two values are compared, the 

maximum uptake capacities (Ui, molnutrient·h-1) of the bacterium and the nutrient available in 

the culture medium (Ai, molnutrient·h-1), and the lowest value is chosen.  

Ui is assumed to be proportional to the individual mass and to the uptake-rate (ui ) being i the 

nutrient, so: 

Ui = ui * individual-mass         (Eq. 1) 

ui is a model parameter which represents the amount of nutrient that could be absorbed per 

unit of time and mass, its units are molnutrient·molmass
-1·h-1, where molmass denotes the moles of 

microbial mass (the microbial mass equals C3H5.4N0.75O1.45).   

Ai is assumed to be proportional to the nutrient amount in each spatial cell and to the 

availability coefficient (ai) being i the nutrient, so: 

Ai = ai * nutrient-amount        (Eq. 2) 

ai is a model parameter directly related to the nutrient characteristics and not to the types of 

micro-organisms involved, which represents the fraction of each nutrient in a spatial cell that 

is accessible per unit of time and for the individual, its units are h-1. 

Following the INDISIM framework (Gras et al., 2011) the maximum population growth rate 
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(µmax) has been used to estimate the individual maximum uptake-rates (ui). vanVerseveld et 

al. (1983)  reported for P. denitrificans a growth rate value equal to 0.418 h-1 which was 

obtained in the change from a culture growing in anaerobic nitrate-limited conditions to 

aerobic succinate-limited conditions. Using this value and performing calculations with the 

stoichiometric coefficients of each metabolic reaction adjusted by TEEM2, we obtained the 

maximum uptake-rate for each nutrient (see supplementary material for details). In order to 

give values to the availability coefficient (ai), and only as a macro reference to sort and 

represent numerically the availabilities of the nutrients in the culture medium, the Fick’s law 

binary diffusion coefficients (Dab) in water was used. Therefore we assumed in the 

modelling process that the nutrient with maximum Dab has the highest availability; the other 

availability values are assigned proportionally (Table IV).  

3.2.6.2 Maintenance: Before biomass synthesis, it is necessary that each bacterium achieve 

some energetic requirements to ensure its viability. The cellular maintenance sub-model has 

two main components, the maintenance requirement and the energy reactions (Re) written 

with TEEM2 (Table II). The maintenance requirements are proportional to individual’s mass. 

The coefficients determine an amount of nutrients per time step for cellular maintenance. 

Gras et al. (2011) consider an appropriate maintenance requirement for soil heterotrophic 

microorganisms of 0.002 gCdonor·gCmic
-1·h-1, which was assumed in the model for aerobic 

phase. For P. denitrificans in anaerobic phase growth and taking succinate as electron donor 

and NO3
- as electron acceptor, van Verseveld et al. (1977) give a maintenance coefficient of 

0.004 gCdonor·gCmic
-1·h-1 which was assumed for anaerobic phase. The energy reactions (Table 

II) indicate the stoichiometry that the nutrients follow when each bacterium executes this 

action or rule. Each bacterium achieves its maintenance when the amount of nutrients taken 

in is enough to accomplish the maintenance requirement and these amounts also allow it to 
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execute the corresponding energy reaction. Performing calculations with the energy reactions 

(Table II), we establish the maintenance requirements for aerobic and anaerobic phases (see 

supplementary material for details). When the individual carries out its maintenance, the CO2 

and the reduced electron acceptors are expelled to the culture medium except for the NO2
-, 

which is added to its corresponding intake. In anaerobic phase the first individual option is to 

accomplish the maintenance requirement carrying out the energy reaction with succinate and 

nitrate, if the bacterium cannot reach its maintenance requirements, it can try it with succinate 

and another electron acceptor following other reactions according to the hypothesis test. After 

the maintenance, if the remaining succinate uptaken and the quantity of electron acceptors are 

higher than zero, the individual can perform biomass synthesis.  

3.2.6.3 Biomass synthesis and metabolic products: With the nutrient intakes updated and 

using the stoichiometric coefficients of each metabolic reaction adjusted by TEEM2, each 

bacterium divides the amount of each nutrient uptaken by its respective stoichiometric 

coefficient and selects the smallest value (the limiting nutrient). This information provides 

the demands of each one of the nutrients and drives the creation of new mass and metabolic 

products generation. After executing any metabolic reaction the CO2 produced is released to 

the culture medium. When the bacterium executes the reactions of denitrification, nitrogen 

oxides are produced, and they are not expelled into the culture medium; only the nitrogen gas 

is expelled, and the amounts of nitrogen oxides generated are added to its corresponding 

intakes. The execution of each metabolic reaction is limited to the existence of sufficient 

quantities of electron donors and acceptors. After this, if there are any intakes, the microbe 

can perform the next metabolic reaction. When this condition is not fulfilled the syntheses 

finish and the remaining intakes are returned to the culture medium.  

The sub models related to the bioreactor’s procedure are: i) Agitation. To represent the 
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agitation inside of the small experimental reactor, which causes homogeneity in the culture 

medium, nutrients and metabolic products are redistributed in various time steps. In the 

culture medium the micro-organism positions change randomly, ii) Input flow. The bioreactor 

is refilled with fresh culture medium (succinate, NH4
+ and NO3

-) with a composition equal to 

the initial one, and iii) Output flow. A fraction of the individuals and culture medium are 

randomly removed. The input and output flows are performed according to the dilution rate 

parameter. 

4. Results and discussion 

INDISIM-Paracoccus was implemented in the NetLogo platform. It is straightforward to 

change parameter values, to modify the source code of the model and to investigate 

alternative mechanisms or add additional processes relevant to a particular study. It is hoped 

that this NetLogo simulator will facilitate new fruitful interactions between modelers and 

experts in the field of denitrification. 

