W ogtat4ta
((@Z\(. A

Lambda extensions of rewrite orderings

Jean-Pierre Jouannaud

Albert Rubio

Report LSI-95-50-R




Lambda Extensions of Rewrite Orderings*

Jean-Pierre Jouannaud™ and Albert Rubiof

t LRI, Bat. 490, CNRS/Université de Paris Sud, 91405 Orsay, FRANCE
Email: Jean-Pierre.Jouannaud@Iri.fr
} Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, SPAIN
Email: Albert.Rubio@lsi.upc.es

Abstract. In this work we provide a new proof of the result by Gallier
and Tannen that the combination of an arbitrary terminating first-order
rewrite system with the simply typed lambda calculus is strongly normal-
izing. This proof proceeds via the explicit lifting of a rewrite ordering on
first-order terms to a rewrite ordering on (first-order) algebraic A-terms.
For the definition of the ordering, we have used a technique developed
by Kfoury and Wells, in order to delay the erasing B-reductions (also
called K-redutions) which may destroy the monotonicity property. This
technique is extended to be able to handle the extensionality rule.

As a particular case, the above construction yields an extension of the
recursive path ordering of Dershowitz to a rewrite-ordering on (first-
order) algebraic A-terms which contains simply typed \-derivations.

1 Introduction

The understanding of the functional paradigm has made a key step with the
discovery of the Curry-Howard isomorphism. Functional programing languages,
however, are more complex than purely functional definitions based on the typed
lambda calculus. Definitions by pattern matching are now quite common, and
their understanding can be based on an extension of the typed lambda calculus
by algebraic operators, in which the reductions of the lambda calculus are com-
bined with the algebraic ones. Of course, the use of such a model of computations
requires that the key properties of the typed lambda calculus, namely, subject
reduction, strong normalization, and confluence remain valid in the combination.
Previous work in this area tries to identify under which syntactical conditions
on the rewrite rules this is the case [3, 4, 9, 13, 10]. In these approaches, the two
components of the language are usually separated, in the sense that the algebraic
rules do not involve the lambda calculus operators. This is not completely true
actually of [13, 10], but remains marginal in both works.

* This work was partly supported by the ESPRIT Basic Research Action CCL.
** This work was done while the anthor was in sabbatical, invited at the Technical
University of Catalonia



Our goal in this paper is to elaborate tools for proving strong normalization
of complex combinations in which the algebraic rules may use the lambda cal-
culus operators in their left as well as in their right hand sides. For this, we will
follow the traditionnal term rewriting approach, by comparing left and right-
hand sides of rules in some rewrite ordering, that is a monotonic well-founded
ordering on terms. These orderings will of course need to orient lambda terms
as a subcase, and this will be done by the reduction relation on typed lambda
terms. Our strategy is therefore to extend this ordering relation to combined
terms by following an idea developped in [14] for the case of orderings on first
order terms. In a first step, terms are normalized with respect to the lambda
calculus reduction rules; in a second step different normal forms are compared
in some ordering on algebraic terms, while equal ones are simply compared in
the lambda calculus derivation relation. The main question is therefore to prove
that it yields a rewrite ordering. This is unfortunately not true, because the first
normalization step may erase subterms of the original term, a well known prob-
lematic property of so-called K-redexes in the lambda calculus which destroys
the monotonicity property of the ordering. Our solution will be to develop a
non-erasing version of the lambda calculus (usually called the A-I-calculus) for
computing normal forms, and relate them with the usual ones. A similar tech-
nique was used by Kfoury and Wells for their method of proving termination
of B-reductions of various typed lambda calculi [12]. Based on these non-erasing
calculi, our contributions are the following:

An extension of the technique by Kfoury and Wells (investigated in section 3),
which allows to handle the extensionality rule 4.

A new proof of the result by Gallier and Tannen that the combination of an
arbitrary terminating first-order rewrite system with the simply typed lambda
calculus is strongly normalizing 5. This proof proceeds via the explicit hifting
of a rewrite ordering on first-order terms to a rewrite ordering on (first-order)
algebraic A-terms.

As a particular case, the above construction yields an extension of the re-
cursive path ordering of Dershowitz [5] to a rewrite-ordering on (first-order)
algebraic A-terms which contains simply typed A-derivations 6.

2 Preliminaries

We expect- the reader familiar with the basic concepts and notations of term
rewriting systems and typed lambda calculi. We refer to [6] for definitions and
notations of term rewriting, and to [1, 2] for the notations of lambda calculi.
When notations differ, we will in general favour [6].

A signature F is a finite set of function symbols together with their (fixed)
arity. X' denotes a denumerable set of variables, T(F ) denotes the set of ground
terms over F and T(F,X) denotes the set of terms built up from F and X.
Terms are identified with finite labelled trees as usual. Positions are strings of
positive integers. A denotes the empty string (root position) and ”.” denotes
string concatenation. We use Pos(t) for the set of positions in ¢, and FPos(t)



for its set of non-variable positions. The prefix ordering (resp. lexicographic
ordering) on positions is denoted by > (resp. >V ) and the strict subterm re-
lationship by <. The encompassment ordering, denoted by, is the strict part
of the quasi-ordering: u v if v|, = uo for some position p and substitution ¢
and its equivalence corresponds to variable renaming. Subterm is a special case
of encompassment, as well as subsumption for which u is an instance of v. The
subterm of ¢ at position p is denoted by t|, and the result of replacing t|, with u
at position p in ¢ is denoted by t[u],. This notation is also used to indicate that
u is a subterm of £. Var(t) denotes the set of variables appearing in t. A term is
linear if variables in Var(t) occur at most once in ¢, and ground if Var(t) = 0.

