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1 Introduction

The reducibilities normally used in complexity theory are bounded reducibilities (the formal
definition is given in Section 2). If R is a bounded reducibility, then the class ALMOST-R is
defined to be the class {4 | Prob[R~!(4)] = 1}. This concept has proved useful in studying
certain complexity classes that are well-studied in structural complexity theory. For example,
P = ALMOST- <P= ALMOST- <P, BPP = ALMOST- <k, AM = ALMOST- <¥P, and
PH = ALMOST- <EH.

Book, Lutz, and Wagner [BLW94] showed that for every bounded reducibility, ALMOST-R
= R(RAND) N REC, where RAND denotes the class of languages whose characteristic se-
quences are algorithmically random in the sense of Martin-Lf [Ma66], and REC denotes the
class of recursive languages. This characterization leads to observations about the relation-
ships between complexity classes such as (1) P = NP if and only if some language in RAND is
<P..-hard for NP and(2) PH =PSPACEif and only if some language in RAND is <FH.hard
for PSPACE. Book [Bo94] extended this characterization for certain bounded reducibilities
called “appropriate” (all of the standard reducibilities used in structural complexity theory

are appropriate) by showing

(1) The Random Oracle Characterization: for every B € RAND, ALMOST-R =
R(B)NREC, and

(2) The Independent Pair Characterization: for every B and C such that B& C €
RAND, ALMOST-R = R(B)NR(C).

While different classes are obtained in the characterization of ALMOST-R as R(RAND)N
REC by considering diﬁ'erent reducibilities R, here we are concerned with the possibility of
cbtaining different classes by considering as parameter values the classes RAND and REC.
In particular, we investigate the result of subsiituting generalizations of RAND for RAND
itself. We find that if we substitute a class based on the notion of “n-randomness” and

simultaneously substitute the class A2 (from the arithmetical hierarchy of languages) for
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the class REC, then once again the result is ALMOST-R. That is, R(n-RAND) N A? =
ALMOST-R (Theorexﬁ 3.3 (a) and (c)). Note that n-randomness is a generalization of
Martin-L6f randomness that is due to Kurtz (Ku81]. Also we show that R(w-RAND) N
AH = ALMOST-R, where AH denotes the arithmetical hierarchy of languages, and w-RAND
corresponds to the concept of “w-randomness” as defined in [Ka91].

In addition, we develop other characterizations based on (1) and (2) above. Further,
for certain reducibilities R, we show that ALMOST-R can be characterized in terms of “A-
randomness,” a concept defined by Lutz [Lu92] in his study of resource-bounded measure.

The results presented here offer new characterizations of classes having the form
ALMOST-R. When combined with the characterization by Book, Lutz, and Wagner and
with (1) and (2) above, we find a robustness property of these classes. While some of the

parameters may vary in value, the results are classes having the form ALMOST-R.

2 Preliminaries

We assume that the reader is familiar with the standard recursive reducibilities and the
variants obtained by imposing resource bounds such as time or space on the algorithms that
compute those reducibilities.

A word (string) is an element of {0,1}*. The length of a word w € {0,1}* is denoted by
[w]. For a set A of strings and an integern > 0,let Aca ={z € 4 ||z| < n}.

The power set of a set A is denoted by P(A).

Let C4 be the characteristic function of A. The characteristic sequence x4 of a language
A is the infinite sequence ca(zo)ea(zi)ca(z2)... where {z0,21,22,...} = {0,1}" in lexico-
graphical order. We freely identify a language with its characterisiic sequence and the class
{ of all languages on the fixed finite alphabet {0,1} with the set {0,1}¥ of all such infinite
sequences; context skould resolve any ambiguity for the reader.

If L is a set of strings (i-e., a language) and C is a set of sequences (i.e., a class of

languages), then L - C denotes the set {wé | w.e L, & € C}. The complement of L is




denoted by L°¢ and the complement of C is denoted by C.

For each string w, C,, = {w}- {0,1}* is the basic open set determined by w. An open set
is a (finite or infinite) union of basic open sets, that is, a set X - {0,1}* where X C {0,1}*.
(This definition gives the usual product topology, also known as the Cantor topology, on
{0,1}%.) A closed set is the complement of an open set. A class of languages is recursively
open if it is of the form X - {0,1}* for some recursively enumerable set X C {0,1}*. A class
of languages is recursively closed if it is the complement of some recursively open set.

