. Jygoj902%3

corin

Quality Control of Software Specification
Written in Natural Language

- Nuria Castell
Olga Slavkova
Yannick Toussaint
Antoni Tuells

Report LSI-93-50-R

de Barceiona - BiviHoteca

=3 MAR. 1994

QUALITY CONTROL OF SOFTWARE SPECIFICATIONS WRITTEN
IN NATURAL LANGUAGE

Niaria Castell)), Olga Slavkova(l), Yannick Toussaint(®) and Antoni Tuells(1)

(1) Departamento LSI, Universitat Politcnica de Catalunya,
08028 Barcelona, Spain.
Email: castell @lsi.upc.es

(2) INRIA Lorraine & CRIN - CNRS,
54506 Vandoeuvre-les-Nancy, France.
Email: Yannick.Toussaint@loria.fr

RESUM

La creixent complexitat dels sistemes informatics, junt amb la rapida evolucié del hardware, han
posat de manifest dos problemes importants en el camp de la Enginyeria del Software: el control de
la qualitat del software que es desenvolupa i la comunicacié entre els participants d’un mateix
projecte, ateses les dificultats que planteja I’us del llenguatge natural com mitja d’expressié de la
informaci6 tecnica. El projecte LESD (Enginyeria Lingiifstica per al Desenvolupament del
Software) té com objectiu el desenvolupament d’eines informatiques que permetin: a) crear una
interpretaci6 conceptual de les especificacions funcionales o preliminars de software aeroespaial
escrites en anglés, b) evaluar, usant tecniques d’Intel-ligéncia Artificial, la trazabilitat, la
completesa, la consisténcia, la verificabilitat i la modificabilitat, considerats factors principals de la
qualitat d’aquestes especificacions, i ¢) controlar la qualitat de les especificacions en base a la
medicié quantitativa del software.

ABSTRACT

The growing complexity of computer systems, together with the rapid evolution of hardware, has
created two significant problems in Software Engineering: (1) the quality control of software, and
(2) the effective communication between project participants when natural language is used to
convey technical information. The aim of LESD (Linguistic Engineering for Software
Development) is to develop a set of computer tools to (a) provide a conceptual representation of
aerospace software functional specifications in English; (b) evaluate traceability, consistency,
completeness, verifiability, and modifiability (these constituting the main quality factors) using Al

techniques; and (c) control specifications quality based on software quantitative measurement.

The text contained in this report is the same as the final version of the paper accepted in the Seventh International
Conference on Industrial & Engineering Applications of Artificial Intelligence & Expert Systems
(May 31/ June 3, 1994, Austin, Texas, USA)

QUALITY CONTROL OF SOFTWARE SPECIFICATIONS WRITTEN
IN NATURAL LANGUAGE (*)

Niiria Castell(1), Olga Slavkova(1), Yannick Toussaint(and Antoni Tuells(1)

(1) Departamento LSI, Universitat Politdcnica de Catalunya,
08028 Barcelona, Spain.
Email: castell @lsi.upc.es

(2) INRIA Lorraine & CRIN -~ CNRS,
54506 Vandoeuvre-les-Nancy, France.
Email: Yannick.Toussaint@loria.fr

ABSTRACT

The growing complexity of computer systems, together
" with the rapid evolution of hardware, has created two
significant problems in Software Engineering; (1) the
quality control of software, and (2) the effective
communication between project participants when natural
language is used to convey technical information, The
LESD (Linguistic Engineering for Software Development)
project links Linguistic Engineering and Software
Engineering. The aim of LESD is to develop a set of
computer tools to (a) provide a conceptual representation
of aerospace software functional specifications in English;
(b) evaluate traceability, consistency, completeness,
verifiability, and modifiability (these constituting the
main quality factors) using Al techniques; and (c) control
specifications quality based on software quantitative
measurement,

INTRODUCTION

Software project development is an increasingly
complex field which often involves various teams
working together. Such complexity gives rise to Software
Engineering problems involving software reliability and
effective communication between project participants,

Software Engineering arose out of a need to rationalize
the development of software and computer systems. It
covers all aspects of applied computer science, involving
project management, writing code, and defining controls.
The growing complexity of information systems together

(*) This work has been partially supported by CICYT
(TIC93-420) in Spain and by the Governments of France
and Spain through a jointly-funded initiative (“accién
integrada” HF-31B). This work was developed while the
third author was a researcher in the ARAMIIHS
Laboratory, MATRA-Espace / CNRS, UMR 115 du
CNRS, Toulouse (France).

with the rapid development of hardware has provided the
rationale for Software Engineering.