A-terms will be considered as particular terms, therefore allowing us to reuse
the same notations: for each variable z € X', Az. will be seen as a unary (prefix)
function symbol, while the hidden application operator (also denoted by @ when
necessary) will be seen as a binary infix symbol. We use Var(t) and BVar(t) for
respectively, the set of free variables and the set of bound variables of t. We will
assume for convenience (thanks to a-conversion) that bound variables are all
different, and are different from the free ones. Terms over the infinite signature
FU{Az., @} are called algebraic A-terms, of which usual terms as well as M-terms
are*particular cases.

Typing judgemments will be written as I' + ¢ : 7, meaning that the term ¢
has type 7 in the environment I". We will use Church simple types most of the
time, although richer type disciplines will be considered at the end of the paper.
We will sometimes use 7(t) for the type of ¢, the environment I' being assumed.

Substitutions are written as in {z; = t1,...,2, > t,} where t; is assumed
different from z;. We use greek letters for substitutions and postfix notation
for their application. Remember that substitutions behave as endomorphisms
defined on free variables (avoiding captures).

A (possibly higher-order) term rewriting system is a set of rewrite rules R =
{li = ri}i, where I; and r; are algebraic A-terms such that ; € X and Var(r;) C
Var(l;). Given a term rewriting system R, a term t rewrites to a term u at
position p with the rule / — r and the substitution &, written t-I—p—:u, or simply

t —»ru, ift|, = lo and u = t{ro],. Such a term ¢ is called reducible. Irreducible
terms are said to be in normal form. A term ¢ is strongly normalizable if every
reduction sequence out of ¢ is finite, hence ends in a normal form of ¢, denoted by
tlr. A substitution 1 is strongly normalizable if 2y is strongly normalizable for
all z. We denote by —F (resp. —F, —}) the transitive (resp. reflexive, transitive
and reflexive) closure of the rewrite relation —g. The subindex R will be omitted
when clear from the context. Reductions with R will be called algebraic.

We will distinguish two particular higher-order rules originating from the
A-calculus, called lambda reductions:

(Az.u)v - u{z — v}
Az.(uz) U if = ¢ Var(u)

Putting together algebraic and lambda reductions yields combined reductions:



A rewrite relation — is

— confluent if t —* u and ¢t —* v implies u —* s and v —* s for some s,

— terminating (or strongly normalizing) if all reduction sequences are finite, in
which case it is called a reduction,

— convergent if it is confluent and terminating.

We sometimes speak of a strongly-normalizing, or confluent, or convergent re-
lation on a subset of the whole set of terms. This assumes of course that this
subset is closed under rewriting.

We will make intensive use of well-founded orderings for proving strong nor-
malization properties. As usual, we will use the vocabulary of rewrite systems
for orderings: rewrite orderings are orderings generated by (possibly infinitely
many) rewrite rules, and reduction orderings are in addition well-founded. The
following results will play a key role, see [6]:

Assume — and —3 are well-founded orderings on sets Sy, So. Then (—1, =2
)iez is a well-founded ordering on S; x S,.

Assume —; and —3 are quasi orderings on sets Sy, S, whose strict part is
well-founded. Then (—1,—2)comp defined as (8, )(—1, =2)comp (u, v) iff s =1 u
and ¢ — v is a quasi ordering on S; x S; whose strict part is well-founded

Assume > is a well-founded ordering on a set S. Then >y is a well-founded
ordering on the set of multisets of elements of S. This ordering is defined as the
transitive closure of the following relation on multisets (using U for multisets
union):

MU{s}>>MU{ts,...,t,} ifs>t;Vie[l.n]

3 Garbage Collecting Lambda Calculus

Reducing a A-term ¢ requires reducing the existing redexes in t. These redexes
may evolve along the derivation, becoming the so-called residuals. In particular,
they may simply disappear in case a subterm is erased by a rewrite of the form

s[(Az.u)v] Ts[u] if = & Var(u).
New redexes may also be created along reductions. It is well known that there
are three kinds of created f-redexes (which we subdivide into four categories):
1. hidden redez: ((/\m./\y.u)w)vT(z\y.u{z —w})v if z € Var(u)
2. projection redez: ((/\x./\y.u)w)v?(/\y.u)v it z & Var(u)
3. identity redez: ((/\z.z)()\y.u))u—;’—»(z\y.u)v
4. application redez: (/\:c.w[xv])(/\y.u)?w{z — Ay.u}(Ay.w)(v{z — Ay.u})]



We of course make the implicit assumption that bound variables are renamed
appropriately to avoid captures, by considering equivalence classes of terms mod-
ulo a-conversion.

We observe that erasing steps (associated with K-redexes in Baren-
dregt’s terminology) can create redexes of the hidden kind only, as in
((/\a:.(/\y.y))z)uT(/\y.y)u. They will play a particular role here, because erasing

reductions complicate the construction of monotonic orderings. As we can see
with the following example, orderings may not be compatible with S-reductions:
assuming v > w, then (Az.u)v > (Az.u)w by monotonicity. However, both terms
(Az.u)v and (Az.u)w reduce to u if = € Var(u).

