o 1M 00 'C{M{lq

(C\P\C\i

Deriving Transaction Specifications
from Deductive Conceptual Models
of Information Systems

Maria Ribera Sancho
Antoni Olivé

Report LSI-94-15-R

000 @ mp
st LIPC

Facuitst d'Informatica

de Ezar%el‘ ;, [ ., R ?Wa



Deriving Transaction Specifications from
Deductive Conceptual Models of
Information Systems

(extended version)!

Maria Ribera Sancho
Antoni Olivé

Facultat d'Informatica, Universitat Politecnica de Catalunya
Pau Gargallo 5, 08028 Barcelona - Catalonia
e-mail: {riberalolivé ) @lsi.upc.es

Abstract. We review the main components of a Deductive Conceptual
Model (DCM) of an IS, and introduce a logic-based language for its
specification.

We then present a new, formal method for the derivation of transaction
specifications implied by a given DCM. The method is based on the SLDNF
proof procedure, and can be implemented easily in Prolog environments.

The method requires the development of an Internal Events Model (IEM).
We present such a model, point out how can it be automatically obtained and
discuss ils use in transaction derivation.

1 Introduction

A general trend in information systems engineering is the adoption of knowledge
engineering techniques to enhance existing methodologies as well as to introduce new
and more productive development paradigms, methods and supporting tools [Bub86].
This trend is based on the fact that information systems development is a knowledge
intensive task [MBJ90] and, thus, it is not surprising that a lot of research has been
directed toward providing knowledge-based tools to support the entire information
systems development life cycle, from high-level design to low-level code generation
[Fre85].

This paper describes our work on deriving transaction specifications from a
Deductive Conceptual Model. Qur approach uses a logic-based language for the
specification of conceptual models, and applies logic-based techniques for the generation
of a system design from a conceptual model.

The main originality of this work is that our language is based on the "deductive”
approach to conceptual modelling, instead of the traditional, "operational" approach.
Both approaches can provide a complete specification of the static and dynamic aspects
of an information system, but they differ in the way the dynamic aspect is modelled.

In the operational approach, changes to the Information Base (IB), corresponding to
changes in the Universe of Discourse (UoD), are defined by means of operations. The
occurrence of a real-world, external event triggers the execution of an operation
(transaction), which reflects the effect of the event on the IB. These effects consist

1 This is an extended version of the paper on "Deriving Transaclion Specifications from
Deductive Conceptual Models of Information Systems" wich has been accepted for
presentation at CAiSE.94 Conference.



usually of insertions, updates or deletions to the IB. On the other hand, operations, as
well as queries and integrity constraints, usually have only access to the current state of
the IB.

In the deductive approach, the IB is defined only in terms of the external events, by
means of deductive rules, and queries and integrity constraints are defined as if the
complete history of the IB were available. A deductive conceptual model (DCM) is a
specification of an IS in the deductive approach. Examples of conceptual modelling
languages using the deductive approach are DADES [Oli82] and CIAM [GKBS§2].

A detailed comparison of the operational and deductive approaches can be found in
[BuO86, Oli86). The main conclusions are that DCMs provide more local definitions,
are easier (0 change and to accommodate new requirements, and provide more design
freedom. However, DCMs are much more difficult to implement than operational
models. The reason is that an operational model already embeds some architectural
design decisions, which are not made in DCMs [Ol1i89].

The main design decisions required to implement an information system from a
DCM are data base design and transaction design. Usually, many valid alternatives in
data base design exist, and the designer must choose the alternative that he/she considers
most appropriale. Complete automation of this decision is not possible, but there is a
place for CASE tools that aid the designer by confirming the consislency of his/her
decisions and by evaluating their impact in terms of performance.

In transaction design, the designer must decide which transactions will exist and, for
each of them, when will be executed, its pre-conditions and the actions to be performed,
including data base updates and output production.

