Light Transfer Equations

for Volume Visualization

Francesc Sala i Valcarcel
Daniela Tost i Pardell

Report LSI-96-58-R

RR/LST- % Se -2



Light Transfer Equations for Volume
Visualization.

Francesc Sala i Valcarcelt and Daniela Tost i Pardell ¥
Departament de Llenguatges i Sistemes Informatics

Universitat Politecnica de Catalunya

Av. Diagonal 647, 82, E-08028 Barcelona

Report LSI-96-58-R

November 1996

Abstract

The simulation of the transport of light through non-empty media is of great
importance in volume visualization applications. For low-albedo media, a good
approximation to this transport is the Single Scattering Model, which is used
extensively. Its derivation is presented here in detail. The model establishes
the light that reaches an observer through a participating media from a given
direction. The resultant expression is an integral over a line of sight of the
light emitted at each point, properly scaled by its correspondent attenuation
factor. In the general case, the integral has not closed form solution and must
be computed numerically. However, it may be solved analytically if some sim-
plificative assumptions are considered; these assumptions are exposed here, and
the corresponding simplified expressions are given. Finally, it is shown how the
Single Scattering Model may be applied both to ray-casting and to splatting
algorithms, and how it is used to shade surfaces in direct volume rendering.
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Light
Sources

Observer

Figure 1: Iumination is computed only on a discrete set of
directions and only on a discrete set of points or elements. These
points may or not lay on surfaces and may be visible or not from
the viewer position.

1 Introduction.

The shading problem in computer graphics consists in computing how much
light reaches a virtual observer coming from a scene in a set of given directions.

This is a continuous problem: in order to compute exactly how much light
reaches the observer, an infinite number of viewing directions through the scene
and infinite points on each direction should be considered. As any continuous
problem that has to be solved by a computer, it must be discretized. There are
three sources of discretization (see figure 1):

o the number of viewing directions in which light is computed; only one or
a few directions for each pixel of the image plane,

e the number of points where the illumination is measured; only a subset of
the visible ones, only those laying on surfaces, etcetera,

» and the number of incoming light directions considered at each point; only
the directions that are likely to have a significant contribution to the total
illumination of the point, typically the ones reaching the point from light
sources.

’

In order to solve the shading problem, it is necessary to model light transport
through environments. In general terms, an environment is equivalent to a set



of objects inmersed in a participating medium. The goal of this report is to
present and to analyze different models of light transport and interaction with
both objects surfaces and surrounding media and to relate these models with the
existing shading models. The report focuses mainly at light transport through
volumes, and it is intended at detecting the open problems in volume rendering.

The report is divided into four main sections. First, the modelling of light
is briefly explained in section 2. Next, in section 3, the light transport methods
on surfaces are enumerated and some surface shading models are reviewed. The
behaviour of light through volumes is presented in section 4. First, volume rep-
resentation is described (section 4.1), next light transport mechanisms through
volumes are presented (section 4.2). Then two derivations of the light transport
model are presented in sections 4.3 and 4.4. These derivations are equivalent
and lead to the same result. As the explanation of section 4.4 is more direct and
easy to follow, for a quick reading section 4.3 may be skiped. The fifth section
of the report is devoted to the shading algorithms based on the model of the
previous section. Finally, the conclusions are presented in section 6.

2 Light.

In Physics, there have been two approaches in the modelling of light: wave
theory and particle theory. The former one models light as an electromagnetic
wave that propagates through space in all directions. As such an electromagnetic
wave, it may be broken down into perpendicular electric and magnetic fields.
This approach, initially due to Huygens and posteriorly to Planck, has given
place to the Physical Optics. It allows to explain the effects of light polarization,
interference and diffraction.

The latter theory was first outlined by Newton, rejected by Foucault, and
finally formalized by Einstein. According to this theory, a light ray is a beam
of energy particles, called photons, that travel through space along rectilinear
paths. The energy of a photon is a minimum indivisible quantity. The particle
theory has given rise to the discipline known as Geometrical Optics. This model
allows to explain the photoelectric effect.

These two approaches had been competing one against each other until Louis
de Broglie established that any particle that travels at very high speed produces
behind it a wave that travels at the same speed and in the same direction. As
a consequence, light has a double nature of wave and particles. Therefore, both
theories are correct, and complement each other. The discipline that studies at
a time the double nature of light is called Quantum Optics.

Up to now, for computer simulations, the particle model has been considered
as being more suitable, because the geometrical approach supposes less compu-
tational effort. Therefore. the effects of diffraction, interference and polarization
are generally not modelled. '
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Figure 2: Light Transport Mechanisms.

Accurate explanations on what these behaviours consist in, and experiences

that make them clear may be found in {Gla95] and classic literature on Physics

and Optics, i.e. [BAE74],[Sea63] and [Com70)].

In this report, only the particle model is analyzed.

3 Modelling of light interaction with surfaces.

Although this report mainly addresses volume visualization, in this section the
modelling of light interaction with surfaces is described in order to allow a better

understanding of the light transport.

The interest is focused on the physical properties of surfaces that determine
their behaviour with light and thus the visual perception an observer has of

them. The shading models presented herein will be related with a more general
transport theory in section 4.3.

3.1 Main light transport mechanisms on surfaces.

The main behaviours of light interaction with surfaces are shown in figure 2.

Emission

Specular
Reflection

Diffuse
Reflection

Glossy
Reflection

Any thermical or chemical process that allows a sur-
face to emit its own light.

Propagation of incident light as a perfect mirror, i.e.
in a direction such that the angle between the sur-
face normal and the incident and reflected light rays
coincide. There is no change in the wavelength of
incident light.

Propagation of incident light in all directions with
equal energy.

Propagation of light involving specular and diffuse
reflections. Light propagates diffusely around a main
direction. Glossy reflection is responsible for a, mir-
rorlike appearance of a rough surface.



NAME FORMULAE
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i=0
n-—1
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n—1
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Np
Radiosity B; = E; + p; Z B, F;;
Jj=1

Table 1: Surface shading models: equations.

Specular

Transmission : Propagation of light through a surface, from one
medium to another, in a single direction. That direc-
tion depends on the angle between the incident ray
and the surface normal and the refraction indexes of
the two media separated by the surface. The rela-

. tionship is stated by the Snell’s Law.
Diffuse

Transmission : Propagation of light through a surface, in all di-
rections with equal energy. When viewing through
a surface that presents diffuse transmission, a
“blurred-like” vision is perceived.

Absorption : Absorption on a surface occurs when the energy of
the incident light is transformed by the surface in
any other kind of energy, i.e. heat.

3.2 Shading models on surfaces.

Surface shading models determine the surface’s color at a given point on the
surface. They rely on factors that express the material’s properties, on the
orientation of the shaded surface, on the viewer position and its view direction,



REFL. INTERREFL.
NAME EM. | spec. | diff. | gloss | spec. | diff. | gloss | TRANSM.
Lambert no no yes no no no no no
Phong no yes | yes no no no no no
Blinn-Phong no yes yes no no no no no
Cook-Torrance | no yes yes no no no no no
Ray tracing no yes | yes no yes no no yes
Radiosity yes | no yes no no yes no no
EM. =  emission TRANSM. = transmission
REFL. = reflection spec. = specular
INTERREFL. = interreflection diff. = diffuse

‘Table 2: Surface shading models: transmission mechanisms they emulate.

on the light sources locations and on their intensities, and also, in the more
realistic models, on the other surfaces in the scene.

In table 1 and table 2, the most known surface shading models are intro-
duced. Table 1 summarizes the equations used in each model; a glossary of
terms may be found in appendix A. Table 2 labels the transport mechanisms
taken into account in each model. The first four models only account for the
light reaching directly from the light sources, and are called Jocal illumination
models. The last two models also register light coming from the other surfaces
in the scene (light coming indirectily from the sources after one or more reflec-
tions), and are called global illumination models [Sob94]. The table refers to
the basic models of ray tracing and radiosity. Advanced models allowing glossy
reflections that have recently been published are not included [Chr95).

Lambert model characterizes the diffuse surface reflection that exhibit matte
objects. The surfaces of such objects reflect light in all directions with equal
intensity. The viewer always perceive them with the same bright, independently
of the viewer’s position. The amount of diffuse reflection does not depend on
the viewer location, but on the orientation of the surface respect to lights. The
more perpendicularly a light ray reaches the surface, the more energy receives
the surface per unit area, and consequently, the more energy the surface reflects
diffusely. As not all materials behave the same under identical illumination
conditions, the amount of diffuse reflection also depends on a material coefficient
called the diffuse-reflection coefficient, k4, which varies between 0 and 1. From
all the light energy arriving to the surface being shaded, only the one coming
directly from light sources is sampled. As a coarse approximation to all the
other light energy arriving to the surface which is not sampled, an ‘ambient
term is included into the formula. This will also be done in the next models.

~1
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Phong model adds specular reflection to Lambert model. Specular reflection
is the phenomenon responsible for highlights on shiny surfaces. The maximum
specular reflection occurs along the perfectly specular reflection direction, R,
and it is considerable along a more or less small solid angle around that direction.
So, the viewer perceives a highlight due to specular reflection when the viewing
direction V is parallel or almost parallel to R, and this highlight perception
decreases rapidly as V moves away from R. Two coefficients, k; and k. rule
the amount of specular reflection perceived by the viewer. Furthermore, to add
realism to the model, an attenuation function is included. This function scales
the amount of diffuse and specular reflection, accounting for the fact that light
coming from the source is attenuated in its way towards the surface.

The perfectly specular reflection direction R is computed from the lighting
direction and the surface normal as R = 2N(N - S) — 5. A slightly different
version of Phong’s model, called Blinn-Phong’s model, consists of substituting
the vector R by the half way vector H = (S+V)/|S+V/|. It is easier to compute,
and if light sources and the viewer are at infinity, it is constant for the entire
scene. It produces similar results to the ones of Phong’s model.

Unlike the previous methods, which are empirical, the model of Cook and
Torrance is physically based. The surfaces of the objects are supposed to be
composed by V-shaped grooves, randomly distributed and oriented. The mi-
crofacets that form these grooves are planar perfect mirrors. In Cook-Torrance
model, specular and diffuse reflections are characterized: light from the source
reaching directly the microfacets is responsible for specular reflection, while the
interreflections between microfacets cause the diffuse reflection. The formula-
tion is rather complicated, and it is presented in appendix A. The results of
Cook-Torrance model differ from those obtained with Phong model in two as-
pects: the main specular reflection direction and the color of the highlights. In
Phong model, the color of the diffuse reflection is the one of the object, while
the specular reflection has the color of the light and has its maximum along
direction R. In Cook-Torrance model the maximum specular highlight occurs -
along a direction slightly deviated from R, and the color of the highlight, al-
though mainly set to the light’s color, is more or less influenced by the surface’s
color depending on the light incident angle. Cook-Torrance is more realistic and
more time expensive.

To achieve even more realism, the exchange of light between the surfaces in
the scene has to be considered. This is done in global illumination models (ray
tracing and radiosity). As a consequence, the computation requirements greatly
increment.

Impressive images may be computed by ray tracing algorithms. In ray trac-
ing, one or more rays are casted from the viewer’s eye through each of the pixels
of the image plane to determine visible surface points. For each of those points,
the shading model is evaluated. This model consists of the Phong model plus
the consideration of light coming from other surfaces along specific directions:
the specular reflection of the viewing direction and its transmitted direction



according to Snell’s law. To compute those contributions, secondary rays are
casted along those directions, to reach other surface points where illumination is
again calculated. In such a way, the illumination model is recursively computed
on surface points, until some termination criterion holds. A geometry factor
may easily be introduced to include shadow effects. Ray tracing, then, models
specular interreflexions, specular transmissions (transparencies) and shadows.
It is an obvious consequence then that it is view dependent.