In order to tackle this problem, we will split the relation — g into a erasing
and a non-erasing rewrite relation as well as anticipate the creation of hidden
redexes by erasing reductions. To this end, we will use a technique originating
from [12], in which terms are restructured by distributing applications over the
first of two successive abstractions. By pushing down existing redexes, this rule
allows previously hidden redexes to show up. As a consequence, it now becomes
possible to compute S-normal forms by postponing erasing S-reductions until
non-erasing fB-reductions are exhausted. In some sense, this technique imple-
ments a sort of garbage collector, hence the title of this section.

Definition1. Erasing f-reductions, non-erasing S-reductions and restructuring
v-reductions are relations on well-typed terms defined as follows:

s[(Az.u)v) = s[u] if z € Var(u)
s[(Az.u)v] - sfu{z — v}] ifz € Var(u)
(Az.(Ay.u)) v - Ay((Azw)v)ifz £y
We will use —, as expected, for —s U ~—, and — for — U —.
B K I I ¥

Note that we could get rid of the condition in the y-rule by explicitely renam-
ing the variable y into a new variable z, and substituting y by z in u in order to
prevent captures. As already said, we prefer to leave these renamings implicit.
Note also that we could restrict the application of the ~-rule to the necessary
cases, that is when z ¢ Var(u). We will see later that this restriction does not
simplify the framework.

Lemma?2. (Subject Reduction [12]) Assumes—st, and ' \ s:7. Thent:r.
The following straightforward lemma relates y-reductions with B-reductions:

Lemma3. (Correctness) :
Assume that s and t are well-typed terms such that s —t. Then, slp=1tlg.

Proof. Easy induction on the length of the derivation from s to ¢. For the base
case, the result is trivial if s - t. If s —t, we simply observe that s -—;—) 6—5— t,
¥

and then rely on the confluence property of S-reductions.



Since we cannot use — to compute normal forms without erasing subterms,

we will use — instead. To show that — can be used for that purpose, we show
that it is terminating, confluent, and approximates B-reductions.

Lemmad4. [12] — = —U— is terminating.
yug K
Corollary 5. (Strong Normalization) — is terminating.

Note that termination is not straightforward, since I-reductions may create
new 7-redexes. In particular, rewriting with ~— a term in y-normal form may

not result in a term in y-normal form. This happens only when the argument of
the abstraction is itself an abstraction which replaces a variable located below
an abstraction, as in

(Az.((Az.z) v))(Ay.w) —I—>(/\z.(/\y.u)) (v{z n——> Ay.u)}

Since there must be a replacement for this to happen, this cannot arise with
erasing fB-reductions. This remark will be crucial in the sequel. On the other
hand, this would still happen with the restriction of the v-rule that we men-
tionned earlier, since z is not a free variable of u. This justifies the use of the
full version. ‘

Lemma6. (Local Commutation)
Assume s — u and s—I->t. Then t Y5v and u e for some v.
¥ ¥

Proof. By standard case analysis on rewrite positions. Note that there is one
critical pair originating from the left hand side of the ¥-rule.

Lemma7. (Confluence) — is confluent.

Proof. The only critical pair is confluent, by lemma 6. We can therefore conclude
by Newmann’s lemma, since — is terminating by lemma 5.

Let s| be the normal form of s for —. This normal form exists as a conse-
quence of lemma 5 and is unique by lemma 7.

Lemma8. (Normal Form Preservation by K)
Let s = s} and s?t. Then t = t].

Proof. K-reductions may create redexes of the projection kind only. But this is
of course not posible if the starting term is in y-normal form.

This lemma suggests a way to compute the S-normal form of a term s, by
first computing its y-normal form ¢, then its I-normal form u, and finally its
K-normal form v. To show this claim, note that u = s| by lemma 7,and v is in
I-normal form by lemma 8, hence it is in f-normal form.

This calculus has a other important properties that will turn out to be most
useful for the design of orderings. This is the case of the preservation of —-
normal forms by first-order reductions.



Lemma9. (Normal Form Preservation by R)
Let R be an arbitrary set of first-order rules, s = s} and s —gt. Thent =1t|.

Proof. Since — as well as — rules are left-linear, the only possibility for

5
creating an -—s-redex by a algebraic reduction is to pop up an abstraction
either on the left branch of an application (possibly creating a I-redex), or below
another abstraction (hence creating a y-redex). This requires the algebraic rule
to be collapsing, of the form | — z with.z € Var(l). But then, £ must be of base
type, hence cannot be instantiated by an abstraction.

We can see here how important the first-order assumption is. An extension
of these techniques to higher-order rules seems therefore problematic. We are
now ready for generalizing these lemmas to the case of terms which are not yet
in normal form:

Lemma10. (Normal Form Commutation with K)
Let s—t. Then s| -;—':—»tl.

Proof. The proof is by induction on the number of steps from s to s]. If s = s|,
the result follows from lemma 8. Otherwise, let s — u ——s |. Assuming the

existence of a term v such that ¢t —— v and u—I':—w, we can easily conclude by

repeated applications of the induction hypothesis. We are therefore left to prove
our assumption. The discussion is similar to the one in the proof of the critical
pair lemma [8].

~ (Disjoint case). If S—Ft and s — u apply at disjoint positions of s, then

they commute, and we are done.

— (Critical pair case). There are no critical pairs.