Contrary to data base design, transaction design from a DCM can be completely
automated. We can build a transaction for each external event, to be executed when that
event occurs in the real world. Transaction pre-conditions can be determined from the
integrity constraints defined in the DCM. Dala base updates can be determined from an
analysis of deductive rules, and output production can be determined from queries
definition.

In this paper we present a new, formal method for generating transaction
specifications from a DCM. We extend here the work in the ODISSEA project reported
in [San92], where more details on the general framework can be found. The method is
based on the use of the SLDNF proof procedure and, thus, it can be implemented easily
in Prolog environments.

To our knowledge, there is no similar work to ours in the deductive approach,
although there exists some similar research in the context of the operational approach.
We can mention here the recent work from the DAIDA project, reported in [CKM91],
where additional references to previous research can be found. DAIDA proposes a
dependency-based framework for the mapping from a requirements specification into a
system design. The framework is dependency-based in the sense that the mapping of
parts of the requirements specification is guided by predefined allowable dependencies.
At the same time, the framework is goal-oriented, in the sense that non-functional
requirements are treated as possibly conflicting goals to be satisfied by the generated
design. .

In DAIDA, requirements specification prescribe not only the behaviour of the
system, but also the environment within which it will function. Instead of this, we
focus only on Lhe system to be developed, and our specifications are executable. This
allows us to automate part of the mapping from specification to design. On the other
hand, we have not considered yet the role of non-functional requirements in the
generation of designs.



The paper is organised as follows. Section 2 briefly introduces the main components
of a DCM, including an example that is used throughout the paper. Section 3 presents
the Internal Events Model (IEM), a key concept in our approach to design generation.
Section 4 discusses the use of the IEM in transaction generation, and gives a formal
method for deriving transaction specifications from a DCM. Finally, Section 5
summarises the results of our work and points out future research.

2 Deductive Conceptual Models

We characterise the deductive conceptual modelling approach in a first order logic
framework.

Time plays a major role in this approach. Every possible information i is associated
with a time point T(i), which states when the information holds. We will assume that
times are always expressed in a unique time unit (such as second, day, etc.) small
enough to avoid ambiguities. By life span T of an information sysiem we mean the
time interval in which the system operates. It is defined as an ordered set of consecutive
time points T={1y...t¢}, where tg and t are the initial and final times, respectively, and
where each te T is expressed in the given time unit. We can then say that, for any
information i, T(G)eT.

A deductive conceptual model (DCM) of an IS consists of five sets: A set B of base
predicates, a set D of derived predicates, a set IC of integrity constraints, a set Q of
predefined queries and a set A of alerts. In the following, we briefly describe each of
these sets. Figure 1 shows an example that will be used throughout the paper.

Base predicates correspond to the external event types. They are the inputs to the IS.
Each fact of a base predicate, called base fact, is an occurrence of an external event. We
assume, by convention, that the last term of a base fact gives the time when the event
occurred and was communicated to the IS. If p(ay,..., a,,1;) is a base fact we say that
p(ay,..., a,) is true or holds at t;.

In the example of figure 1 we have five base predicates: new_person, new_subject,
offer, enrol and cancel. A base fact new_person(p,t) means that at time t, p becomes a
person. A base fact new_subject(s,t) reports that at time t, s becomes a new subject. A
base fact offer(c,ti,s,t) means that at time t, course ¢ is offered with title ti and subject s.
A base fact enrol(p,c,t) means that person p is enrolled to course ¢ at time t. Finally, a
base fact cancel(c,t) reports that course c is cancelled at time t. We take as time unit a
second.

Derived predicates model the relevant types of knowledge about the Universe of
Discourse. Each fact of a derived predicate, called derived fact, represents an information
about the state of the UoD, at a particular time point. We also assume that the last term
gives the ime when the information holds. Thus, for example, a derived fact person(p,t)
might mean that p is a person at time t.

Each derived predicate is defined by means of one or more deduction rules. A
deduction rule of predicate p has the form p(Xy,..., X;,T) « Ly,.., L, where
p(Xy,..., X,,T) is an atom denoting the conclusion and L,,.., L, are literals
representing conditions. Each L; is either an atom or a negated atom, Variables in the
conclusion or in the conditions are assumed Lo be universally quantified over the whole
formula. The terms in the conclusion must be distinct variables, and the terms in the
conditions must be variables or constants.