Ray tracing algorithms work fine for light transfer in specular reflectors
environments, but they are not adequate for diffuse reflectors environments,
since they do not model the diffuse interreflections. To deal with this latter
purpose, radiosity methods were proposed. Surfaces in the environment are
all supposed to be perfect diffuse reflectors, and are discretized into patches.
These patches are allowed to emit their own light, avoiding thus the point light
restriction. Light interactions between patches are determined independently
from the viewer’s position. The correspondent expression in table 1 represents
a set of linear approximated equations which expresses an energy equilibrium in
a discretized environment. Once the system is solved, patches may be rendered
for any viewer’s position.

3.3 Surface characterization respect to light.

As it may be deduced from the previous section, attending to the shading prob-
lem, surfaces are modelled as a serie of coefficients or parameters that fall into
two main categories:

Geometrical

Properties : For instance surface normal, or surface roughness
(used to estimate a “deviated normal”).

Optical

Properties : Such as colour, reflectivity, or transparency, that de-

termine how the surface interacts with light

How many and which of these parameters are used depends on the shading
model applied, its accuracy and the effects it tries to emulate. For instance,
when applying Phong shading, the surface normal and the specular and the
diffuse coefficients are needed. When applying a more sophisticated model. as
Cook-Torrance shading, the roughness is also necessary.

The optical coefficients are expected to correspond to the physical reality. It
15, the coefficients are supposed to have been obtained by radiometry measures
of samples of the material they try to characterize. When this is not possible,
the coefficients are set to values that have empirically proved to turn out into
satisfactory results.

Some surface shading models have been reviewed succinctely, singe their
study is not the main goal of this report. More information about surface

>



shading models, about the background assumptions they make, and about re-
flection and transmission is available in [Hal88], [Gla89] , [FDFH93] , [Gla95]
and [Sob94].

4 Modelling of light interaction with volume.

4.1 Volume representation.
4.1.1 What is understood by volume data.

Volume data represent the distribution of some properties through a three di-
mensional space. In order to allow a better understanding of volume data, three
examples will be described: a human bone, a teddy bear, and a gas distribution.

The representation of a human bone obtained by computer tomography
shows the bone tissue density distribution. In this case, the volume data set
represents an object that have a well defined boundary. But this boundary is
not represented. In first place, because the data caption device does not supply
a geometric description of the bone surface, but a number of density samples
regularly spaced. And secondly because users are not only interested on the
bone surface, but also on its interior, which is heterogeneous.

A teddy bear is an object that has also a well defined boundary. But it is a
very complex one, almost impossible to represent geometrically. So this object
is well suited to be represented as a three dimensional textured volume.

The third example is the spatial distribution of a gas in an environment,
a gas cloud. In this case the “object” does not have a well defined boundary,
because it is difficult to determine where the cloud begins exactly.

These examples illustrate three different situations: objects that have a well
defined boundary, but whose shape and/or location are unknown; objects with
a well defined boundary, but too complex to be represented geometrically; and
finally, “objects” without a well defined boundary. In all three situations a
volume representation is adequate. Here the term “volume” is understood by its
most general meaning: volume data represents any non-empty medium without
explicit surface representation.

In the next section some volume representations will be briefly enumerated.

4.1.2 Signal reconstruction.

As mencioned in the previous section, the data in volume rendering applications
are a finite set of sample points placed in the space (&3, ¥i, 21, F (%4, %, 2i) )i=1..N,
where F is a continuous function. Depending on the way the points are placed
in the space, different kinds of grids are distinguished L [Wil91]: regular grids,

11n all these grids, data is placed at corners of the cells.
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that is a set of identical rectangular prisms ?; rectilinear grids, when prisms
are not equal; curvilinear (or structured) grids, when the edges of the cells are
curved lines; and unstructured grids, when the data points are scattered without
an implicit connectivity, and are usually grouped at arbitrary polyhedra 2.

The volume representation of a sampled region of space consist of the grid
of data points plus a reconstruction function f, allowing to compute an approx-
imation of the value of function F at any point of the region, as F is generally
not known.

Volume representations based on regular grids are called voxe] models [Kau90],
and unstructured grids lead to tetrahedral models. Hierarchical representations
exist, both in three dimensional euclidean space, as for instance octrees [BINt94]

or simplicial complexes [CFM*94], and in frequency domain, as wavelettes [Mur93].

What must be supposed is that F' varies smoothly between sample points,
that is, F' varies smoothly inside each cell of the grid. If it is not the case, the
only solution would be to sample F more frequently to get a finer grid.

The reconstruction methods consist of approximating the unknown F cell
by cell. At each cell, F is substituted by the interpolant 4 function f that also
varies smoothly, assuming that the error committed in the approximation will
be small.

Here, attention will be paid only to interpolation methods for cubical and
tetrahedral grids, which are the most common ones; some of the methods may
be extended to other grids.

For cubical grids, the simplest interpolation method is the nearest-point
method or 0-order method. At each location inside a cell, the value of f is
assumed to be the one of the nearest cell corner. With this interpolation method,
what is being visualized are voxels: cubes centered at a sample point, inside
which the value of F' is constant and coincides with the value of the sample. It
translates into less image quality.

Another interpolation scheme for cubical grids is trilinear interpolation.

flz,y,2) =c1 + cox + cay + caz + csxy + csx? + crys + cgzys {1)

After substituting in this expression for the eight corners of the cell

(@i, %, 21, F (25, Yi, 2i))i=1.8, a system of eight linear equations with eight
unknowns must be solved. Due to the interpolation requirement in the eight
corners, when substituting, f(z;,yi, ) = F(zi,vi, 2), which is known.

2As a particular case of regular grids, cubical grids also exist. A cubical grid is the one
whose cells are identical cubes.

% As a particular case of unstructured grids, tetrahedral grids also exist. A tetrahedral grid
is the one whose cells are tetrahedra, arbitrarily shaped. oriented and scaled. s

4Interpolant means that in the cells corners -sampled data points- functions f and F must
coincide in value.

11
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For tetrahedral cells, the most usual is linear interpolation:

flz,y,2) = cy +caz + cay + caz (2)

The coefficients ¢; are again determined from the tetrahedron’s four corners
(is Yis 20, F (@i, Ui,y 2) )i=1.4-

In both cases, trilinear interpolation for hexahedral cells and linear interpo-
lation for tetrahedral grids, f is C° continuous between cells; that is, positional
continuity 3. The function is continuous between cells, but the gradient is not.
This may cause anomalies in the shading.

It is possible, when constructing the interpolation function used inside a
cell, to pay attention not only to the corner points of that cell but also to other
sample points in the surrounding. In this way, higher order continuity between
cells is achieved, at the cost of more computation time to calculate the extra
coefficients that appear in the interpolant function.

Nielson et al. in [NFHL91] use an interpolant function that is a sum of
sample point values weighted by distance. They also propose to leave aside the
interpolation requirement and to calculate a lower degree reconstruction func-
tion that does not interpolate the sampled values, but minimizes the quadratic
error of the approximation.

The interpolation functions that have been explained vary smoothly inside
each cell and, once their expressions have been calculated, are easy to be eval-
uated at any point. That is why they are so extendly used. But that does not
mean that they are the only possible interpolators. It is factible that for some
concrete F, other interpolators exist (i.e. not polynomials) that approximate
the function closer.

More information about reconstruction functions and further references are
provided in [Wil91], [WM92], [NFHL91] and [Max95].

4.2 Light transport mechanisms through volumes.

In this section the behaviour of light through volumes (remember, any non-
empty medium) will be explained. To this purpose the conceptual model for
volumes is exposed previously.

Conceptually, any volume is intended to be a set of material particles or
blobs suspended in a vacuum. The number of these particles is very large, so its
distribution may be regarded as a continuum. Moreover, usually the distribution
is also considered heterogeneous, that is, the number of material particles is
allowed to change from region to region of the volume extent. The density (or
whatever the property is sampled) in a point is assumed to be related with the
number of particles into a differential volume around the point. Another usual

5When estimating the value for a point that belongs to several cells, the same value is
obtained with each of the cells interpolants.

12



Figure 3: Volume model: a set of numerous material particles
suspended in a vacuum.

assumption is to consider spherical and equal sized material particles (figure 3).

These particles may emit photons, absorb and scatter them.

Light transport mechanisms inside a volume are four: emission, streaming,
absorption, and scattering. The two latter are caused by a collision between a
moving photon and a static material particle.

Emission ¢ This is the name given to any process that injects
new photons in the system. Normally, these process
have a chemical or a thermical nature.

Streaming : Once emitted, photons travel through volume. It
may happen that a photon travel without colliding
with any material blob. This behaviour (travelling
without suffering any collision) is called streaming. If
the refraction effect is neglected, as it is usually done,
photons are supposed to travel in straight lines.

Absorption : Occasionally, photons may collide with a material
particle. When this occurs it is possible that the
material particle absorbs the photon energy, and this
one disappears. Then, absorption removes photons
from the system. The photon energy is transformed
by the material particle into another energy form, as
heat for instance.

Scattering : When a collision occurs it may also happen that
the photons are not absorbed but deviated from
their moving direction to another travelling direc-
tion. Usually, photons are supposed not to change
their speed when this occurs. The deviation of a
photon due to collision is called scattering.

13
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Figure 4: Light transport mechanisms inside a volume.

These are the four mechanisms of light transport inside a volume, and they
are ilustrated in figure 4. As it may be seen, transmission is not included among
them: the material particles are opaque. Of course, it is possible to include
transmission in some special cases, i.e. when pretending to model clouds of water
droplets, or ice particles, as it may occur in atmospherical and astronomical
applications. But if it is not the case, there is no transmission and particles are
totally opaque; this is the case, for instance, in medical volume data sets.

The way a material particle scatters the photons impinging on it depends on
its shape, usually supposed to be spherical, and on its size. If the radius of the
particle is far smaller than the wavelength of light, no scattering occurs, there is
only absorption. If the radius of the particle is similar to the wavelength of light,
scattering occurs due to diffraction of light. Finally, if the size of the particle is
far much bigger than wavelength of light, the material particle behaves as any
other surface, and scattering occurs due to reflection.

4.3 A general equation.

In the present section, a general equation for illumination in scenes composed
of volume and surfaces will be derived. The approach of [Arv93] and [Gla95)
will be closely followed. First, general moving particles and a complete medium
will be considered. Next, the equation will be restricted to photons transport.
In section 4.3.2 the formula will be adapted to a simple volume media.

4.3.1 Establishing an equilibrium.

In Computer Graphics, environments are suppoded to be stationary respect
to light transfer. Therefore the energy transfer within an environment is in
equilibrium state. The transition between one equilibrium to another one is
instantaneous and is never modelled.

To solve the rendering problem the photons inside a three dimensional space
1/ (the scene, or part of it) moving in any of a certain set of directions 2 (those

14
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Figure 5: The set V x Q where the interest is focused.

directions that may lead a photon from the scene to the observer’s eye) should
be counted. Due to equilibrium of energy, this quantity must be a constant.

What follows then, is that all phenomena that may change this quantity
must balance each other, in order to make it constant. These phenomena are
emission, streaming, absorption and scattering. So,

Changes Changes Changes Changes
due to + due to + due to -+ due to =0 (3)
Emission Streaming Absorption Scattering

Next, an analytic expression of the equilibrium in 3 will be derived for an
arbitrary volume 1 and an arbitrary solid angle . Figure 5 shows the set
V' x §2, while the figure 6 depicts graphically all the effects.