— (First ancestor case). The ~—-step is above. It applies again to t, yielding
v, since the (yU I)-rules are left-linear. Since they are non-erasing, but may

be duplicating, we can also apply the K-rule to u, hence u —K"; v.
— (Second ancestor case). The K-step is above. Then, it still applies to u, yield-
ing v, since K-rewrites are left-linear too. On the other hand, the —-redex

is still in ¢ if it was in the left branch of the _application, or has disappeared
in case it was in the right branch. Hence t —s v.

Lemmall. (Normal Form Commutation with R)
Let R be an arbitrary set of first-order rules, and s—?t. Then s} —i;—» tl.

Proof. The proof is slightly more difficult, since the rules in R may not be left-
linear. As a consequence, a simple induction on the length of the derivation from

s to s| does not work. We use instead a neotherian induction on ¥ (although

an induction on the longest derivation issued from s would do as well).



If s is in —-normal form, we are done by lemma 9. Otherwise, s — u

for some u. Assuming now the existence of two terms v,w such that

s —+—>v—R->w«-:-—t, we can conclude by noetherian induction that v %»wl.

But the confluence lemma ensures now that v{= s|, and w|=1¢|.

We are left with proving our assumption, and we again discuss by cases as
previously. The first three cases are the same, we discuss the last one only: the
R-redex, say lo, is above the —-redex. The problem here is that u may not
contain an instance of I anymore in case [ is not linear. We must therefore apply
further —-reductions before to find a term v which contains an instance of I,
say lo'. v now rewrites to w, replacing lo’ by ro’. And of course, t—;—>w by

rewriting the subterm ro of ¢ into ro¢”.

4 Garbage Collecting Extensional Lambda Calculus

Postponing n-reductions as well as K-reductions is of course possible, since 87-
normal forms can be obtaining by postponing the 7-rule. But the p-rule is a
kind of non-erasing reduction, hence we should apply the 7-steps before the
erasing [-steps. There is another reason for not postponing the g-rule: this de-
stroys monotonicity of the resulting ordering. This section will therefore follow
the same pattern as section 3, starting with an analysis of the rules needed for
restructuring terms.

First, we need as previously to make sure that 7-redexes cannot be created
along K-reductions. Again, there are four kinds of 7-redexes created along B-
reductions:

1. hidden n-redex: )\y.(/\x.uy)vTAy.(u{:c = v})y if y & Var(u,v)and z €
Var(u).
2. projection n-redez: Az.u((Ay.z)v)—ﬁ—»Az.uz if z# yand z ¢ Var(u).

3. identity n-redez: z\x.u((/\y.y)z)—?/\x.u:c if z ¢ Var(u).
4. n-redez: Az.u((/\y.x)v)?)\x.uz if z #yand z € Var(u).

Again, erasing B-steps can create redexes of the projection kind only, as in
Ay.((Az.u y) v)—p—-»)\y.uy —, uif z,y ¢ Var(u) and z # y. Anticipating the ob-

tained 7-reduction will require to restructure the starting term as (Az.Ay.z y) v.
This is exactly a right to left use of the y-rule, which must therefore be aban-
donned.

The rules below are rule schemas rather than rules. But one can convince
oneself that they are easily implementable and yield a linear-time algorithm for
computing the restructured version of any term. They will allow us to postpone
erasing (-reductions by poping up K-redexes (instead of pushing them down as
implicitely done by the v-reductions of section 3).



Definition12. Distributive reductions are relations on well-typed terms defined
as follows:

e+
Ay.s{z — u] N s{z— Ayu} if § = 2
e o+
(s{z — Ay.u})v oo s{z— (Ay.u) v} if § =27

We will use — for — U —, and — for — U — U —.
D Da D I n D

To avoid captures, it is assumed in the above rule that the variable y does not
appear either free or bound in the context of the redex. Note that the distribu-
tivity rule for abstractions may create free variables. Indeed, if y € Var(s[]),
y is bound on the left hand side, but free on the right hand one. That a free
variable is created is not a problem, however, since the term s{ ] will eventually
disappear along the erasing SB-reductions s[)\y.u]%{w\y.u.

One may think that the simplest possible distributivity rules are enough to
cover-all cases, but this is not the case. Consider as an example the rule for
abstractions:

Ay((Az.u)v)  —  (Az.(Ay.u))v if y € Var(u) and z € Var(u)
simple Dy
Taking now a more general pattern of the distributivity rule for abstractions,
say Ay.(Az1.((Aza.u) v2))vy with 22 € Var(u),z1 & Var(u),z: € Var(vy) and
y € Var(u), we get:

Ay.(Az1.((Azz.u) v2)) vl—x()\xl.(/\xg.(/\y.u)) va) v

since (Az1.((Az2.2) v2)) v1 —% z , but Ay.(Az;.((Az.u) v3)) vy is in normal-

form for - . The simpleD)-rule will be enabled, of course, after rewriting
simpleDy

the K-redex (Az3.2) vg, but we will see that we actually need the property that
K-tewrites do not create new D-redexes. We could of course think of adopting
a more liberal condition for the simple D, rule, namely

Ay.((Az.u)v) sima1e D5 (Az.(Ay.u))v if y € Var((Az.u) v) and z & Var(u)

This variation together with the I-rule yields non-confluent derivations:
(Az.v) v{y = w} Oy (Qzu)p)) w  —  (Ap.(Az.u) v) w
I simpleDj

and we will again see that confluence is needed.

