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Abstract

Our work concerns Frege systems (F), substitution Frege systems (sF), renaming
Frege systems (rF) , T/L-Frege systems (T/L-F) and extended Frege systems (eF).
Urquhart shows that tautologies associated to a binary strings require Q(n/logn) lines
to be proved in sF. Here we prove, by giving a sF proof of O(n/logn) lines, that his
lower bound is optimal and we show that in the tree-like case Q(n) lines are required
for a proof of the same tautologies.

We also show the following two simulation results: (1) tree-like sF p—simﬁlates non
tree-like sF ; (2) Tree-like F linearly simulates tree-like rF and tree-like T/L-F .

1 Introduction

A Frege system F is an inference system for propositional logic based on (1) a languags -
vell-formed formulas obrained from a numerable set of propositional variables and any fini-
propositionally complete set of connectives: (2) a finite set of axiom schemes; and (3} -
rule of Modus Ponens (+—5—£).

A proof P of the formula A in a Frege system is a sequence Aj, ..., A, of formulas such
that A, is A end every A; is either an instance of an axiom scheme or it is obtained by the
application of the Modus Ponens from the premises A; and Ay with j, k < i. We will call A
theorem and we write = A. A proof P is said to be tree-like if every A; is used only once as
premise of a rule in P. Any Frege system must be sound and complete. We write A = B
if every truth assignement satisfying A4 also satisfies B, and A + B if adding the formula -
among the axioms we can give a proof of B. A Frege proof system is implicationally complets
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if whenewer A |= B, then A+ B, and implicationally sound if whenewer A - B, then A = B.

The main notions of complexity of proofs are: (1) the number of lines of a proof P =
Ay, An equals to n; (2) the number of symbols or size | P| defined as 37, |A:| where |4
is the number of symbols in A;.

A Frege system F; p-simulates another Frege system F; if whenever a formula A has a proof
P in F; of size m, there is a proof P’ of A in F; of size p(m), where p is a polynomial.

Frege systems can be extended with some extra rules.
An extended Frege system eF is a Frege system augmented with the extension rule. This
rule allows to infer, for any formula B the formula p «+ B under the restrictions that p does
not occur in B, in previous lines and in the last line of the proof.

A substitution ¢ is a mapping from a finite set of propositional variables Dom(c) to a
set of well-formed formulas Rng(c). It will be called renaming whenever o is a bijection and
Rng(c) is a set of propositional variables and T/L-substitution whenever Rng(o) = {T, L}.
By Ao we denote the result of simulataneously substitute in A any propositional variable p;
in A with o(p;). '

A substitution Frege system is a Frege system augmented with the substitution rule ;{%
that from a formula A allows to infer the formula Ac for any o.
It will be called Renaming Frege system (rF ) or T/.L-Frege system (T/L-F ) whenever the
substitutions are respectively renaming and T/L.

Some properties can be lost by adding extra rules. For example sF . »F and eF are
implicationally complete but not implicationally sound. The following Theorem holds for
any two implicationally complete svstems differing at most in the set of connectives used.

Theorem 1.1 ([CR]) Let 7y and Fy be two systems differing at most in the set of connec-
tives used. There exists a constant ¢ such that if P is a proof of & in Fy of n lines and m
symbols, there is a proof of A in Fy of < en lines and < cm symbols.

Since these linear simulations do not affect our work, from now on we won’t worry about
the set of axiom schemes we use, and we fix the set of the connectives as {A,—=,v,-h
Also, we add to our language the constant T and L whose intended meaning is TRUE and
FALSE and the extra axiom T.

Let ¢ and A be two substitutions, by o)A we denote the new substitutions § such that
Dom(#) = Dom(A), Rng(#) = Rng(c) and if A(p;) = A;, then 8(p;) = Aio. Two formulas A
and B are isomorphic if there is a renaming o such that A = Bo. Let & = {Aq,..., Ax} be
a set of formulas and Var(Z) = UL, Var(4;). A substitution ¢ unifies T if Ajo = ... = Ao
and in this case I is said to be unifiable. A substitution ¢ is a most general unifier (mgu)
ior L if and only if it unifies T and for any other unifier 4 there is a substitution A with
Rng(At = Var(Rngio)) such that & = oA, This means that any two mgu of ¥ are isomorphic



The following Theorem is due to Robinson (see for example [G] cap.8 for its proof in the
general case of tree over a ranked alphabet).

Theorem 1.2 There is a deterministic algorithm A, that always halts, such that for any set
% of formulas, if ¥ is unifiable, then A outputs its most general unifier.

