* M6 0610300
(C\’\)\(, A

On Architectures for Federated DB Systems

Feélix Saltor
Benet Campderrich
Manuel Garcia-Solaco

Report LSI-94-9-R

808 | FED ™
o¢e \"3_’:' @
Faculiat d'injcrmatica
de Barcelona - Biblioteca

10 MAR, 1394

ON ARCHITECTURES FOR FEDERATED DB SYSTEMS
F. Saltor, B. Campderricht, & M. Garcia-Solaco

Dept Llenguatges i Sistemes Informatics TDept. d'Enginyeria Informatica
Universitat Politecnica de Catalunya, Barcelona ~ Universitat Rovira i Virgili, Tarragona

Abstract

Different architectures for federated database systems have been proposed. We present three
Jederation rules, analogous to the rules for fragmentation in distributed databases, and show
that the reference architecture by Sheth & Larson satisfies them. We then analyze three
shortcomings of the reference architecture: databases components of several federations,
external schemata in user models different from the canonical model, and multiple semantics
at the federated schema level, and we provide better solutions to each of them. With these

solutions a new 8-level schema architecture framework is developed.

1. Introduction

The cooperation between several databases (DBs) may arise in a number of cases. Different
organizations, each with its own DB, may want to cooperate (subsidiaries of a common parent
company, states of a federal country, government agencies, countries forming a common market, etc.).
An organijzation might have several DBs, for example one per division, grown up independently, and
new management needs force them to interoperate. Two companies may merge, or a takeover can take
place, and keeping their respective DBs and have them cooperate may be preferable to their substitution

by anew, common DB.

In each of these cases, we find different DBs, designed independently and operating autonomously,
that are bound to cooperate. We assume that the technical form of cooperation is interoperability,
supporting integrated access to the collection of DBs. This means that a user is able to ask a single
query (one access), and receives a single, consolidated answer; the individual DBs have cooperated to

produce this answer. Which of the DBs have provided which data may be hidden to the user, and then

he has the feeling of accessing a single DB; alternatively, data may be tagged with an identification of

the DB supplying them (called “source tagging” in [WanMad90]), depending on the needs of the user.

Building a system that supports this integrated access is not an easy task. The individual databases
will, in general, have different data models and data languages, and a user posing queries may use still
another model and language. Heterogeneities will also exist between the semantics of the databases,
and between these semantics and those of the users, where semantics means the conceptualization of the
universe of discourse (as represented in the schema of a database). Other problems not satisfactorily
solved till now include the management of transactions and the trade off between autonomy of each

individual database and interdependency of the whole interoperable system.

Even if difficult problems exist, due to growing user needs and interest to implement database
interoperability, the issues involved have become a major topic of research in many centers worldwide.
In particular, the architecture of an interoperable database systems is at the core of ongoing research

and development efforts.

This paper is organized as follows: Section 2 recalls the reference architecture and terminology, due
to Sheth and Larson, that we will be following. Section 3 presents three correctness rules for database
interoperability. In section 4 we present three particular problems, not well solved by the reference
architecture, and propose new schema levels to deal with them. Section 5 puts together these three new

schema levels to form a complete architecture framework. We conclude in section 6.

2. The reference architecture

We will say that the individual DBs, called component DBs, form a federation, or a federated DB.
Considering their respective DB systems, a federated DB system is obtained thru the interoperability of
the component DB systems. The federated DB system (FDBS) has no data of its own, it answers queries
by accessing the component DB systems; it is a layer of software placed on top of the DBMSs of the

component DBs (other software and hardware needed are out of the scope of this paper).

To support integrated access, the FDBS must have an adequate architecture and a convenient data
model. Many architectures have been proposed, developed in prototypes, or implemented for
production use (see for example [LanRos82), [Dev+82], [Lit85], [Rus+89], [SheLar90], [Tho+90],
[KamRusShe91], [OzsVal91], [Hsi92], [HsiNeuSac93], [SchSheCze93], [HurBriPak93], [LitSha94]). In
this section, we will follow the reference architecture and the terminology proposed by Sheth and
Larson in their survey [SheLar90], because it is very general and it encompasses most of the others.
This architecture is shown in Figure 1 for the five schema levels, and in Figure 2 for the schema levels

and the software processors between these levels.