As the equilibrium condition stated above must hold for every volume and
every solid angle, it must also hold for V and Q.

If ¢(r,w) is a function that counts the number of photons emitted at point
r in direction w per unit time, then the changes in the number of photons in
V x € due to emission are

E:/Q/Vq(r,w) dréw (4)

That is, E is the number of photons emitted per unit time inside V in a
direction w belonging to Q. Here, w is a unit vector that represents a direction.
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Figure 6: “The five processes affecting the number of particles
in volume V' with directions in solid angle .” (From [Arv93]).

Changes due to streaming are the net flow of photons moving in directions
belonging to € that pass through the surface of V, §V, per unit of projected
area.

S= /n/av é(s,w) w - n(s) dsdw {5)

where (s, w) is the flux of photons at point s moving in direction w, and n(s)
is the normal vector of the surface 61" at point s lying on the surface.

As a consequence of Gauss’s Theorem (or divergence theorem) and being ¥V
the operator

5y k=, (6)

S may be written as:

S= /r;/v w - Vé(r,w) drdw (7)

In such a way that w-V¢(s,w) is the directional derivative of ¢ along direction

Ww. ,

Changes in number of photons due to absorption are
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A= // oa(r) ¢(r,w) dréw (8)

where 0, (r) is the probability, per unit distance, of a photon to be absorbed at
point r.

The amount of outscattering is measured as

0= / / . k(r,w-w') ¢(r,w) dw'dréw 9)

where 52 is the unit sphere, that is the set of all possible directions in space, and
k(r w-w') is a function that indicates the probability of a photon in r travelling
in direction w to suffer a collision in r and be deviated in direction «’.

In analogous way, inscattering is

I= // k(r,w'  -w)¢(r,w') dw'dréw (10)
QJv Jg2
Then, equation 3 may be rewritten as

E-S—A+I-0=0 (11)

Minus signs have been put in streaming, absorption and outscattering, as
they are losses.

Or, what is the same,

E-A+I-0=S8 (12)

emission, less absorption, plus inscattering, less outscattering must equal net
flux).

E+I=S5S4+440 (13)

(gains equal losses). (Note how the graphics in figure 6 accomplish all these
equations).

Expanding the five terms and removing outer integrals,

g{r,w) + /2 k(r,w' w)é(r,w)dw’ = w- Vé(r,w) + o(r)é(r,w) (14)

being o(r) = 05(r) + o4(r) the probability that a photon will suffer any
kind of collision (turning out into an absorption or turning out into a
scattering) per unit distance travelled,

and being o; = fs" r,wp - w') dw’ the probability of a particle to suffer
a scattering collision per unit distance travelled.
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Suppressing the outer integrals of E, A, I, O and S means that the equi-
librium holds not only for V and 2, but for any volume and solid angle. In
particular, equation 14 makes reference to any differential volume and single
direction (differential solid angle).

Even though the explanations made up to now were related to photons, they
actually apply to a more general set of moving particles. In fact, equation 14
also rules the transport of neutrons, electrons, gas molecules, and may also
be applied to solve a great variety of problems, including fluids dynamics, and
traffic, between others. It is known as Boltzman’s equation. In general, it applies
to situations where a set of moving particles travel through a medium, and
interact with it as explained before. The medium is constituted by suspended
material blobs that may emit moving particles, absorb and scatter them. The
moving particles travel at a constant speed, even after a scattering collision, and
do not interact (collide) between them.

When dealing with photons, the constant speed assumption is equivalent
to say that all photons have the same frequency. To produce color images,
three independent simulations are done and combined, corresponding to the
frequencies related to red, green and blue colors.

More than the number of photons moving in an environment, it is the energy
carried by them that must be modelled. Therefore, equilibirum is generally
expressed in terms of radiance L (- the power per unit area per unit solid
angle due to radiant energy crossing a surface perpendicularly” [Arv93]).

g(r,w) + [s2 k(r.w' - w)L(r,u’) 8" = w - VL(r,w) + o(r)L(r,w)
L(s,w) = ep(s,w) + [g- ku(s,w’ = w)L(s, ') 6’

(15)

¢(r,w) is the energy associated to the photons emitted at r in direction w.

L(s,w) is the radiance, energy associated to the flux at point r in direction

w, ¢(r,w).

The first equation of 15 is an integro-differential equation (the unknown L
appears derived (VL(r,w)) and integrated ( [,)). The boundary condition used
in order to solve equation 15 sets the value of radiance where the volume ends.
that is, on a surface. This boundary condition is the second equation in 15. The
point s is a point on a surface, and Hy is the set of all incoming directions to
s from the volume.

An equivalent, but more compact, condition on L is obtained by integrating
equation 15 along a direction ray until a boundary point is reached:

A
L(r,w)_—_[)’(s,r)I‘(s,w)-i-/ B(r —zw,r)Q(r—zw,w)dz , (18)
0

where,
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h is the distance from r to s (in such a way, r — hw = s),

B(r,r') = e=7(r) ig called path absorption and is the attenuation of light
in the path from r to r’ due to absorption and outscattering,

r(r,r') = fglr -l o(r + yw) dy is called optical distance, and r, r’ lie on a
ray with direction w,

Q(r,w) = e(r,w) + fo k(r,w’ - w)L(r,w’) du' is the volumetric emission
at point r as an addition of volumetric self-emission and inscattering,

and T'(s,w) = &(s,w) + [~ ko(s,w’ — w)L(s,w) 6w’ is the surface emis-
sion at point s on a surface, as an addition of surface self-emission and
surface in-scattering. s is the point where a ray departing from r in direc-
tion —w first encounters a surface.

As equation 15, equation 16 is not a closed form for L(r,w), because Q and
I’ also depend on L. Equation 16 is a condition that radiance must satisfy.

What equation 16 means may be easily understood with the help of figure
7. Point r in space may be any point, but it will be more interesting if it is
the point where the observer is placed. To calculate the light energy reaching r
coming from direction w, first the point s is determined. s is the point where
a ray in direction —w starting in r first intersects a surface. So, it is a visible
surface point from r. Light reaching r in direction w is the one leaving s in
direction w, that is I'(s,w). However, in its way from s to r, light T'(s,w) is
attenuated due to absorption and outscatter (not all photons leaving s will get
r). The portion of I'(s,w) that reach r is §(s,r)T'(s,w).

Furthermore, consider any point ' between r and s, also on the ray. r' is
a point on volume, and as such a point it may emit photons towards r due to
volumetric self-emission and/or inscattering, Q(r,w). And again, not all this
energy will reach r, because of absorption and outscattering in the way from
r’ to r, making B(x',r)Q(r',w) the contribution of r' to the energy at r. To
add up all the contributions of intermediate points on the path from r to s, an
integration along that path must be performed.

4.3.2 Simplifications to the general equation.

The model of equation 16 characterizes the light transfer through a complete
medium able to emit, scatter and absorb photons. In this way, it is well suited
to applications that simulate participating media. But its use is not restricted
to such applications. In fact, most of the shading models used in computer
graphics, global or local, through a participating medium or through a vacuum,
are subsumed in the model of equation 16. It is just a question of terms simpli-
fication, usually related to consider a more simple medium. The simplifications
more relevant to computer graphics are next presented. ’
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Figure T: Light reaching r is a combination of light depart-
ing from s and contributions along the path from r to s, all of
them properly attenuated because of absorption and outscatter-
ing. (1) I'(s,w) . surface emission and surface inscattering. (2)
volume absorption and volume outscattering. (3) B(s, r)I'(s,w),
light from surface after attenuation. (4) Q(r',w), volume emis-
sion and volume inscattering, at r’. (5) B(r', r)Q(r',w) light
from 1" after attenuation. (6) L(r,w) = B(s, r)]."(s,w)-{-fohﬁ(p_
zw,r)Q(r ~ zw,w) dz , total amount of light reaching r.
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4.3.2.1 Light transfer through vacuum.

Under vacuum conditions, no volume emission nor scattering and nor ab-
sorption exist, as the medium does not have suspended particles.

Consequently,
Q(r,w)=0 VYrVw
o(r)=0 Vr

B(s,r)=1 VsV¥r
and thus, L(r,w) = I(s,w).
That is,

L(r,w) = ep(s,w) + ky(s,w’ = w) L(s,w’) 6w’ (17)
He

This is the Kajiya’s rendering equation [Kaj87]. L(r,w) is the light arriving
to r from direction w. s is the surface point first encountered when travelling
from r along direction —w. The set HJ is the set of all incoming directions of
s. L(s,w’) is the light energy arriving to s from direction w’. kp(s,w — w’) is
the bidirectional reflection distribution function at s, which expresses the ratio

of light arriving to s from direction w’ that is reradiated along direction w.

All the surface shading models explained in section 3.2 are coarse approxi-
mations to the solution of the equation. They approximate the exact solution
both by considering a simple expression for kp(s,w — w’) and by considering
only a discrete set of directions in H; . Local illumination models consider only
the directions joining light sources to s, approximating the rest of the integral
by an ambient reflection. Ray tracing further consider specular reflection and
transmission directions. And radiosity consider a wider, but still small, set
of directions: one or more from each patch to s. For Lambert and radiosity,
ky(s,w’ — w) is set to w’ - w, that is, the cosine of the angle between w’ and w.
(See figure § for transfer mechanisms accounted in surface shading models).

Kajiya proposes to solve the rendering equation more accurately via Monte

Carlo. Other statistical solving techniques may be found in [AK90].

4.3.2.2 Light transfer through a non-scattering media.

This is the most relevant simplification to volume rendering, and as a con-
sequence, it will be of main importance here.

Consider a medium that emits and absorbs photons but does not scatter
them. That is,

os(r) =0 Vr
Qi{r,w) = ¢(r,w) YrVuw

Then equation 16 is simplified to
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| Local illumination

L= <

L(D|S)E
D|S
Ny Ray tracing
L= v E
L(D|S)S*E
D|s S*
N Radiosity
o 95
LD*E
D*

i The Rendering Equation
L=t JE
LA*E
A*

Figure 8: Key: D Diffuse Surface. S Specular Surface. A
Arbitrary Surface. L Light Source. E Eye point. * 0 or more.
“Possible light paths for local illumination, ray tracing, radiosity,
and the Rendering Equation”. (From [Sob95]).
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h
L(r,w) = B(s,r)I'(s,w) +/0 B(r — zw, r)e(r — 2w, w) dz (18)

In volume rendering it is usual to deal with pure volume; that is, not opaque
nor semitransparent surfaces are present, at less explicitly, in the volume repre-
sentation. In such a case, the integration along direction w from r will not end
at a surface point; it should end at the point where volume ends. Define re as
the last volume point encountered when travelling from r along direction —w.
If D is the distance from r to re, then re = r — Dw. And if the volume extent
is placed over a background with intensity €prg, this intensity should play the
role of I'(s,w). Equation 18 must then be rewritten as

D
L(r,w) = B(s,r)eprg +/0 B(r — zw,r)e(r — zw,w) dz (19)

Substituting 2 in equation 19 by its expression (see comments to equation 16)
yields

D D =
Lr,w)y=¢" Js "(r”w)hebkg +/ e olrtywldy tw,w)dz  (20)
0

The meaning of this equation should be clear from its derivation. Anyway,
it will be put on evidence later, in section 4.4.5.

4.4 Lighting equations for volume rendering.

The approach followed in section 4.3 is elegant because it relates the light trans-
port equation used in volume visualization to the more complex light transport
equations and to the transport equation of moving particles in general. In this
way, this approach establishes a binding between radiative transfer and global
illumination. The drawback of this approach is that it may result tedious and
difficult to follow.