Let A and B — C be two formulas. The rule of condensed detachment with premises A
and B — C and conclusions D, denoted by CD(A, B — C) is defined as follows:

1. change A into an isomorphic formulas A’ such that Var(A’) N Var(B — C) = §;

2. if A({A',B—C}) = o then change, by a renaming, ¢ to ¢” in such a way that
[Var(Bo*) — Var(B)]|NVar(C) = § and define D = Co™. If {A’, B— C} is not unifiable
then CD(A, B — C) is undefined.

A Condensed Detachment Frege system CD(F) is a Frege system whose only rule is the
condensed detachment and where we use a finite number of axioms instead of axiom schemes.
We suppose that the axioms used in CD(F) are indexed by an order and that in the proofs
the axioms are introduced in increasing order in the first lines. It is easy to see that any
proof in CD(F) can be trasformed into such an equivalent one.

The following are the Urquhart’s tautologies. Let z a binary string, then

T ifr=c¢
Te=4 (T—>T,) ifz=1y
(LvT,) ifz=0y

The paper is divided as follows: in Section 2 we show that Urquahrt’s tautologies require
Q(n) lines in tree-like s . In Section 3 we show that there is a proof of O(n/logn) lines in
sF of the same tautologies, so proving optimality of [Ur] lower bound. In Section 4 we prove
the following result: (1) if e simulates in O(n®®)) lines a sF proof of n lines, then tree-liks
sF simulates in O(n®®M log®n) lines & sF proof of n lines. This is obtained by improvir:
to O(nlog n} the number of lines of the [CR] sF simulation of ¢F and by extend to eF .

tree-like 7 simulation of F in O(rlozn) lines of [BoBu]. (2) Tree-liks F linearlv simular--

—

iree-like 17 and tree-like 7/_-F .

2 Lower bound for tree-like sF proof

In this section we will work under the hypothesis that sF has the same axioms (instead of
axiom schemes) of CD(F) . We will show that Urquhart’s tautologies require a tree-like s.F
proof of Q(n) lines. The result is essentially due to the fact that in tree-like case we can
improve to O(n) the size of a succint representation for a C D(F) proof P of n lines instead
of the O(nlogn) bound of [Ur] in the non tree-like case. This will be possible since, wher
we code a rule, we do not need to save the numbers of lines of the premises. opposite to
what happen with the succint representation of [Ur] or with the scheme of a proofof [P} anci
[Or]. The proof proceeds as follows: given a tree-like proof P of A in CD(F), first we show
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how to encode it in more succint way using the concept of proof-graph. Then we prove how
to recover a tree-like proof P’ of A with the same number of lines of P. Finally we observe
that the relation between sF and CD(F) expressed by Theorem 2.2 of [Ur] holds aslo in the
tree-like case. A lower bound theorem analogous to that of {Ur] can therefore be proved.
The method to compress the succint representation cannot be extended to the case of non
tree-like proofs. This is also proved in Section 3 where we give an O(logn) upper bound for
the number of lines that Urquhart’s tautologies require in non tree-like sF .

The combinatorial argument to show the lower bound is a direct application of the Incom-
pressiblity Methods arising in the theory of Kolmogorov Complexity [LV]. The argument is
essentially the same of [Ur], but it allows to think in a more general way how to prove lower
bounds using the technique of encoding proofs.

2.1 Proof-graphs

We represent a proof P in C'D(F) as a graph Gp is such a way it is possible recover uniquely
(in the sense of [HM] pag 93) P from Gp. We will work with labelled directed acyclic graphs
in which there are: (1) leaf-nodes with in-degree 0, out-degree > 1 and labelled with a natural
number; (2) internal nodes with in-degree 2 and out-degree > 1, labelled with one natural
number;(3) root node: an internal node with out-degree 0; (4) arcs labelled either 0 or 1.
Given a proof P in CD(F) the proof-graph Gp associated to P is built as follows:

1. Create one leaf-node for each of the axiom used in the proof;

2. for each line ¢ in the proof

o if it corresponds to an axiom, then put 7 as label of the leaf node corresponding
to that axiom;

o 1t =CD(y. k) with j. & < i. then
— create a new internal node and label it with ¢
— creaie an arc from node labelled with J and label the arc i:

— create an arc from node labelled with & and label the arc 0:
Clearly if P is tree-like then Gp is a tree. The following two properties are very easy to note:

1. since the proofs in C'D(F) have all axioms in the first lines, then the values of the

labels of the nodes at depth ¢ in Gp will be strictly greater than the values of the
labels of the nodes at depth i — 1:

2. It P is a proof in CD(F) of A. then. following Theorem 3.1 of [Ur], from Gp we can

reconstruct £ uniquely (this is since in Gp we have the same informations of his succint
representation).