Condition predicates may be ordinary or evaluable ("built-in"). The former are base
or derived predicates, while the latter are predicates, such as the comparison or arithmetic
predicates, that can be evaluated without accessing a database.

We assume every rule to be allowed [GMN84], i.e. any variable that occurs in the
rule has an occurrence in positive condition of an ordinary predicate. We also require
every rule to be time-restricted. This means that for every positive literal q(...,T1) of a
base or derived predicate q occurring in the body, the condition Ly,...,L; = T1<T
must hold. This ensures that p(Xy,..., X,,,T) is defined in terms of g-facts holding at
time T or before.

In the example, there are six derived predicates, with their corresponding (and
hopefully self-explanatory) rules. For the sake of clarity, our examples do not follow
strictly the above format, but can be transformed into it using the procedure given in
[LIT84].

base predicates
new_person(Person, Time)
new_subject(Subject, Time)
offer(Course, Title,Subject, Time)
enrol(Person,Course, Time)
cancel(Course, Time)
derived predicates
subject(S,T) « new_subject(S,T1), TILT
person(P,T) « new_person(P,T1), T1<T
course(C,Ti,T) « offer(C,Ti,S,T1),T1 < T,

not 3T2(cancel(C,T2),T2>T1, T2< T)
subject_of_course(S,C,T) « subject(S,T), course(C,Ti,T),

offer(C,Ti,S,T1), T1<T

enrolled(P,C,T) « course(C,Ti,T), enrol(P,C,T1), TI<T
interested(P,S,T) « enrol(P,C,T1), T1 < T, subject_of_course(S ,C,T1)
integrity constraints
icl(T) < new_subject(S,T), subject(S,T-1)
ic2(T) « new_person(P,T), person(P,T-1)
ic3(C,T) « offer(C,Ti,S,T), course(C,Til,T1), T1<T
icd(C,8,T) « offer(C,Ti,S,T), not subject(S,T-1)
ic5(C, T) « offer(C,Ti,S,T), offer(C,Til,S1,T), Ti «Til
ic6(C,T) « offer(C,Ti,S,T), offer(C,Til,S1,T), SI #S1
ic7(T) « cancel(C,T), not 3Ti(course(C,Ti,T-1))
ic8(T) « enrol(P,C,T), not person(P,T-1)
ic9(T) « enrol(P,C,T), not ITi(course(C,Ti,T-1))
ic10(T) « enrol(P,C,T), enrolled(P,C,T-1)

Figure 1. Example of Deductive Conceptual Model

Integrity constraints are closed first-order formulas that base and/or derived facts are
required to satisfy. We deal with constraints that have the form of a denial «- L,,....L,,

with m 2 1, where the L; are literals, and variables are assumed to be universally



quantified over the whole formula. More general constraints can be transformed into this
form as described in [LIT84]. For the sake of uniformity, we associate to each integrity
constraint an inconsistency predicate icn, with at least a time term, and thus it has the
same form as the deductive rules. We call them integrity rules.

In the example of figure 1 we show ten inconsistency predicates, with their rules.
To see how an inconsistency may arise, assume that base facts new_person(john,10),
new_subject(maths,10), offer(cl,ti,maths,15) and enrol(john,c1,18) were received at
times 10, 15 and 18, respectively. Thus, the facts that hold at time 19 are:
person(john,19), subject(maths,19), course(cl,ti,19), enrolled(john,c1,19) and
interested(john,maths,19). Now, if at time 20, the IS receives offer(c1,ti,electronics,20)
the inconsistency facts ic3(c1,20) and icd(cl,electronics,20) will hold, because
course(c1,ti,19) does hold and subject(electronics,19) does not hold, respectively.
Therefore, the base fact offer(c1,ti,electronics,20) would be rejected.