Instead of considering a medium that emits, scatters and absorbs, it is also
possible to consider since the beginning a medium that only emits and absorbs,
but does not scatter. Such an approach is followed in [Max95). Max’s exposition
is short and easy to understand, and it will be followed in this section.

4.4.1 Absorption and Emission.

The considered medium is composed of a large number of particles able to emit
and to absorb photons, but not to scatter them. The material particles are
suspended in a vacuum, and are supposed to be spherical and equal sized.

Consider now a small cylindrical slab around the viewing direction and per-
pendicular to it as shown in figure 9. The slab has a base area equal to S, and
a width equal to At. If p is the number of suspended particles per unit volume,
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Figure 9: A small cylindrical slab perpendicular to the viewing
direction, centered at point ¢.

then pSAt is the total number of particles inside the slab. Being r the radius
of a particle, the projection of a particle on to the slab base plane is nr?. If
At is small enough, the projections of the particles do not overlap, and then
the projection of all the particles inside the slab on its base plane results in an
area equal to pSAtrr?. This projected area is important because it influences
the amount of light perceived from the viewer position. The larger this area is,
the more light coming from behind the slab is occluded inside it. On the other
hand, this area is also the one the particles show to the viewer. Thus, the larger
this area is, the more light emitted inside the slab is perceived by the viewer.

Light coming from behind the slab going towards the observer that reaches
t+ %—t- has a probability of Ei%jﬁ = pAtIIr? to be occluded by a particle inside
the slab and not to reach t — &t, If C is the radiance contribution of a particle
per unit projected area, then C’pAtﬂr2 is the contribution per unit projected
area of all the particles inside the slab. Consequently,

At At
It - 92_t) = I+ 50+ CpOTr AL = pOT I + SHAL (21)

At At
It — %é) —I(t+ 7) = Cp(t)IIr? At — p(t)TIr2I{t + T)At (22)
When moving from ¢ + %—t tot— %i, the first term in equation 22 is the gain

in light energy due to emission inside the slab; while the second term isthe loss
in light energy due to absorption inside the slab.
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At At At
I+ =)~ It - )= ~Cp(t)IIr? At + p(t)Ir* I{t + S)At (23)
Moving along the opposite direction, from ¢ — %—t- tot -+ %t-, what previously
was a gain now becomes a loss, and inversely. Light emitted inside the slab,
which would be perceived at ¢ — %5 is not perceived at ¢ -+ %ﬁ. Light that will

be occluded between ¢ + %5 and t — -A-zi si not yet occluded at # - %3 and may
be perceived from that point.

Calling
A]:I(t+%—t-)—-1(t—%), (24)
7(t) = p(t)Ir?, (25)
and
€(t) = Cr(1), (26)
the equation 23 now transforms into
At
Al = —e(t)At + () I(t + T)A(t) (27)
Al At
= —e(t) + T(t)I(t + —2—) (28)
When At approximates to 0, the increments become differentials:
dr
5 —e(t) +r(t)I(t) (29)
%— —T(t)I(t) = —¢(t) (30)

The integrand factor of this ODE is exp (— fot 7‘(u)5u> (see appendix B).
Multiplying both sides of equation 30 by its integrand factor,

(5 - rO1)) - exp (- / t )i ) = ~e(t)exp (- / t i) (8
5%— <I(t) - exp (— /Ot r'(u)d’u)) = —¢(t) -exp <— /Ot T(“W“) (32)

Now, integrating both sides from 0 to D,

I(D) - exp (— /OD T(u)5u> - I{0) = /OD —e(t) - exp (— Atr(u)5u> &t (33)
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(0)

D)

Do
(b)

Figure 10: (a) The extrems of integration: ¢ = 0 is the viewer
position or alternatively the point where the ray enters the vol-
ume; ¢t = D is the infinity, or alternatively where the ray in-
tersects an opaque surface, or alternatively where the ray exits
the volume. (b) Usually the volume is represented as a three-
dimensional array of cubic cells; in that case the extrems of
integration are the points where the ray enters and exits the
array.
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I(0) = I(D) - exp (— /OD r(u)5u> + AD €(t) - exp <-— /; T(u)éu) 0t (34)

The point ¢ = 0 corresponds to the viewer position, or alternatively, to the
point where the viewing rays enter the volume extent, while ¢ = D corresponds
to the point where the viewing ray exits the volume extent. This is shown in
figure 10.

The point ¢ = D is the point where the volume ends. If the scene being
rendered is a volume surrounded by surfaces, then t = D corresponds to the
point where the viewing ray first intersects one of the surfaces. Therefore I (D) is
the light intensity coming from that point on the intersected surface. F requently,
in volume visualization applications, the scene is only composed of pure volume.
In that case, I(D) is just a constant background intensity.

Next, I(0) is simply substituted by I, and I(D) by I,. This term Iy is the
intensity coming from behind the volume, either coming from a surface or being
a constant background intensity.

I= AD €(t) - exp (—- /Ot 7'(u)(5u> 6t + I - exp (—- /OD T(t)dt) (35)

It should be noted that some authors neglect this second term in equation 35,
which is equivalent to consider I, = 0 : a black background. Anyway, whatever

visualization algorithm is used, the term I, - exp (—— fOD T(t)&) is easy to be
added.

The meaning of the terms included in equation 35 is next described in more
depth.

4.4.2 Explanation of some terms.

The term 7(t) receives several names as extinction coefficient, optical density.
interaction coefficient and also, abusively. opacity. 7(t) = p(¢)IIr®, where plt) is
the density at point ¢ (defined as the number of particles per unit volume)
and IIr?, the projected area of a particle (if particles are considered to be
spheres with radius r). As the particle model is an abstraction that does not
always correspond to the reality (ie., brain is not composed of spherical par-
ticles), the expression 7(t) = p(¢)IIr? is not always computable. Instead of
that, what is done in practice is to map = to the scalar field f being visual-
ized. This mapping is done by means of, what is called, a transfer function.
7(t) = Transfer_function(f(t)), for some Transfer function. This expres-
sion is much more useful.

The function r(t) varies from 0 to +oc. If normalized, 7#(¢) = 1~e~7) varies
from 0 to 1 [WM92] and it is understood as the probability of light incident at
t towards the observer to be occluded at ¢.
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The source term ¢€(t) represents the light intensity in the view direction
contributed by the particles inside a differential volume around ¢, due to self
emission. Considering particles, as it has been done, leads to the expres-
sion €(t) = C(t)7(t) (equation 26). The expression C(t) may be a constant
[Sab88][MHCY0], or may effectively depend on ¢. Later on, C(t) has been set to
be a function also depending on the wavelength of light [WM92]. But for the
expression of €(t), it is also possible not to rely on particles and to consider the
functions €(t) and 7(t) simply continuous functions that characterize the optical
properties of the medium. This latter approach is more flexible, because is not
restricted to e(t) = C(t)7(¢), allowing €(¢) to be mapped independently from
7(t) [WGO1] [CCH95]. As Nelson Max points out in [Max95], furthermore being
possible to define ¢ in such a way that it is not related to 7, it is even possible
to map them from different scalar fields.

The expression exp (—- fot 'r(u)éu) is the transparency of the medium be-

tween point ¢ and the observer. By analogy, exp (— fOD T(t)Ji) is the trans-
parency of the entire volume in the viewing direction, parametrized by ¢; and
T: = exp (— f:_"“ T(u)&u) is the transparency of the segment from ¢; to ¢;41.

The expression a; = 1 —=T; = 1 —exp (-— f:ﬁ‘“ ‘r(u)du) is the opacity of the
segment. It is possible to work with transfer functions that directly map the
scalar field to transparencies and opacities.

The optical properties of a medium, that is 7, ¢, T, a are all functions
that strongly depend on the wavelengthof light. For color images, they are
approximated as a vector of three components, R, G and B. So, the values
of these functions are set to scalar values for gray-level images and are set to
vector values for color images. As mentioned above, their values are computed
using transfer functions, which are often greatly arbitrary.

4.4.3 Adding a Single Scattering.

The optical model explained in the previous subsection models only self-emission
and absorption and is mathematically expressed in equation 35. It may easily
be extended, replacing the source term ¢(t) by a new source term g(t) that not
only accounts for self-emission, but also allows a single scattering.

I= /(f g(t) -exp (— /Ot T(u)éu) 6t + Iy - exp (-— ‘/OD r(t)ét) (36)

being g(t) the addition of the self-emission term €(t) and a new scattering term

S(t) :

9(t) = e(t) + S(t) (37)

There are two kinds of scattering: volume scattering and surface scattering.

28



Figure 11: An in-scattering event at ¢ of the light coming di-
rectly from the source.

Volume scattering

Equation 35 was an exact expression of the light reaching the observer for a
medium that could emit and absorb light, but did not scatter it. Equation 36
Is an aproximation of the light reaching the observer through a medium that
emits, absorbs and scatters light.

The scattering term S(t) in equation 37 counts the amount of light coming
from the light sources that is scattered by the particles at ¢ in the view direction,
that is, an in-scattering event (figure 11).

As the particles of the medium scatter light, a great amount of interaction
between particles may exist. The contribution of light incorporated to the view
direction after several scattennﬂ collisions (figure 12) should also be counted.

The phenomenon deplcted in figure 11 is called single scattering. Multiple
scattenng may also appear when several collisions are considered, as it is shown
in figure 12. The optical model of equation 36 only considers the single scatter-
ing. The albedo of a particle is the ratio of its incident light that is scattered
in any direction; that is, the albedo is the particle’s reflectivity. If the albedo is
low, the contribution of multiple scattering is neglectable. So, equation 36 is a
good approximation in the low albedo case.

The volume scattering at a position X in a direction w is characterized as
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Figure 12: A multiple scattering path.

S(X,w) = ry(X,w' w)i(X,w') (38)

rv(Xaw/aw) = a(X)T(‘X)p(wl’w) (39)

w and «’ could be any direction, but in this formulation they must be set
to the viewing direction and the lighting direction, respectively,

i(X,w’) is the light intensity reaching X coming in direction w’, that is,
from the light source,

7y (X, w,w’) is the bidirectional reflection distribution function,
a(X) is the albedo of the particles at X,

and p(w’,w) is called phase function and specifies the directionality of the
scattering.

Although equation 38 manages only one external light source, it may easily
be generalized to several external light sources. At the beginning of this section,
scattering wasn’t considered, so the ratio of light occlussion 7 in equation 35 was
only due to absorption. Now in fact this occlussion is due both to absorption
and scattering, so 7(t) = 74(t) + 7(t), being 75 (t) = a(t) + 7(t) and 7 (t) =
(1 —a(t))r(t).
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Some volume phase functions are discussed in [Bli82] and in [Gla95].

Surface scattering

Sometimes in volume rendering the user’s interest is put on the visualization of
isosurfaces. For instance, in medical imaging, it is important to visualize the
surface of the organs. In such circumstances, when the goal is to enhance a
surface within the volume, surface scattering is used. The surface scattering
term is expressed again as

S(X,w) = r(X,w,w)i(X,w') (40)

but now, the bidirectional reflection distribution function rs(X,w,w’) corre-
sponds to the ones for surfaces, as the ones used in surface shading models, i.e.,
Lambert or Phong. This function requires the normal vector of the surface,
which is unknown, but may be estimated in several ways, as it is described in
section 5.3.2. Usually, it is aproximated at each point X as the gradient vector
of the field f that is visualized.

The model of equation 36 is the most used in volume visualization. It is
intended to simulate the propagation of light through a low albedo medium.
It allows self-emission, absorption, and a single scattering of the light coming
directly from the source. In the next it will be called Single Scattering Model.