First, a canonical data model (CDM) common to the whole federation, must be adopted. The
database schemata of the component DBs (local schemata) are transformed from their native models to
the CDM by transforming processors, giving component schemata. Each component schema is filtered
by filtering processors into one or more export schemata. From export schemata of different component
DBs, a federated schema is constructed --- this process, performed by a constructing processor, is called
schema integration; several federated schemata can exist in a federation. Finally, from a federated
schema a number of external schemata are derived by filtering processors, for different users (or

categories of users) of the federated DB.

When a federation is formed, or when a DB is to enter an existing federated DB, a negotiation
process takes place. Each DB negotiates which of its own data it makes accessible (it “exports™) to the
federation (to which categories of users of the federation), and which part of these data, if any, it allows
not only to be read, but also to be updated (by which categories of users). It is clear, therefore, that a
DB may prevent part of its data from access by other DBs; this is the role of the export schemata and of
their corresponding filtering processors. Negotiation may include to which point, if any, the autonomy
of the DB is substituted by an interdependence with the other DBs, without compromising its support

for its own preexisting users.

Once the federated system has been built, a query using an external schema will be mapped to its
federated schema (filtering processor), decomposed into subqueries to the component DBs concerned
(constructing processor), translated to their local schemata (filtering/transforming processors), and
submitted to the corresponding DBMSs. These provide (sub)results, which are translated
(transforming/filtering processors), consolidated (constructing processor), adapted, formatted (filtering

processor), and presented to the user.

Since each component DB was designed independently of each other, the diversity of design
decisions will have led to a number of heterogeneities. Examples of Systems heterogeneities are:
different CPUs, operating systems, data models and languages, DBMSs, communication protocols.
Data heterogeneities are due to the different conceptualizations by the designers of the component DBs
(semantic heterogeneities), and to the different representations of these conceptualizations in the

respective data models and DBMSs (syntactical heterogeneities).

The use of a common CDM, and the transformation from local schemata into component schemata
by transforming processors, solve the problem of syntactic heterogeneities. Semantic heterogeneities are
dealt with in the schema integration process, by which export schemata are integrated into federated

schemata by constructing processors.

The interoperability between the component DBs may be tighter or looser. In the case of a tightly
coupled FDBS, the federation puts in place a DB administration at the federated level, who performs
the negotiation process with the DBAs of the component DBs, is responsible for the schema integration
process, and maintains the federated and external schemata. A loosely coupled FDBS, on the other side,
has no federated DB administration, so that each individual user is responsible for selecting which
component DBs to access, for the overcoming of syntactical and semantic heterogeneities, including the

schema integration process, and for posing his integrated query.

We have briefly shown how this five level architecture supports integrated access to the federated

DB. Three layers in this architecture, namely component schemata, export schemata and federated

schemata, are expressed in the CDM (external schemata may be expressed in different models, as we
will discuss in section 4.3). How well this architecture solves data heterogeneities depends on the

characteristics of the CDM (as analyzed in [SalCasGar91]).

3. Rules for federated architectures

Federated DBs and distributed DBs differ in important respects -including the autonomy and
heterogeneities, characteristics of FDBSs-, but they have in common the fact that they rely on a network
system made of interconnected DB systems (distributed systems). To the top down distribution of the
conceptual schema in a distributed DBs, it corresponds the bottom up construction of federated schemata

in a FDBS. This correspondence extends to the rules to be followed in each case.

In distributed databases, when a relation of the global schema is split or distributed into fragments,

i.e. relations at the local schemata, there are three correctness rules that the fragmentation must follow

([CerPel84], [OzsVal9l]):

1. Completeness: Each data item of the global relation must exist in some fragment,

2. Reconstruction: It must be possible to reconstruct the global relation from its fragments.

3. Disjointness: Each data item of the global relation must exist in only one fragment, except for

the key in vertical fragmentation (fragments can then be replicated).

Analogously, in the case of federated databases, three correctness rules for schema integration should

be satisfied (called federation rules in [GarSal91]):

1. Completeness: Each data item that a component DB exports to the federation must be available

to authorized users at the federated level.