In section 3, algebraic rewrite rules could not create A-redexes nor 7-
redexes 9, hence the v-rule could be studied inside the M-calculus alone. It is
no more the case with the above restructuring rules which refer to the algebraic
rewrite system. We could avoid it, to the price of giving another restructuring
rule for distributing algebraic symbols over K-redexes:

f(...,(Az.u) v,...)B—:(/\x.f(...,u,...))vifa:¢Var(f(...,u,...))



Besides, confluence would require to forbid the application of this rule if there
is a possibility later in the computation that a y-redex surfaces at the left of
the current y-redex (Az.u) v. The present solution gives less restructuring and
1s easier to work out technically, which explains our choice.

Lemma13. (Subject Reduction) Assume s —st, and I' - s:7. Thent: .

Proof. Since the first-order rules preserve types by definition, and 87-reductions
as well, then s and z must have the same type if s P el Hence, the distributivity

rules preserve types as well.

The following straightforward lemma relates distributive reductions with S-
reductions:

Lemma 14. (Correciness)
Assume that s and t are well-typed A-terms such that s—;-»t. Then slg=t|s.

Since we cannot use — to compute normal form without erasing subterms,

we will use — instead. To show that — can be used for that purpose, we show

that it is terminating, conﬁﬁent, and that it approximates Bn-reductions. Some
elaboration will be needed.

Lemma 5. Y terminates.

Proof. We interpret a term ¢ by the multiset of lengths of redex positions in . A
simple analysis shows that this multiset decreases along distributive reductions
(and shows as well that the condition y € Var(u) is crucial for both rules).

Lemma16. Let s—st. Then s}p -——t»tlp.
Tun Iug

Proof. Routine check. Note that Ay.(s'[u)@y) cannot be at the same time
an 7-redex (requiring y ¢ Var(u) and a Dj-redex (requiring y € Var(u)).
The only critical pair case is therefore obtained by rewriting the term
s[Ay.(u y)]v-D—-»s[(/\y.(u y)) v], but the 7-redex is still in the result.

@

Corollary 17. — is terminating.

Dulun
Proof. We interpret a term ¢ by the number of I-redexes in t|p. Lemma 16
shows that this number decreases along I-derivations.

Lemma 18. — is confluent.

Proof. Since — is terminating, by Newmann’s lemma, we need to prove local
confluence only. As usual, it is enough to consider the critical pairs, actually those
critical pairs involving one of the distributivity rules, since the others are already
confluent in the simply typed A-calculus (noticing that erasing S-reductions are
not used to close diagrams of non-erasing S-reductions or 7-reductions).

10



— Distributivity rules with themselves: let their respective left-hand sides be
Ay.s[u] and s'[Ay.u']@v.

o Case 1: D) inside Deq at the position of Ay’.v/. Since the subterm Ay'.v'
is just copied by the rule Dg, the corresponding critical pair commutes
trivially.

e Case 2 : D, inside Dg at a position in s’. This cannot be an ancestor
position of the position of Ay'.u/, because the condition y € Var(u)
wouyld then prevent s'[2] to reduce to z via K-reductions. Hence Ay .’
and Ay.s[u] are at disjoint positions, and then the critical pair can be
made confluent by means of K-reductions.

o Case 3 : Dq inside D) at a position in s. For the same reason as above,
the two subterms u and §'[Ay/.u/]@v must be at disjoint positions, and
the critical pair can be made confluent by means of K-reductions.

— Distributivity rule with the non-erasing B-rule or 7-rule:

¢ Case 1: 5 inside Dg at the position of Ay/.u’. This case commutes as
previously.

¢ Case 2: the non-erasing f-rule (or the 7-rule) must apply at a position in
s (resp. ), which must be disjoint from the position of u (resp. Ay'.u’)
for the same reason as above, and the same technique applies.

Let s] be the normal form of s for —. This normal form exists as a conse-
quence of lemma 17 and is unique by lemma 18.

Lemma19. (Normal Form Preservation by K)
Let s = s| and s—;;—»t. Then t =t}.

Proof. By assumption, s = s[(Az.u)v], with = ¢ Var(u) and ¢ = s[u],. We show
by contradiction that ¢ must itself be in normal form for —s.
Assume t——t'. Since s is in normal form, necessarily p = ¢.2, t = s[Ay.ulq,
n
and u = (u'y). Hence s = s[Ay.(Az.u)v],. Since (Az.z)v?z, the distributivity
rule for abstractions applies to s which contradicts the assumption.

Assume t—I—>t’ . Since s is in normal form, necessarily p = ¢.1, t = s[(vw)],
and u is an abstraction. Hence s = s[((Az.u)v)w],. Since (/\a:.z)v—I-{—rz the dis-
tributivity rule for applications applies to s which contradicts the assumption.

Assume tﬁt’. Then p = ¢.lr, t = s{(wu'],r)v'], (W' = u|m), and
s = s[(w[(Az.w|)v];)v'],. Since w[z],,,:?z, w[(/\z.wl,-[z],r)v],—;z and the
distributivity rule for applications applies, contradicting our assumption.

Assume t;;t’ . The proof is similar as above,

A consequence of the above lemma is that we can compute the Pr-normal
form of ¢ by computing first its DI7n-normal form, then its K-normal form. We
could actualy again decompose the first step by postponing n-steps.

Lemma20. (Normal Form Preservation by R)
Let s = s and s—}?t. Thent =t|.

11



Proof. By assumption, s = s[lo], and t = s[ro],. We show that ¢ must itself be
in normal form for —.