Seminal works on programming languages and design
methods are well known, for instance OOD and HOOD
[HOT91]. Formal languages and specification methods
evidence the use of these methods at ever earlier project
phases. Clearly, the earlier the mistakes are detected during
project, the better. Detection of mistakes at too late stage
can give rise to significant methodological changes and
additional costs. Regarding costs, the correction of a
mistake generated in the specification phase has been
estimated [Pre87] to rise by 1.5 to 6 times when detection
is made during the development phase and by a staggering
60 to 100 times when detection is made at the
maintenance phase.

Natural language is most frequently employed during
the development of a computer project and during its
production phase. The apparent ease with which everyone
uses natural language can create comprehension problems
stemming from ambiguous phrasing or by inconsistencies
in texts employing natural language to convey technical
information. Of particular interest are the difficulties
created by the use of natural language at the specification
phase.

Research on natural language, carried out from
linguistic, terminological or computational standpoints, is
increasingly applicable to technical fields such as
acrospace, nuclear engineering, telecommunications, and
the like. Unfortunately works linking Linguistics
Engineering and Software Engineering are rather thin on
the ground. We consider that natural language processing
is not only applicable to specification processing, but is
also relevant to maintenance activity, software re-
usability, and the production phase of a computer system
[TB93].

Software Engineering norms establish the phases
involved in software development and suggest software
quality factors such as traceability (i.e. the ability to trace
the link between the expression of a request and its

computer equivalent); consistency; and modifiability (i.e
the ability to modify specifications easily). Formal
languages do not integrate these factors or incorporate
only one of them. For example, consistency is usually
integrated and translated into theorem proving,
modifiability is usually not taken in to consideration, and
traceability is found in few formal languages. Moreover,
there are factors which affect the quality of specifications
and which reflect the experience of software engineers, and
cannot be obtained through mathematical methods.

Using different conventions at different phases of
software development makes it hard to say whether the
specifications really meet the requests posed. The use of
natural language at the specification stage makes it easier
for project participants to reach a consensus, thus making
it easier to satisfy the requests by the specifications.

Sections 2, 3 and 4 of this paper explain why the use
of natural language during the specification phase is
worthwhile, put forward some writing norms, and describe
various systems which have already been developed. The
LESD project is presented in Section 5. Section 6 deals
with natural language specification processing as
performed in the LESD project and with the process of
" constructing the requirements base. This base contains
the conceptual description of all the requirements of the
specifications. In sections 7 and 8, the application of
artificial intelligence techniques to the evaluation of two
factors involved in the quality of specifications quality is
considered: traceability and completeness. The final
section presents the scheme of a quality control
hierarchical model based on the quantitative measurement
of the quality level reached by the factors.

NATURAL LANGAGE AS A SPECIFICATION
TOOL

What role does natural language play? A partial answer
was given in the previous section in which the correlation
between specification and request was discussed. Despite
the great diversity of languages and systems which can be
pressed into service during the specification phase, there
are numerous situations where it is difficult to begin the
design task without writing texts which offer a basic
definition of the problem to be resolved and of the
restrictions to be observed. Natural language allows one to
combine the solutions suggested by the software engineer
and client requests more effectively. Natural language is
the most suitable tool for expressing the specification task
given that it is an intellectual task of the software
engineer.

During the initial phase, the software specifications for
complex systems (such as those in the aerospace and
nuclear fields) result in bulky documents since they are
often written in natural language. Once created, the
documentation is progressively enriched during successive
phases during the industrial life-cycle of the software.
Even after being formalized, the original documentation
written in natural language may also serve during later
phases, and during the functioning and maintenance of the
developed computer system, being particularly useful for

verifying the extent to which it meets designer options or
client requests. Hence, software engineers continvally
work with the original documentation.

Natural language therefore occupies an important place
in Software Engineering projects and is used in the
majority of formal languages in simplified form for
writing comments, Natural and formal languages are
therefore doomed to co-exist, allowing one to argue about
their respective capabilities and limitations.