For a class C of languages we write Prob[C] for the probability that A € C when 4 is
chosen by a random experiment in which an independent toss of a fair coin is used to decide
whether each string is in A. This probability is defined whenever C is measurable in the
usual product topology on {0, 1}*. In particular, if C is a countable union or intersection
of (recursively) open or closed sets, then C is measurable and so Prob[C] is defined. Note
that there are only countably many recursively open sets, so every intersection of recursively
open sets is a countable intersection of such sets, and hence is measurable; similarly every
union of recursively closed sets is measurable.

A class C is closed under finite variation if A € C holds whenever B € C and A4 and
B have finite symmetric difference. A class C is closed under finite translation if for all
w € {0,1}* and all 4 C {0,1}*, {w}- A € C implies 4 € C.

The Kolmogorov 0-1 Law says that every measurable class C C {0,1}* that is closed
under finite variation has either probability 0 or probability 1.

Since we are concerned with the use of oracles, we consider complexity classes that can
be specified so as to “relativize.” But we want to do this in a more general setting than
reducibilities computed in polynomial time and so we introduce a few definitions.

Assume a fixed enumersiion Mo, My, M,, ... of deterministic cracle Turing machines.

A relativized class is a function C : P({0, 1}) — P(P({8,1}*)}). A recursive pre-
sentation of a relativized class C of languages is a total recursive function f: N—N

such that for every language A and every ¢ > 0, every computation of M #(i)(A) is halting




and C(A4) = {L(My(;),A) | i > 0}. A relativized class is recursively presentable if it has a
recursive presentation.

Notice that if for every A and every i, every computation of My(;)(A) is halting, then
Mj;)() has a running time that is bounded above by a recursive function.

A reducibility is a relativized class. A bounded reducibility is a relativized class that is
recursively presentable. If R is a reducibility, then we use the notation A <® B to indicate
that A € R(B), and we write R™!(A) for {B | A <® B}. Typical bounded reducibilities
include <P, <P, <k, <¥P, <8N, <lowpace, eic. The relations <, and < (from recursive
function theory) are reducibilities that are not bounded.

If R is a reducibility and C is a set of languages, write R(C) for U,.c R(4)-

A reducibility R will be called appropriate if (i) it is bounded, (ii) for any language
A, R(A) is closed under finite variation, and (iii) for any language I, RY(L) is closed
under finite variation and under finite translation.

The reader should note that the reducibilities commonly used in structural complexity
theory meet the conditions for being appropriate.

We will denote with AH the arithmetical hierarchy of languages, that is,
(i) 39 =RE = {4 C {0,1}* | 4 is recursively enumerable},
(ii) for every n > 0, £2,, = RE",
(iii) for every n > 0, I3 = co — X3,
(iv) for every n > 0, A% = X% N1IY,

(V) AH = Un>0 En.
3 TUsing n-Randomness

In this section we develop our results about “z-randoni..ess.” First we review the concept
of the arithmetical hierarchy of classes of languages due to Kleene (see Rogers [Ro67] for
background).




Kleene’s arithmetical hierarchy is defined as follows.

(i) Let X9 be defined as {A | A is recursively open}. We fix an enumeration of X9
as follows: let {M;}iso be a recursive enumeration of all Turing machines (so that
{L(M;)}i>o is the class of recursively enumerable sets). If 4; = L(M;) - {0,1}*, then
20 ={4;|i> 0}

(ii) We say that {C; | > 0} is a uniform sequence in X9 if there exists a total recursive

function g such that for every j > 0, C; = Ay(;).
(iii) Foreveryn > 1, II2 = {A | A° € X0}.

(iv) Wesay that {D; | j > 0} is a uniform sequence in II2 if there exists a uniform sequence

in 33, {C; | j > 0}, such that for every j > 0, D; = C§.

(v) For every n > 1, B € X2, if there exists a uniform sequence in II2, {D; | j > 0},

such that B = Ugso Dk.