We used a variety of measures and basic techniques in order to verify that our 

implementation was in accordance with the conceptual model and its quantification. For 

instance, to ensure that the stoichiometry and the bioreactor inputs/outputs are accurately 

implemented, one of the main tasks was to control the differences between carbon and 

nitrogen levels, to ensure that the simulator accomplished balances for C and N. For each 

time step the following is controlled: i) the entrance and exit of the all chemical species 

involved, ii) the product generations and nutrient consumptions from each balanced chemical 

equation executed, and iii) the bacteria inside and outside of the system.  

At the end of every time step, from each one of the patches, the simulator obtains the amount 

of each nutrient and metabolic product, and for each one of the bacteria the value of its mass. 

To ensure that the carbon and nitrogen are balanced, the model implementation summarizes 
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all of the carbon and nitrogen inside and outside of the system and compares this value with 

the same calculation obtained in the previous time step. We expected that these two values 

should be the same, but there exist small differences (not higher than 0.05%). This procedure 

is repeated and the simulator registers these numbers and presents them as graphical and 

numerical outputs (in Supplementary material, Fig. S1). 

We also tested that the individuals were able to carry out all of the reactions in a variety of 

culture media compositions. In addition, we systematically investigated internal model logic 

and behaviors by collecting global and individual data through the simulation, which were 

numerically and visually tested (Fig. S1). The control of the different metabolic pathways 

used in each time step and for each bacterium is programmed in the computer code, and the 

simulator facilitates which pathways are in use and which not. The main metabolic 

differences are present when the model runs with different conditions from experiments (E1 

or E2), corresponding to the experimental condition of succinate limited or nitrate limited. 

Also, in the anaerobic conditions, it is possible to follow (control) the number of bacteria, 

which do not complete the denitrification pathway or follow (control) the metabolic pathway 

(synthesis or maintenance) that is the most used by the bacteria. This control is a graphical 

output in the model’s implementation on NetLogo that appears in the user interface of the 

simulator (Fig. S1). Such tests are essential for increasing the reliability of the computational 

model, and for contributing to the understanding of the virtual system and the consequences 

of the modelling assumptions (Scheller et al., 2010).  

We have carried out simulations varying the size of the system, from 25 x 25 = 625 patches 

of culture medium to 100 x 100 = 10000 patches. The number of individuals in these 

simulations was increased as well, from 3000 (in the smallest system) to around 50000 

individuals (in the biggest system). The model’s outputs for these sets of simulations were 
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very similar (Figs. S2 and S3). With the increase of the system sizes the time spent in the 

simulations increased along with computational requirements. Taking into account these 

results we decided to establish a system size that was not too large, but was sufficient to 

allow us to obtain simulation results that we could compare with the experimental data 

available. Also, we investigated the time step before fixing it in our simulations, and finally, 

this was established at 5 min. We tested the model using values from 1 to 10 min (Figs. S4 

and S5). This is one of the parameters that can be changed in the initialization of the system 

before starting the simulation.  

During the development of the model some parameters values were obtained from biological 

constraints or references and were used in all simulations performed (Table IV), but others 

were not fixed due to the uncertainty in, or complete lack of, observational data.  

We used the uptake-rate parameters with a set of simulation series during the categorical 

calibration process (Table IV). The simulation outputs were compared with the experimental 

data under the two different scenarios corresponding to the two experimental conditions of 

Felgate et al. (2012): succinate-sufficient/NO3
—limited (Experiment E1) and succinate-

limited/NO3
--sufficient (Experiment E2) and for each of the hypotheses considered (the 

metabolic hypothesis and the Gibbs' hypothesis). The simulated cultures were initially grown 

under batch aerobic conditions (from 0 to 24 hours) following the switch to continuous 

culture where the populations shift to anaerobic metabolism (from 24 to 120 hours). It is not 

possible to perform model calibration separately for these unknown parameters (uptake-rates) 

because the individual processes in which they are involved are highly dependent on one 

another.  

Each curve in Figs. 3, 4 and 5 represents the simulation result for one combination of values 

of the parameters “uptake-rate” for the different nutrients. The bacteria in our model grow 
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and develop in two very different conditions: the first condition occurs in aerobic phase (from 

0 to 24 hours) in batch culture, and the second one occurs in anaerobic phase (from 24 to 120 

hours) in continuous culture. 

The first series of simulations (Fig. 3) were carried out to explore the succinate and nitrate 

uptakes-rates values during the aerobic phase (Table IV). In all cases, some simulation results 

shown in Figs. 3A, 3B and 3C reproduce in a better way the experimental trend (Felgate et al. 

2012) than other simulation results shown in Fig. 3D, but in any case the state achieved in the 

aerobic phase determined the subsequent denitrification. As the two hypotheses we tested 

(metabolic and Gibbs) do not play any role in the aerobic phase, the results obtained with a 

different combination of uptake-rates values for succinate and nitrate in the aerobic phase are 

a consequence of nutrient usage. When the uptake-rate for nitrate in aerobic phase takes the 

value of the maximum nutrient uptake-rate (uNitrate-a = 0.27 molnitrate-a·molmass
-1·h-1, the high 

value in Table IV) (see supplementary material for details) the fit of the model is acceptable 

(Fig. 6A).  

With the uptake-rate value of nitrate (aerobic phase) fixed, our second series of simulations 

explored combinations of uptake-rates for succinate (uSuccinate) and nitrate in the anaerobic 

phase (uNitrate-x) (Figs. 4 and 5). In Fig. 4 we present the simulation results with the 

experimental data corresponding to experiment E1 and in Fig. 5 to experiment E2. These 

results are generated using the metabolic hypothesis and compared with the experimental 

temporal evolutions of biomass, NO3
-, NO2

- and N2O. Therefore, we can see the model 

behavior during the denitrification process. Taking into account these series of simulations 

when the uptake-rate for succinate takes the value of the maximum nutrient uptake-rate 

(uSuccinate = 0.52 molsuccinate·molmass
-1·h-1) the model accuracy is good (Figs. 6A and 6B).   