2. Decomposition: Any query at the federated level must be internally decomposable into

(sub)queries against the component DBs involved.

3. Discrimination: Each data item in the result of a federated query must be traceable to the
component DB it comes from, for users authorized to know the source of the data (see [WanMad90]).

Note that this rule specifies the contrary of the fransparency usually found in distributed DBs.

Any architecture for FDBSs should allow the schema integration process to satisfy these rules. In
particular, the five level reference architecture supports rules 1 and 2 by singling out the export
schemata, the federated schemata, and the constructing processors: these processors construct complete
federated schemata, and decompose federated queries. It allows the support of rule 3 thru the external
schemata and their filtering processors: Discriminators of data (by component DB) existing at the
federated schema level, will be filtered out for external schemata and users not needing the source of the
retrieved data, while they will be kept in external schemata for applications and users authorized to
know this "source tagging”, as explained in [GarSal91]. Another usage of discriminators is made in

section 4.3.

4. Three particular issues

The reference architecture by Sheth & Larson is generally adequate: it separates the issues into
different schema levels and specific processors, and is general enough to allow different particular
adaptations to individual architectures. Moreover, it allows the construction of federated schemata

satisfying the rules presented in section 3.

However, we find three particular issues that do not fill well within their architecture: databases
components of several federations, external schemata in user models different from the canonical model,
and multiple semantics at the federated schema level. The solution to each of these issues requires an

additional schema level, as we will show.

4.1 Negotiable schemata

One of the characteristics of a FDBS is that each component DB keeps its autonomy as much as
possible; in particular, the DBA of a component DB of a federation may decide to enter another FDBS.
In this way a DB may become component of several federations at the same time. Most likely, these
FDBSs will be loosely coupled, with perhaps just one of them being tighty coupled, as shown in figure

3.

In the reference architecture, the local schema of such a component DB will be transformed to the
CDMs of each of the federations (CDM-A, CDM-B, ..., CDM-C in figure 3), giving component
schemata, and then, for each FDBS, one or more export schemata will be negotiated. It is likely that
some data of the component DB will be considered private, and therefore not exportable to any
federation: the translation of this private part of the local schema to each CDM will have been useless.
Moreover, the maintenance of the local schema during the life of the component DB will imply

maintaining accordingly all its component schemata, even for changes affecting only private data.

These problems do not appear in another architecture, in which the role of the local schema is
separated into two different levels (Figure 4), both in the native model: the native schema, which is the
original schema of the component DB (conceptual schema in the ANSI/SPARC terminology, database
schema in the ISO terminology [vGr82)), and the negotiable schema, which contains only non private
data. It is just the negotiable schema, not the whole native schema, which is transformed to each CDM,

producing the negotiable schemata for each federation.

In the case of loosely coupled federations, the transformed negotiable schemata will be directly
available to users without further negotiation, that is, will become export schemata in the terminology of
the reference architecture. For a tightly coupled FDBS, however, the transformed negotiable schema

will, in general, enter the negotiation process to produce one or more export schemata.

Note that the derivation of the negotiable schema from the native schema may be done by the
component DBMS itself, using its mechanism to produce its own external schemata (view mechanism),
as used for its pre-existing users; this mechanism is available today in most relational DB systems.
Therefore this processor (a filtering processor according to the terminology we are using) will not be

part of the FDBS as such.

4.2 User models and translated schemata

A user of a federation may be trained in a data model different from the CDM of the FDBS. This
may arise because this user was previously a user of one of the component DBs of the federation, and as
such is familiar with the native model of this component DB, and this particular model was not chosen
as the CDM of the FDBS. Alternatively, the user may be a new member of the organization who comes

from an environment in which a different data model was in use.

According to the reference architecture, from a federated schema in the CDM, an external schema in
the user model is produced (figure 5). This process consists in fact of two transformations: change in the
model, and change in the contents, corresponding to two processor types: transforming processor and
filtering processor. The separation of issues into schema levels and specific processors is not complete in

this case.