4.4.4 Shadowing and Multiple Scattering.

Light coming from the source that is reflected towards the observer by a particle
or by a surface, suffers from attenuation along all its path. That is, not only
the light is attenuated from the particle/surface to the viewer, but also from
the light source to the particle/surface. These effects are called blocking or
shadowing and masking, respectively (see figure 13).

Wether shadowing is considered or not depends on which expression is used
for i(X,w') in equation 38 and 40. If L is the light intensity of the source and
i(X,w' is set to ¢(X,w’) = L, shadowing is not considered. To consider the
shadowing effect, {(X,w’) must be set to

k
{X,w') =L exp (—/ T(LP + u’w’)du’) (41)
0

being LP the lihgt position, and k the distance from the light source to X.

As it has already been explained, multiple scattering accounts for the inter-
reflections between particles. Their consideration implies the solving of integral
equations, usually by means of stochastic methods. In [Max95] an abstract of
solving strategies is made.

Although shadowing and multiple scattering are supposed to produce a more
realistic rendering, they complicate the equations, and the time to compute
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Figure 13: Light coming from the source suffers from atten-
uation along all its path towards the viewer: shadowing and
masking.
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them increase greatly. It is not clear whether or not this extra computation
effort is justified. In applications that model real environments inmersed into a
participating media, these effects are considered, because the goal is to produce
a realistic image. But in medical and scientific visualization applications, result
images are not supposed to be realistic. Most papers do not take into account
shadowing nor multiple scattering. So, attention will be payed only to the Single
Scattering Model without shadowing.

4.4.5 Equivalence of approaches.

In section 4.3, the derivation by Arvo in [Arv93] was followed. A complete
medium was first considered, and later on simplified to a medium that only
absorbed and emmitted light. In Max’s paper [Max95], whose derivation has
been followed in section 4.4, such a simple medium was considered since the
beginning. The resultant equations of such approaches, equations 20 and 35
respectively, are equivalent, as it will be showed here.

Remember both equations:

D

D =
L(r,w)=¢e" Js a(r”w)dxebkg +/ e X U(Hyw)dye(r —-zw,w)dz  (42)
0

I= AD €(t) - exp <—— /ot 7'(u)<5u> 0t + Iy - exp (-— /OD r(t)ét) (43)

Defining the functions
L(z) = L(r - zw),
G(z) = o(r — zw),
and é(z) = e(r — zw),

equation 42 rewrites as °

~ D Ao - D = et
L) = e o "<'”>d’”ebkg+/ e s CWIWe ) da (44)
V]

Now identifying equivalent terms in 43 and 44 is straightforward. Both
equations express the same, but use different notation.

L(0) =
o= T
E = ¢

tokg = Iy
r = i
y = u

€Tt is just a change in notation of 42 to make more evident its equivalence to 43.
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5 Computation of the optical model.

5.1 Computation Methods.

Remember the equation corresponding to the Single Scattering Model, equation

36:
[= /0 " o) exp <— /0 t T(u)5u> 5t + Ip - exp (— /0 ? 1-(t)5t> (45)

The explanations will be focused on how to compute the first addition term,
being then straightforward the computation of the second one.

To compute the integral

/OD g(t) -exp (—— /: T(u)5u> ot , (46)

it is first broken into pieces.

Let’s be {t1,...,tn41} a partition of the interval of integration, [0, D], in n
pieces (n > 1). That is, t; = 0, th41 = D, and 1 <ip <13 < ... <inq1.

/OD g(t) -exp (— ./Ot T(u)du) ot =
= g/jiﬂ g(t) -exp <— /: T(u)6u> ot =
= g/:i+l g(t) -exp (—— /ht r(u)du — /tj T(u)éu) ot =

- zn: /ﬁ t+ o(t) - exp <— /t t r(u)au> . exp <— /t tT(u)&L) 5t =

i=1 T

respect to t, it is a constant
n

tit1 t ti
= Z(/ i g(t) - exp (—- / r(u)du) 3t - exp <-—/t T(t)§t>) =...

i=1 ¢
(a) (&)

To shorten, let’s call G; to the term (a) The integral in (b) is again a
sumation of integrals, and so (b) is a product of exponentials.

:;(G; -:];[lexp (—/

(e)
And again to shorten, calling 7; (for transparency) to the term (c),

tit1

T(t)ét)) = ...

»
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i—1

n
o= (G T T)
i=1 i=1
It is clear from the development made above that the second addition term

in equation 45 also reduces to a product of exponentials. Thus, equation 45 has
reduced to

n i~1 n
1= 6] m)+ 5 I 5 (47)
i=1 i=1 Jj=1

with

titr t
Gi = g(t) exp (—/ r(u)5u> dat fori=1..n (48)
£

ti

L]

Eit1
Tj = exp (—/ T(t)&) forj=1..n (49)
..

The integrals in equations 48 and 49 may be computed numerically, or sim-
plificative assumptions may be done that allow to compute them analytically.
Whatever way they are computed, equation 47 expresses how the terms G; and
T must be composited; but it does not fix the order of the sumation. Equation
47 may be evaluated in Front to Back or in Back to Front orders. Front to Back
requires an accumulator for transparencies (or alternatively, opacities), but it
allows to stop the summation when the accumulated transparency is smaller
(or alternatively, when the accumulated opacity is bigger) than some thresh-
old value. Back to Front, however, does not need that accumulator, but the
summation has to be made entirely.

A survey of numerical integration methods may be found in appendix C.
Next, some of the simplifications usually made are explained. Of course, being
simplifications, they introduce an error. The simplifications are labeled with
letters from A to G.

A. Suppose that g(t) is proportional to 7(t) in each segment (equation 26).

This allows the G; to be computed analitically.
9() = CiT(t) Vit € [ti,ti41], with C; e R+ and for i = 1..n

G; /t ;m 9(t) - exp (— /t t 'r(u)é'u) 5t =

tit1

| Girlt) e (- /t j T(u)5u> 5t =

tig1 6 t
- G / 2 ep <- / T(u)6u> 5t =
> 5
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ty

= G [1—-exp (- [ T(u)éu)]“ﬂ
c; (1 _ exp (- /t jm r(u)au)> =

= Ci(1-T)

And then equation 47 may be rewritten as
n i—1 n
1= ca-1)][% + LT (50)
i=1 j=1 j=1

B. Only with the assumption A, the transparencies T' may be computed in
whatever way. Now, further assume that 7 is constant in each segment.
rt)=7 Vit €[t tiy1], with € RT andfori=1..n

Gi = .4 .. =G (1—-exp <—/tf‘+1 r(u)au>> =
- G (1-—exp (- /t t+ mm)) -

= Ci(l —exp(=ni(tiy1 —4))) = Gi(1—exp(-nl)) =
= G(1-T))

where [; is defined as I; = #;41 — ¢; and is the length of the segment
[t:,ti+1) and T/ is defined as 7] = exp(—m:l;) and is the transparency of
the segment [t;,%;41], under assumption B.

When an optical property is assumed to be constant along a ray segment,
as it has been done for 7(t), what is usually done is to measure the property at
some point i, t < i < ;41 of the segment. It is common to choose t; to be
the middle point of the segment, or one of its extrems; but it may actually be
whatever interior point. When the ray segments have all of them equal length,
the points #; use to be equal-spaced.

Another possibility to set a constant value for an optical property inside a
ray segment is to compute the property in the extrems of the segment, and
average them, as pointed out in [WG91} and in [WM92]. For 7(t) in the interval
[ti,tiz1] this would be 7; = 3(7(t:) + 7(ti41)). (What is the trapezoidal rule ~
see appendix C ).

Equation 47 rewrites as
n i—1 n ‘
1= -7+ L7 (51)
i=1 i=1 i=1
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Defining a; = 1 — T/, the opacity of the i-th segment,

n i-1

12201'0(5 H(l—aj) + I H(l-—aj) (52)
i=1 j=1 i=1

This is the expression for the intensity along a ray used in [Lev88] and
[Lev90]. This formulation is an itered application of the over operator of Porter
and Duff [PD84].

Forn=1, I = Cia;+L(l -—a1) = Cias over I, ©
Forn=2 I = Crar + Ceaa(l — a1) + (1 — a1)(1 — )

*

= Cia; over Coovy over I

In general, forn, I = Ciay over Chas over Csas over ... over Chay, over I

The over operator is not conmutative, but associative. In this way, equation
52 still accomodates both Back to Front and Front to Back evaluation orders.

I = Cha; over Coas over. .. over Cpa, over Iy =
= ((-..(Cra1 over Cyas) over ...) over Cpory) over I, = <—Front to Back
= Chay over (Caaz over (... over (Cpa, over Ib) ...)) 4—Back to Front

C. Consider g(t) is constant in each segment, not necessarily proportional to

7(t).
9(t) =g; VYt €t tiy1], withg; e RY andfori=1..n

tiga t
Gy = / g(t) - exp (—/ r(u)6u> 0t =
¢ £

t

[PERY t
= gi/ exp <—/ r(u)()"u) )
ta t

D. Furthermore considering C, suppose also that 7(¢) is constant in each seg-
ment.

Tt)=mn Vi€ [titin), withn € R+ and fori = 1..n

"William and Max in [WM92] describe this composition as C; a4 atop Iy. The atop operator
is another operator described in [PD84]. This statement is true only because the background
is opaque, that is, o = 1.
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tig t
G; = gi/ exp (—/ T,-5u> 0t =
ti ti

tig1
= o [ explne (- t)i =
t;

gi titr

= 2 —1; - exp(—7; - (t — &;))0t =
—T; t;
Jl 141

= Ll -t =

= —gi(ew:p(—rz Iy-1)=

= L - exp(-mi ) =

= fig_

= La-m

Then equation 47 becomes

n i-1
9i /) / '
ZEI—T 11 +IbHT (53)
i=1 j=t =1

This is done in [CCH95] and in [WG91]. Note that B is a particular case of
D (g: = Cim).

As explained before, the values g;, 7 may be obtained sampling the ray
segment. Even though usually both ¢(t) and 7(t) are sampled in the same point
of the segment, this is not strictly necessary.

If the sampled value of 7 results to be 7; = 0, then G; = g; - ;.
E. The simplifications above consisted of setting g(t), or 7(t), or both to con-

stant values along each segment. Another possible simplificative assumption

is to consider that these functions vary piecewise-linear along each segment
([WM92],[WGI1]).

F. Functions g(¢) and (t) depend on the wavelength of light. Frequently they
are considered to be three-valued functions

T(t) = n(t) = (Tred(t)aTgreen(t)aTblue(t))

g(t) = ga(t) = (greal(t), ggreen(t), gorue(t))

A simplificative assumption also possible consist of considering 7(t) to be
independent of wavelength. In such a way 7(t) is a single-valued function, and
less exponentials have to be computed ([WG91],[MHC90}).

To save computation effort is also possible, if assumption B has been made,
to approximate the opacity o; = 1—exp(r;-l;) by min(1, 7;-1;) as in [WG91]. The
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(a) (b)

Figure 14: (a) ray casting methods; (b) projective methods.

mathematics behind this approximation is an application of Taylor’s theorem,
and may be found in appendix D.

G. Assumptions D and F are made in [WG91] and in [TPN95].

Gi=Z1-1)

T3

T! = exp(~nik)
and (1 — T}) is approximated by min(1, 7;{;).

The magnitude r/; is usually < 1; as a consequence, G = L . rl; = g;l;.

-
L

This is called by Wilhelms and Van Gelder, “color times distance” integration.
Note that these assumptions are equivalent in the result to consider that there
is no absorption inside the segment, thar is, % = 0 in the development of D.
But that does not lead to an only emission model: what is assumed implicitly
in these papers is that light emitted inside a segment (cell) is not attenuated in
that segment but it is in the other segments or cells towards the observer.