When the electron donor (succinate) is not a limiting nutrient (experiment E1), the model 
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results regarding the time evolutions of nitrite and nitrous oxide shows values equal or close 

to zero (Figs. 4C and 4D). This is due to the fact that there exist electron donor, and the 

electron acceptors can be reduced. When the electron donor (succinate) is limited 

(experiment E2) the model shows low sensitivity in the time evolution of nitrite (Fig. 5C) and 

in the nitrous oxide (Fig. 5D). For both experiments (E1 and E2) and for the two hypotheses 

(Gibbs hypothesis and metabolic hypothesis) the model shows a good response and 

sensitivity to the time evolutions of dry mass (Figs. 4A and 5A) and nitrate (Figs. 4B and 

5B). This is because nitrate is the nutrient by which the denitrification process begins when 

bacteria meet in its environment anoxic conditions. 

In the bubble charts of Fig. 6, each circle radius represents the percentage of the global 

adequacy of the model compared with the experimental data presented by Felgate et al. 

(2012). By examining the bubble charts corresponding to Figs. 6C, 6D and 6E, the value of 

nitrate-x that best fits the simulation results with the experimental points, for both 

experiments and hypotheses, is 0.119 molnitrate-x·molmass
-1·h-1. Looking at the bubble charts of 

Figs. 6F, 6G and 6H, it is possible to say that the model’s sensitivity is low with the changes 

of the values corresponding to the uptake-rates of nitrite, nitric oxide and nitrous oxide, since 

the radius of the circles are similar to each other. Taking into account this calibration process, 

the calibrated values for all the uptake-rate nutrients, and for both hypothesis, are presented in 

Table IV. None of the tested parameter combinations met 100% of the calibration criteria 

defined with the 14 assessment criteria, but some are considerably better than others. The 

multiple fitting criteria results used to explore these values and to contrast the two hypotheses 

are presented in bubble charts, which offer some hints as to the delimited range of values and 

help to discern between the two hypotheses. In all of the cases the metabolic hypothesis 

shows a bigger radius of the circle than the Gibbs hypothesis (Fig. 6).  
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In general, fitting a single response variable is straight-forward, but a global fitting for the 

whole system is much more demanding and challenging to achieve, and even more so if there 

are different experimental medium conditions jointly with aerobic and anaerobic metabolisms 

(Woolfenden et al., 2013). We prioritized the diversity of the results because we are 

convinced that the use of multiple outputs (patterns) to test models is one of the main and 

most relevant features of the pattern-oriented modelling strategy used in the framework of 

IBMs (Grimm et al., 2005).  

The GRI values for both hypotheses, for the four-temporal evolutions studied (biomass, 

nitrate, nitrite and nitrous oxide) and for the two experiments (E1 and E2), are shown in 

Table V. For the Gibbs hypothesis the GRI values are higher than the GRI values of the 

metabolic hypothesis. It is noteworthy that the temporal evolutions of nitrite and nitrous 

oxide are outside of the adequate GRI range for both hypotheses and for the two experiments, 

which suggests it is necessary to include new elements in the individual rules for this 

denitrifying bacteria which must be relevant in the dynamic of this oxide. Further 

developments of this model will need to take into account the role of the nitrous oxide in the 

metabolic reactions and specific experimentation could help to identify the key factors, which 

control the amount of this product. 

5. Conclusions 

The Gibbs hypothesis seemed a plausible and attractive strategy at individual level because it 

represents the spontaneity of a reaction carried out by a micro-organism, but the adequacy of 

the model outputs is slightly better for the metabolic hypothesis. In addition, the metabolic 

hypothesis links better with the idea of the sequential use of the synthesis and consumption of 

electron donors, which is probably linked to individual mass degradation to reduce cytotoxic 

products to complete the denitrification pathway, the expression of denitrifying enzymes and 
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the consequent individual activity.  

If the bacterial cell prioritizes the use of those nitrogen oxides with a higher degree of 

oxidation over others during the denitrification process (metabolic hypothesis), the simulation 

results are in better agreement with the experimental data presented by Felgate et al. (2012), 

than when the bacterial cell goes first for the more spontaneous reaction inside the 

denitrification pathway (Gibbs hypothesis). The idea that the metabolic hypothesis works 

better at the individual level than Gibbs hypothesis is supported using the values of the 

statistic GRI (Table V) as a reference and from the radius of the circles in bubble charts 

obtained in the calibration process (Fig. 6). 

Based on our results, it appears that TEEM2, one of the thermodynamic models based on 

bioenergetics growth efficiency, seems to be a useful tool for modelling the individual 

behaviour-rules for maintenance and mass generation in the INDISIM-Paracoccus model.  

INDISIM-Paracoccus is a promising tool to model P. denitrificans in batch and continuous 

cultures under both aerobic and anaerobic conditions. In contrast to previous modelling 

approaches, our model is the first attempt to study denitrification process using the IBM 

approach jointly with thermodynamic reactions for the cellular activity. The capacity to 

embed thermodynamic properties into individual cells, which can simulate the behaviour of 

the bacterial population more realistically and mechanistically than other modeling 

approaches, makes this model very attractive for future investigations. Besides, the NetLogo 

implementation of the model allows the user to have control of the input parameters and 

initial conditions for the simulations from a very friendly interface, as well as giving easy 

access to the computer code for future adaptations. 