(vi) We say that {C; | j > 0} is a uniform sequence in X0, if there exists a uniform

sequence in I}, {Dg;zy | 3,k > 0}, such that for every j > 0, C; = Urso Dijn-

Note that classically the same notation is used for both the arithmetical hierarchy of
languages defined in the preliminaries (where X2 denotes a set of languages) and the arith-
metical hierarchy of classes of languages we just defined (where X2 denotes a set of classes).
The meaning in each case will be clear from the context.

Now we define the concepts of “n-constructive null cover” and “n-random language” in
a similar way to the introduction of null covers and random languages in [BLW94].

For» > 0, a class X of languages has an n-constructivz null coverif there exists a uniform

sequence in X9, {J; | k > 0}, such that
(i) for every k > 1, X C C}, and

(ii) for every k > 1, Prob[Cy] < 27F.



Notice that condition (ii) implies that every class with an n-constructive null cover has
probability 0.

Let NULL,, denote the union of all classes that have an n-constructive null cover.

Notice that NULL, C NULL,,;. In the case of n = 1, we refer to the class as NULL,
that is, NULL,; = NULL.

The class RAND of algorithmically random sequences was defined by Martin-L&f [Ma66]
as RAND = {0,1}* — NULL.

The class of algorithmically random languages, also denoted by RAND, is the class of
languages whose characteristic sequences are algorithmically random.

Here we define, for each n > 0, the class “n-RAND?” analogous to the definition of RAND.

K n > 0, then define the class n-RAND by n-RAND = {0,1}¥ — NULL,, and the class
w-RAND as w-RAND =, n-RAND.

Since NULL, C NULL,y;, n+1-RAND C #-RAND. Since NULL; = NULL, 1-RAND =
RAND.

If R is a bounded reducibility and n > 0, then define the class ALMOST,-R by

ALMOST,-R = {4 | n-RAND C R~}(A)},
and the class ALMOST,-R by
ALMOST,-R = {4 | w-RAND C R-}(4)},

In [BLW94] Book, Lutz, and Wagner studied the classes of the form ALMOST-R and
related them to the class RAND by showing that ALMOST-R = R(RAND) N REC. The
main result of this paper is that each clas. ALMQST,-R is related to the class n-RAND in
& very similar way, and that ALMOST,-R = ALMOST-R. We also obtain similar results for
ALMOST,-R and w-RAND.

We begin with a technical lemma stating that for any language B in A, R-Y(B) is &

class in X2 ,. This will be useful in the proof of our main theorem.




Lemma 3.1 If R is a bounded reducibility and B is a language in AR, then R™Y(B) is in

0
Eﬂ+1 .

Proof We consider only the case where 1 is odd, the other case being analogous.

Let g be a recursive presentation of R . For every j > 0,let R7'(B) = {4 | L(My;,A) =
B}. Then R-Y(B) = Ujzo R;(B), and it suffices to show that if B € A}, then {R;!(B) |

J 2 0} is a uniform sequence in I3, or equivalently, {R;1(B) | j > 0} is a uniform sequence

s 30
in X7,

Since B € Al there exist recursive languages C' and D such that Vz {0,1}~,
(i) = € Bif and only if Im,Vm,.. Ama((2,my,...,m,) € C),
(ii) = ¢ B if and only if Im,Vm,... Ima((z,m1,...,m,) € D)).
Consider a language A. Fix j > 0. Notice that A € ﬁ;T(bT) if and only if
(i) Jo([o € B] # [L(My(s, A)(o)]) if and only if
(iv) 3al(e € B and [L(My(5, 4)(e)] = 0) ot (= ¢ B and [L(M,gy, AY(z)] = 1)
Thus, combining (i)-(iv), we see that A € R;*(B) if and only if

(v) 32[(FmVm, ... Im,((z, my, ... »mn) € C) and [L(M,(;), A)(z)] = 0) or
(FmiVms ... Ima((2,my, ..., m,) € D) and [L(M,(;), A)(z)] = 1)].

Using (v), we can express R;1(B) as follows:

R;I(B) = U U n b n (},:L‘J:ﬂn L0 I W) U Za{ﬂmz ‘.:;'ag«..ﬁ.}mﬂ_i)

T m; my Mp.y

where for fixed z,my,my,...,m,_, € {0,1}~,

Y;iml,mg...,m,,_l = {4 | Emn(“”mh cevymy,) € C and ?L(My(j)v A)(:c)] = 0},

and

Z3 ={A | Ima(z,my,...,m,) € D and [L( My, A)(=)] = 1}.