Novins and Arvo, in [NA92], apply standart numerical integration methods for
the computation of equation 46; bounds of the error are given for the particular
case when functions g(t) and 7(u) in the integrand are polynomials: If the
integral has to be computed along a viewing ray with a prescribed accuracy ¢,

the integral at each voxel traversed by the ray is computed with accuracy —‘)n-
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(where n is the total number of cells the ray traverses). The authors present a
more sophisticated evaluation method in [NAS92]. This method allows a major
speed-up by setting the accuracy adaptatively along the ray. The philosophy is
to concentrate the computations in the ray segments where the error may be
largerly reduced. :

5.2 Projection strategies.

To visualize a volume, two families of algorithms exist &:

o those that cast rays from the observer’s eye through the volume (one or
more rays per pixel), which are called ray casting methods.

o those that project cumulatively the cells of the volume on to the image
plane, which are called projective methods.

As equations reported herein are physically based, as it has been seen, they
are equally true whatever algorithm is used. Although looking the equation it
seems that leads more naturally to ray casting algorithms, they also hold for
projective methods and are also applied in them.

It was said in the previous section that, usually, to compute the integrals of
the cumulative intensity in the emission-absorption model, these integrals were
broken down into pieces. In this way, the path [0, D] through the volume was
partitioned in n pieces:

[tlatf.’]-, [t21t3]) Tty [tn—l,tn]y [tn;tn+1]

being ty = 0 < ta <t3 < ... <tpo1 < tp < tny1 = D, and being I; defined as
the length of the i-th segment, that is, {; = ¢;41 — ;.

Usually, two kinds of partition may be made. The first one is an equidistant
partition, that is, all the n segments have the same length; ¢; = (i — 1) - % and
li = %—. The second one breaks the ray into the segments intersected by the
cells of the volume, so the partition is not equidistant.

In ray casting algorithms, it is possible to partition the ray equidistantly
([Lev88],[Lev90],[Sab88]). or to partition it accordingly to cells intersections
(JUK8R]). In projective algorithms, however, as the process is made cell by
cell, integral may be partitioned only at the extent of the cells that form the
volume representation ([MHC90], [WG91], [WM92]). In these algorithms, the
values of each projection are related with the light transfer integrals along view
directions through the pixels of the projection and inside the cell extent, while
the cell compositing is related to the combination of the integral pieces to give
the final intensity.

8These two families of algorithms also receive the names of “image order” and “object
order”, respectively.
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In this way, ray casting and projective methods only differ in the order the
computations are made. In ray casting the lighting model is computed entirely
along a ray, one ray at a time. In projective methods several integrals are
computed simultaneously and incrementally, as the cells are being projected,
and the intermediate results are stored in an image buffer. See figure 14. At
least theoretically, both kinds of methods should report the same image results.

Next, an explanation of the projective methods in papers [MHC90], [WG91]
and [WM92] follows. In [MHC90], Max et al. suppose an arrangement of convex
volume polyhedra (i.e. tetrahedra), eventually separated by contour polygons.
Polyhedra and polygons are sorted in depth, and projected on the screen, either
back to front or front to back, compositing the color and the opacity of the
individual elements as in 47. To compute such color and opacity of each volume
polyhedron, the emission-absorption model is used, assuming that g is related to
7 by a constant inside each polyhedron and assuming also that 7 is an analitically
integrable function. This allows the integrals in 48 and 49 to be calculated not
only analitically, but also incrementally inside each convex polyhedron.

Wilhelms and van Gelder also exploits coherence in cell projection in a sim-
ilar fashion [WG91]. Noticing that the orthogonal projections of the cells of a
regular grid have all the same shape, the scan conversion of the faces of a cell
need to be made only once. A model cell is subdivided into subcells, pieces
that have the same front and back faces and which projections are not crossed
by any projected edge. Depending on the point of view, a cell may be subdi-
vided into one up to seven subcells. Each subcell projects onto a polygon in
the image space. For each cell, color and opacity are computed by integration
in depth for the vertexs of those polygons. Several simplificative assumptions
may be done in that computation. Finally the computed values are bilinearly
interpolated across the projection, and composited either front to back or back
to front. Interpolating optical properties instead of the scalar field, Wilhelms
and van Gelder lose in image quality; in Max’s words [Max95]: “Interpolating
[ first permits the optical properties to change rapidly within a single volume
element, to emphasize a small range of scalar values. It is possible to compute
the optical properties only at the grid vertices and then interpolate them in-
stead, but this may eliminate fine detail. This situation is analogous to the
superiority of Phong shading (interpolating the normal) over Gouraud shading
(interpolating the shading color) for representating fine highlight detail.” The
authors sacrifice some of the image quality by the speed-up achieved by using
specialized hardware devoted to Gouraud shading of polygons.

Similar ideas of those exposed in [WG91] are presented in [WM92] by Williams
and Max. Emission and absorption model is employed in this paper to derive
an expression for the integration in depth of color and opacity inside a volume
cell. Some assumptions made in [WM92] coincide with those in [WG91], such
as approximating the opacity @ = 1 — exp —7;/; by 1/;. But Williams and Max
differ from Wilhems and van Gelder in that the former consider the source term
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g(t) depend linearly on the optical density 7(t), (9(t) = C(t)7(t)). The resul-
tant integral of their model has closed form solution when the transfer functions
that map the scalar field to the optical properties 7(t) and C(t) are linear or
piecewise linear, and the scalar field within the cell is integrable.

It is understood that in all these three methods, the more pixels a cell
projects on, the more advantage is reported by coherence.

5.3 Surface visualization.

In volume rendering, if contribution of all cells is considered using a volume
scattering term, or emission and absorption only, the volume appears in the
image as a kind of cloud, nebulous jelly. Such a projection of all the information
contained into the volume data may result difficult to be interpreted. It is
sometimes preferable, as it has already been said, to visualize just a part of the
volume data: isovalued surfaces.

An isovalued surface, or isosurface, is the set of all points in the space that
share the same value of the scalar field. To achieve the visualization of an ar-
bitrary surface, two main approaches exist: the explicit extraction of geometric
primitives that approximate the isosurface and the visualization of the isosurface
‘on the fly’, directly from volume representation. The former approach is called
isosurface reconstruction and requires two steps: surface extraction, either with
the cuberille method [CHRU85], the marching cubes [LC87], ..., and surface
shading. The shading is done with any of the standart methods exposed in
section 3. Moreover, specific shading methods have been developed for cuberille
surfaces, both in object and image spaces, as reported in [CHRUSS]. In the
latter approach, which receives the name of direct volume rendering, also two
steps are performed: surface detection and surface shading. Surface shading is
a common step in both approaches, and it implies the estimation of the surface
normal.

In the next sections, the steps for direct volume rendering will be tackled.

5.3.1 Surface detection in direct volume rendering.

Similar results to the ones of reconstructed surface visualization may be ob-
tained without the explicit construction of any geometric mesh, simply by the
application of the single scattering equation with a transfer function for 7 that
maps scalar values to 7 = 0 to 7 = 400 according to a binary classification.
Figure 15 shows examples of such a mapping.

1t should be noted that due to the caption device limited precision and due
to noise, it is difficult to find an arbitrary classification function to accurately
represent and object surface. It possible to miss voxels that belong to a surface
and/or accept others that do not. This translates, when visualizing, to loss of
detail, holes on surfaces, and spureous voxels.
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(a) (b)

Figure 15: Mappings from f to T have been substituted by
mappings from f to a, because of the difficulty of representing
+00. (a) threshold mapping (b) window mapping.

A solution is to consider probabilistic answers to the classification process,
instead of binary ones. Three approaches will be cited here that rely on prob-
abilistic classification methods and that deal with biomedical CT data. The
CT measurement of human tissues (bone, sofgt tissue and fat)? does not result
on a single characteristic value for each tissue, but a range of values around a
characteristic one. The range of tissues overlap, and so for a given measured
value is not always clear what tissue it corresponds to. To visualize the surface
between tissues, it is of great importance to be able to classify correctly each
sampled point.

[Lev88] and [DCH88] make a simplificative assumption about possible tissue
adjacencies in the volume data: at each location any tissue type may touch at
most two other types and, if tissue types are ordered by CT number, the only
possible adjacencies are between consecutive types in the ordering.

Be fi, f2, f3 and f, four material characteristic values, and be o, o9, a3
and a4 the opacities assigned to these materials respectively. Any value of f
either coincide with one of the characterisitic values or is placed between two
of them. When a value f(z) is between the characteristic values f; and fiv1,
Levoy, in [Lev88], assigns to it an opacity by interpolating between «; and iy

VH@) - (e L85 g, La=llel) i i < £(2) < fin

afz) = and for ¢ = 1..3

0 otherwise
(54)
The gradient of f at point z is used as a surface presence detector; it is also
used for this purpose in [DCH88] and in [CCH95]. Multiplying by the gradient,
homogeneous regions are set to transparent or almost transparent, while surfaces

are emphasized. The quantities £&1=f apg Liti=f(@) may be understood as
a fl+1_ft fiv1—fi ,

2 Air is also sampled in the data, corresponding either to the exterior of the body, either
to the interior of the lungs.
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probabilities of value f(z) to belong to materials ¢+ 1 and 7, respectively. With
Levoy’s method what is displayed is not a thin isosurface but rather a thick
boundary region that allows fine detail to be displayed, although with small
opacity.

The segmentation of Levoy is based only onto the single characteristic values
fi. A more accurated predictor may be made by using the value distribution
functions of each material, that are known a priori. Drebin et al. in [DCH88]
use such distributions to better estimate the percentage of a material inside a
cell. They use a Bayesian estimator.

P(lf(a)) = e LD (59
2 =1 P(f(2)]))

where P(i|f(z)) is the probability that a value f(z) were obtained from material
i, and P(f(z)|j) is the probability that material j had a value f(z) which may
be known a priori. P(i|f(z)) estimates the percentage of a voxel with value
f(z) occupied by material i. Once P(é|f(x)) is determined for all materials, the
optical properties of the voxel are computed by averaging characteristic colors
and opacities of the materials, according to their presence percentages.

Both [Lev88] and [DCH88] only allow mixtures of consecutive materials in
the CT ordering. They can not determine mixtures of separate materials as fat
and bone for instance, that actually may appear in data. Cai et al. [CCH95]
propose a new and more sophisticated probabilistic segmentation that deals
with these cases correctly and allows up to three materials adjacencies in one
voxel. Unlike [Lev88] and [DCH88], furthermore considering the value of f and
its distribution, the gradient of f is also taken into account in the segmentation
process. The probability that the current sample belongs to one material is a
two dimensionmal Gauss distribution function of f and its gradient.

P(X]i) ~HX=M)T € (X -My)

e (56)

1

27/1C1
where X is a vector (f(z), Vf(z)), M; 1s the peak position of the gaussian dis-
tribution of X, and C"is the covariance matrix between f and Vf. For each
sampled value, the corresponding probabilities are calculated for all material.
The probabilities that exceed some threshold indicate the presence of such ma-
terial in the voxel. A surface exists when more than one material is present in
the voxel. To project the volume they use a ray casting scheme, and shading
is done by what they call the Composed Scattering Model: a single scattering
term that is a weighted sumation of surface scattering and volume scattering.
The corresponding weights are computed from the probabilities supplied by
the segmentation scheme. The combination of this sophisticated segmentation
method and the composed scattering produce high quality images. The Com-
posed Segmentation Model is subsumed by the optical model of equation 36, by
expanding the term g(t) as
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9(t) = €(t) + k1S, () + k25, (2) (57)

5.3.2 Surface shading in direct volume rendering.

Once a point on a surface has been detected, its f value estimated, and it
has been classified, it is shaded using a surface scattering term as explained in
section 4.4.3. This computation requires the surface normal at the point, which
is approximated by the gradient vector at that point.