Outputs from an 1S may be requested by the users (queries) or triggered internally by
the system when some condition holds (alerts). Each query is defined by a name, a
number of paramelers, to which the user will give values when he/she makes the query,
and a body. The answer 10 a query is the set of values that satisfies the conditions given
in the body. (In order to focus on our objective, we omit in this paper output definition
and handling).

As can be observed, there is a strong similarity in form between a DCM and a
deductive database. However, there are some fundamental differences between both. An
explanation can be found in [Oli89]

3 The Internal Events Model

We have seen, in the previous Section, the main components of a DCM. Now, we start
to describe our approach to the design and implementation of an IS from its DCM. The
key concept of our approach is the Internal Events Model (IEM)[01i89,San90]. In the
following, we briefly describe the main concepts of an IEM, and show its application to
the example.

3.1 Classification of predicates

Predicates defined in a DCM can be classified according to their temporal behaviour. For
our purposes, the most important classification is the following. Let p be a predicate
and k a vector of constants. Assume that fact p(k) holds at time T-1. What can we say
about the truth of p(k) at time T? Three cases are possible:
a) p(k) will be true at time T. Then we classify p as P-steady.
b) p(k) will be false at time T. Then we classify p as P-momentary.
¢) p(k) can be true or false at time T. In this case, assume that no external events
happen at time T. We have tree subcases:
cl) p(k) will be true at time T. Then we classify p as P-state.
c2) p(k) will be false at time T. Then we classify p as P-transient.
¢3) p(k) can be true or false at time T, depending on the truth value of some
condition that must be evaluated at time T. Then we classify p as P-spontaneous.
Base predicales are assumed (0 be P-transient. In our DCM example of figure 1,
predicates "subject”, "person” and "interested” are P-steady. The other derived predicates
are P-state.



3.2 Internal events

The concept of internal event tries to capture, in a natural way, the notion of change in
the exlension of a predicale. We associate to each predicate p an insertion internal event
1p, and (o each P-state or P-spontaneous derived predicate q a deletion internal event 6q.

Insertion internal events are defined as follows. Let p be a P-steady, P-state or P-
spontancous predicate, then:

1) VX, T pX,T) & pX,T) A —p(X,T-1))

If p is P-momentary or P-transient, then:

) VX, T (pX,T) & p(X,T))

Observe that if p is a base predicate, 1p facts represent external events (given by the
environment) corresponding to insertions of base facts. If p is a derived predicate, then
1p facts represent induced insertions of derived facts. Finally, if p is an inconsistency
predicate, 1p facts correspond to violations of its integrity constraint. In this case, since
we assume that the IB is consistent at time T-1, p(X,T-1) is always false, and the literal
—p(X,T-1) can be removed from (1).

We similarly define deletion internal events. Let p be a P-state or P-spontaneous
derived predicate, then:

3) VX, T (6p(X,T) & p(X,T-1) A —p(X,T))

If p is a derived predicate, then §p facts represent induced deletions of derived facts.
Note that, for inconsistency predicates, 8p facts cannot happen in any transition, since
p(X,T-1) is always false.

Rules (1), (2) and (3) are called internal events rules. They can be obtained using a
transformation of DCM rules, as we will explain in the following.

3.3 Transition rules

We first transform deduction rules of the DCM into a set of equivalent ones, called
transition rules. Let p(X,T) be a derived or inconsistency predicate. The definition of p
consists of the rules in the DCM having p in its conclusion. Assuming that there are
m21 such rules, we rename the conclusions of the m rules by py,....py,, change the
implication by an equivalency, and add the set of clauses:

p(X,T) « pi(X,T) fori=1.m
In the example, as predicate "enrolled" is defined with one rule, we would write:

enrolled;(P,C,T) < course(C,Ti,T), enrol(P,C,T1), TI<T

enrolled(P,C,T) « enrolled,(P,C,T)

Consider now one of the rules p;(X,T) <> W, being W a set of literals L,,...,L,.
The idea consists on replacing each literal L, of W, corresponding to a base or derived
predicate, and whose time variable may range in the rule over a set including T, by an
equivalent expression containing internal events predicates, whose time variables range
only over {T}, and base or derived predicales, whose time variables range over a set not
including T. The rule obtained by this transformation is a transition rule.