TN, N2 M
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First we show that for fixed z,m;,m,...,m,_y € {0,1}", Y7

i mgemny 1S ;ecurswely

open. To do this we define a partial recursive function hJ as follows. Form,,z €

TR i M -]

{0,1}7, if (z,m1,...,mn) € C, [L(Mys;),20*)(z)] = 0 and L(My(;), 20“)(z) needs only the

initial part z of 20¢, then A . .. . (z,m.) = z. Otherwise, i, .. (z,m,)is
undefined.
From the definition of Y7, . we know that 4 € Y maom._, if -and only if

there exists a prefix z of A such that (z,my,...,m,) € C, [L(My),20)(=)] = 0 and
L(My(j, 20¢)(z) needs only the initial part z of z0“. But this is exactly the definition of z

.. . : _ . 3

being in the range of A, o oo . Thus Y7, . =range(hl . ;moma, ) - 10,134,
j . 3 . [3 J' . 3

and Y7, m,..m,_, 15 recursively open. By a similar argument Z7,, ... .. is recursively

open, using functions f7_ . .

We define a recursive function F that is the uniform version of all A’s and f’s as follows.

For every j > 0, z,m1,mq...,Mmp_1,my,2z € {0,1}",

: — hI
F(j,z,mi,ma...,mp_1,mn,20)=hL, . (mn,2),

F(Jr T,M1, My ...y My, M,y 21) = fj.mumz---.mnq (i, 2).

F witnesses the fact that the sequence of classes

{ range(hi,ml ,mz....m,,-x) * {0’ 1}“’ U Iange(fg,mg,mg...,m,,_l) ¢ {0’ 1}“’

l .7 2 0: Z,M1,M2ye0ay,Mp—1 € {01 1}* }

is a uniform sequence in X9.
To complete the proof note that {R;'(B) | j > 0} can be seen to.be a uniform sequence
in X9 by using the expressien of ﬁ(_b:)- in Equation 1, and the facts that ¥7 =

TIN5 3Tz ey Ty,

ra'nge(hg:‘,ml,1?12...,)‘.-1"_1) ) {0’ 1}40, and Z:'r.’:,ml,mz...,'mn_i v='range(fg,ml,mz...,mn_],) ) {0’ l}w' o

The proof of our main theorem is based on the following lemma due to Kautz [Ka91].
The proof is a straightforward generalization to n > 1 of the proof of Theorem 3.4 in [Bo94],

which is itself a simplification of the proof of a result of Kautz.
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Lemma 3.2 Let X be a class in I341 that is closed under finite variation and finite trans-

lation. Then either X N n-RAND = 0 or n-RAND C X.
Now we have our main result.

Theorem 3.3 For any bounded reducibility R and any n > 0,
a) ALMOST,-R = R(n-RAND) N A2,

b)  for every B € n-RAND, ALMOST,-R = R(B)N AY;

¢) ALMOST,-R = ALMOST-R.

Proof a) First, we show that ALMOST,-R c ‘R(n-RAN D)NAJ. Since NULL, is a countable
union of classes having probability 0, Prob[n-RAND] = 1. f 4 ¢ ALMOST,-R, then
Prob[R"1(A)] =1landso 4 ALMOST-R. Since ALMOST-R € REC, then ALMOST,-R C
R(n-RAND)NREC C R(n-RAND) N AL,

Second, we show that R(n-RAND) N A% C ALM OST,-R. It follows from Lemma 3.1
that if A € AJ, then R~1(4) € Zn+1- Since R is an appropriate reducibility as defined in
the preliminaries, R7Y(A) is closed under finite variation and is closed under nnder finite
translation. By Lemma 3.2, either n-RAND C R™!(A4) or n-RAND N R-1(4) = 0. If
A € R(n-RAND) N A?, then »-RAND N R7(A) # 0 and so n-RAND C R™1(A). Thus,
A € ALMOST,-R. .