Suppose to have a proof-graph without labels in the nodes (a skeleton) and let Gp, and
(:p. be obtained by £, and {;, two enumerations of the nodes preserving previous property
LIEP -ered f : :

1. If P, and P; are the proofs recovered from Gp, and Gp,, then:



Lemma 2.1 P, and P; have the same number of lines and are proofs of isomorphic formulas.

Proof. The first part follows from the fact that the number of node is the same in the two
graph and it corresponds to the number of lines in the proof.

Moreover the structure of the proof is preserved by the skeleton since (1) the number of CD
rules is the same in the two proofs and (2) dependencies between CD rules and between
axioms and CD rules are preserved. The second part now follows since mgu is unique and
since the root node of a proof-graph corresponds to the last line in the proof. O

2.2 Recovering proofs from their succint representations

We are going to define a more succint representation. Given a tree-like proof P in CD(F)
1t will be a description of the skeleton of the proof-graph Gp associated to P. Let n be
the number of lines in P and let d be the number of axioms in the system. The succint
representation (P) is a list L built over the alphabet {[,],0,1} obtained, starting from the
root node, in the following way: :

e if the node is a leaf-node, then L is the binary notation for index number of the axiom
associated to the node;

e if the node is an internal node, then L = [L,Lo] where L; is the list associated to the
node linked by the arc labelled ;.

Observe that the number of ’[’, of ]" in (P) is the number of lines in P in which we apply
CD rule while the number of times we put in (P) the index number of an axiom scheme in
(P) is the number of times we use that axiom in any CD rule. So the length (number of
symbols) of (P) is [{P) | < n(2+logd).

Theorem 2.1 Let (P) be the succint representations of the tree-like C D(F) proof P of the
formula A. We can recover from (P) a proof P' of A that has the same number of lines o

P

Proof. First we recover from (P} the skeleton of P. then we give an enumeration of =
node preserving properiv L. The Theorem then faliows by Lemma 2.1, =

2.3 Lower bound

We will give an extremely brief introduction to Kolmogorov Complexity and outline the idea
of our proof,

The main concept of Kolmogorov Complexity is to measure the hardness of a discrete object
in terms of its quantity of informations i.e. the number of bits required to describe it. In
order to let these concepts to be applied generally, what is required is: (1) an universa.
description method, (2) a mechanism to produce an object from its description, (3) indipen-
dence between the method of description and the notion of information content of an objecr.
Given a method f, that can be considered as a partial function over non-negative integers.
the complezity of an object z Is defined to be min{|p| | f(p) = z}, where |p] is the length of
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the binary representation of the number p. In terms of Computer Science we can think to
f as a computer, to p as a program, so that the complexity of z is the minimal length of a
program for f to compute z. Since it can be shown that different choices of the method f
only affects by a constant amount the complexity of z we can fix a method f as a Universal
Turing Machine M and think to p as binary codification of a program that let M compute
z. Moreover, since discrete objects can be codified as strings, we set the class of objects to
be the class of binary strings.
The incompressibility method is based on the simple fact that there are strings whose shorter
description is close to their length (obviously the worst description of a string is the string
itself). These strings are called incompressible or random. For example is easy to show that
there is at least a binary string of size n that cannot be described by a program (another
binary string) of size less than n. Indeed, there are 2" binary string of size n but only
02 = 2" — 1 possible descriptions of size n — 1 or less. In general, if we define a string
r to be c-incompressible if its complexity is > n — ¢, then there are at least 2" — 27—¢ & 1
c-incompressible strings of size n (see [LV] pag. 96) and this means that among the strings
of size n almost all (precisely (1 — 27°)) are random. This simple fact can now be used to
show combinatorial properties.

For example, in our case we want to show that for all z, |z| = n, all proof of T in CD(F)
require £)(n) number of lines. The proof proceds as follows:

1. Assume by the contrary that for all |z| = n there exist a proof P’ proving T, in less
than n lines;

2. fix a c-incompressible string z of size n;

3. obtain the absurd. proving that from the alleged proof P’ of less than n lines it can be
ziven a description of x stricly less than n.
Tirst e show how to improve Theorem 2.2 of [Ur] for the tree-likes case. also we refor-
muizate his lower bound proo! in the framework of Kolmogorov Complexity.