WRITING NORMS

Documentation writing is guided by the norms which
define the linguistic restrictions required to satisfy the
specifications. These norms are of two types: those
relating to the use of natural language in general (for
example, [IEEE84] and [AECMAS9]; and those that are
based on terminological restrictions related to a particular
domain (for example, the ESA - European Space Agency -
norms). Both of them restrict the use of natural language
through a set of rules which limit various irregularities
(polysemy, paraphrase, ambiguity, vagueness..) which
occur during the interpretation of natural language. When
writing, these translate into three important
recommendations: (1) the use of simple phrases
(grammatically simple structures); (2) the use of restricted
vocabulary (on both technical and colloquial levels); and
(3) the elimination of vague expressions.

Though the norms define linguistically precise
restrictions, the frequent failure to observe them makes it
difficult for the consequence of such breaches to be
detected afterwards. One should bear in mind that the sheer
volume of documentation makes it impossible for even
the most attentive reader to detect variations in the use of
terminology or to check all the meanings of a phrase to
discover whether another reader could interpret it in a
different way.

In addition to linguistic restrictions, the norms also
include Software Engineering constraints related to the
quality factors of the specifications, such as consistency,
completeness, traceability, modifiability, and verifiability.

PROCESSING THE NATURAL LANGUAGE
SPECIFICATIONS

As far as natural language processing for software
specifications is concerned, there are two different (but not
mutually-exclusive) approaches. The first one emphasises
only the superficial characteristics of the texts written in
natural language (words and groups of words) and its
purpose is to manage a set of requirements. The second
one is concerned with information content, i.e. semantics.

The first approach is based on the development of
environments, mainly beginning from database
management systems, which aid the engineer in the tasks
involved in classifying and storing the specifications.
These systems allow automatic insertion of a traceability
table at the end of documents. However requirement-
associated relations are “hand-made” by the engineer when

the requirement is introduced. The ARTS [DF84] or
SWIFT systems provide examples of this approach.

The second approach tackles the use of specifications in
natural language by taking into account the experience of
research on natural language processing, in particular the
use of its logic-semantic structures. This approach implies
the need to deal with semantic representations. The
construction of the semantic representation of a set of
requirements in a particular domain requires not only
linguistic knowledge (i.e. of syntax and semantics) of the
language the requirements are written in, but also in-depth
knowledge of the domain. We favour careful study of
natural language as specification tool and hence adhere to
this second approach. We shall briefly comment below on
some of the work based on this approach.

Let us first consider the SEC system (Simplified
English Checker). This is an automatic verifier of text
style, developed by Boeing 1o help the writers of aerospace
maintenance documentation adapt their work to writing
norm criteria, such as AECMA PSC-85-16598. A
description of this system can be found in [WHH90]. The
SEC system provides the writer with a report which states
where and why the revised documentation has deviated
from the norm. In 1990, this software correctly processed
80% of the introduced text, and the company calculated
that it produced a saving of 12,000 to 16,000 working
hours per year. Besides raising the quality of the written
documentation, the use of SEC has an educational spin-off
since writers learn to correct their most frequently made
mistakes and reduce the frequency with which they crop up
in future texts,

Secondly, one should also mention another work
which, while more original, we consider to be less
realistic. The system is described in [SNM*88] and aims
to translate specifications written in natural language into
formal language. The formal language for the
specifications consists of an algebraic language based on a
context-free grammar and a set of axioms defining the
semantics of the language. This approach appears to be
unduly restrictive since the parser used is very small and
does not address the problem (among others) of
quantification, without which it is impossible to verify
consistency at the formal language level, Moreover,
automatic translation does not allow the incorporation of
essential information implied in the natural language
specifications into formal expressions. In conclusion, we
consider writing specifications in such a restricted natural
language is tantamount to writing out algebraic
expressions using quasi-natural language phrases.

