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(Extended Abstract) *
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Abstract

In this work we look into the parallelization (in the NC sense) of the
Markov Chain approach to almost random generation (as described in
[Sin93]). We prove that for several problems rapid mixing is “equiva-
lent” to RNC, but there are rapid mixing chains for which the method
can not be parallelized (unless NC=P). In particular, the rapid mixing
chain used by Jerrum and Sinclair to approximate counting the num-
ber of perfect matchings in a dense bipartite graph, is proved to be
P-complete. '

1 Introduction

Many problems involving the counting of the number of solutions- of combi-
natorial structures, are well known to be difficult. Valiant defined the class
# P of computationally equivalent counting problems [Val79b]. For many of
the problems in this class, their decision counterpart is P. It is well known
that unless the polynomial hierarchy collapses, P # #P [Pap94]. This fact
implies that for any # P-complete problem, exact counting is apparently in-
tractable for many interesting problems that are complete for #P [Pap94).
The most paradigmatic of these problems is to compute the permanent of a
matrix, that turns out to be equivalent to count the number of perfect match-
ings in a bipartite graph [Val79a]. The hardness of these counting problems
has led to approximate the counting. Pioneer work in this line was the paper
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[KLM89] where they construct a Randomized Fully Approximation Scheme
for some difficult counting problems. Later, it was discovered that for the
problems which are self-reducibles, approximate counting is equivalent to al-
most uniform generation [JVV86]. The almost uniform generation problem
consist in picking at random an element of a finite set characterized by some
property, with a relative error of at most ¢ with respect to the probability
that a given element is chosen.

~ Since most of the interesting problems are self-reducible, the approxima-
tion of counting is reduced to the almost uniform generation. A technique
that has proved to be very useful to solve the almost uniform generation
problem, is the Markov Chain technique. Given a problem, define a Markov
chain where the states are all possible solution, plus possibly a small fraction
of quasi-solutions, and the transitions are certain probabilistics rules that
allow us to remain in the same state or to pass to a new state. Under certain
properties of the underlying graph, it can be proved that a polynomial (in
the input size) random walk on the states give us an almost random gener-
ated element from the stationary distribution of the Chain. The difficulty
of this method is to prove rapid convergence to the stationary distribution,
what is called “rapid mixing. Over the past years, a large body of litera-
ture has been devoted to the subject of almost random generation through
Markov Chain, and methods of proving rapid mixing. Two excellent surveys
are [Sin93, Vaz91].

A question of interest is the possibility of parallelizing the generation.
In other words, finding a parallel simulation of the random walk, in polylog
steps and using a polynomial number of processors, without changing the
rapid mixing property.

In order to be able to parallelize the procedure, some assumptions are
needed. First each transition must be done in RNC. Furthermore assume
that the random choices along the walk can be done independently for each
state. That means that all random choices can be done in ©(1) parallel
steps, at the beginning. In the case of Markov Chains for with some constant
threshold probability indicating whether to proceed or not, we get shorter
sequences of steps. Second, at least one state of the Markov Chain can be
obtained in NC (or RNC).

In general we can model the problem as follows:

Associated problem: Given a state A of the Markov chain, together w1th
a polynomial (in n) sequence of basic transitions (operations that change
the state A). The goal is to obtain the state A* obtained after processing a
sequence, and represent by [A4, < sequence >).



Let us look at some well known Markov chains. The Hypercube of
dimension n can be used to generate uniformly at random a binary string
of length n. In this case the sequence of operations will be a collection of
bit switches, each transition is defined by the Hamming distance 1 between
states. In Section 3.1 of [Sin93] it is shown that the chain is rapid mixing.

This Markov chain verifies the requirements stated before. In parallel,
choose randomly [ numbers in the range 1,...,n that corresponds to the
bits to be changed. As initial n-bit vector, take the 0 vector.

Thus the associated problem is: Given a n-bit vector A together with
a sequence of | integers a1y...,a; € {1,...n}. Compute the n-bit vector
= [A,< ay,...,4; >]. Where the basic operation is to switch the a;-th
bit. .

In order to perform the computation in parallel, we change the rep-
resentation, each integer a; is represented by a n-bit vector A; where all
components are 0 except the i-th, that is 1. Notice the switch of bit 7 in vec-
tor B can be computed by B® A; where @ denotes the modulo two addition.
The problem can be reformulated as A* = (...(A® A;)...) ® A;. Notice
that @ is an associative operation, thus we can apply the tree contraction
technique and compute A* in NC [JaJ92]. Therefore we can have a RNC
almost uniform generator for element of {0, 1}".