Theorem 2.2 Let P be a tree-like proof in sF, then there is a tree-like CD(F) proof P’
such that every step in P is a substitution instance of a step in P and |P| > |P'|.

Proof. The proof follows [Ur]. We only prove that the tree-like property is preserved. Let -
A be a formula in a line of P not istance of any axiom. A step of the form ZA; in Pis
compressed in only one line in P’ into a formula B such that Boy; = A for some oy. Since P
is tree-like, then A can be used only to produce Ac. This means that in P’ the formula B
will be used only once depending on where A¢ is used in P. O

Theorem 2.3 For almost all strings z of size n, any tree-like proof of T, in sF must have
Q(n) lines.

Proof. Suppose. by the contrary. that for all z exists a tree-like proof P in sF of < %
lines with ¢/ > (2 + logd)log<. Then by Theorem 2.2 there is a proof P’ in CD(F) of a
formula A4 of which 7. is a substitution instance. As T. is not a substitution istance of
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any shorter tautology, then the sequence of connectives is the same in in A and T,. Fix a
c-incompressible string = of size n. Note that, once CD(F) is fixed, a description of z can
be obtained from (P’) and from a program P - indipendent from z - that on input (P (1)
reconstructs the proof, (2) takes the last formula and (3) put it into a binary string form.
By Theorem 2.2 we have that |P| < 2 and so |[(P') | < ﬂzﬁ%ﬁlgﬁ since we can identify
string of length n over an alphabet of £ symbols with binary strings of length nlog k . Since
P is indipendent from z its size can be considered constant, so |P| = O(1). It follows that
the complexity of z is < Mﬁ%ﬁmj 4+ O(1) and since ¢’ > (2+log d)log 4, we have that this
is < n — c for n sufficiently large. Since there are 2" — 2"7¢ + 1 strings of length n that are

c-incompressible, then for almost all tautologies T, a tree-like sF proof of Q(n) is required.
[}

3 Upper bound for Urquhart’s tautologies

Urquhart shows in [Ur] that tautologies T, associated to a binary string of size n require
Q lo;‘n) lines sF proofs proving by a counting argument and without costructing them ex-
plicitly, that each proof of T, must be greater than L(Tﬁfu_n).‘ Here we show how to obtain
an O(n/log n) upper bound for the number of lines needed to obtain a sF proof of T,. We
will show that this is < 2¢ %~ for some constant ¢ depending on the choosen system.

. . logn . ) .
Consider the following formulas associate to a binary string z:

D ifr=ce¢
TP = (T—»Tz) ifz =1y
(_LVT’;) if z =0y

Lemma 3.1 All tautologies p— T2 for any z € {0,1}" with n > 0 can be obtained in a sF
proof of O(2™) lines.

Proof. First observe that p— T = p— (T —pjand p— T5 = p— (LV p) can be obtaine:
In a constant number of steps. Now supose to have in the proof all the tautologies p— ~

for fyj = n — 1. To obtain p— 7% we use all p— TP p— 71 and p— T{ in the followin_
wayt i x = yiirespectively x = y0j then p— 72 is obtained in the following two steps
substitute (T —p) to pin p— T2: (2) cut the formula p— (T — p) 1respectively p— { L

with the formula obtained at the previous step. Each one on the T2's can be obtained in -
constant number of lines from one of the T?’s and one between the first tautologies. So the
total numbers of lines to put in the proof all the T2 is ¢, 2/ = O(27). O

=1~

Theorem 3.1 Given z € {0,1}" there is a sF proof of T, in O(:2=) lines.

logn

Proof. The proof is divided in two parts. In the first. by previous Lemma, we obtain in

O(xogn) lines 2 proof of all tautologies p— T7 for all |y| = log(l—oﬁ). To obtain p— 7
suppose z divided in B?'(_n"ﬁ substrings zy,....zx (with & = WL—T> of size log(—.
Sllogn S pyey gn

In the first part we have already proved the tautologies p— TE, for all 7. We put them
together to form p— TZ starting from the innermost in the following way: Consider the
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sequence p— T% ,...,p— TZ ; obtain the formula p— T , by the following two steps:
(1) substitute T2 to p in p— T2 ; (2) cut this forrnula with p— TE . Now consider