The result is straightforward if r ¢ X. Otherwise, the reasonning is similar
to the previous proof.

Lemma 21. (Normal Form Commutation with K)
Let s—-;{—»t. Then s| %tl.

Proof. By induction on the number m of steps from s to s}, as in lemma 10.

Lemma 22. (Normal Form Commutation with R)
Let s?t. Then s] —;—»tl.

Proof. By noetherian induction on —, as in lemma 11. The proof is basically
the same, since all rules in — are non-erasing and left linear.

These results have been proved for plain rewriting. They generalize without
difficulty to the case of rewriting modulo an equational theory whose equivalence
classes are finite, to the case of reductive conditional rewrite rules [11], as well as
to their combination. Of course, we will be primarily interested in the associative-
commutative case,

5 A-Extension of a Rewrite Ordering

We are now ready to introduce our ordering on mixed terms and prove that it
is indeed a rewrite ordering.

Definition23. Assume —3':7 is a reduction relation (generated by a set R of

typed rewrite rules) on 7 (¥, X') naturally extended to 7(F U {}, @}, X).
We define s > ¢ iff

(i) sl }ﬁ;{ t] or
(ii) sl=1t] and s (-——»U—K—->)+ t.

Note that the ordering > is well-defined, since — is terminating and con-

fluent. Note also that this definition applies to the typed lambda calculus with
or without extensionality, just by appropriately instanciating the relation —s.
We now elaborate the proof of our main theorem that > is indeed a reduction
ordering.

Lemma 24. Let g be a function symbol not occurring in ¢ TRS R. Then R U
{9(...,zi,...) = 2;} is terminating if and only if R is.

Let G be {g(...,=i,...) — z;} and let R, be RUG. To prove this lemma we

will define a well-founded extension ordering », including —%—».
g

12



Let us first define two mappings, one from terms to non-negative integers
and another one from terms to multisets of terms:

If(t tm)lg = maz({ltlly"'wltmly}) ff#g
b imie = 1+maz({ltllgﬁ""|tmlg}) otherwise

A(f1,.. . tm)) = {?t(lt,l.)'t_{ tm}U Altm) ii;}{efwsi]se

We have s >, t iff
= lslg > Itlg,
— |s|g = [t]; and slg —%)tl(;,
= |sly = |tl; and slg= t|e and A(s)(>;)muiA(t)
Lemma25. For all termt and for all ' € A(t), we have |t], > |t'|,.

Proof. Let t be f(t1,...,t,). We proceed by induction on the size of ¢.

1. f # g. By definition, A(t) = A(t1) U...U A(t,). By induction hypothesis,
for all t € A(t;), we have |t:]; > |¢/|;. Then, since |t|, > {t;]g and for all
t' € A(t) there is some t; s.t. ' € A(t;), we have [t|; > |t/|, for all ¢/ € A(t).
2. f=g. Then A(t) = {t1,...,t:} and [t|; = 1+ maz{|t1]y, ..., [tm|s} > |t:]g-

Lemma26. If R is terminating then >, is a well-founded ordering.

Proof. Transitivity and irreflexivity are proved by a simple case analysis on the
definition. For well-foundedness we will obtain a contradiction from the existance
of some term s;, minimal wrt. |s;|,, starting an infinite decreasing sequence
S1>gS2>g...

Since s >, t implies |s], > |¢|, for all s and ¢, by minimality of s; we have
|s1lg = |sily for all i. Then by well-foundedness of —;;», there must exist some

sk, s.t. for all j > k we have sl g= sjl¢. Let t; be Sk+j-1 (remind that |s;], =
[t1lg and |t1]y = ||, for all 5). Then we have A1) g)mutAt2) (g )mut - - -
Now by (the proof of the double implication between the well-foundedness of an
ordering and its multiset extension in) [7], we can extract an infinite sequence
] > 1, > ... starting from an element in A(t;). Now by lemma 25, we have
|s1lg = lt1lg > |t4ls, which contradicts the minimality of s;.

Lemma 27, Ifs—R->t then |s|, > |t],.

Proof. We first prove that for all terms ! built over the signature of R (i.e. not
containing any g) we have |lo|; = maz{lzo|, | = € Var(l)}. We proceed by
induction on the size of I.

If I is a constant or variable the result trivially holds. If | = fll, ..., 0)
(with f # g) then |lo|; = maz{|lio|y,...,|lno],}, and by induction hypothesis,
we have |l;o|; = maz{|zc|y | z € Var(l;)} for all 4, which implies the result.

Now we will prove s-—-}?t implies |s]; > [t];. Assume s = C[lo] and ¢ = C[ro]

for some rule I — r in R and context C. By the previous result, since Var(l) D
Var(r), we have |lo|y > |ro|,. Then it follows that |C[lo]|; > |Clrll,.

13



Lemma 28. If [s|y > |t|, then there ezists an s' € A(s) s.t. for all t' € A(t) we
have |s'|; > [t'|y, and hence A(s)(>g)mutA(t).

Proof. Assume s = f(s1,...,5m) and ¢ = h(t,...,t,). We proceed by induction
on the (sum of the) sizes of s and ¢.

1. f # g. By definition, |s|; = maz{|s1]y,...,|sm|s} > |t|;. Then there is
some s; s.t. |si|; > [t|y, and by induction hypothesis we have that there
exists some s’ € A(s;) s.t. for all #' € A(t) we have |s'|; > |t/|,. Since
A(s) =...UA(s;) U..., the result holds.