The transformation applied to each ordinary literal L; of W is based on the rules (1),
(2) and (3). It depends on the P-type of its predicate, its sign (positive or negative) and
the range of ils time variable. We say that an ordinary literal L, is

a) Current, if its time variable ranges only over {T}.

b) Past, if its lime variable ranges over a set including T.

¢) Old, if its time variable ranges over a set not including T.

For example, in the rule:



enrolled,(P,C,T) < course(C,Ti,T), enrol(P,C,T1), T1<T
literal enrol(P,C,T1) is past because T1 may range over the set {Ty,..., T}, where Ty is
the initial time, and literal course(C,Ti,T) is current because its time variable ranges
only over {T).

We will explain in detail the transformation applied to current and past literals
corresponding to P-state or P-spontaneous predicates. The rules corresponding to the
other P-types can be similarly deduced. Notice that old literals do not have to be
transformed.

Let L=q(X,T) be a current literal of W. From (1) and (3) we can directly obtain a
set of equivalencies that define the value of q(x) (respectively —q(x)) at time t in terms
of its value at time t-1 and the internal events happened at t, as follows.

If q is P-state or P-spontaneous:
@) VX,T @X,T) & (qX,T-1) A = 8q(X,T)) v 1q(X,T))
VX, T (—qX,T) & (=g(X,T-1) A = 1q(X,T)) v 8q(X,T))
They mean that q(x) is true at time t if it was true at time t-1 and has not been deleted at
t, or if it has been inserted at t; and that q(x) is false at tif it was false at t-1 and has not
been inserted at t, or if it has been deleted at t. With these rules we already can transform
current literals.
For the case of past literals L ,=q(X,T1) (with TI<T) we just have to consider
separately the case in which T1<T and the case in which T1=T. Then:
VX, T (q(X,T1) & (T1<T A q(X,T1) ) v (T1=T A q(X,T)))
VX, T (—q(X,T1) & (T1<T A =q(X,T1) ) v (T1=T A =q(X,T)}))
and replacing q(X,T) and —q(X,T) by their equivalent definition given in (4). We obtain:
VX, T (qX,T1) & ((T1<T A q(X,T1) ) v
(T1=T A g(X,T-1) A =3qX,T)) v
(T1=T A \q(X,T)))

VX, T (—qX,T1) & ((T1<T A—q(X,T1)) v
(T1=T A =q(X,T-1) A =1q(X,T)) v
(T1=T A 6q(X,T)))

In Figure 2 we show the transformation to be applied in each case. The words O, Pr
and N are mnemotechnic of Old, Previous and New. O(L,), Pr(L;) and N(L,) represent the
conditions upon which a literal L, of W is true at time T. O(L,), if not false,
corresponds to the case in which L, is true at T because it was true some time in the
past. Pr(L,), if not false, covers the case in which L, is true at T because it was true at
T-1. Finally N(L,), if not false, represents the case in which L, is true at T because it
has been induced by the base facts happened at T, and was false at T-1.

Replacing each each literal L; of P; by its equivalent expression we obtain:

r=n
P, (X,T) & A [OL,) v Pr(L) v N(Lp I L] for i=1.m
r=1
where the first option is taken if L, is a current or past ordinary literal, and the second
one if it is old or evaluable.