b) We want to show that for every B € n-RAND, ALMOST,-R = R(B)N Al. From a)
it follows that R(B) N A2 C ALMOST,-R. If 4 € ALMOST,-R, then n-RAND C R-1(A4),
and 4 € R(B). Hence, ALMOST,-R C R(B). Since ALMOST,-R C AQ, this means that
ALMOST,-R C R(B) N A°.

c) Proof of ALMOST,-R .G-ALMOST-R. - As argued in a), Prob[n-RAND] = 1. If
A € ALMOST,-R, then Preb[R-1(A4)] =1 and so A € ALMOST-R. _

To see that ALMOST-R C ALMOST,.-R, take A € ALMOST-R C REC. By Lemma 3.1
R7Y(A) € %9. Since Prob[R-!(A)] =1 and Prob[n-RAND] = 1 then R-}(4)Nn-RAND # 0.
By Lemma 3.2 n-RAND C R7!(A) and A € ALMOST,-R. o
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Thus, Theorem 3.3 extends the Random Oracle Characterization to classes having the
form ALMOST,.-R by showing that for every n > 0 and every"B'€ n-RAND, ALMOST-R =
R(B)NA] = R(n-RAND) N A2 = ALMOST,-R. As a corollary we see that it can be
extended to w-RAND.

Corollary 3.4 For any bounded reducibility R,

a) ALMOST,-R = R(w-RAND)N AH;

b)  for every B € w-RAND, ALMOST,-R = R(B)N AH;
¢c) ALMOST,-R = ALMOST-R.

Proof a) First, we show that ALMOST,-R C R(w-RAND) N AH. Since w-RAND is
a countable intersection of classes having probability 1, Problw-RAND] = 1. I 4 ¢
ALMOST,-R, then Prob[R~1(A)] = 1 and so A € ALMOST-R. Since ALMOST-R C REC,
then ALMOST,-R C R(w-RAND) N REC C R(w-RAND) N AF.

Second, we show that. R(w-RAND) N AH C ALMOST,-R. Let 4 € AH. Then forsome
m, A € A), and it follows from Lemma 3.1 that R™(A) € B3, ,,. Since R is an appropriate
reducibility as defined in the preliminaries, R™1(A) is closed under finite variation and is
closed under under finite translation. By Lemma 3.2, for any n > m either n-RAND Cc
R Ay or n-RANDNRY(A) = 0. K A4 ¢ R(w-RAND) N A2, then for any n > m,
n-RAND N R-}(A) # 0 and so n-RAND C R~!(A). Thus, w-RAND C R-1(A4) and A €
ALMOST,-R.

b) We want to show that for every B € w-RAND, ALMOST,-R = R(B)N AH. From a)
it follows that R(B)N AH C ALMOST_-R. If A € ALMOST.-R, then w-RAND C R-(A),
and 4 € R(B). Bevce, ALMOST,-R C R(B). Since ALMOST,-R C AH by part a), this
means that ALEOST,-R C R{F) N AH.
=% c) Proof of ALMUST,-K ¢ ALMOST-R. We have noted above that Prob[w-RAND] = i.
If A€ ALMOST,-%, then Frob/R-1(4)] =1 and so 4 € ALMOST-R.

To see that ALMOST-R C ALMOST,-R take.A € ALMOST-R. By Theorem 3.3 A ¢
ALMOST,-R for every n > 0, and n-RAND C R7I(A) for every n > 0, which implies

10




-

w-RAND C R-1(A) and A € ALMOST,-R. 0

Note that the Independent Pair Characterization trivially holds inside n-RAND. and

w-RAND, because both classes are included in RAND.

4 TUsing A-measure

In this section we use the concept of “A-measure 0” that was introduced by Lutz in his
development of resource-bounded measure, a generalization of classical Lebesgue measure,
that he used to classify complexity classes by their size. We use this concept to givea different
characterization of ALMOST-R. See [Lu92] for a complete introduction to resource-bounded
measure.

We consider four classes of functions from {0,1}" to {0,1}*, the class all of all such
functions, the class rec of total recursive functions, the class p of functions computed in
polynomial time, and the .class pspace of functions computed in polynomial space. Here, A
is a variable taking only the four classes all, rec, p, and pspace as values.