Thirdly, one should also mention the work done by
Carver and Cordes ([CC88], [CC89], [CCG89], [Cor89)).
Their method of evaluating the quality of the
specifications written in natural language is a two-stage
process: (1) text parsing in order to obtain a formalized
specification environment; and (2) an analysis of
consistency, completeness, and traceability, based on the
environment obtained in the previous phase. At the end
the system provides a report on the analysis performed. To
construct the formalized environment, the text is parsed
phrase by phrase (the parsing is, in, fact, syntactical) and
then a facts base is created, coded in Prolog. Different

algorithms are applied to this facts base in order to
perform the above-mentioned quality controls. This work
defines a methodology rather than develops a system,

THE LESD PROJECT

The LESD project (Linguistic Engineering for Software
Development) [BTB91] was instigated by the ARAMIIHS
center in Toulouse (France). This center was established
through a joint agreement between the CNRS and
MATRA MARCONI SPACE company. The project is
carried out by researchers from IRIT (Institute de
Recherche en Informatique de Toulouse), from the Paul
Sabatier University of Sciences, from Le Mirail
University of Humanities, from the MATRA company,
and, since 1991, by several researchers from the Technical
University of Catalonia through a Spanish-French grant-
funded joint initiative.

LESD aims [TBB*91] to develop computational tools
which will (1) allow conceptual interpretation of
functional or preliminary software aerospace specifications
written in English; (2) permit evaluation of quality factors
(see Section 3 above) by means of reasoning algorithms
applied to the conceptual representation; and (3) help the
engineers handle documentation. The long-term LESD
aim is to develop a writing assistance system which
would enable one to identify problems related to the use of
unidentified terminology and complex or ambiguous
grammatical forms.

This project involves an in-depth study of the language
and, thus, integrates lexical, grammatical, and semantic
components. In addition the domain knowledge has been
considered and represented as it is vital to conceptual
interpretation and the reasoning process ([BBC*92],
[Tou92]).

THE LESD ARCHITECTURE

The present LESD architecture (see figure 1) consists of
two parts. The first part concerns syntactic-semantic and
domain analysis of requirements, to obtain their
conceptual representation (this part of the work thus
belongs to the Linguistics Engineering field). The second
part is related to Artificial Intelligence and embraces
reasoning mechanisms applied to the representation of the
requirements.

Requirements Analysis

The requirements, from which the specification is
drawn up, consist on two or three short sentences written
using restricted vocabulary and syntax, as usual for
documents belonging to any technical domain. In few
cases conjunctions or disjunctions appear and we have
defined a possible representation for this kind of sentences.
Also some aspects of the quantification problem have
been considered. At present, the requirements are processed
sentence by sentence, leaving out the reference problem.
However this problem is easier to treat in our case than in
a general natural language processing.

requirements

linguistic
engineering

natural language processing :

syntactic and semantic analysis

*.__)

semantic
representation

interpretation

C grammaﬁ L semantic rules j Qdictionary

based on the domain

knowledge
base

v T

reasoning about the requirements

/ requirements
base

traceability completeness

other factors

artificial
intelligence

FIGURE 1 The LESD Architecture

The requirements are successively analyzed using the
ALVEY parser [BGB*87]. This parser has been adapted to
our domain. After semantic and functional analysis, each
requirement is interpreted taking into account the domain
representation. The generated representation is then
incorporated into the requirements base.

Although the parsers have not yet been fully-developed,
substantial work has already been done on the definition
and implementation of the knowledge and requirements
bases. A typology of domain objects and activities,
including their relationships, has also been defined. This
was implemented using frame-based formalism.

To illustrate the process involved, consider the
following real-life requirements;

req-1: The IOI-GS shall monitor the systems of the
space vehicle

req-2: The IOI-GS shall control the automatic systems
of the space vehicle

On completion of the requirements analysis, the
conceptual representation of requirements is integrated
step-wise into the requirements base, as shown in figure 2
[Tou92). The first level of the figure shows the part of the
knowledge base needed for interpreting the requirements
given above. The other levels show the step-wise
construction of the requirements base. During this
process, concepts may be learned and integrated into the
knowledge base, for instance the concept of “automatic
systems of the space vehicle”. '

Requirements reasoning

The reasoning process concerning requirements is
divided into different modules, each one corresponding to
one quality factor. The reasoning mechanisms use the

requirements representation contained in the requirements
base, and the domain knowledge base. Thus far we have
paid particular attention to two quality factors which are
especially relevant to software design and which we shall
expand upon in the sections below.

TRACEABILITY

Working from the client's requests, the software
engineer writes the specifications of the system and
subsystems in top-down fashion. This initial definition
phase is followed by other phases in which different
modules are developed, being integrated in bottom-up
fashion. Traceability expresses the links between the
requirements at different levels. It is useful to know the
origin of the requirements during the top-down process.
During the bottom-up process, traceability facilitates the
control tests and allows one to identify the initial
requirements which remain unsatisfied.