2. h # g. By definition, |s|, > maz{|t:],,..., |tal,} = |t|;. Hence |s|, > ftilg
for all i.Then, by induction hypothesis, we have that for all i there exists
some s’ € A(s) s.t. for all ¢’ € A(t;) we have |s'|; > |t'],. Then taking the
maximal such s, since A(t) = A(t1)U...U A(t,), the result follows.

8. f = h = g. By definition, [s|; = 1+ maz{|si|s,...,lsmls} >
1+ maz{[tly, ..., [tmls} = |tlg, which implies maz{|s1]y,..., sml|,} >
maz{[tily, ..., [tm|s}. Therefore there is some s’ € A(s) = {s1,...,8m} s.t.

for all t € A(t) = {t1,...,tm}, we have |s'|; > [t/|,.

Lemma 29. If s?t then s >, t.
g

Proof. We proceed by induction on the (sum of the) sizes of s and ¢. Assume
s = C[lo] and t = C[ro] for some rule ! — r in Ry, substitution ¢ and context

If C is the empty context then there are two cases:

L. ifl — rin G then we have |lo|; = 1+ maz{.. ., |zic|y, ...} > |2i0), = [relg.
2. if I — r in R then, by lemma 27, we have |lo|; > |ro|,, and lo|g= I’ and
role=ro’ for some o’ (with zo’ = zo|¢ for all z in Dom(c)). Then, since

lo’ —;;»ra" the result holds.

If ' is not empty, assume s = f(...,s',...) and t = f(...,#',...) with &' =
C'[lo] and t' = C'[ro]. By induction hypothesis, we have s’ >, t'. By lemma 27
we have [s]; > [t|;. Suppose |s]; = [t|; (otherwise it is already finished). On the
other hand, either s{g=tlg or slg —-;:—)tlc;. Suppose slg= t|g (otherwise it is

again finished). Then we distinguish the following two cases:

1. f # g. We have s'|g=t'| ¢ (otherwise s|g# t|g, contradicting the assump-
tion) and A(s) = SUA(s’) and A(t) = SUA(#) for some S. If |s'|, > [t’|y then
by lemma 28 we have A(s')(>¢)murA(t'), implying A(s)(>4)mur A(t). Other-
wise we have |s'[; = [¢/|; and §'|g= ¢, and therefore A(s")(>¢)mutA(t'),
which implies again A(s)(>4)mutA(t).

2. f = g. We have A(s) = SUs' and A(f) = S Ut for some S, and hence
A(5) (g Imat ALR).

Lemma 30. Assume that R is a reduction relation. Then ﬁ%{ 1s well-founded.

14



Proof. Consider R' = RU {@Q(z,y) — z} U U {Xz.y — y}. Since R is termi-
TEX

nating, applying lemma 24 for the first projection rule, then for the projection

rules for the A-operators proves that R’ is terminating.

Then, as P C = (note that the K-steps can be encoded as two steps

using the projection rules added to R), we conclude that Py is terminating.

Lemma31. > is an ordering on mized terms.

Proof. Irreflexivity. By uniqueness of normal forms w.r.t. —», we have s|= s].

Now, Eﬁ:}’{ and —:—'—ﬁ» being well-founded by lemmas 30 and 4, they are irreflexive.
X}

Hence s 3 s.
Transitivity. It follows from the transitivity of the rewrite relations.

Lemma32. (Well-foundedness) > is well-founded.

Proof. Suppose there exists an infinite sequence s; > s2 > ... Then since fziz?

U
is well-founded, there must be some s; s.t. sjl=si] for all k > j. But then we

have s; =, Si41 £, contradicting the well-foundedness of —t-.
T8 TYp YuB

Lemma33. (Monotonicity) > is monotonic.

Proof. If s >t then u[s] > u[t] for all terms s and ¢ and context u. Remark that
u[s]l= u[sl]] and u[t]|= u[t]]| by confluence property of —.

1. if s} 1;3.?{ t| then u[s|] 1—2;:?{ uft|], hence ufs]| 1-2_:.?{ uft]| by lemmas 10
and 11 and the previous remark.
2. if s|=t| then u[s]i=u[s]]|= ult|]|= u[t]] and s —:;5 t implies u[s] —':; uft].
¥ ¥

Lemma 34. > is stable under substitutions.

Proof. If s > t then s > to for all terms s and ¢ and substitution o. By
confluence (so)l= (sl ¢)] and (to)|= (t| o).

1. if s} EE—;{ t| then s| o R—E} t| o, and by lemmas 10 and 11 and the previous

remark (so)] — (to)l.

RUK
2. if s|=t| then (so)]|= (to)| by the previous remark, and s %ﬁ»t implies
¥
so - to.

YUgB
Lemma35. Assume ——:? is given by a set R of (typed) rewrite rules. Then,
—_— C >,
RUg —

15



Proof. Since > is a reduction ordering, we simply need to prove the inclusion of
— and —,
B R
Let s—;—»t. By lemma 7, s]=t|. Hence s > t by case (ii).
Let s — 4 t. Then, by lemma 10, s} — % Tt| and hence s R—};{tl, implying

s > t by case (i).
Let s—}—;t. By lemma 11, s| ?tl. Hence s >t by case (i).

As a consequence,

Theorem 36. > is a reduction ordering on mized terms which restricts to —;E—»

on algebraic terms and to (——-)U——I;—»)"' on typed lambda terms.

Note that — U — is the union of — p and the restructuring rules.