P-type of q 0 (Iy) Pr (Iy) N (Iy)
‘é state or spontaneous false gXT-DA-&XT)| qXT)
=
" ‘é steady false q(X,T-1) 19(X,T)
>
E| | transient or momentary false false qX,T)
é -t
: . | state or spontaneous T1<T A q(X,T1)] TI=T Aq(X,T-1) A | TI=T Aq(X,T)
. | steady Ti<T A q(X,T1)| TI=T AqX.T-1) |TI=T A X, T)
bt
transient or momentary | Ti<T A q(X,T1) false T1=T A q(X,T)
E stale or spontaneous false X, T-)rgX,T)| 89X, T)
@ § steady false —~qX, T-1)A~q(X,T) false
'a _: transient or momentary false false - q(X,T)
@
s state or spontaneous | T1<Ta—= q(X.T1)| T1=TA-q(X,T-1n | T1=TA 8q(X,T)
2 |3 -qX, T
2. | steady T1<Ta— q(X,T1)| T1=TA—-q(X,T-1n false
—;- - \q(X,T)
transient or momentary | T1<Ta— q(X,T1) false T1=Ta-q(X,T)

Figure 2. Transformation of ordinary literals

Distributing A over v, we get an equivalent set of transition rules with the general

form:
r=n

Pix X,T) & A [O(@Lp | Pr(Ly) IN(LY) A E(T) for k=1..3
r=1

where j is the number of current or past ordinary literals appearing in the rule p;(X,T),
and E(T) is the conjunction of all old and evaluable literals of p;(X,T). Then the set of
transition rules for predicate P; are:

() P; (X,T) « P; (X,T) for k=1...3
If we apply this transformation to predicate "enrolled”, after eliminating the rules with a
"false” literal, we obtain the following transition rules:

enrolled; ;(P,C,T) « course(C,Ti,T-1), not dcourse(C,Ti,T), enrol(P,C,T1), T1 < T
enrolled, ,(P,C,T) « course(C,Ti,T-1), not dcourse(C,Ti,T), renrol(P,C,T), T1 = T
enrolled; 5(P,C,T) « 1course(C,Ti,T), enrol(P,C,T1), T1 < T
enrolled, 4(P,C,T) « tcourse(C,Ti,T), tenrol(P,C,T), T1 =T

Note thal these rules allow us to infer enrolled, facts holding at time t in base to the
course and enrol facts holding at time t-1 or before, and the events 1enrol, icourse and
dcourse that occur at time L.



3.4 Internal events rules

Once the transition rules have been obtained, we can derive the intemal events rules. An
internal event rule is a rule that deflines the conditions upon which an internal event
happens in a given transition. For example, the rules:

1course(C,Ti, T) < voffer(C,Ti,S, T)

Scourse(C,Ti,T) « course(C,Ti, T-1), icancel(C,T)
are an insertion and a deletion internal event rule, respectively. The first states that the
occurrence of an offer fact (in this case, the insertion of an offer base fact) induces a
corresponding 1course fact. The second rule states that the occurrence of a fact 1cancel(c)
at time t induces a fact dcourse(c,ti) at time t if course(c,ti) was true at previous time.

We get the internal event rules corresponding (o a predicate p using a procedure based
on the definitions (1), (2) and (3), as follows.

Assume that predicate p is defined with m rules. Then

pX.T) o pX,D v _vpuX,T)
and rules (1) (2) (3) can be rewritten as, fori= 1..m:

If p is P-steady, P-state or P-spontaneous:

GOVX,T (pX, D « piX, DA =p; (X, T-1) A ... A =pi(X,T-1) A ... A =p(X,T-1))
If p is P-momentary or P-transient:

(OVX,T (pX,T) « pi(X,T))

If p is P-state or P-spontaneous:

@GVX, T GpX,T) « pi(X,T-1) A piX,T) A ... A =piX,T) A .o A=p(X,T))

Rules (6) and (7) are called insertion internal events rules for predicate p. These rules
allow us to deduce which facts 1p (induced insertions) occur at any time point t.
Similarly, rules (8) are called deletion internal events rules, and represent which facts 8p
(induced deletions) occur at any time t.