There are different approaches to the design of tools
aiding the engineer in traceability tasks. When
specifications are written in a formal language, traceability
control is based on their algebraic properties. Another

~ approach is based on the use of a database management

system and the construction of a specifications
development environment. In these systems traceability
links are “hand-made” by the engineer. More recent
approaches provide for the use of natural language, as for
instance, the system described in [SNM*88] which is
based on the automatic translation of natural language into
formal language.

-| requirement | ...

flight
element

automatic |-
entity

oot [Treceive] o "]

space-vehicle

N\ Jioc

agent /

systems of monitor-1
the sp-veh object
agent
automatic
systems of control-2
the sp-veh object

activity

activity
req-2

FIGURE 2 Diagram showing the process of incorporating requirements. Arrows without label stand for “is-a” relations.

Traceability in the LESD project

The LESD project posed the question as to what
linguistic criteria (semantic or pragmatic) are used to
create traceability links between requirements,

Traceability control does not imply the simple finding
of links between all the concepts involved in any two
requirements. Rather, this control implies the use of
inference techniques in a well-structured knowledge
representation of the universe of the discourse. One of the
initial goals of LESD was to define a set of relations to
structure the lexicon and the domain concepts. We have
created taxonomic relations (the “is-a” relation),
meronomic relations (a breakdown of the object into
components), temporal relations (especially between
activities), characterising relations (for instance, “status”
characterises “system”) and thematic functionality
relations (as “agent”, “object”, etc.).

At present, there is no formal definition of traceability
which could allow implementation of an algorithm that
automatically generates traceability links. That is why we
have chosen an interactive approach where the engineer
poses a question by identifying a set of concepts
interconnected by relationships. The answer of the system

is a list of requirements, which conceptual representation
contains these concepts and relationships. The developed
algorithm, for the analysis of questions and the generation
of answers, is based on the idea of type. Thus, the selected
requirements are the ones whose concepts belong to the
concept type given in the question. This allows one to
classify the requirements from the most specific to the
most general ones according to the derivation (by means
of an “is-a” relation) between the concepts given in the
question and the concepts contained in each requirement.
The generation of answers implies activating the inference
mechanism in the knowledge base.

The questions can be very simple (for example, “Get all
the requirements related to one type of object”) or very
much complex, involving activating the inference
mechanism in the structure and content of the knowledge
base. For instance, “Get all the requirements which
express data monitoring” will include the following
requirements in the answer:

reg-1: The system shall monitor the data of the space
vehicle.

req-2: The I0I1-GS shall receive the data of the space
vehicle.

The system can relate these requirements using the
taxonomy of objects and their relationships. For example,
“IOI-GS” is a sub-class of “system”, the “receive” action
is a sub-action of “monitoring”, and “data of space
vehicle” is a sub-class of “data”. Moreover, the system
detects the fact that the concepts involved in requirement 2
are more specific than the concepts in requirement 1.
Hence, satisfying the second requirement provides only
partial satisfaction of the first requirement.

COMPLETENESS

What does completeness mean in the context of
software specifications wriiten in natural language? The
word “completeness” is used in so many scientific fields
that it is sometimes difficult to say whether it always has
the same meaning. This point is illustrated below with
specific examples, particularly with reference to the
concept's relation to natural language processing. For a
more detailed description see [TC93].

Deductive Completeness

This notion of completeness is used in any formal
system. It is, for example, the one used in Godel's
theorems of incompleteness. A possible definition might
run as follows: “a formal system is complete if for any
proposition A of the system, A or (not A) can be
deduced”.

Expressive Completeness

Expressive completeness is the concept related to the
expressiveness (or lack of) of the programming languages,
linguistic formalisms or knowledge representation
systems. Obviously, the lack of this expressiveness
depends on what we want to express, i.e. on the ability to
represent the knowledge types required by the domain.

Structural Completeness

We speak about structural completeness when the
existence or non-existence of a sub-structure within a
more general structure is involved. There are many
examples of these types of structures. The most famous of
them in natural language processing are Schank's scripts
[SA77], and task- oriented dialogues [Gro86]. It is worth
mentioning that these structures are more or less complete
with respect to the world modelled (for example, they
typically implement a user model).