A martingale is a function d : {0,1}* — [0, o) with the property that for every w €
{0,1}*, d(w) = (d(w0) + d(wl))/2. For each martingale d, define the class S[d] as S[d] =
{L | imsup,_,o, d(xz[0.n]) = oo}, where xL[0..n] is the string consisting of the 0 to n*h
bits in xz.

A function d : {0,1}* — [0, 00) is A-approzimableif there exists d:{0,1}* x N— D,
where D = {2-"m | n,m > 0}, such that foralli > 0 and allw € {0,1}*, |d(w) — d(i, w)} £
271,

A class X of languages has . aeasure 0 if there exists a A-approximable martingale d
such that X C S[d]; this is denoted by 4 (¥) = 0. A class X has A-measure 1, denote: by
pa(X) =1, if pa(X) =0.

Due to the Kolmogorov -1 Law, we need to consider only A-measure 0 and A-meazsure
1 (see [Lu92]).

Let A be a class of functions. Define the following:

11



i.  NULLa = Upa(x)=0 %5
i, A-RAND = {0,1}* — NULLa;
5i. ALMOSTa-R = {4 | pa(R7H(4)) = 1}.

It follows easily from the definitions that for every n > 0, NULL, € NULL C NULL.
and A-RAND 2 RAND 2 n-RAND.

For reducibilities R, there are two conditions of interest here: (1) ALMOST-R & R(0),
and (2) for every A, R(D) € R(A). Examples of reducibilities meeting both of these
conditions are <k, <F", and <FQH | where <FQH s defined by A <PQ" B if and only if
A <BH B @ QBF. Observe that for these examples, the values of R(0) are P, PH, and
PSPACE, respectively.

We prove that for reducibilities R satisfying both of conditions (1) and (2), ALMOST a-R
is exactly the class ALMOST-R.

Theorem 4.1 Let R be a bounded reducibility that satisfies conditions (1) and (2). Then
ALMOST-R = ALMOST o-R and for every B € A-RAND, ALMOSTA-R C R(B)NREC.

Proof First, we show that ALMOST-R & ALMOSTA-R. For any 4 € ALMOST-R,
A € R(0) by condition (1). It follows from condition (2) that R™'(A) = {0,1}“. But
pa({0,1}*) =1 so that A € ALMOSTa-R.

Second, we show that ALMOSTA-R C ALMOST-R. For any A € ALMOSTA-R, if
pa(R1(A)) =1, then pa(R-1(A)) = 0 so that Prob[R-1(A)] = 0. Hence, Prob[R™}(A)] =
1, and so A € ALMOST-R.

Third, we show that ALMOSTA-R & R(B)NREC.IfA € ALMOSTA-R, then pa(R7(4))
= 1implies that A-RAND C R~1(A), which means that for every B € A-RAND, A€ R(B).

O
5 Remarks

Lutz and Martin (personal communication) have considered the following situation: take a

reducibility R and restrict it so that only a bounded number of queries can be made (making

712



it like a “bounded truth-table” or “bounded Turing” ‘reducibility) while maintaining the
bounds on computational complexity. If R; denotes the:result, then Ry(RAND) N I§ =
ALMOST-R; C ALMOST-R.

Kautz and Lutz (personal communication) went in the other direction. If R is a reducibil-
ity that is not bounded truth-table or bounded Turing, then R(RAND) N X9 # ALMOST-R
(but clearly ALMOST-R C R(RAND) N X9).

In the current paper we have not considered any variation in R. Rather, we have con-
sidered subclasses of RAND having the form n-RAND and superclasses of REC having the
form AQ. In this case we showed that R(n-RAND) N AJ = ALMOST-R. Thus, as n varies,
the subclass of RAND becomes smaller and the superclass of REC becomes larger, but still
the bounded reducibility R forces R(n-RAND) N Al to be just ALMOST-R.

These results show that classes of the form n-RAND (and A-RAND) yield the same
complexity classes as RAND when studying classes characterized as ALMOST-R. Hence,
these classes may be useful'in studying the idea of “complexity-theoretic pseudo-randomness”
just as RAND is useful in studying “intrinsic randomness.” This paper represents only a

first step in this investigation.
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