Consider now each p; separately. Observe that p(X,T)a—p;(X,T-1) corresponds to
insertions of p;. We denote it as 1p;(X,T). Similarly, p;(X,T-1)A—p;(X,T) corresponds
to deletions of p;, and we denote it as dp;(X,T). Now, substituting p;(X,T) by its
equivalent definition given by the corresponding transition rules (5), we have that (6),
(7) and (8) can be rewritten as:
if p is P-steady, P-state or P-spontaneous:

VX, T ap(X,T) «1pi(X,T) A

(X, T-1) A oo A =P (X, T-1) Apii(XLT-1) A o A =pp(X,T-1))

VX, T (piX,T) < pi(X,T) A =pi(X,T-1))
if p is P-momentary or P-transient:

VX, T (pX,T) «1pi(X,T))

VX, T (pi(X,T) ¢ pi (X, T))
if p is P-state or P-spontaneous:

VX, T (8p(X,T) « 8p;(X,T) A

—piX,T) A oo A 2P X T) A =P (XLTD) A ApR(X,T))
VX, T (6pi(X.T) © pi(X,T-1) A =p; ) (X, T) A ... A-P (X, T)) _
fori=1l.m,k=1.3
Applying the procedure to predicate “enrolled”, the insertion internal events rules would
be:



enrolled(P,C,T) « enrolled,(P,C,T)

tenrolled;(P,C,T) « course(C,Ti,T-1), not Scourse(C,Ti,T), enrol(P,C,T1), T1<T,
not enrolled,(P,C,T-1)

wenrolled; (P,C,T) « course(C,Ti,T-1), not Scourse(C,Ti,T), ienrol(P,C,T), T1=T,
not enrolled,(P,C,T-1)

1enrolled; (P,C,T) « 1course(C,Ti,T), enrol(P,C,T1), T1<T,
not enrolled,(P,C,T-1)

tenrolled,(P,C,T) « wcourse(C,Ti,T), enrol(P,C,T), T1 =T,
not enrolled,(P,C,T-1)

3.5 Simplification of the Internal events rules

The procedure described above obtains an IEM from a given DCM. However, the
resulting set of internal events rules can be substantially simplified. Take, for instance
the first rule for wenrolled,. The rule can not produce any ienrolled fact, since
course(C,Ti,T-1), enrol(P,C,T1), T1<T implies enrolled,(P,C,T-1) and, as a
consequence, it can be dropped from the IEM. :

IDR.11subject(S,T) « wmew_subject(S,T)
IDR .2 1person(P,T) « wnew_person(P,T)
IDR.3 wcourse(C,Ti,T) « roffer(C,Ti,S,T)
IDR.4 dcourse(C,Ti,T) « course(C,Ti,T-1), icancel(C,T)
IDR.5 wsubject_of_course(S,C,T) « roffer(C,Ti,S,T)
IDR.6 8subject_of_course(S,C,T) « subject_of_course(S,C,T-1), dcourse(C,Ti,T)
IDR.7 wenrolled(P,C,T) < course(C,Ti,T-1), not dcourse(C,Ti,T), ienrol(P,C,T)
IDR.8 &enrolled(P,C,T) « enrolled(P,C,T-1), dcourse(C,Ti,T)
IDR .9 iinterested(P,S, T) « enrol(P,C,T), subject_of_course(S,C,T-1),
not dsubject_of_course(S,C,T), not interested(P,S,T-1)
IDR.101ic1(T) « wnew_subject(S,T), subject(S,T-1)
IDR.111ic2(T) < wnew_person(P,T), person(P,T-1)
IDR.121ic3(C,T) « woffer(C,Ti,S,T), course(C,Ti1,T1),T1<T
IDR.131ic4(C,S,T) « roffer(C,Ti,S,T), not subject(S,T-1)
IDR.141ic5(C,T) « woffer(C,Ti,S,T), wffer(C,Til,S1,T), Ti #Til
IDR.151ic6(C,T) <« woffer(C,Ti,S,T), wffer(C,Til,S1,T), SI #S1
IDR.161ic7(T) « cancel(C,T), not 3Ti(course(C,Ti, T-1))
IDR.171ic8(T) « enrol(P,C,T), not person(P,T-1)
IDR.181ic9(T) « enrol(P,C,T), not 3Ti(course(C,Ti,T-1))
IDR.191ic10(T) ¢ wenrol(P,C,T), enrolled(P,C,T-1)