As far as Software Engineering is concerned, solutions
have been suggested (similar to those mentioned above) to
control the completeness of a set of specifications. For
instance, “The Requirements Apprentice” project [RW91]
uses the concept of “cliché” (which is like a frame), related
to a particular domain. In each cliché some slots have
default values while other ones require the introduction of
a value. A requirement is not complete if any of the slots
for which a value has 10 be entered remain unfilled.

Conceptual Completeness
This is related 1o communication between various
persons and thus to natural language, which is the most

commonly used form of communication. From this point
of view, a communication act (which for the sake of
simplicity, is taken here to mean the transmission of a
message from the sender and its reception by the receiver)
is complete if the receiver understands the information
which the sender is trying to communicate. As far as
software specifications written in natural language are
concerned, we can say that they are complete if they allow
the software engineer to understand the function of the
system. The main problem involved in these
specifications (and which makes them worthy of study) is
that they are written by one person and read by another.

The Control of Incomplete Specifications in
the LESD Project.

For this control it is necessary to construct an actions -
sub-actions hierarchy, representative enough to guarantee
its appearance in any set of specifications related to an
aerospace domain. For example, in our knowledge base
the action “monitoring” is broken down into three sub-
actions: “receive”, “analyze” and “visualize”.

Consider the following real-life example of a
requirement: “During the launch phase, the I0I-GS shall
analyze and display the status of the space vehicle”.

If, after analyzing this requirement, the system observes
that there is no reference to “monitoring” action, it will
alert the engineer that a requirement relating to this action
may be missing. Likewise, if after the analysis of the
requirements, the system notes that one requirement
makes reference to “monitoring” action but none makes
reference to its descendants in the hierarchy, it can then
prompt the engineer by indicating that the specifications
are incomplete.

This approach is based on reasoning mechanisms
applied to the knowledge base. It is vital that this base be
reliable and precise. The engineer must control the
consistency of the inferences executed by the system, and
validate what requirements are necessary. Moreover, the
engineer has to reach a decision on the completeness of
the specifications. This decision is not automatic because
our possible solution ~ as well as that suggested by
[RW91] — tries to “capture” the conceptual completeness
of the specifications through structural completeness of
some structure (in our case, of action - sub-action
hierarchy), i.e. by merging two types of completeness.
This approach suggests a limited solution to the
completeness problem on which we are working.

QUALITY MEASUREMENT

The specification phase clearly influences software
quality. This is why it is essential to rigorously control
specification quality, evaluating each factor involved.
Evaluation of the quality factors in specifications, from
the LESD standpoint, implies the development of
reasoning algorithms applied to the conceptual
representation of the functional or preliminary
specifications written in natural language. The algorithms
developed allow one to formally define the breakdown of
factors to stablish quantitative criteria of the quality of

these factors, The quality of these criteria is much easier
to evaluate than is the case with the factors. Evaluation of
the quality relating to each criterion is performed by
software metrics. Metrics are procedures which define the
quality evaluation of the above-mentioned criteria
according to the direct measures of their component
elements (based on the corresponding algorithm).
Quantitative measurements of the component elements’
quality are functions with these components as
parameters, producing a number which is interpreted by
the corresponding metric to provide a quality evaluation.
The formalism in the definition of factors, criteria, quality
components and all their inter-relationships guarantees
objective and rigorous control of specifications.

In general, the software quality control model in LESD
exhibits the following hierarchical structure [S1a92].

1st. level: reflects the principal aim of the quality
control system, which in the LESD case represents the
quality of specifications.

2nd. level: is defined by factors which, in our case,
are: traceability, consistency, completeness, verifiability,
and modifiability.

3rd. level: is defined by the quality criteria. For
example, the traceability factor [BBC*92] is broken down
into the following criteria:

1-traceability of all the requirements;

2-links between the requirements at different integration
levels of the modules.

4th. level: corresponds to software metrics. The
metrics corresponding to the two traceability criteria may
be defined as follows:

1-relation between the number of traceable
requirements and the total number of requirements;

2~ relation between linked requirements at different
module integration levels and the total number of links
between these levels in accordance with client requests,

Sth. level: corresponds to measurement (quantitative
measurements) of quality components. To calculate the
metrics mentioned above, the measures of the following
quality components are required:

1- the number of traceable requirements;

2~ the total number of requirements;

3-the number of the linked requirements in the
modules of different integration levels;

4- the number of links in the modules of different
levels of integration in accordance with client requests.