Tk-1!
the sequence p— Txl, P T , and iterate the two previous steps. After k = EE_(—nTT
- logn
iterations we obtain T? and in a constant number of steps Tz. Since each p— TZ. is obtained
in a constant number of steps from p— T? and p—o T 2, the total number of steps of the

second part is O(lo ) Observe that for 0 < ¢ < 1, (1 — ¢)logn > loglogn for almost
5
every n. So, choosmrr ¢ = 0.5 we have m—— < (2n/logn). So putting together the two

parts of the proof we obtain an O(n/log n) lines sF proof of T,.0

4 Simulations for Frege systems with substitutions

Result of [Ur] and Theorems 2.3 and 3.1 seem to suggest that could be a result of the
following type:

If P is a proof of n lines of the formula A in sF , then there is a tree-like s proof of A in
O(nlogn) lines,

that would imply that our lower bound is optimal. This is also supported by the fact
that it holds for F [BoBu] and for eF (see 4.1.1). But the technique used in [BoBu], that
substantially is applied also for eF , does not work for sF , since it seems difficult to infer
the formula A3jA ... A AjoA .. A A, from AjA L A AGA LA A, in a tree-like way and
without working on the deﬁnltlon of A; (in fact in th1s case we loose the dependency from
only the number of lines of the proof we want to simulate). Moreover, note that there is
no known result about polynomial simulation of sF systems by tree-like sF systems. Here
we solve this problem showing that if e]: simulation of a n lines s proof, showed in [KP].
increments the number of lines to O(n®M), then an sF proof of n lines can be simulated by
a tree-like sF proof with O(n®®M log? n).

Buss in [Bull shows that n7 and T/L-F p-simulate sF . We show that if these simulations

= 2""::!‘”] r! T e o - o~ -} =% T o2t 1iatey o ~
[0 ST eXRIENnGed To L B Lx;\E‘ case. nen . Iv':t;;qu“tlc'b S

4.1 Tdree-like sF simulation of sF
We divide the task to obtain a tree-like sF simulation of sF in the following steps:

1. eF simulates sF;

O]

. tree-like eF simulates eF;
3. tree-like sF simulates tree-like eF

The first is shown im [KP] without saying anything about the degree of the polynomial
involved. For the second simulation we show that a e proof of n lines can be simulated by
a tree- like eF proof of O(n log n) lines using a technique deteloped in [BoBu}. For the third

proo? of O\nlocy n). improving the O(n?) result ot tCR'
Consider the following formulas mt*oducec in Boll:




Deﬁnition 4.1 Let Ay,..., A, be formulas with n a power of 2. The Balanced conjunction
=14 of Ay,..., A, is defined inductively by

o ifn =1, then M\~ A; is Ay;
o otherwise, (MNL2ANA (N3 Anjass)-

Definition 4.2 Let Ay,..., A, be formulas with n = 2™ + s with 0 < s < 2™. The Psue-
dobalanced conjunction Moy A; of Ai,...,An is defined inductively by

o ifn = 1,then M\, A; is Ay;

o otherwise, (M2, Ai)A (MNizy Aesss)) where the first conjunct is balanced and the second
pseudobalenced.

The following Lemma is showed in [BoBul:

Lemma 4.1 ([BoBu]) The formula (M} Ai)A A — (M, Ai), where the conjunction are
associated in a pseudobalenced way, has a tree like F proof of O(log k) lines.

4.1.1 'Tree-like eF simulation of eF

This proof follows in a very easy way from the analogous thoerem for F showed in [BoBu}
We only sketch it.

Theorem 4.1 If P is a eF proof of the formula A in n lines, then there is a tree-like eF
proof of A in O(nlogn) lines.

Proof."Let Aj,... A, be the proof in eF . Let B; = Miz;Aj fori=1,...,nand Bo = T.
Depending on how A,y is inferred in P it can be show that there is atree like eF proof
of B; — Biy1 in O(log1) lines. Suppose that A4 is inferred by the extension rule and it
1s py <+ B;. Then obtain B; — B; in a costant number of steps, introduce p; « By (this
is correct since in Bo,:.., B; never occurs p;) and in a costant number of steps obtain
B; — B:A p; + By, which is B; — B;1;. The proof then follows as in [BoBu] O

4.1.2  tree-like sF simulation of tree-like eF

Cook and Reckhow show in [CR] that sF p-simulates eF . Here we show that this simulatic-
is preseved also in the tree-like case and improving from O(n?) to O(nlogn) the number o:
lines used. Observe that there is a F tree-like proof of (M\f,A:)— A for any [ =1,...% in
O(log &) lines.