6 A-Extension of the Recursive Path Ordering

In this section, we consider the lambda extension to mixed terms of the recursive
path ordering, which can be seen as a particular reduction relation. Our function
symbols will be split into three sets: the set Lez of lexicographic symbols, the set
Mul of multiset symbols, and the set of monotonic symbols, that is application
and A-abstractions. The ordering will be generated by a well-founded ordering
>r on F, considered as a well-founded ordering > Fu{e,A} on the whole (infinite)
signature.

The definition is an adaptation of the definition of the previous section, and
of the definition of the lexicographic path ordering:

Definition37. We define s >-f;o t iff
(@) Ist 1 >52, el f or
(ii) sl=1t| and s (——»U?)*‘ t.

where_* -
s= f(3) =52, o(7) ift

f € F and s; Z-_Zfo t for some s; €5

s = dx(u)Qu, £ ¢ Var(u) and u tffo t

f >ruteny 9, and £(5) »i5 t; for all ¢; €2

f=g9¢€ Lez, f(?) >-,efa t; for all ¢; E?, and ?(:;’fo)ze, s
f=g€ Mul and s (tffo)mul t

f=9=@and s (2% )mon t

f=)z,g=2,and sy =% t1{y ~ z}

No oo s w oo e

16



and

H)\avfﬂ = X([u])
[(wo)l = lule]o]
IFN=70¢1

Theorem 38. >~,po ts a reduction ordering on mized terms which restricts to
>Ipo 0on algebraic terms and to (-—»U?)"' D ——>; on typed lambda terms.

Proof. Note that on one hand, cases 1, 3, 4 and 5 of the definition of >fﬂ define
a recursive path ordering >y, on T(}' X ), and on the other hand, cases 2, 6

and 7 define —t-.
K

Let Rip, be an infinite TRS containing all rules s — ¢ iff s >ipo t. Here, we
assume that we have a single basic type. If we have several, we will consider the
associated single sorted rewrite system obtained from R by equating all sorts.
The new system has a richer rewrite relation on terms, hence its termination
will do.

Then we trivially have that f—) is equivalent to >, and A is equivalent
Ipo 1po

to >-,p o+ Now by theorem 36 the result holds.

7 Conclusion

Besides a new proof of strong normalization of the simply typed A-calculus com-
bined with an arbitrary first-order rewrite system, we have made a significant
contribution with the design of an explicit (rpo-like) rewrite orderings for the
terms in the combination, Although we have considered the case of simply typed
lambda calculus only, we believe that our techniques extend to the polymorphic
and intersection type disciplines. We do not have ideas yet about the dependent
type case for which we think that additional techniques are needed. Finally, we
also like to mention the importance of lemma 24. It is well known that we can-
not add two projection rules for a given new symbol to a terminating rewrite
system without loosing termination [15]. We have shown here that we can add
one, drawing a precise line between termination and non-termination for this
sort of first-order combination.

References

1. Henk Barendregt. Handbook of Theoretical Computer Science, volume B, chapter
Functional Programming and Lambda Calculus, pages 321-364. North-Holland,
1990. J. van Leeuwen ed.

2. Henk Barendregt. Handbook of Logic in Computer Science, chapter Typed lambda
calculi. Oxford Univ. Press, 1993. eds. Abramsky et al.

3. Val Breazu-Tannen. Combining algebra and higher-order types. In Proc. 3rd IEEE
Symp. Logic in Computer Science, Edinburgh, July 1988,

17



10.

11.

12.

13.

14,

15.

. Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves algebraic

strong normalization. Theoretical Computer Science, 1990. to appear.

. Nachum Dershowitz, Orderings for term rewriting systems. Theoretical Computer

Science, 17(3):279-301, March 1982,

. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, pages 243—
309. North-Holland, 1990.

. Nachum Dershowitz and Zohar Manna. Proving termination with multiset order-

ings. Communications of the ACM, 22(8):465-476, August 1979.

. Gérard Huet and D. Oppen. Equations and rewrite rules: a survey. In R. Book,

editor, Formal Language Theory: Perspectives and Open Problems, pages 349-405.
Academic Press, 1980.

. Jean-Pierre Jouannaud and Mitsuhiro Okada. Executable higher-order algebraic

specification languages. In Proc. 6th IEEE Symp. Logic in Computer Science,
Amsterdam, pages 350-361, 1991.

Jean-Pierre Jouannaud and Mitsuhiro Okada. Abstract data type systems. Re-
search Report 975, Université de Paris Sud, June 1995.

Jean-Pierre Jouannaud and B. Waldmann. Reductive conditional term rewriting
systems. In Proc. Third IFIP Working Conference on Formal Description of Pro-
gramming Concepts, Ebberup, Denmark, 1986.

A.J. Kfoury and J. B. Wells. New notions of reduction and non-semantic proofs
of strong normalization in typed A-calculi. In Proc. 10th IEEE Symp. Logic in
Computer Science, San Diego, 1995.

T. Nipkow. Higher order critical pairs. In Proc. IEEE Symp. on Logic in Comp.
Science, Amsterdam, 1991.

Albert Rubio. Automated deduction with constrained clauses. PhD Thesis, Univ.
de Catalunya, 1994.

Y. Toyama. Counterexamples to termination for the direct sum of term rewriting
systems. Information Processing Letters, 25:141-143, April 1987,

This article was processed using the IXTEX macro package with LLNCS style

18