The development and application of IBMs with some intracellular detail and complexity 

constitutes the key advantage of this model to study and understand the different steps of 
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denitrification carried out by a denitrifying bacterium. Exploring model behavior regarding 

its input parameters and assessing alternative submodels provides a way to advance the 

construction of a complete simulator to control factors that help to understand how major or 

minor N2O generation is a consequence of this denitrifier metabolic individual activity. In 

particular, it is hoped that this NetLogo simulator will facilitate new fruitful interactions 

between modelers and experts in the field of denitrification. For example, this denitrification 

model could be incorporated into INDISIM-SOM to complement the mineralization and 

nitrification processes already incorporated to deal with a mixed microbial community to 

understand in silico what the consequences are of different media conditions and different 

microbial functional groups (heterotrophs, autotrophs and denitrifies) on the N2O emissions 

and other nitrous oxide productions.   
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Figure 1. Schematic representation of TEEM, adapted from (Rittmann & McCarty, 2001).  
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Figure 2. Flow chart of the INDISIM-Paracoccus model. 
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Figure 3. INDISIM-Paracoccus model calibration outputs for the aerobic phase. Each color line represents 
the mean of three simulations obtained with different combinations of the values for the parameters 
uptake-rate (ui) for succinate and nitrate in aerobic phase. The ui values are reported in Table IV (being L 
= low, M = medium and H = high). Points (squares, crosses and sums) are the experimental data presented 
by Felgate et al. (2012). For the experiment E1, succinate-limited/NO3

--sufficient (A and B) and for the 
experiment E2, succinate-sufficient/NO3

--limited (C and D). The aerobic phase (from 0 to 24 hours) in 
batch culture, and the anaerobic phase (from 24 to 120 hours) in continuous culture. The metabolic 
hypothesis has been assumed in the simulator to generate these results. 
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Figure 4. INDISIM-Paracoccus model calibration output for the experiment succinate-sufficient/NO3

—

limited (E1). Time evolutions of: (A) Biomass, (B) Nitrate, (C) Nitrite and (D) Nitrous oxide. Each color 
line represents the mean of three simulations obtained with different combinations of the values for the 
parameters uptake-rate (ui) for succinate and nitrate in anaerobic phase. The ui values are reported in Table 
IV (being L = low, M = medium and H = high). Points (squares and crosses) are the experimental data 
presented by Felgate et al. (2012). The metabolic hypothesis has been assumed in the simulator to generate 
these results. 
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Figure 5. INDISIM-Paracoccus model calibration output for the experiment succinate-limited/NO3

—

sufficient (E2). Time evolutions of: (A) Biomass, (B) Nitrate, (C) Nitrite and (D) Nitrous oxide. Each color 
line represents the mean of three simulations obtained with different combinations of the values for the 
parameters uptake-rate (ui) for succinate and nitrate in anaerobic phase. The ui values are reported in Table 
IV (being L = low, M = medium and H = high). Points (squares, crosses and sums) are the experimental data 
presented by Felgate et al. (2012). The metabolic hypothesis has been assumed in the simulator to generate 
these results. 
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Figure 6. Bubble charts to illustrate the model adequacy for different uptake-rate values (ui).  
The ui values come from Table IV. Each circle radius represents the global adequacy of the 
model versus seven experimental time evolutions for two experiments (E1 and E2) presented 
by Felgate et al. (2012). Continuous blue line assuming the metabolic hypothesis, and dashed 
red line assuming Gibbs hypothesis. 
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Table I. Inorganic and organic half-reactions and their Gibbs standard free energy according 
to Rittmann and McCarty (2001). 
 

 Reduction-half-reaction ∆Go 
(kJ/eeq) 

Rd 1/7 CO2 + 1/7 HCO3
- + H+ + e- → 1/14 (C4H4O4)2- + 3/7 H2O 29.090 

Ra(1) ¼ O2 + H+ + e- → ½ H2O - 78.719 

Ra(2) 1/8 NO3
- + 5/4 H+ + e- → 1/8 NH4

+ + 3/8 H2O - 35.11 

Ra(3) ½ NO3
- + H+ + e- → ½ NO2

- + ½ H2O - 41.650 

Ra(4) 2H+ + NO2
- + e- → NO + H2O - 33.718 

Ra(5) H+ + NO + e- → ½ N2O + ½ H2O - 115.829 

Ra(6) H+ + ½ N2O + e- → ½ N2 + ½ H2O - 133.469 

Rc 
9/49 CO2 + 3/49 NH4

+ + 3/49 HCO3
- + H+ + e- 

                                                                → 4/49 C3H5.4O1.45N0.75 + 106/245 H2O 20.398
a 

(a) This value was estimated from reported value of 18.8 kJ/eeq for an assumed cell relative 
composition of C5H7O2N (Rittmann and McCarty, 2001) and considering NH4

+ as source for 
cell synthesis of C3H5.4O1.45N0.75 (van Verseveld et al., 1983). 
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Table II. Balanced energy reactions (Re) for cellular maintenance in aerobic 
and anaerobic phase. Re = Ra – Rd according to (Rittmann and McCarty, 2001). 
 

 Aerobic maintenance with succinate and oxygen: 
 (C4H4O4)2- + 3.5 O2 → 2 CO2 + 2 HCO3

- + H2O 

 Anaerobic maintenance with succinate and nitrate: 
 (C4H4O4)2- + 7 NO3

- → 2 CO2 + 2 HCO3
-  + 7 NO2

- + H2O 

 Anaerobic maintenance with succinate and nitrite: 
 (C4H4O4)2- + 14 NO2

- + 14 H+ → 14 NO + 2 CO2 + 2 HCO3
- + 2 H2O 

 Anaerobic maintenance with succinate and nitric oxide: 
 (C4H4O4)2- +  14 NO → 7 N2O + 2 CO2 + 2 HCO3

- + H2O 

 Anaerobic maintenance with succinate and nitrous oxide: 
 (C4H4O4)2- + 7 N2O → 7 N2

 + 2 CO2 + 2 HCO3
- +  H2O 
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Table III. Balanced chemical equations (R) for biomass synthesis in aerobic and anaerobic phase. (R = feoRa + fsoRc – Rd) 

according to TEEM2 (McCarty, 2007). 

