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On the expected depth of Boolean circuits *

J.Diaz! M.J.Sernal P.Spirakist J.Toran!

Abstract

In this paper we analyze the expected depth of a circuit randomly generated from
a uniform model. We show that the expected depth of such circuits is polylogarithmic
in the number of gates. This result allows us to place the monotone circuit value
problem in average NC.

1 Introduction

The Circuit Value Problem (CVP) consists in deciding whether a given Boolean circuit
with values assigned to the input gates produces value 1 as output. The problem was
shown to be P-complete for general circuits by Laduer [Lad75]. Goldschlager proved that
the problem remains P-complete for the more restrictive class of monotone circuits with
bounded fan-out [Gol77]. These results indicate that the problem is inherently sequential
and therefore, assuming that NC # P, CVP can not be solved quickly in parallel with a
feasible ammount of processors. However it could still be the case that there is an algorithm
using a polynomial number of processors that solves the problem in polylogarithmic time
for “almost all” instances. This approach has been considered for other P-hard problems,
for example in [CRT87] and [CF90].

A natural way to evaluate a circuit consists in computing level by level the values of its
gates, evaluating in parallel all the gates at the same level. The time needed to do this is
closely related to the circuit’s depth; in the worst case, the size and depth of a circuit have
the same magnitude, but on the other hand, shallow circuits can be quickly evaluated in
parallel using this procedure.

In this article we are interested in the average time needed for this evaluation procedure.
We consider two classes BC' and UC of monotone bounded/unbounded fan-out circuits,

and show that on the average these circuits have polylogarithmic depth with respect to
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their size. The average is measured considering a uniform distribution on the circuit
descriptions, i.e., every circuit description is counted once. As usual the circuit description
will be the sequence of numbered inputs and gates with their respective fan-in connections.
This result implies that on the average, the Circuit Value Problem for monotone circuits

can be computed in polylogarithmic time using a polynomial number of processors.

2 The Uniform Incremental Model

A Boolean circuit «, with n inputs is a finite directed acyclic graph with labelled nodes.
Nodes with in-degree 0 are called the input nodes, all the remaining nodes are the gates.
Each gate has associated a function from a given set of boolean functions. A circuit is
monotone when the set of functions is restricted to the fan-in two {V, A} gates. Let n be
the number of inputs, m the number of gates and N = n+m be the total number of nodes
in the circuit. The depth of a gate g is defined to be the length of the longest directed
path from the inputs (all at depth zero) to g. The depth of the circuit is the maximum of
the depth of its gates, let d denote the depth of a circuit. Notice that the depth function
produces a layering of any circuit. Given a circuit, the level Ly will consist of all nodes at
depth k. For general background on circuit complexity see [Sav76, Weg87|.

A description of a monotone circuit o 1s a sequence (aj,...,ayn) where each a; is
either an assignment of a value 1/0 to an input, or f(aj,ax) for f € {A,V} (gate), with
J,k < t. The value v(a,) of a gate a, in the circuit a, is defined as follows: If a; is an
input 1/0 then v(a;) = 1/0 and if a; = f(aj, ax) then v(a;) = f(v(e;),v(ak)). We define
the value of the circuit, v(a), to be v(a,). The fact that every gate is connected only to
gates with a smaller number prevents feedback loops. Each description corresponds to a
labelled directed acyclic graph of restricted in-degree. We keep n nodes with in-degree 0
and unbounded out-degree correspondig to the n circuit inputs. The remaining m nodes
correspond to gates and will have in-degree two. Assuming that circuit gates are only gates
{A,V}, each description in which neither the gate functions nor the inputs are fixed, can
generate 21" different circuits.

We examine circuits w.r.t. their topology, i.e. as labelled directed acyclic graphs of
restricted in-degree and/or out-degree.

In order to construct circuits at random, we use an incremental process starting by the
inputs, adding a gate at each time. The way each new node randomly chooses its inputs
allows us to model different classes of circuits.

A non-input node is defined to be saturated when its out-degree (fan-out) is equal to a

pre-specified constant (e.g. 2). We consider that all input nodes are always non-saturated.
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We start with the n input nodes. When a new node is added, first it selects equiprob-
ably at random non-saturated node as its first input. Again a second node is selected
equiprobably at ramdom from the set of non-saturated nodes, as second input.

Let BC denote the class of circuits generated by the above procedure. Notice that
all circuits generated in such a way have fan-in two and constant fan-out. Moreover, the
incremental procedure provides a topological ordering of the circuit, by assigning to each
gate the number of the time step at which it is added.

Consider a second model in which we drop the condition of distinguishability between
saturated and non-saturated nodes. Let the class UC be the class of circuits constructed
as {ollows: Start with the n input nodes. When a new node is added, it will have as inputs
two different nodes selected uniformly at ramdom among all the nodes in the current graph.
Circuits in UC have gates with unbounded fan-out and fan-in two.