In cubical or hexahedral grids, the gradient at a corner of each cell is cal-
culated either as backward, forward, or central differences 1°. For each point
inside a cell, the gradient at that point is calculated by trilinear interpolation
of the gradient vectors of the cell’s corners.

In linear tetrahedral grids, as the scalar field varies linearly inside each tetra-
hedron, the isosurfaces are planar and the gradient vector is constant inside each
cell. To compute the gradient vector at each vertex of the grid is done by aver-
aging the gradients of the cells concurrent at that vertex.

6 Conclusions.

This report addresses lighting models and shading algorithms for Volume Ren-
dering.

Light theory has been briefly reviewed, showing that the particle mode] is
the more suitable for Computer Graphics.

Light transport mechanisms through volumes have been described. In the
bibliography, different derivations of the light transport equation exist using
different, though equivalent, notations. An attempt has been made herein to
unify these notations and show the equivalence between the optical model of
[Max95] and the general light transport theory exposed in [Arv93].

It has also been found that for most computer graphics purposes. the general
light transport model is considered too complicated and simplified by limiting

10In [DCHS8S] gradient is computed as forward differences, but what is most common is to
calculate it as central differences, [Levg8].

Vector V f, gradient of f, at point (%:,v5,21) is a three component vector

fx' yYg1 2k _fxi—' s Yji 2
szz (t+1 ) k)zsr( 1,Y; k)

floiyiv,zk) — flenyy—12)
Vi, = 5

v/ = flei ys,ze41) = F@i,y50 26-1)
N 2S: ’
where Sz, Sy and S; are the distances between neighboring samples in the z, y and =
directions, respectively.
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to one the number of scattering events per particle. This simplified model is
called the Single Scattering Model.

The analysis of the existing rendering litterature reveals the existence of a
gap between the light transport model and practical shading algorithms. In
order to fill this gap, the underlying assumptions of the most relevant shading
algorithms have been exposed, both in ray tracing and projective approaches.

Many open problems exist in volume shading. First, as full volume visual-
ization may be confusing, the outlying of relevant features such as isosurfaces is
of great importance for a correct understanding of the data. Features character-
ization requires an accurate and effective segmentation process. In addition, a
classification or labelling of the features is essential in order to compute optical
properties allowing to simulate the desired behaviour of the features with light.
Research on this topic is needed, as the existing methodologies still mostly rely
on manual processes.

The computation of the single scattering equation is the kernel of the shading
process. Its efficiency is crucial for the interactivity of the rendering. The study
of acceleration techniques for this process without loss of precision is therefore
essencial.

Finally, although the Single Scattering model may be applied both to ray
casting and projective methods, the error metric in the latter case has not been
fully analyzed. A promising research line is the investigation of a splatting
strategy that could project voxels of different size and should be equivalent in
the result to a ray casting method with any prescribed accuracy.
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A Glossary of terms used in surface shading

é\l’\l

3

D&

o<

fatt,-

fa
s

models (tables 1 and 2).

light intensity, or color

ambient light intensity

number of point light sources

light intensity of the i-th light source

normalized vector along the direction from the point where shad-
ing is computed to the i-th light source

surface normal at the point where shading is computed
ambient-reflection coefficient

diffuse-reflection coefficient

specular-reflection coefficient

specular-reflection exponent

perfectly specular reflection direction of the i-th light source
viewing direction (from the shaded point to the viewer)

half way vector corresponding to the i-th light source (in the mid-
dle between S; and V)

light source attenuation of the i-th light source

1
.= min , 1
o, <01 + cad; + cad;® )

where d; is the distance from the shaded point to the i-th light
source, and ¢i, ¢a, c3 are user-defined constants

ambient-reflection coefficient

specular-reflection coefficient

diffuse-reflection coefficient
(s+d<1)
diffuse term (fy = 1)

specular term for the i-th light source

F-D.G;

R AT %)

1| =

where,

D, distribution term, describes the microfacet’s slope distri-
bution function, (that is. the shape of the grooves). It is
a kind of roughness measure. Different expressions for G
have 47
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been given by several authors

(;, geometry term, or geometric attenuation, measures the ef-
fects of shadowing and masking, that is, the block of light
towards microfacets and from microfacets to the viewer pro-
duced by the surface geometry itself.

Gi = min (1 , 2N H)(N-V) 2N - Hi)(N - S-i))

V- H; ’ V. H;
F, Fresnel term, computes the amount of reflectance as a func-

tion of the wavelength of incident light and its angle of
incidence

differential solid angle, with extrem at the i-th light source and
covering the surface area where the shading is computed

geometric term to include shadows caused by the i-th light source
(it is 0 if some object occludes the light in its path from the source
to the shaded surface point, 1 otherwise). This term may appear
explicitly, or may be embeded into the correspondent attenuation
function.

light intensity coming from specular reflection direction
specular-transmission coefficient

light intensity coming from specular transmission direction
radiosity of patch ¢

radiosity of patch j

the rate at which light is emmitted from patch ¢
reflectivity of patch ¢

form factor of patches ¢ and j; it specifies the fraction of energy
leaving patch i that arrives at patch j

number of patches the scene is discretized on
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B Ordinary Differential Equations.

Herein a very brief remainder of ODEs is presented, in order to facilitate the
understanding of explanations in section 4.4.

Definition : An ODE of n order is an equation in the n-th derivative.

Flz,y,¢,...,y™) =0
F(z,y,y)=0 first order ODE

-

Definition : The grade of an n order ODE is the exponent (K) of the n-th
derivative. If K = 1 it is a linear ODE.

B.1 Linear First Order ODEs.

o M(z,y)dz + N(z,y)dy = 0
is called exact ODE if %’;i = N

=L
In this case, is possible to find a solution integrating term by term.

o If 6—5% %‘% the ODE is not exact.

* When the ODE is not exact, it is possible to try to find an integrating fac-
tor. An integrating factor is a function y which satisfies that multiplying
the ODE by the integrating factor it becomes exact.

e Some cases that makes it possible to find an integrating factor:

1.
M N

'i—ﬁ'—x*=f(7«‘)

O

(f(z) function that only depends on z). In this case, the integrating
factor is u = o Flords

Jy or
T—ﬂ(y)

(9(y) function that only depends on y). In this case, the integrating

factor is u = ef —9(v)dy
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C Numerical Integration Methods.

Definition. A quadrature formulais an expression such as

L {f} =D anf(ze)
k=0

that approximates numerically the integral [ : f(z)oz .

The points z are called nodes, and are choosed in [a, b], equidistantly or
not. The values «y are called coefficients or weights. Once determined the
nodes, the weights, and the values of f at the nodes, the quadrature formula is
completely determined.

Definition. The precision of a quadrature formula In41{f} = 3 r_o o f(zk)
in [a,b] is the maximum m such that

b
Vi=0.m In+1{x"}=/ z'dx
a

That is, a quadrature formula has precision m if it integrates exactly all
the polynomials of degree < m.

In this appendix, some quadrature formulas will be examined.

C.1 Riemann sum.

Divide the interval [a, b] into n+-1 subintervals, using points &, €2, ... &,, in (a, b)
arbitrarily choosed. In each interval [a, &1], [€1,€2], .. -, [€n, b] choose points zg,
21, ..., In also arbitrarily. Defining, & = a, £py1 = b and A& = Sy — &y
the expression

> Ak flax)
k=0

is called a Riemann sum (geometrically, it is the total area of the rectangles in
figure 16).

Increase n in such a way that each A&y -+ 0. If the limit of the Riemann
sums exists and does not depend on the way the 2 have been choosed, then

this limit is f: f(z)dz. In this case is said that f is integrable or Riemann
integrable [Spi69].

A simple numerical method to “calculate” an integral consists of to approx-
imate 1t by a Riemann sum.
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Figure 16: An n terms Riemann sum for function f(z) in the
interval [a, b].

C.2 Newton-Cotes formulas.

This kind of quadrature formulas consists of to substitute the integrand f by
an interpolant polynomial in an equidistant partition.

Define
Pp(z) = Zyk Ly (),
k=0
where
yr = flazr)

(Lagrange interpolation), and the z) points form an equidistant partition of
[a,b], with step h = %22,

n

With the following change of variable, z = a +th and z; = a + ik, results

St

. o,
3O

i
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n cy Error!? Name
133 h3L 1 (€) Trapezoidal rule
2L &L h3 & FIV)(¢) Simpson rule
31524814 R FIV)(¢) 3/8 rule
4| B nsU R 55 FVD(€) Milne’s rule
5 | 3% 355 3a8 38 oas e v AN -
6 | 515 o5 o5 o0 gs AL | RO FVID (g Weddle’s rule
Table 3: Some common Newton-Cotes formulas.
and

=2 v enlt)
k=0

As it has been said, the integration method consists of substituting f by an
interpolator.

/f 5:E~/ c)a:-/a ZykLk Jw—Angyk¢k(t)6m:

k=0

:/ Zy,\yk t)hét = h}:ﬂ/ it 5t—nth;.-—/ ek (t)6t =
0 - o
n 1 n X n .
=<b—a>zyk;/ ok (1)3t = (b—a) 3w
o /0 i=0

The expressions C7 = + fo ¢x (1)t (0 < k < n) does not depend on f, a nor b,
and they may be precalculated for different values of n, as it is shown in table 3.

Define E, 11 {f} as

b
En+1{f} = In-l»l{f} - / f(x)5:c

That is, Eny1{f} is the error committed by the quadrature formula I, 41 {f},
which is a quadrature formula of n + 1 nodes.

In general, the expression of the error may be derived using the followmg two
theorems:

1 The indicated derivative of f must exist and be continuous. ¢ some point in {a,b).
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(a) (B)

Figure 17: (a) Trapezoidal rule. The function is substi-
tuted by a straight Lne. [, = b""‘( f(a) + F(b)). (b) Simp-
son rule. The function is substituted by a parabole. Iz =
224 (f(a) + 4f(a + h) + £(b)). The shadded area is the approx-
imation calculated by the quadrature formula.

Theorem. If n is odd and f is C**! in [a, ], then

Enri{f} = " + 1) hn+2f(”+l)( ) for some ¢ in (a, b)

where My = — [’ t(t—1)---(t = n)dt >0

Theorem. If n is even and f is C"*? in [q, ], then

RS p(nt2) () for some ¢ in (a, b)

Enpi{f} = (—“‘_*_—17
where My, := — [ t2(t ~= 1)+ (t —=n)ét >0
(The reader may check the column of the error in table 3.)

If nn is even, the corresponding Newton-Cotes formulas with n+1 and n+2
nodes have the same precision: n+1. So, when possible, is preferable to choose
the first formula, because with one node less achieves the same precision'?
Simpson rule is preferable to 3/8 rule, and Milne’s rule to the following formula
in table 3.

In figure 17 the well known trapezoidal and Simpson rules are illustrated.
Other integration rules of this kind may be found by using another type of
interpolation, instead of Lagrange interpolation, i.e. Hermite interpolation.

12This does not mean that the two formulas have the same error, but the difference is not
significative.

53



|
|
1
1
t
!
t
!
l
t
i
t
|

| 1
| !
1 !
1 t
| t
| t
| t
| I
1 t
! I
1 I

]
I
I
t
i
t
]
i
!
i
i
!
1

b

a a+h a4+2h a+3h a+4h b—h

Figure 18: Composited trapezoidal rule.

C.3 Composited Newton-Cotes formulas.