We present a different architecture, in which the external schema level is divided into two (figure 6).
The upper level schema of the federated user, in his own model, is called user schema; the translation of
this user schema to the CDM is called translated schema. They are at different levels in the architecture.
The translated schema is derived from a federated schema by a filtering processor, while the passage
from the translated schema to the user schema (and vice versa) is done by a transforming processor. The

issues and the processors are in this way clearly separated: only one change is made at each step.

4.3 Multiple semantics and application schemata

A federated schema is constructed from export schemata by a constructing processor according to a
schema integration process, as we have seen. The export schemata being integrated may represent
different semantics, and the resulting federated schema may adopt just one of these semantics, or still
another, different semantics, or it may support multiple semantics. Let us illustrate the issue of multiple

semantics with an example adapted from the one in [SheLar90].

Assume that component DB1 has an object class SHOES, with an attribute COLOR taking values on
the domain {BROWN, TAN, CREAM, WHITE, BLACK}. Further assume that component DB2 has an
object class SHOES, too, with an attribute COLOR taking values on the domain {BROWN, TAN,
WHITE, BLACK}. The semantics of SHOES.COLOR in the two component databases are different (a
given shoe, considered CREAM by DB1, would not be seen of that color by DB2), and these semantics

will be transmitted untouched to the corresponding export schemata.

On the user side, we will suppose that userA conceives colors of shoes the same way as DB1, while
for userB they are BROWN, CREAM, WHITE and BLACK. Further assume that the mappings between
these user and DB semantics is as follows: |

UserA maps his CREAM to TAN in DB2 -no shoe in DB2 will be TAN for him-; his mapping to
DB is the identity mapping.

UserB maps her CREAM to TAN or CREAM in DB1, and to TAN or WHITE in DB2 -no shoe in

DB2 will be WHITE for her-.

In the case of loosely coupling, userA will integrate the export schemata according to his mappings
to construct a federated schema with his semantics, and similarly for userB: one federated schema for
each user semantics. In the case of a tightly coupled FDBS, this same possibility of each federated
schema with a different semantics exists, but another solution is the support of multiple semantics in a
single federated schema, as explained in [GarSal91]. In this schema, object class SHOES, a

generalization of the SHOES in DB1 and DB2, will have a discriminating attribute by component DB,

besides COLOR and other attributes (upward inherited as in [SchNeu88]) from DB1 and DB2. A
directory at this federated level will contain the mappings to the semantics of userA, of userB, and any
other semantics needed. External schemata for each particular user will be derived from this federated
schema, by using the mappings corresponding to his semantics. With this approach, the number of
federated schemata to be constructed, and, more importantly, to be maintained, is reduced to a

minimum, compared with the solution of one federated schema for each semantics.

This approach of having federated schemata with multiple semantics and source tagged, however, in
the case of the reference architecture (figure 7) has one shortcoming: the passage between a federated
schema and an external schema changes not only from multiple semantics to one semantics, but also
from a general universe of discourse using this semantics, which may be common to many users and
applications, to the particular universe of discourse of a single user or a few users (not considering the

possible change in data model, already discussed in section 4.2).

The changes are clearly separated by introducing another level, the application schema level (figure
8). Each application schema reflects just one semantics, common to one or more applications, and its
scope is a general universe of discourse; external schemata adapts this application schemata to the needs
of particular users. The passage from a federated schema to an application schema is done by a processor

restricting from multiple to a single semantics: it is a special case of a filtering processor.

Note that this change in the architecture still satisfies the three federation rules. In particular,

discriminators by component DB (source tags) support rule 3 in addition to being the base for multiple

semantics.

5. A complete 8-level architecture framework

Putting together the three issues discussed in the previous section, we arrive at a new architecture,

depicted in figure 9. This architecture has 8 levels, and is more general than any other federated

architecture we know of. It separates the issues involved into different processors and schema levels, so

that each processor performs only one change: in data model, or in semantics, or in universe of discourse

We do not contend that this is the architecture to be implemented in a particular FDBS, but that it is
a general architecture, that may be used as a reference to discuss about FDBS issues, problems and
solutions, and also as a framework from which specific subset architectures can be implemented. In
particular, the passage of a query from the user schema level to the native schemata, and of the
(sub)results from these back to the user schema, need not be done step by step, one level at a time, at
execution time. Specific FDBSs will combine several processors into one module, and will prepare
transformations at compile time, to expedite query processing at execution time. The separation of
concerns into different levels and processors in our 8-level architecture is done to clarify the issues, not

as a blueprint for implementation.