R1  Aerobic conversion of succinate: 
 (C4H4O4)2- + 0.60 NH4

+ + 1.04 O2 → 0.81 C3H5.4O1.45N0.75 + 0.19 CO2 + 1.40 HCO3
- + 0.34 H2O 

R2  NO3
- conversion in aerobic phase: 

 (C4H4O4)2- + 0.08 NH4
+ + 0.52 NO3

- + 1.05 H+ + 0.18 H2O → 0.80 C3H5.4O1.45N0.75 + 0.20 CO2 + 1.40 HCO3
-   

R3  NO3
- reduction with succinate (anaerobic phase): 

 (C4H4O4)2- + 0.30 NH4
+ + 4.55 NO3

- → 0.40 C3H5.4O1.45N0.75 + 4.55 NO2
- + 1.10 CO2 + 1.70 HCO3

- + 0.67 H2O 

R4  NO2
- reduction with succinate (anaerobic phase): 

 (C4H4O4)2- + 0.58 NH4
+ + 4.55 NO2

- + 4.55 H+ → 0.77 C3H5.4O1.45N0.75 + 4.55 NO + 0.26 CO2 + 1.42 HCO3
- + 2.64 H2O 

R5  NO reduction with succinate (anaerobic phase): 
 (C4H4O4)2- + 0.58 NH4

+ + 4.55 NO → 0.77 C3H5.4O1.45N0.75 + 2.28 N2O + 0.26 CO2 + 1.42 HCO3
- + 0.36 H2O 

R6  N2O reduction with succinate (anaerobic phase): 
 (C4H4O4)2- + 0.58 NH4

+ + 2.28 N2O → 0.77 C3H5.4O1.45N0.75 + 2.28 N2
 + 0.26 CO2 + 1.42 HCO3

- + 0.36 H2O 
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Table IV. INDISIM-Paracoccus model parameters values. 

Nutrient 
Culture medium initial 

concentration [mM] according to 
Felgate et al. (2012) 

Availability coefficient – ai – 
(h-1) fixed according to Dab 

Uptake-rate – ui  – (molnutrient·molmass
-1·h-1) 

Testing values Calibrated 
Values Low  

(L) 
Medium 

(M) 
High  
(H) 

Succinate 5 
c
 – 20 

d
 0.28 

a,b,e,f
 0.065 0.13 0.52 

g
 0.52 a,b,e,f

 
Ammonium 10

 c,d
 0.84 

a,b,e,f
 ------ ------ 0.31

 g
 0.31 

a,b,e,f
 

Oxygen 0.236 
c,d

 0.79 
a,b,e,f

 ------ ------ 0.54
 g

 0.54 
a,e,f

 
Nitrate-a (aerobic) 

4.9983 d – 21.6095 c 0.63 
a,b,e,f

 
0.034  0.068  0.27 g 0.27 

a,e,f
 

Nitrate-x (anaerobic) 0.019 0.119 1.19
 g,h

 0.119 
b,e,f

 
Nitrite 0.0255 c – 0.0112 d 0.79 

a,b,e,f
 0.0062 0.062 0.62 g,h

 0.062
 b,e

 – 0.62 
b,f

 
Nitric Oxide ------ 1.00 

a,b,e,f
 0.0000062 0.00062 0.62 g,h

 0.62 
b,e,f

 
Nitrous Oxide 0.003 c – 0.000028 d 0.50 

a,b,e,f
 0.0031 0.031 0.31 g,h

 0.31 
b,e,f

 
Other bacterial parameters 

Parameter Testing range Calibrated value Reference 

Cellular maintenance (gCdonor·gCmic
-1·h-1) ----- 0.0020 a – 0.0040 b 

Gras et al. (2011) and van Verseveld 
et al. (1983) 

Mass split ----- 0.50 (15% coefficient of variation) Derived from (Ginovart et al., 2002) 
Small bacterium size (µm) 0.4 – 0.6 

a,b
 0.5 

a,b
 

Holt et al. (1994) 
Big bacterium size (µm) 0.8 – 1.0 

a,b
 0.9 

a,b
 

Minimum bacterium size at reproduction ----- 75% of big bacterium size 
(15% coefficient of variation) 

Derived from (Gras et al., 2011) and 
(Ginovart et al., 2002) 

Phase: (a) Aerobic, (b) Anaerobic. Experiment: (c) Succinate-limited/NO3
--sufficient, (d) Succinate-sufficient/NO3

--limited. Hypothesis: (e) Metabolic, (f) 
Gibbs. The values (g) are the result of perform calculations between the maximum growth rate (µmax = 0.418 h-1, van Verseveld et al., 1983) and the 
stoichiometric coefficients of each metabolic reaction adjusted by TEEM2 (Table III). The values (h) are the result of divide each high uptake-rate by 4 due 
to the maximum growth rate is achieved when the four reactions are carried out by the bacterium. 
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Table V. Values of the geometric relatively index (GRI) for the temporal evolutions of biomass, nitrate, nitrite and nitrous oxide, taking into 

account the INDISIM-Paracoccus outputs versus experimental data presented by Felgate et al. (2012). 

 

Hypothesis Experiment Biomass Nitrate Nitrite Nitrous oxide 

Metabolic 
Succinate-limited/NO3

--sufficient 1.22 1.26 2.05 12.94 

Succinate-sufficient/NO3
--limited 1.66 9.39 17.79 7.10 

Gibbs 
Succinate-limited/NO3

--sufficient 1.22 1.26 11.79 11.77 

Succinate-sufficient/NO3
--limited 1.64 9.40 17.87 10.37 
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INDISIM-Paracoccus - Supplementary Material 

Figure S1. A screenshot of the user interface of the INDISIM-Paracoccus simulator in 
NetLogo. The sliders allow changing initial values, simulated time and a set of parameters of 
the model. Observations are provided with numerical monitors and plots of temporal 
evolutions of the modelled compounds over time. Mass distributions of the bacteria and the 
number of times that each metabolic reaction have been used by bacteria are also presented 
in the simulator interface. 
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Figure S2. INDISIM-Paracoccus model calibration tests: experiment succinate-limited/NO3