2 The Spanning Tree

Let us look at a more involved example. The almost uniform generation of
random spanning trees of a given graph G = (V, E). This problem has an
exact solution in NC. It is easy to make a parallel implementation of the
sequential algorithm glven in [Gue83). However that exact NC generation
has a large cost in resources, theé work is W = O(n® log3n) . A Markov
Chain approach to the generation (and counting) of spanning trees, is given
in example 3.20 of [Sin93). Other approach is in the paper by [Bro89],
where he generates a random spanning tree, by doing a random walk in the
graph. It is not difficult, to parallelize his algorithm to get an NC random
generator for spanning tree, with expected work W = O( ntlog? n). Recall
that we wish to pursuit the possibility of a systematic parallelization of
the Markov Chain approach to counting and generation, therefore we shall
concentrate in the Jerrum-Sinclair approach, as described in [Sin93]. Given
an undirected graph G = (V, E), |V| = n, the Sinclair Chain has as states
all the spanning trees of G and the transitions are defined in the following



way: In state T; select e € E uniformly at random. If e € T; then remain in
T;, else form T; U {e} and randomly break the cycle. This Markov Chain is
rapidly mixing.

Given a polynomial random sequence of edges I =< ey, -+, €,(,) > start-
ing at state T do the following NC simulation:

Algorithm 1 »

1. In parallel split ! into k subsequences, I = Iy,...,l; each without re-
peated elements. -

2. In parallel
For each l;, 1 < i < k obtain a (random) spanning forest F;

3. In parallel merge the k spanning forests to get F

4. In parallel, merge T with F.

To merge in parallel two spanning forests F; and F; of a given graph
G = (V, E), do the following procedure,

Algorithm 2
1. F=0,G'=(V,F;UF;)

2. In parallel, compute connected components in the graph with edge set
FI
3. In parallel and independently,

each connected component chooses at random a label from {0, 1}.

4. In parallel, each component connected to only one other component
chooses its neighbors. After, each of the remaining components la-
belled 0 chooses a neighbor labelled 1.

5. In parallel for each pair of neighbors, choose one edge connecting them
and place it in F'. Remove all edges connecting them from G’

To sketch the correctness of Algorithm 1, let FyuF; denote the set of
-possible outputs when merging F; and £3.

Lemma 1 Given two spanning forests Fi, Fy we have



1. FyuF, only contains (mazimal) spanning forests in the graph with edge
set the union of edges in Fy and F;.

2, Algbrithm 2 can be implemented in O(log®n) parallel steps, using
O(n?) processors with probability of error less than 1/4.

The following lemma can be proved by induction, (the proof will be given
in the full length version)

Lemma 2 Given three spanning forests Fy, F3, F3 and every spanning forest
F, we have

1. Fl}t(FQﬂF3) = (F],uFQ);lF;;.
2. Pr{F € Fiu(FyuF3)} = Pr{F € (FipF2)nkFs}.

Notice that in step 4 of Algorithm 1, we always merge a spanning tgee
with a spanning forest, therefore we always obtain a spanning tree. To get
a correct simulation we have only to prove that the probability of getting
an output is the same as in the sequential case.

Given a set of k edges B, let S(B) be the set of permutations of the
elements in B. For a given S € o(B) and spanning tree T let ToS the set
of trees that can be reached following the sequential random walk S, then
we have

Lemma 3 For every set of edges B, and spanning trees T, Ty the following
holds '

1. T;LB = USGS(B)TUS
2. Pr{Ty € TuB} = Lscs5(p) Pr{Th € To 5} Pr{S}
Now, we can state our first Theorem,

Theorem 1 Given a state T of the Markov chain, Algorithm 1 simulates a
random walk directed by | in O(log® n) parallel steps, using-O(n®) processors
with probability of error less than 1/4.

Notice, our parallel procedure simulates a random walk in the original
Markov chain corresponding to some permutation of the initially chosen
edges as far as the random procedure ends. When we simulate the procedure
in RNC we can get that some of the mergings do not arrive to the end, in
such a case we just repeat it.



3 P-completeness

The previous examples seem to indicate that rapid mizing is synonym of NC
simulation. Unfortunatelly things are not so simple.

Let us examine the following Markov chain defined to generate a random
subset of size k or k + 1, from a given set § with |S| = n. This Markov
Chain has as states all subsets of S with sizes k or k4 1. A transition from
state A is defined by the following procedure (the numbers at the end of the
line will be used later as references to the type of operation):

pick random z,y € §
If|A|=k+1 then
if z = y and they are in S, A goes to 4 — {z} [2]
else A staysin A
If |A| = k then
ifreAandyg A
with probability 1/2 A goes to 4 — {z} + {y} [1]
with probability 1/2 A goes to A + {y} - (3]
else A staysin A

Lemma 4 The above Markov chain is ergodic. Moreover it has the rapid
mizing property.

Therefore, any random walk of polynomial length, generates with distri-
bution near the stationary, a subset of size k or k 4 1.

Consider the associated problem given a subset A of k elements, together
with a sequence of operations. Compute A* = [A, < sequence >]:

To prove that the associate problem is P-complete, we transform it into
a decision problem, add an extra element s of S to the instance, and rather
than asking for A* ask whether s € A~

We present a reduction from the monotone alternating fan out two Cir-
cuit Value Problem (from now on CVP), assuming that inputs have fan-out
one. Given such a circuit o =< gy,...,9, > let us do some preprocessing:

1. Enumerate all gates preserving the layered structure, that means in-
puts, followed by level 1 gates, followed by level 2 gates, ..., followed
by the gates at the latest level.