Notice that UC and B( are classes of circuits each one with an underlaying probability
distribution.

Let us now analyze the probability that a circuit in UC has high out-degree. Given a
circuit C' € UC {or any node v of C, then

1\ ¥
Pr{v is selected A’ times } < (—)

n

Thus

. . 1\*
Pr{ there is a node selected &’ times } < (n + m) <—~>
n
Let £ be the event "no node s selected more than k' tzmes” for constant k. That is
the equivalent as the event “the circuil C has bounded fan-out (k') and fan-in two”. Thus

we have,

Lemma 1 Any circuil in UC with O(n*) nodes have constant fan-out k', with probability
of 1 —n* ¥ fork' > k+2.

As it is well known by the Shannon-Lupanov theorem that asymptotically almost all
Boolean functions on n variables have circuit complexity ©(2"/n) [Weg87], we shall restrict

our models to circuits with at most exponential number of gates in the number of inputs.

Lemma 2 Any circuil tn UC with N = O(2") nodes has fan-out O(log N) with probability

at least 1 — N~* for some constant § > 2.

1 the next section we will restrict ourselves to UC' circuits, as it is easier to work with
them, however for circuits with polynomially many gates the expected depth of circuits in
the UC and BC models, relates as follows.



Lemma 3 Let d be the depth of a random circuit with O(n*) nodes in the UC model, and

let d' be the depth of a random circuil of the same size in the BC model. Then we have

(1 —n~$ =] < E[d] < E[d] +n7?

Proof. Let d be a random variable indicating the depth of a circuit C € UC.

E(d] = E[d/E)P(E) + E[d/E]P(E)

thus,
E[d) > E[d/E]P(E)
and
E[d] < E[d/E)P(E) + n*P(E) < E[d/€] + n*P(€)
therefore
(1 —n~W-RE[d/€) < E[d) < E[d/E] + nFn~*'—H
Choosing k' > 2k + 2 we get the result. O

The previous equation tells that in the case of polynomial size circuits, we just need to
compute E[d] in the UC model to infer results for the BC' model. This allows us to work
on the UC model.

3 Analysis of the circuit’s depth

Assume that we have a circuit constructed uniformly incrementally in the UC model,
consisting of N = n + m nodes. We would like to know how many additional levels A(N)
will be created when adding N/log(N) new nodes. (In other words we wish to study how
much the depth increases).

To compute an upper bound A*(N) for A(N), assume that all N nodes are at the
highest possible level. Such a case presents the maximum growth in the depth of the new

formed circuit. We prove first an upper bound for the A*(N).

Lemma 4 For some constants v > 1 and 6§ > 2, with probability at least 1 — N~° we have
A*(N) <~ logN.

Proof. Let Ly be the current highest possible level (before any of the N/log N nodes

were added). Let Lgy; be the immediate next new level created.



Assume that a new node goes to L,y with probability p;, actually p; is a function in the
number of currently added nodes, but through the whole process of adding the N/log N

nodes will be bigger than 1 — 2};,%%%—\? > 1/9 By the Chernoff bounds (see [HR90]) the

maximum size of Lqt1 is | LTRY |= O(X ), with probability at least 1 — exp(—2 5 Q]N),

for any g € (0,1).

For 1 =1,2,...,k define &; as the event that when adding N/log N nodes we get that
| s 1= (0

Conditioning in &;, a new node goes to Ly, with probability (of success) p; = QJL—“*LI

Considering the additions when | LF2Y | /2 <| Ly | S| LEPT | we get p2 = @(logN) By the

Chernoff bounds the number of nodes added to Lg4, will be at most twice p; | Ly | /2,

which means that

| L% = Oy
with probability at least 1 — exp(—5 log =) for any € (0,1).
Using the same argument as before, conditioning on the events &,...,&;, we get that
for any 8 € (0,1),
)l\f

| Laie = @(W)

with probability at least 1 — exp(—%m}-}',—g).

log N

The process can be carried out until the case k = kpax = O( ) where there are

loglog N

at most alog N remaining nodes to be placed (the last nodes can create at most alog N

additional levels). For this case we get,

Pr{all & hold for k =1,...  kpax — 1}
= PI‘(E]) Pl'(gg/g] Cee Pl‘(gkmax_l/gl, Ces gkmax_g)
> I‘Ikmax—l(l _ e)\l)( ﬁ2 N
> 1- Z:knzmlx exp( %2log]E N

og N 2
Zl—@(ﬁ);’T)exp( 5 log N).