--sufficient 
in aerobic and anaerobic phase. Each color line represents a simulation result with different values of the 
system size. Points (squares, crosses and sums) are the experimental data presented by Felgate et al. 
(2012). The metabolic hypothesis has been assumed in the simulator to generate these results. The time 
step assumed in the simulator to generate these results was 5 minutes. 
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Figure S3. INDISIM-Paracoccus model calibration tests: experiment succinate-sufficient/NO3

--limited in 
aerobic and anaerobic phase. Each color line represents a simulation result with different values of the 
system size. Points (squares and crosses) are the experimental data presented by Felgate et al. (2012). The 
metabolic hypothesis has been assumed in the simulator to generate these results. The time step assumed in 
the simulator to generate these results was 5 minutes. 
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Figure S4. INDISIM-Paracoccus model calibration tests: experiment succinate-limited/NO3

--sufficient in 
aerobic and anaerobic phase. Each color line represents a simulation result with different values of the step-
time. Points (squares, crosses and sums) are the experimental data presented by Felgate et al. (2012). The 
metabolic hypothesis has been assumed in the simulator to generate these results. The system size assumed 
in the simulator to generate these results was 25x25 patches. 
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Figure S5. INDISIM-Paracoccus model calibration tests: experiment succinate-sufficient/NO3

--limited in 
aerobic and anaerobic phase. Each color line represents a simulation result with different values for the time 
step. Points (squares and crosses) are the experimental data presented by Felgate et al. (2012). The 
metabolic hypothesis has been assumed in the simulator to generate these results. The system size assumed 
in the simulator to generate these results was 25x25 patches. 
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Cellular maintenance 15 

How to write the energy reaction?  16 

Step 1. Write inorganic and organic half-reactions for electron donor and electron acceptor. 17 

Electron donor (succinate) half-reaction (Rd): 18 

1/7 CO2 + 1/7 HCO3
- + H+ + e- → 1/14 (C4H4O4)2- + 3/7 H2O    19 

Electron acceptor (oxygen) half-reaction (Ra): 20 

¼ O2 + H+ + e-  →  ½ H2O 21 

Step 2. According to (Rittmann & McCarty, 2001) following the equation (Re = Ra – Rd) a 22 

balanced stoichiometric equation can be written for the energy reaction as follows. 23 

Ra 0.25 O2 + H+ + e-  → 0.50 H2O 

– Rd 0.0714 (C4H4O4)2- + 0.4285 H2O → 0.1428 CO2 + 0.1428 HCO3
- +  H+ + e- 

Re 0.0714 (C4H4O4)2- + 0.25 O2
  →  0.1428 CO2 + 0.1428 HCO3

- + 0.0714 H2O 

Re is the balanced chemical equation for the energy reaction to fit the individual behavior-24 

rule for aerobic maintenance in INDISIM-Paracoccus model. 25 

How to use the energy reaction inside the rule for cellular maintenance? 26 

Before biomass synthesis, each individual in INDISIM-Paracoccus model executes a 27 

behavior-rule for cellular maintenance. The maintenance requirements are different for 28 

aerobic and anaerobic phases. For example, for aerobic phase we employ an appropriate 29 

maintenance requirement for heterotrophic microorganisms of 0.002 gCdonor·gCmicrobial-30 

1·h-1 proposed by Gras et al., (2011) and the energy reaction (Re) between succinate and 31 

oxygen: 32 

The first action that each individual does is to calculate the specific maintenance 33 

requirements for aerobic phase using the elementary cell composition for P. denitrificans 34 

(C3H5.4N0.75O1.45) proposed by (van Verseveld et al., 1979, 1983). 35 
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 36 

After that, taking into account the individual mass, the amount of each nutrient (nutrient-37 

maintenance) is calculated. Then the individual compares the nutrient-maintenance with the 38 

amount of each nutrient after the uptake sub-model (nutrient-useful). If nutrient-useful is 39 

higher than the nutrient-maintenance the individual executes the corresponding energy 40 

reaction. If this condition is not reached the individual stops, and waits for the next time step. 41 

After the execution of any energy reaction, the individual updates its nutrient-useful values. 42 

Biomass generation 43 

How to write the balanced biochemical equation (BBE) that represents a metabolic pathway 44 

to biomass synthesis?  45 

Example of calculations for anaerobic nitrate reduction with succinate as electron donor and 46 

C-source, ammonium as N-source and nitrate as electron acceptor with e = 0.41, to fit the 47 

individual behavior-rule for biomass generation in INDISIM-Paracoccus model for the 48 

reaction 1 (NO3
- → NO2

-) in metabolic pathway 3. 49 

Step 1. Write inorganic and organic half-reactions and their Gibb’s standard free energy at 50 

pH = 7.0 according to Rittmann and McCarty (2001) for electron donor, electron acceptor and 51 

cell synthesis reaction with ammonium as N-source. 52 

Electron donor (succinate) ½ reaction (Rd): 53 

1/7 CO2 + 1/7 HCO3
- + H+ + e- → 1/14 (C4H4O4)2- + 3/7 H2O   ∆Gd

o (kJ/eeq) = 29.090 54 

Electron acceptor (nitrate) ½ reaction (Ra): 55 

½ NO3
- + H+ + e-  → ½ NO2

- + ½ H2O   ∆Ga
o (kJ/eeq) = - 41.650 56 

Cell ½ reaction (Rc) with ammonium as N-source: 57 

1/5 CO2 + 1/20 NH4
+ + 1/20 HCO3

- + H+ + e- → 1/20 C5H7O2N + 9/20 H2O  ∆Gpc
o (kJ/eeq) = 18.80 58 

hBiomassmol
Oxygenmol

Succinatemol
Oxygen

hBiomassmol
Succinatemol

hBiomassmol
Succinatemol

NOHCmol
microbialgC

SuccinategC
Succinate

hmicrobialgC
succinategC

⋅
=×

⋅

⋅
=××

⋅

 
 0052.0

 0714.0
 mol 25.0

 
 0015.0

 
 0015.0

75.045.14.53  1
36

48
 mol 1002.0
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Step 2. Adjust the cell ½ reaction (Rc) to P. denitrificans elementary cell composition 59 

C3H5.4N0.75O1.45 (van Verseveld et al., 1979, 1983) following the methodology proposed by 60 

Rittmann and McCarty (2001). 61 

𝑛 − 𝑐
4𝑛 + 𝑎 − 2𝑏 − 3𝑐

𝐶𝑂! +  
𝑐

4𝑛 + 𝑎 − 2𝑏 − 3𝑐
𝑁𝐻!! +

𝑐
4𝑛 + 𝑎 − 2𝑏 − 3𝑐

𝐻𝐶𝑂!! +  𝐻! +  𝑒!  