This 8-level architecture complies with the three federation rules of section 3, because each one of
the three changes made to the reference architecture has preserved this compliance. In particular,

discriminators support both multiple semantics and rule 3.

6. Conclusions

We have presented three federation rules, analogous to the fragmentation rules in distributed
databases, to be satisfied by any federated database architecture, and we have shown that the five level

schema reference architecture by Sheth & Larson complies with them.

We have pointed at three particular issues not well solved in the reference architecture, and we have
developed a better solution to each of them, with an additional schema level in each case. For databases
component of several federations, negotiable schemata have been introduced. For external schemata in
user models different from the canonical data model, transiated schemata have been added. In the case

of federated schemata supporting multiple semantics, we have an additional application schema level.

Putting together these three new schema levels, we have developed a complete, eight level
architecture, in which each processor performs just one function, that satisfies the federation rules. It can
be used as a reference architecture, or as a framework from which specific architectures can be

implemented.

Acknowledgments

This work has been partially supported by the Spanish PRONTIC program, under project TIC93-

0436.

References

[CerPel84] S. Ceri & G. Pelagatti: Distributed Databses: Principles and Systems. McGraw-Hill,
1984,

[Dev+82] Devor, Elmasri, Larson, Rahimi & Richardson: "Five schema architecture extends
DBMS to distributed applications". Electronic Design March 1982,

[GarSal91] M.Garcfa & F.Saltor: "Discriminated Operations in Interoperable Databases”. In
[KamRusShe91).

[Hsi92] D. Hsiao: "Tutorial on Federated Databases and Systems (Parts I & II)". VLDB
Journal, voll, #1 & 2 (July & October, 1992).

[HsiNeuSac93] Hsiao, Neuhold & Sacks-Davis (eds): Interoperable Database Systems (DS-5). (Proc.
of the IFIP WG2.6 Database Semantics Conference on Interoperable Database Systems (DS-
5), Lome, Victoria, Australia, November 1992). IFIP Transactions A-25. North-Holland,
1993.

[HurBriPak93] A. R. Hurson, M. W. Bright, & S. H. Pakzad: Multidatabase Systems: An Advanced
Solution for Global Information Sharing. IEEE Computer Society Press, 1993.

[KamRusShe91] Y.Kambayashi, M.Rusinkiewicz & A.Sheth (eds.): Proc. First International
Workshop on Interoperability in Multidatabase Systems (IMS'91, Kyoto). IEEE-CS Press,
1991.

[LanRos82] T. Landers & R. Rosenberg: "An Overview of Multibase”. In H-J. Schneider (ed.)
Distributed Databases, North Holland, 1982.

[Lit85] W. Litwin: "An overview of the multidatabase system MRDSM". In Proc. ACM
National Conference, ACM, 1985.

[LitSha94] Witold Litwin & Ming Chien Shan: Introduction to Interoperable Multidatabase
Systems. Prentice Hall, 1994.

[OzsVal91] M. T. Ozsu & P. Valduriez: Principles of Distributes Database Systems. Prentice Hall,
1991,

[Rus+89] Rusinkiewicz, Elmasri, Czejdo, Georgakopoulos, Karabatis, Jamoussi, Loa & Li:
"Omnibase: Design and implementation of a multidatabase system”. In Proc. Symp. on
Parallel and Distributed Processing, May 1989.

[SalCasGar91] F.Saltor, M.G.Castellanos & M.Garcfa-Solaco: "Suitability of Data Models as
Canonical Models for Federated Databases”. In: A.Sheth (ed.): Special issue on Semantic
Heterogeneity, ACM SIGMOD Record, Vol.20, No.4, (Dec. 1991), pages 44-48.