2. Each gate computes for both inputs, whether it is the first of the
second gate (in the above enumeration) that uses the input.



The two steps can be implemented in NC. Further as after step 2 each
gate knows whether it is the first or the second gate that uses the inputs,
we can assume that each gate is defined by the equation g, = g{ * gf where
a, B € {1,2} and * represents AND or OR.

The set S will have 37 elements, aj,...,a,, b},...,b! and b3,...,b2. k
will be r and the set A = {a,,...,a,}. The extra element will be b1 Each
gate will produce a subsequence of operations that will follow the same gate’s
order. The construction is the following:

e When we have the equation gx = 1 add operation (ay, b}, 1)

e When g, = g%V gf add operations

(b, bk, 1), (b}, b5, 1), (b, b7, 3), (a, ak, 2)
e When gx = g7 A gf add operations

(65,03, 1), (0, b}, 1), (b, 3, 3), (ak 4k, 2)

where 1,2 and 3 corresponds to the type of transition according to the pre-
vious definition.

Theorem 2 CVP is NC reducible to the associated problem to the Markov
Chain for the problem under consideration.

(Sketch of Proof)

Each step of the reduction can be performed in NC, furthermore the
correctness of the reduction comes from the following considerations:
Claim 1 Let B = [A, < (z,2),(2,y) >] assuming that z ¢ A we get

z€Bifandonlyifz€e Aand y€ A
Claim 2 Let B = [A, < (7, 2),(y, 2) >] assuming that = ¢ A we get
z€Bifandonlyifz€ Aoryc A

Claim 3 a; remains in the set until gate k sequence is processed and gets
out only when the output of gate k is true. In such a case after processing
gate k sequence both bl and b7 belong to the computed set. When the
output of gate k is false, neither b}, nor b} are in the set after processing the
corresponding sequence.
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Thus we get that o outputs true if and ornly if b} € A*. ®

One must be careful to understand the last result. It says that unless
NC = P, we can not simulate in RNC a random walk on the described rapid
mixing Markov Chain. It does not say anything about the RNC generation
of the subsets. As a matter of fact, it is easy to obtain an exact generation
of the subsets in the problem, by flipping coins. Therefore rapid mixing is
not a sufficient condition to assure us RNC generation.

Surprisingly, the same kind of result applies to the generation of per-
fect matchings for bipartite graphs. The theorem below just says that the
Markov Chain approach of Jerrum and Sinclair is hard to parallelize, we
do not claim anything about the generic problem of almost generating (ap-
proximate counting) perfect matchings in bipartite graphs. The problem
of using Markov chains to approximate the number of perfect matching in
dense bipartite graphs was introduced by [Bro86). The proof of his theorem
had a mistake, and Jerrum and Sinclair used the conductance to show the
correctness of the algorithm [Sin93]. Since then, other people have obtained
results, [DL92) using Markov chains and [Ras94] using a direct approach.
Our result applies to the Jerrum-Sinclair approach. Again we just give a
hint of the proof.

Theorem 3 The associated problem for almost random generation of per-
fect matchings on dense bipartite graphs is P-complete.

(Sketch of proof)

Assume that we have a circuit and we do the same preprocessing as in the
above reduction to get a representation @ =< g,...,gr >. We consider the
following reduction. Each gate will have associated four vertices v;, i, w;, ¥;
two corresponding to the first output (v and w) and two to the second (z
and y). And two additional nodes vo and wo. We will assume that the graph
is the complete bipartite graph, all v and z nodes are in one set and all w
and y nodes are in the other.

The initial matching is as follows:

1-inputs and OR gates: each node is matched with it’s twin, that means
we have edges (v, w;) and (z;, ¥i).

0-inputs and AND gates : each node is matched to the other node that
is not its twin, that means we have edges (v;, y;) and (z;, w;)..

The additional vertices are matched by the edge (vo, wo).

The sequence is the following, the first edge is (vp,wo) then depending
on the type of gate each gate will produce a sequence of edges and finally
we will add (vo, wo).



For gate gx = g7 V gf (assume that a = § = 1 otherwise substitute v/z

and w/y). We define the sequence in three blocks:

1. (wi, ’UO)a (wO., vj)’ (wj"vO)a (’UJ(), 'U,'), ('U)O, vj)v (wl') ’Uo)
2. (vi, ’U)k), (xks yk)v (vka wk), (wjv ‘l)k), (xka yk)v (vka y’k)
3. (’U;‘,'ll)i),(vj,wj),(xi,'U),'),('Uj,yj)

For a gate gx = g7 A gf (assume that a = # = 1 otherwise substitute
v/z and w/y) we add:

1. (wi’ ’Do), ('lDo, ’Uj),(wJ','Uo),('(Uo, vi)a(wo,vj)7(wi,00)
" 2. (@i i), (Vks K)s (@h, W), (Y5 Vk)s (Tk, W), (Vk, Yk)
3. (vi, wi), (vj, w;), (24, wi), (v, 95)

It is easy to see that the first block just changes the matching to a special
configuration in which we can isolate the case in which the codification of
gk must be changed, the second block just changes gr when necessary, and
the third block just restores gates ¢ and j. ®
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