Therefore we can choose a § > 2 to get this probability at least 1 — N~% which implies
that with high probability, the expected upper bound for the increment of the number of

levels is at most

log N
A*(N)=0(—22_y 4 alogN < (a+1)log N.
log log N
Taking v = a¢ + 1 the lemma follows. O



As a corollary to the previous lemma, we can obtain the main result.

Theorem 1 The expected depth of a random circuit in UC with N nodes is at most
v log® N, for some constant v > 1.

Proof. Let dy be the random variable denoting the depth of circuits restricted to N nodes.

Its expectation F[dy] satisfy the following recursion,

E[dN] + E[A(N)] = E[dN+ NN]

log

using Lemma 4 we get:
E[dN(1+lq+N)} < Eldy] + vlog N

The solution to the recursion proves the Theorem. i

Using Lemma 3, we also can state the following result,

Theorem 2 The expected depth of a random circuit with O(n¥) gates in BC is at most

Tlog’n for some constant 7 > 1.

4 Average complexity of CVP

Recall that the Circuit Value Problem has the following formulation: given an encoding of
a boolean circuit «, together with an input assignment z,, ...z, compute a on z1,...z,.

The standard encoding of a problem instance is a collection of tuples indicating, gate
number, type of gate, together with the gate number of its inputs. Thus each input to
the CVP problem incorporates a topological ordering of the circuit. Thus the proposed
models UC and BC' provides a uniform distribution for the instances to CVP restricted
to monotone circuits or fan-out two monotone circuits. As mentioned in the introduction,
CVP is P-complete, so there is little hope in finding fast parallel algorithms for the problem.
However, based on the results from the previous section we can consider a straightforward
parallel algorithm that works fast for most of the possible input instances. Based on the

definition of average polynomial time [Gur9l], we give the following definition for average

NC.

Definition 1 Let L be a decisional problem and p,, be a probability distribution that assigns
probabilities Lo strings of length n. We say that L is in average NC (with respect to p) if
there is a parallel algorithm for L running on a polynomial number of processors in time
t, and for some constant k and every length n

S t(a)pn(z) < klogH(n).

|lz|=n



We cousider the following algorithim for the PRAM models (see for example [JaJ92]
for an introduction to the shared memory SIMD). In order to evaluate the circuit on a
PRAM we just start evaluating inputs, after that we proceed by levels. Thus the total
time (depending on the model of PRAM we use) will depend on the depth of the circuit
and the fan-out, fan-in of the gates, while the number of processors is number of gates.

Given a circuit with N gates, fan-in p, fan-out ¢, and depth d, evaluating on a
e CRCW PRAM takes O(d) time
o CREW PRAM takes O(d)O(log ¢) time
e ERCW PRAM takes O(d)O(log p) time
e EREW PRAM takes O(d)O(log p)O(log q) time

using O(N) processors.
From Lemma 2, Theorem 1 and the considerations about time bounds for evaluating

the circuits, the expected time is polylog in N, and we have

Theorem 3 CVP for monotone circuits is in average NC (with respect to the uniform
distribution).

Using Theorems 1 and 2, for the BC circuits we get,

Theorem 4 For each constant k, CVP for bounded fan-out monotone circuits with n
inputs and the number of gates bounded by n*, is in average NC (with respect to the uniform
distribution).

It is easy to see that CVP for bounded fan-out monotone circuits with at most a
quadratic number of gates remains P-complete. As a consequence the previous theorem

implies that this version of CVP is also in average NC.

5 Conclusions

We have shown that in the uniform model the expected depth for a circuit with N nodes and
gates with unbounded fan-out is O(log® N) and this holds with high probability (> 1—N7$
for some constant 6 > 2). This facts imply the monotone circuit value problem can be
computed in polylogarithmic expected time with a polynomial number of processors.

The previous result also holds in the uniform model for circuits with polynomially (in
the number of inputs) many gates and constant fan-out gates. We conjecture that the

expected depth is still polylog for the general case in the BC' model.
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Something to observe is that in the incremental model studied, we have a uniform
distribution over circuit encodings but not over circuits. In other words, a circuit considered
as a graph without labels on its gates can be produced many times (one for every possible
topological sorting of its gates). The estimation of the depth of a circuit in a model that
does not distinguish between different labelings is an interesting open question.

The distribution used is a natural one. However, changing the probability distribution,
we can obtain different behaviours on the depth of the circuit. For instance, if I' denotes
the probability that the next node added increases the depth of the circuit, I' = 1/N,
produces circuits with at most logarithmic expected depth. If we consider the probability
distribution given by I' = 1/|L4| the expected depth of a circuit is clearly polynomial. It
is an interesting open question to study the evolution of the expected depth of a random
circuit as the I' changes. these extreme models. In particular it would be interesting to
investigate the existence of threshold values for I' where the expected depth changes from

polynomial to polylog.
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