Theorem 4.2 Given a tree-like eF proof P of the formula A in n lines, there is a tree-like
sF proof of A in O(nlogn) lines.

Proof. Let P be the eF tree-like proof A,..., A,, and suppose that & between the ;s
are formulas of the form p; + B; introduced by the extension rule. Consider the formula £
defined by /'X\fﬂ(pj & B;) following the order of introduction of the extension rules. Firs:
we give a tree-like 7 proof of B — A. This is obtained by showing that for all i =1,....»
there is a proof of B — A;. By cases on how A; is inferred in P:
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case I: A; is an axiom, then there is a tree-like F proof of B — A; in a costant number of
lines;

case 2: A; is obtained by Modus Ponens from A; and Ax with 7,k < i. We can therefore
assume that there are a tree-like F proofs of B— A; and B — (A; — A;). A tree-like
proof of B — A; can be easy obtained in a costant number of lines.

case 3: A; is p; « By for some [. By previous observation we can obtain a proof of B — A,
in O(log k) lines.

This first part requires O(nlog k) lines. Now A is obtained by the following steps:

1. obtain M\Z](p; < B:)A (pk « By) — Mi=1(p; & B;) in O(log k) lines from Lemma 4.1;

N

. substitute in the formula previously obtained, By to py. This will not affect any other
formula since py does not ocurr in previous lines in P;

3. obtain By ++ By in a constant number of lines;

4. substitute By to pr in B— A

(11

. obtain M2} (p; « Bi) — A in a costant number of lines from the previous steps;

6. reiterate this process by substituting the p;’s in the reverse order respect to their
introduction in P.

This second part requires O(klogk) lines. Since we can only bound above k with n, the
total number of lines is O(nlogn). O

4.2 Tree-like F simulations of tree-like rF and tree-like T/L-F

First we show that tree-like 7 simulates tree-like sF with a simulation polvnomial in terms
of lin=s but not of symbols. Then we discuss differences between sF . rnF and T/L-F .
The technique used is that of pushing substitution lines up above Modus Ponens lines. up
to obiain isomoprhic istances of the axioms. This is also stated in Lemma 1.11 of [HM]. Let
P be a tree-like sF proof. At each formula Ao obtained by substitutions, we associate its
degree d, as the depth of the formula Ao in the tree associate to the proof P, and define
the degree dp of the proof as the maximal d,. Note that a degree-0 proof is a tree-like Frege
proof.

Lemma 4.2 Given a degree d tree-like sF proof P ending in a substitutions, of the formula
A there is a tree-like sF proof P' of the formula A with degree strictly less than d.

Proof. Let P be a tree like proof sF and let Ao be the last substitution in the proof. There
are three cases.

0




case 1: A is an istance of an axiom scheme. Then the trasformation from P in P’ is :
A
Ao in Ac

The proof P’ is valid since Ao is an istance of an axiom and the degree is reduced to

0.

case 2: A is obtained by Modus Ponens from B and B — A. Then the trasformation is:

B B—-A B B— A
A Bo Bo— Ag
Ao to Ac ‘

P’ is a valid d — 1 degree proof.
case 3: A is obtained by substitutions, then the trasformations is:

B
Bl=A B
Ac in B8

where § is the substitution Ac obatined by compositions. Also in this case P’ remains
a valid d — 1 degree proof.

Theorem 4.3 Given a tree-like sF proof P in sF , of a formula A of n lines of which k are
obtained by the rule of substitutions, there is a tree like Frege proof P' of the same formula
with n — k lines.

Proof. Given P we construct, by induction on dp a proof P’ of degree 0. At each inductive
step we copy the proof tree if no substitution rule is used; when a substitution is used we
apply Lemma 4.2. At the base case dp is 0 and so we have done. Observe that in &
we eliminate all the lines obtained by substitution and maintain all the other lines. so th-
number of lines of P isn — k. O

Let m be the size of P. It is easily seen that if we apply the previous theorem -
s7 system then the formulas introduced by the axioms in P’ can have O(m**1) number o
svmbols and so we cannot conclude that F system p-simulate tree-like sF systems. But it
is easy to see that in the case of tree-like 7 or T/L-F systems the number of symbols in
the formulas introduced by axioms in P’ is the same as the original proof.

Theorem 4.4 If P is a tree-like rF or T/L-F proof of n lines, of which k introduced by
the rule of substitutions, and m symbols of the formula A, then there is a tree-like F proof
of A inn —k lines and m symbols.

Note that the known rF simulation of s does not preserve the tree-like property (see [Bull
Lemma 17).
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