When the interval of integration [a, b] is large, the Newton Cotes formulas that
have been seen do not make a good approximation, as the error depends directly
on h = t=¢,

n

Trying to increase n, that is to choose a Newton-Cotes formula that uses
a higher degree polynomial interpolator, neither works, because high degree
interpolators, although interpolate f at nodes, vary wildly between them.

What may be done to integrate a function correctly in a large interval, is to
subdivide it into several subintervals, to apply a Newton-Cotes formula in each
interval, and to add the results. This gives rise to the composited Newton-Cotes
formulas.

Here. only composited trapezoidal and Simpson rules will be explained.
The generalization to other composited formulas is straightforward.

C.3.1 Composited trapezoidal rule.

Divide the integration interval into N subintervals of equal length. Apply the
trapezoidal rule to each subinterval, adding the results. It is shown in figure 18;
h=1%% NEeN.

Calling T'(h) to the total sum, and T;(h) to the trapezoidal rule in the
interval [a + th, a + (i + 1)A], results '

’
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Figure 19: Composited Simpson rule.

N-1
T(h) = Y Ti(h)
i=0
and
Ti(h) = & (f(a+ k) + fla+ -+ DB))
Then
T(h) = 3 (f(e)+ flath)+ o (fla+h)+ Fla+20) 4.

o g (e (N = DR} + F(8)

T(h) = % [f(a)+2f(a+h)+2f(a+2h)+...+2f(b—h)+f(b)

If the function f is C? in [a, b}, then the error committed when applying
the composited trapezoidal rule is

b—a
12

R2f(€) for some € in {a, b).

b
7(h) - [ flaype =

(g}
[S1



C.3.2 Composited Simpson rule.

Divide the integration interval into N subintervals of equal length. Apply the
Simpson rule to each subinterval, adding the results. It is shown in figure 19;
h=1%% NeN.

Calling S(h) to the total sum, and S;(h) to the Simpson rule in the interval
[a+ th,a+ (i + 1)A], results

and

Si(h) =

wil s

(f(a+2ih) +4f(a+ (20 + 1)R) + fla+ (2t + 2)R))
Then

(f(a) +4f(a+ h) + fla+2h)) +

(Ffla+2h)+4f(a+3h)+ fla+4h) + ...

w| & wl o>

4 -g (Fla+ (2N = 2)h) +4f(a + (2N = k) + £(3))

S(h) B [ fla)+4f(a+h)+2f(a+2h) +4f(a+3h)+...
+2f(b—2h) +4f(b—R) + f(b) ]

If the function f is C* in [a,d], then the error committed when applying
the composited Simpson rule is

b
b — .
S(h) ~/ Flz)oe = )T@Eh“f(”)(f) for some & in (a.b).

C.4 Euler-McLaurin summation formula.

If fis C*™*2 in [a, b], and T'(h) is the composited trapezoidal rule of N sumands
in [a, b], the BEuler-McLaurin summation formula states that:

b m
T(h) = / fle)be + Zh”-——gf")[ FE=D () — f<31-1>(a)]
a =1 ’
4RI ) e )
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where h = &2

and the By are the Bernouilli’s numbers, that may be defined by the recursive
formula

Bo =1
n n
Bn=3%1 k> By

The expression for T'(h) is an assimptotic expansion of the composited
trapezoidal rule in terms of even powers of h.

T(h) = Co +Clh2+C2h4+Cgh6+...+O(h2m+2)

T(h) is a first approximation to the unknown integral, Cy. If a better
approximation is desired, some terms of the expansion may be added to T(h).

C.5 Romberg’s method.

The expression T'(h) = Co + C1h? + ...+ Q(h*™+?) states that the error com-
mitted in a composited trapezoidal rule mainly depends on &.

Cutting in the first term,

T(h) = Co + O(h?)

This means that when dividing by two the step h, it is doubling the number
of trapezoids, the error reduces in the order of four times.

T(h) =Cy +¢

JORLE

It follows then that

T(5)-T(h) -

3 4

o

As Co =~ T(%) — §, results that the expression

- (g) RAC) ;T(h)

aproximates the integral Cp = f: f(z)dz closer than T(h) and T(%‘b.

/
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This is known as Richardson extrapolation.

The Romberg’s method consists of to apply Richardson extrapolation iter-
atively.

Romberg’s method.

Be hg an initial step (%—}f € N), and define h; := L"T“‘— fori> 1.

Define T; ¢ as T; g := T'(h;), the trapezoidal sum with step h;.

The successive refinements are found by the recursion

Tig1~Tici k-1

Lik=Tigk-1+ T

and may be placed in a triangular matrix.

The process goes on adding files to the matrix and it stops when two con-
secutive values T;p and ;41 are close enough each other. Either Tj i or
T;4+1k+1 may then be choosed as a final approximation, as desired (both values
will be very similar).

In practice, more than seven colums are never done; ifin the seventh column
the desired accuracy has not been achieved, the process continues adding files
with no more than seven components.

C.6 Gaussian quadrature formulas.

Up to now, equidistant nodes have been considered. It has been seen that with
n equidistant nodes, the maximum precision that may be achieved is at most n.
If the nodes are allowed to be not equally spaced, then the maximum precision
reachable with n nodes is 2n — 1, and it is achieved using Gaussian quadrature
formulas.

The Gaussian quadrature formulas solve the integrals of the kind

/ () Fle)br
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where w(z) > 0 is a continuous function in (,b), and the interval [a, 5] may be
infinite ([0, +o0] or (—o0, +00)).

Definition. Define the scalar product < f, g > respect to w(z) in [a, b] as

b
<fig>i= / w(@)f(2)g(z)sz

Definition. The functions f(2) and g(z) are said to be orthogonal if
< f,g>=0.

o

Definition. A polynomial p(z) = ajz? + a;_1297 + - - 4+ a1z + ag of degree
J (aj # 0) is said to be normed if a; = 1.

Definition.  Define IT; := {p | z; + aj_1zj-1 + - -+ + ao} as the set of all
normed polynomials of degree j.

Definition. Define IT; := {p | p(z) has degree < j} as the set of all polynomials
with degree less than or equal to 7, normed or not.

Theorem. For each w(z), an infinite sequence {p;};>0 of normed polynomials
exist, such that:

p; €1II; J=0,...,400
and Vi, <pi,p;>=0 ifi#j

Theorem. (main theorem of Gaussian quadrature)

If 21,...,2, are the roots of the n-th orthogonal polynomial pn(x) respect to
w(z) in (a, d)

and if oy, ..., @n is the solution of the system
- <pg,po> i=0
Zpi(xk)ak = '
k=1 0 fi=1,...,n~1
then

() Ye=1,...,n ap>0

. =4 b o A}

(17) Vp €llap_1 fa w(z)p(z)dz = ZZ=1. app(z)
The expression 3 p_, axp(zk) is the Gaussian quadrature formula, and the
weights and nodes are choosen as explained in the theorem. The following

theorem informs about the error committed with these formulas.

Theorem. If fis C*" in [q,b], then
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[a,b] w(2)

Name

[~
[~
[0, +c0) e~"
(-

1,+1] 1
1,+1] (1—22)=

W

oo, toc) e

Gauss-Legendre
Gauss-Chebyshev

Gauss-Laguerre

Gauss-Hermite

Table 4. Gaussian integration rules.

g

Tk

2

1.00000 00000 00000
0.55555 55555 55556
0.88888 88888 88889
0.34785 48451 37454
0.65214 51548 62546
0.23692 63850 56189
0.47862 86704 99366

~ 1.5683% 83888 83889

0.17132 44923 79170
0.36076 15730 48139
0.46791 39345 72691

0
£0.567735 02691 89626
+0.77459 66692 41483
0.00000 00000 000600
+0.86113 63115 94053
+0.33998 10435 84856
£0.90617 98459 38664
+0.53846 93101 05683
0.06000 00000 00000
+0.93246 95142 03152
+0.66120 93864 66265
£0.23861 91860 83197

Table 5: Weights and nodes for the Gauss-Legendre quadrature
formulas.
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b n (2n)
/ w(z)f(z)dz — Zakf(l‘k) = f(Qn)(lf) < Pn,Pn > for some ¢ in (a, b)
a k=1 !

Gauss was the first to derive such a quadrature formula, and he centered on
the special case w(z) = 1 and [a,b] = [~1,+1]. In this case, the orthogonal
polynomials are defined by

R
P e

Up to a factor, these polynomials are the Legendre polynomials. Other authors
had studied other cases for w(z) and [a, b], giving rise to other series of orthog-
onal polynomials and other quadrature formulas. In table 4 the most relevant
are listed. The weights and nodes of the correspondent Gaussian quadrature
formulas may be precomputed for several n and used directly; in table 5 the
coefficients and weights are shown for the case of Gauss-Legendre quadrature.

—l)i, fori=0,1,...

Herein, no proofs have been given of any of the theorems enunciated; for

such proofs, and further explanations of numerical integration methods, con-
sult [Fro70] and [SBT9).
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D Approximation to linear opacity.

In this appendix it is shown the mathematical background that allows to ap-
proximate the expression of the opacity o = 1 — exp(—7l), by simply « = 7l.
Two different derivations will be exposed.

D.1 Serie development.

Taylor theorem : If f(")(2) is continuous in [a, 5] and may be derived in (a, b),
then two points &; and &5 exist in (a, b), such that:

(b—a)"
n!

f(6) = fla)+ f(a)(b—a) +f”(a)(b__ﬁg)_ﬂ+m+f(n)(a)

+ R,
where R, is called the remainder term, and may be written as:

Lagrange remainder:

f("+1)(fl)(b _ a)n+1
(n+1)!

R, =

Cauchy remainder:

FO(E) (b~ &) (b~ a)

R, = l
n!

The particular case of ¢ = 0, it is known as McLaurin theorem.

McLaurin theorem : If f(*)(z) is continuous in [0, a] and may be derived in
(0, a), then two points &; and &, exist in (0, @), such that:

2

a

fla) = £(0) = f'(O)a+ f"(0) o7

+...+f<n)(0)% + R,

FrH (g ygn+?

D (o) a—€a)
DT O By = fajental e

where R,, may alternatively be written as R,, = -

[Spi69] [AyrTl].

The function f(z) = e~ is continuous in R and it is infinitely continuously
derivable in R. Applying McLaurin theorem to f(z) = e~ in the interval
[0, z], results:

: 9 3
- z 27 2

et = 1—1"!‘+':2—!—‘§‘!‘+~~~+Rn
z? 23

= l-z4+——-——+...+R

I+2 6+ + fin
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Cutting the serie in its third term,

e =1—-z+ R

with By = ¢ ;x:’ for some £ in (0, z).

- " ==14z- R

l—e™=z~-R

As£>0,e* >1and 0 < e ¢ < 1. Consequently,

R e~z z?
= < —
! 2 2
Approximating 1 — e~% to z, the error committed is less than &= 13, If z < 1,

2
the quantity %2- will be small, and it will be a good approximation. So, 1 — e~

may be satisfactorily approximatted to ! if 7l << 1 (note that 7! is always
> 0).

D.2 Infinitesimal.

It is also possible to see the approximation by calculating a limit.

. o 1—=e ™ 0
lim ——— = =
z—0 xz 0
Applying I’Hépital rule,
1 — -T -T
lim ——% = lim = 1
z—0 z z—0 1

That is, 1 — e™” and 2 are equivalent infinitesimals, 1 — e™® ~ 2. This means
that, when z is sufficiently small, 1 — e~ may be satisfactorily approximated to
v. Consequently, 1 — e™™ may be approximated to 7! provided that 7/ << [.

131t may also be used directly, that the numerical error committed when omitting the terms
following the n-th, in an alternate convergent serie, is smaller than the absolute value of the
first term omitted.
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