When other factors are formally defined, it is possible
to define its breakdown into the five levels above
mentioned. This will then permit the definition of a
system capable of controlling specifications quality in
LESD ([S1a93]. '

The hierarchical model of software quality control
allows flexibility in updating each one of these levels. A
tool based on this model can be easily adapted to changes
in defining factors, criteria, metrics, measures and their
relationships.

CONCLUSIONS

The work done in the first phase of the LESD project,

?

consisted of developing tools for the analysis of
specifications written in natural language. To be more
exact, this stage was devoted to the development of the
syntactic and semantic parsers of these specifications; to
the study of the knowledge necessary for their
interpretation; to the design of an adequate knowledge
representation system; and to the implementation of some
reasoning mechanisms for evaluating factors involved in
specifications quality. All this work was carried out in the
acrospace domain,

Five quality factors of specifications have been
considered (traceability, completeness, consistency,
verifiability and modifiability). Traceability and evaluation
techniques have been developed and studies on
completeness are currently under way.

We plan to study other quality factors in the near
future. A specifications quality control system based on
software quantitative measurement will be created once a
suitable evaluation algorithm of quality factors has been
obtained.

We have also begun an environment study aimed at
helping engineers write specifications and incorporating
the quality control discussed in this paper at this early
stage in a project's life.

REFERENCES

[AECMAS9] Association Européene des Constructeurs de
Matériel Aréonautique: “AECMA
Simplified English, A Guide for the
preparation of aircraft maintenance
documentation in the international aerospace
maintenance language”, December 1989,
Borillo M., Borillo A., Castell N., Latour
D., Toussaint Y., Verdejo M.F.: “Applying
Linguistic Engineering to Software
Engineering: The traceability problem”. In
Proceedings of the European Conference on
Artificial Intelligence (ECAI92), pages 593-
5935, Vienna, Austria, August 1992,
Briscoe T., Grover C., Boguraev B., Carroll
J.: “The Alvey Natural language Tools
Project Grammar: a Large Computational
Grammar”. ALVEY Documents, Cambridge
Univ., Computer Laboratory, UK, 1987.
Borillo M., Toussaint Y., Borillo A.:
“Motivations du project LESD”, Conference
on Linguistic Engineering‘91, Versailles,
France, January 1991,

Cordes D.W., Carver D.L.: “Knowledge
Base Applications within Software
Engineering: A Tool for Requirements
Specification”. In Proceedings of the First
International Conference on Industrial &
Engineering Applications of A.I. & E.S.,
Tullahoma, USA, pp. 266-280, June 1988.
Cordes D.W.,, Carver D.L.: “Evaluation
Method for User Requirements Documents™,
Information and Software Technology,
vol.31, n4, pp. 181-188, May 1989.

[BBC*92]

[BGB*87]

[BTBI1]

[CC88)

[CC89]

[CCG8I)

[Cor89]

[DF34]

[GKP*85]

[Gro86]

[HOT91]
. [IEEE84]

[Pre87]

[RW91]

[SA77]

[S1a92]

Carver D.L., Cordes D.W., Gautier N.:
“Object-Based Measurement in the
Requirements Specification Phase”.

Cordes D.W.: “Improved Utilization of
Requirements Document Information
During System Specification”, In Coulter
N.S. and Ellis E. editors., Proceedings of
the 27th Annual Southeast Regional
Conference, pages 273-277, Atanta, USA
April 1989,

Dorfman M., Flynn R.F.: “Arts - An
Automated Requirements Traceability
System”. The Journal of Systems and
Software, vol. 4, pp. 63-74, 1984,

Gazdar G., Klein E., Pullum G., Sag I.:
Generalized Phrase Structure Grammar.
Harvard Univ. Press, Cambridge, UK 1985.
Grosz B.: “Attentions, Intentions, and the
Structure of Discourse”. Computational
Linguistics, vol.12, n.3, July-September
1986.

Group H.O.T.: HOOD Reference Manual,
HOOD, July 1991.

“IEEE Guide to Software Requirements
Specifications”, ANSI/IEEE Std 729-1983,
1983.

Pressman R.S.: Software Engineering: A
Practitioner‘s Approach. Mac Graw Hil,
Nueva York, USA, 1987.