→  
1

4𝑛 + 𝑎 − 2𝑏 − 3𝑐
𝐶!𝐻!𝑂!𝑁! +  

2𝑛 − 𝑏 + 𝑐
4𝑛 + 𝑎 − 2𝑏 − 3𝑐

𝐻!𝑂 

9/49 CO2 + 3/49 NH4
+ + 3/49 HCO3

- + H+ + e- → 4/49 C3H5.4O1.45N0.75 + 106/245 H2O 62 

18.80 
𝑘𝐽
𝑒𝑞𝑞

×
20 𝑒𝑞𝑞

1 𝑚𝑜𝑙 𝐶!𝐻!𝑂!𝑁
×
1 𝑚𝑜𝑙 𝐶!𝐻!𝑂!𝑁
113.11 𝑔!"#$%&"'(

×
75.17 𝑔!"#$%&"'(

1 𝑚𝑜𝑙 𝐶!𝐻!.!𝑂!.!"𝑁!.!"
×
1 𝑚𝑜𝑙 𝐶!𝐻!.!𝑂!.!"𝑁!.!"

49
4  𝑒𝑞𝑞

= 20.398 
𝑘𝐽
𝑒𝑞𝑞

 

18.80 
𝑘𝐽
𝑒𝑞𝑞

×
20 𝑒𝑞𝑞

1 𝑚𝑜𝑙 𝐶!𝐻!𝑂!𝑁
×
1 𝑚𝑜𝑙 𝐶!𝐻!𝑂!𝑁
113.11 𝑔!"#$%&"'(

×
75.17 𝑔!"#$%&"'(

1 𝑚𝑜𝑙 𝐶!𝐻!.!𝑂!.!"𝑁!.!"
= 249.8755 

𝑘𝐽
𝑚𝑜𝑙

 

For P. denitrificans elementary cell composition the cell ½ reaction (Rc) with ammonium as 63 

N-source with Gibb’s standard free energy at pH = 7.0 is 64 

9/49 CO2 + 3/49 NH4
+ + 3/49 HCO3

- + H+ + e-  

                                             → 4/49 C3H5,4O1,45N0,75 + 106/245 H2O 
∆Gpc

o (kJ/eeq) = 20.398 

Step 3. Degree of reduction computation for electron donor and cells: 65 

𝛾! =  
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑑𝑜𝑛𝑜𝑟
𝐶𝑎𝑟𝑏𝑜𝑛 𝑑𝑜𝑛𝑜𝑟

=  
14
4
= 3.5 

𝛾! =  
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑐𝑒𝑙𝑙𝑠
𝐶𝑎𝑟𝑏𝑜𝑛 𝑐𝑒𝑙𝑙𝑠

=  
49

4
3

= 4.083 

Step 4. Computation of fs
o, fe

o and Yc/c according to McCarty (2007). 66 

𝐴 = −  
∆𝐺!
𝜀∆𝐺!

=  

∆𝐺!" −  ∆𝐺!
𝜀! +  

∆𝐺!" −  ∆𝐺!"
𝜀! +  

∆𝐺!"
𝜀

𝜀 ∆𝐺! −  ∆𝐺! −  𝑞𝑝 ∆𝐺!"
=  
𝑓!!

𝑓!!
 

∆Gin = 30.90 kJ/eqq. Since no oxygenase is involved, q = 0. Since succinate is not a C1 67 

compound, ∆Gfa = 0 and m = n.  Since (∆Gin - ∆Gd) > 0 → (30.9 – 29.09) > 0, n = 1, m = 1. 68 

Using e = 0.41, and assuming that standard conditions apply. 69 

𝐴 =  
0 −  29.09
0.41! +  30.90 −  0

0.41! +  20.3980.41
0.41 −41.65 −  29.09 −  0

=  1.857 
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𝑓!! =  
1

1 + 𝐴
=  

1
1 + 1.857

= 0.35 

𝑓!! = 𝐴 ∙ 𝑓!! =  1.857 × 0.35 =   0.65 

𝑌!
!
=  
𝛾!
𝛾!
𝑓!! =  

3.5
4.083

×0.35 = 0.30  
𝑚𝑜𝑙 𝐶!"##$

𝑚𝑜𝑙 𝐶!"##$%&'(
 

 Step 5. A balanced stoichiometric equation can then be written. The overall reaction R is 70 

equal to R = feoRa + fsoRc – Rd according to Rittmann and McCarty (2001). 71 

feoRa 0.3250 NO3
- + 0.65 H+ + 0.65 e-  → 0.3250 NO2

- + 0.3250 H2O 

fsoRc 0.064 CO2 + 0.0214 NH4
+ + 0.021 HCO3

- + 0.35 H+ + 0.35 e- → 0.0286 C3H5,4O1,45N0,75 + 0.1514 H2O 

– Rd 0.0714 (C4H4O4)2- + 0.4285 H2O → 0.1428 CO2 + 0.1428 HCO3
- + 1.00 H+ + 1.00 e- 

R 
0.0714 (C4H4O4)2- + 0.0214 NH4

+ + 0.3250 NO3
-  

                                        → 0.0286 C3H5,4O1,45N0,75 + 0.3250 NO2
- + 0.0786 CO2 + 0.1214 HCO3

- + 0.0479 H2O 

R is the balanced chemical equation using the Thermodynamic Electron Equivalents Model 72 

second version to fit the individual behavior-rule for biomass generation in INDISIM-73 