[SchNeu88] M.Schrefl & E.Neuhold: "Object class definition by generalization using upward
inheritance". Proceedings of the 4th Int. Conf. on Data Engineering, Los Angeles. IEEE-CS
Press, 1988.

[SchSheCze93] H. Schek, A. Sheth & B. Czejdo (ed.): Proc. 2nd Int. Workshop on Interoperability in
Multidatabase Systems (RIDE IMS-93). IEEE-CS Press. Vienna. Apr. 1993,

[SheLar90] A.Sheth & JLarson: "Federated Database Systems for Managing Distributed,
Heterogeneous and Autonomous Databases". ACM Computing Surveys, Vol.22, No.3, (Sept.
90).

[Tho+90} Thomas, Thompson, Chung, Barkmeyer, Carter, Templeton, Fox & Hartman:

"Heterogeneous Distributed Database Systems for Production Use". ACM Computing
Surveys, vol. 22, No 3 (Sept. 1990).

[vGr82] J. van Griethuysen (ed): Concepts and terminology for the conceptual schema and
the information base. ISO/TC97/SC5/WG@G3, 1982.

[WanMad90] Y. Wang & S. Madnick: "A Polygen Model for Heterogeneous DBS: the source
tagging perspective". Proc. 16th VLDB (Brisbane), 1990.

Five level Schema Architecture of a FDBS (Sheth & Larson)

Users’ \

Users’ :

Users’ \

model
Ec&mﬁmﬁogm_ Schema eoe an&m External Schema XY _ External Schema
£ Z 7
oM Federated Sch
Federated Schema Federated Schema ederated Schema
7 P
m Export Schema Export Schema Export Schema
mOoEcc.-@:ﬁ mn_:::mu mOchobma Schema u m Component Schema u
YY) [X X J

Native Local Schema
model

Component DB

Native (. Local Schema
model

Component DB

© F. Saltor, B. Campderrich & M. Garcia, Barcelona,1994

Native[Local Schema
model

Component DB

System Architecture for an FDBS

m External Schema u
[X X]

Filtering Processor

m Federated mo_:wEmU

m Externa Schemal U

Filtering Processor

mm,m%nwaon m%ﬁ:mv

Constructing Processor

Constructing Processor

Filtering Processor

A Component Schema u

——

m Export Schema fUVJ Export Schema U

Filtering Processor

m Component Schema v

Transforming Processor

Transforming Processor

m Local Schema U Y

Component DBS

© F. saltor, B. Campderrich & M. Garcia, Barcelona,1994

m Local Schema u

Component DBS

m External Schema U

Filtering Processor

m Federated mnrm-:mu

Constructing Processor

Export Schema u

Filtering Processor

ﬁ Component Schema u

Transforming Processor

m Local Schema u

Component DBS

One database component of several federations

Tightly-coupled federation A
CDM-A
-

m“x»ﬁ.:»_ Schema

O

o

m Federated Schema

7

7
m Export Schema

/

m Component Schema

e

VR

T~

Loosely-coupled federation B
CDM-B

External Schema=
Federated Schema

Export Schema =
Component Schema

Loosely-coupled federation C
CDM-C

External Schema=
Federated Schema

m Export Schema U

\mOoEwosm_: Schema v

\

Native
model

Component DB

S~ _—
m Local Schema u

© F. Saltor, B. Campderrich & M. Garcia, Barcelona,1994

The negotiable schema

Tightly-coupled federation A Loosely-coupled federation B Loosely-coupled federation C
GES{»\ CDM-B CDM-C
External Schema External Schema= oo External Schema=
Federated Schema Federated Schema

Vi

Federated Schema

2

/

ya

A-Negotiable mn_EEW/
l’r’ll"l

m Export Schema Export Schema = Export Schema =
B-Negotiable Schema C-Negotiable Schema