Reubenstein H., Waters R.: “The
Requirements Apprentice: Automated
Assistance for Requirements Acquisition”,
IEEE Transactions on Software
Engineering, vol. 17, n.3, March 1991,
Schank R.C., Abelson R.P.: Scripts, Plans,
Goals and Understanding. Lawrence Erlbaum
Associates Publishers, New Jersey, USA
1977.

Slavkova O.: Métricas de software. (In
Spanish). Report LSI-92-6-T, Universitat
Politecnica de Catalunya, Barcelona, Spain,
1992,

[S1a93]

[SNM*88]

[TB93]

[TBB*91]

[TC93]

[Tou92]

[WHH90]

Slavkova O.: Modelo para el control de
calidad en LESD basado en la medicién del
Software. (In Spanish). Report LSI-93-26-R,
Universitat Politécnica de Catalunya,
Barcelona, Spain, 1993,

Seki H., Nabika e., Matsumura T.,
Sugiyama Y., Fujii M., Torii K., Kasami
T.: “A Processing System for Program
Specifications in a Natural Language”. In
Proceedings of the 21st. Annual Hawai
International Conference on System
Sciences. VolLII: Software Track, pages
754-763, ed. IEEE Comp. Soc. Press,
Washington, USA, 1988.

Toussaint Y., Borillo M.: “Natural
Language in Software Engineering”. In
Encyclopedy of Software Engineering, John
Wiley eds, 1993

Toussaint Y., Borillo M., Borillo A.,
Castell N, Latour D.: “Applying Linguistic
Engineering to Software Engineering”. 261k
Linguistic Colloquium, Poznan, Poland,
Setember 1991, (Published in Linguistische
Arbeiten, n.293, pp. 209-217, Max
Niemeyer Verlag, 1993)

Tuells T., Castell N.: The completeness
problem in LESD. Report LSI-93-51-R,
Universitat Politecnica de Catalunya,
Barcelona, Spain, 1993,

Toussaint Y.: Méthodes Informatiques et
Linguistiques pour l'aide a la Spécification
de Logiciel. Ph.D. Thesis. Université Paul
Sabatier, Toulouse, France, 1992.

Wojcik R.H., Hoard J.E., Holzhauser K.:
“The Boeing Simplified English Checker”.
Conférence sur 1‘Intelligence Artificielle
dans 1‘Aéronautique, Toulouse, France
1990,

LSI-93~47-R

LSI-93-48-R
LSI-93-49-R
LSI-93-50-R

LSI-93-51-R
| LSI-94~1-R
L51-94-2-R
LSI-94-3-R

LSI-94-4-R
LSI-94-5-R

LSI~94-6-RR

LSI-94-7-R

LSI-94-8-R

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya

Recent Research Reports

“Dealing with lexical mismatches”, Carmen Soler and Ma. Antdnia Marti.

“Iranslation equivalence via lexicon: a study on tlinks”, Anna Samiotou, Irene Castellén,
Francesc Ribas, and German Rigau.

“A class-based approach to learn appropriate selectional restrictions from a parsed corpus”,
Francesc Ribas.

“Quality control of software specification written in natural language”, Niria Castell, Olga
Slavkova, Yannick Loussaint, and Antoni Tuells.

“The completeness problem in LESD”, Nuria Castell and Antoni Tuells

“Logspace and logtime leaf languages”, Birgit Jenner, Pierre McKenzie, and Denis Thérien.
“Degrees and reducibilities of easy tally sets”, Montserrat Hermo.

“Isothetic polyhedra and monotone boolean formulae”, Robert Juan-Arinyo.

“Una modelizacion de la incompletitud en los programas” (written in Spanish), Javier Pérez
Campo.

“A multiple shooting vectorial algorithm for progressive radiosity”, Blanca Garcia and Xavier
Pueyo.

“Construction of the Face Octree model”, Niria Pla-Garcia.

“On the expected depth of boolean circuits”, Josep Diaz, Maria J. Serna, Paul Spirakis, and
Jacobo Toran.

“A transformation scheme for double recursion”, José L. Balcazar.

Copies of reports can be ordered from:

Nuria Sanchez
Departament de Llenguatges 1 Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo, 5
08028 Barcelona, Spain
secrelsi@lsi.upc.es