Paracoccus model for metabolic pathway (NO3
- → NO2

-). 74 

In the same way we proceed in the calculations to the other reactions in the other pathways.  75 

For P. denitrificans in aerobic phase growth, considering succinate as electron donor, Heijnen 76 

and Van Dijken (1992) proposed a maximum population growth yield (Yc/c) of 0.48 77 

Cmic/Csucc and van Verseveld et al. (1983) of 0.51 Cmic/Csucc, and for P. denitrificans in 78 

anaerobic phase growth considering succinate as electron donor and NO3
- as electron 79 

acceptor, Heijnen and Van Dijken (1992) published a Yc/c value of 0.387 Cmic/Csucc and van 80 

Verseveld et al. (1977) of 0.352 Cmic/Csucc. These population growth yields are the reference 81 

used for each reaction adjusted by TEEM2 (Table III). 82 

How to use the BBE inside the rule for biomass synthesis? 83 

This rule begins with the nutrient-useful values obtained after executing the cellular 84 

maintenance. If all the amounts of the nutrient-useful are higher than zero, following the 85 
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stoichiometry of each BBE, the individual increases its biomass (individual mass) and 86 

produces metabolic products. Once executed each reaction the individual updates its nutrient-87 

useful values. If these values are higher than zero the individual can execute the next reaction. 88 

The sub model ends when the individual has executed all the chemical reactions that make 89 

the metabolic pathway and then the individual can execute the next sub model (reproduction). 90 

Nevertheless, the sub model can end when any of the nutrient-useful is lower or equal to zero, 91 

in this case the individual stops until the next time step. 92 

How we established the order of the reactions inside the denitrification pathway for the Gibbs 93 

hypothesis? 94 

Using the free energies of formation for various chemical species, with the balanced 95 

biochemical equations presented in Table III, we performed several calculations. For 96 

example: 97 

Chemical specie ∆Gº (KJ/mol), 25ºC Stoichiometric 
Coefficient 

(C4H4O4)2- -690.23 0.0714 
NH4

+ -79.37 0.0214 
NO3

- -111.34 0.3250 
C3H5,4O1,45N0,75 249.87 0.0286 

NO2
- -37.20 0.3250 

CO2 -394.36 0.0786 
HCO3

- -586.85 0.1214 
H2O -237.18 0.0479 

∆𝐺 =  𝜈!∆𝐺!! !

!!!

!!!

− 𝜈!∆𝐺!! !

!!!

!!!

  

Where νi, is the stoichiometric coefficient of i in the reaction and ∆Gi is the free energy of 98 

formation. With this data and the equation we calculated the ∆G for each equation. 99 

∆𝐺 =  0.0286 ∗ 249.87 + 0.3250 ∗−37.20 + 0.0786 ∗−394.36

+ 0.1214 ∗−586.85 + 0.0479 ∗−237.18

− 0.0714 ∗−690.23 + 0.0214 ∗−79.37 + 0.3250 ∗−111.34  
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∆𝐺 =  − 31.48 𝐾𝐽 𝑚𝑜𝑙 

The final values for all the equations in the denitrification pathway are as follows: 100 

Reaction ∆G (KJ/mol) Efficiency (ε) 
R3 - 31.48 0.41 
R4 7.99 0.84 
R5 -18.58 0.56 
R6 -24.17 0.53 

 101 

If we consider that with lower Gibbs energy the reaction will occur first, the order of the 102 

reaction inside the denitrification pathway is: R3, R6, R5, R4.  103 

Also the reader could see the values for the energy-transfer-efficiency (ε) used to write each 104 

equation using TEEM2. 105 

 106 

Maximun nutrient uptake-rate 107 

To estimate these values we use µmax = 0.418 h-1, reported for P. denitrificans by van 108 

Verseveld et al. (1983). With this value we calculate the maximum uptake for each nutrient 109 

(the high value) according to the stoichiometric coefficients adjusted by TEEM2 for the 110 

reaction 1 in metabolic pathway 1 (O2 → H2O). 111 

0.418 
1
ℎ
×
0.0714 𝑚𝑜𝑙 𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒
0.0575 𝑚𝑜𝑙 𝐵𝑖𝑜𝑚𝑎𝑠𝑠

= 0.52 
𝑚𝑜𝑙 𝑆𝑢𝑐𝑐𝑖𝑛𝑎𝑡𝑒
𝑚𝑜𝑙 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∙ ℎ

 

0.418 
1
ℎ
×
0.0431 𝑚𝑜𝑙 𝐴𝑚𝑚𝑜𝑛𝑖𝑢𝑚
0.0575 𝑚𝑜𝑙 𝐵𝑖𝑜𝑚𝑎𝑠𝑠

= 0.31 
𝑚𝑜𝑙 𝐴𝑚𝑚𝑜𝑛𝑖𝑢𝑚
𝑚𝑜𝑙 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∙ ℎ

 

0.418 
1
ℎ
×
0.0740 𝑚𝑜𝑙 𝑂𝑥𝑦𝑔𝑒𝑛
0.0575 𝑚𝑜𝑙 𝐵𝑖𝑜𝑚𝑎𝑠𝑠

= 0.54 
𝑚𝑜𝑙 𝑂𝑥𝑦𝑔𝑒𝑛

𝑚𝑜𝑙 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∙ ℎ
 

These values are the maximum values that the nutrient-uptake (ui) parameter could take. We 112 

use these values as a reference to start the calibration process of our model. The values 113 

obtained after the calibration process are presented in Table IV. 114 

 115 
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