/@mmoamw_m Schema
Native

model |

m Native mnwﬁswu

\

Component DB

© F. Saltor, B. Campderrich & M. Garcia, Barcelona,1994

An external schema not in the CDM

User model

mmﬁo-ﬁ»_ mnsm.:»u

CDM

m Export Schema

mnoamozma Schema u

Federated Schema

m Export Schema U

m Component morwiwu

Export Schema v

m Component Schema u

vutive Local Schema
model

Component DB

Native
model

m Local Schema u

Component DB

© F. Saltor, B. Campderrich & M. Garcia, Barcelona,1994

Native(1 cal Schema
model

Component DB

Translated Schema

User model

m User Schema v

CDM Q-ﬁa_»:& m&:ﬂ:w

|

Federated Schema
m Export Schema m Export Schema v Export Schema u

m Component Schema v m Component Schema U m Component Schema u

Native eee [Native eee Wative(Local Schema
Scn&m Local Schema u model mrcom_ Schema u model

Component DB Component DB Component DB

© F. Sailtor, B. Campderrich & M. Garcia, Barcelona,1994

Multiple semantics versus one semantics

Semantics 1 Semantics 2 Semantics 3

muao:_w_ Schema O mmﬁo_ﬁm_ Schema Nu External mnvm.:ww

Multiple semantics and
source tagged

Federated Schema

m Export Schema m Export Schema U
m Component moroawu mOoEmS:a.: Schema u m Component Schema U
m Local Schema v eeoe m Local Schema U eoe m Local Schema u

Component DB Component DB Component DB

Export Schema U

© F. Saltor, B. Campderrich & M. Garcia, Barcelona,1994

Multiple semantics versus one semantics: the application schema

mmﬁa-.:m_ Schema w mmﬁﬁ.:»_ Schema Nu [External mnceimw

Semantics 1_| Semantics 2 Semantics .w

m>cv__8»_c= Schem mzuv:@&o: mnrm:w Application mnrn—@
\

Federated Schema

m Export Schema U

AOEEXEQ: Schema v m Component Schema v mOoEwosz Schema v
m Local Schema u oee m Local Schema v eee m Local mo_:u:»u

Component DB

NS{S.E& semantics and
source tagged

Export Schema U

m Export Schema

Component DB Component DB

© F. Saltor, B. Campderrich & M. Garcia, Barcelona,19%4

Complete 8-level architecture

Tightly-coupled federation A

m User Schema 2 u User model

T
/

CDM-A

mmﬁn-.:m_ Schema O

Semantics 1 |

m,?mi:nmzo: Schema

Federated mnroawu

__
m Export Schema
|
m>-2mmo~mmv_w moroEuu

Semantics 2

[

mnmzm_m:& mnrmamw

chzgnoz mﬂﬁ:@

\

Federated Schema

Multiple semantics
and source tagged

o~

.l........l.lr

Loosely-coupled federation C
CDM-C

External Schema=
Federated Schema

Export Schema =
C-Negotiable Schema

Negotiable Schema
Native

model _

mz&za m%ﬁz»u

|

Component DB

© F. Saltor, B. Campderrich & M. Garcia, Barcelona,1994

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya

Research Reports — 1994

LSI-94-1-R “Logspace and logtime leaf languages”, Birgit Jenner, Pierre McKenzie, and Denis Thérien.
LSI-94-2-R “Degrees and reducibilities of easy tally sets”, Montserrat Hermo.
LSI-94-3-R “Isothetic polyhedra and monotone boolean formulae”, Robert Juan-Arinyo.

LSI-94-4-R “Una modelizacion de la incompletitud en los programas” (written in Spanish), Javier Pérez
Campo.

LSI-94-5-R “A multiple shooting vectorial algorithm for progressive radiosity”, Blanca Garcia and Xavier
Pueyo.

LSI-94-6-R “Construction of the Face Octree model”, Niria Pla-Garcia.

LSI-94-7-R “On the expected depth of boolean circuits”, Josep Diaz, Maria J. Serna, Paul Spirakis, and
Jacobo Toran.

LSI-94-8-R “A transformation scheme for double recursion”, José L. Balcazar.

LSI-94-9-R “On architectures for federated DB systems”, Félix Saltor, Benet Campderrich, and Manuel
Garcia-Solaco.

LSI-94-10-R “Relative knowledge and belief: SKL preferred model frames”, Matias Alvarado.

Copies of reports can be ordered from:

Nuria Sanchez
Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo, 5
08028 Barcelona, Spain
secrelsi@lsi.upc.es