Figure 3. Internal events model of the DCM example.
We have developed a method to simplify the IEM [San93]. It can be described as a

procedure that uses all the relevant information about the DCM and the IEM to
transform each internal event rule into a semantically equivalent one that can be
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evaluated much more efficiently. This transformation is mainly based on the use of the
integrity constraints, but it also takes into account the P-type of derived predicates, and
the proper deduction rules. The explanation of the method is out of the scope of this
paper. Figure 3 shows the result obtained by its application to the DCM example of
figure 1.

4. Deriving Base Transactions

4.1 Implementation of a DCM

Implementation of a DCM comprises two main design decisions: data base and
transactions. The simplest implementation consists in storing in the data base
(Extensional Data Base, EDB) only the base facts. There is a transaction (that we call
Base Transaction, BT) for each base predicate. The role of each BT is to read the
corresponding base fact, check the relevant integrity constraints and store the fact in the
EDB. Derived facts could be computed using the DCM rules when requested, either
during constraints checking or query answering. This implementation, however, would
not be acceplable in practical situations from an efficiency point of view.

In general, the EDB comprises all facts explicitly stored in the data base. These facts
do not need to be the base facts defined in the DCM. Indeed, it is quite usual to store in
the EDB some derived facts, and not to store all base facts. Usually, there are many
valid alternatives and the designer must choose in each case the most appropriate. The
EDB schema is characterized by: (1) A set of base or derived predicates of the DCM to
be included in the EDB (we call them stored predicates), and (2) for each of them, a time
interval for which its facts will be stored. The Intensional Data Base, IDB, comprises all
facts that can be derived from the EDB using the DCM rules.

Then, the role of each BT is to read the corresponding base fact, check the relevant
integrity constraints and update the EDB (inserting and/or deleting one or more EDB-
facts). In this section, we present a method for deriving the specifications of each BT.
These specifications include two parts:

(1) The transaction pre-conditions, which is the set of conditions the base fact must

satisfy in order to guarantee EDB integrity.

(2) The transaction updates, which are the insertions and/or deletions that must be

done to the EDB.

The design and implementation of each BT will then be dependent on the particular
execution environment. We will not deal with this aspect here, but we mention that it
is quite straightforward to build such transactions on top of a deductive DBMS (see
[San92, MSS92] for more details).

4.2 The approach

As we mentioned before, there is a BT for each base predicate defined in the DCM, We
can also derive composite transactions, corresponding to the simultaneous occurrence of
two or more base facts, but this extension will not be considered here.

Let TR={1b(k,t)} be the transaction corresponding to the insertion of a base fact
b(k,t), where k is a vector of constants denoting the transaction parameters, and t the
occurrence lime, We derive its effects in the following way: For each integrity
constraint icj specified in the DCM, we check its violation by evaluating the internal
event predicalte ticj. In the same way, for each stored predicate p(X,T), we derive the
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induced insertion (resp. deletion) of a fact p(x,t) by evalvating the internal event
predicate 1p(X,t) (resp. dp(X,1)). As IEM rules are defined in terms of data base
predicates extensions at time t-1 or before, to evaluate internal event predicates we also
need the IDB rules, which relate DCM predicates to the facts stored in the EDB.

To obtain these evaluations we use an SLDNF-based proof procedure. More
precisely, let I=[1/8]p(X,t) be the internal event predicate to be evaluated. We say that
TR induces I if goal {¢< I} succeeds from input set IEM u IDB u EDB U TR. If
every branch of the SLDNF-search space for IEM U IDB UEDB U TR U {« 1} isa
failure branch, then TR does not induce I.

Obviously, the evaluation can be completely done at execution time, when the
concrete values of EDB and transaction parameters are known. However, we can do
some preparatory work at compilation time, by partially evaluating IEM U TR wrt ]
[L1S91]. The result of the partial evaluation is a set E of n rules (n20):

1« G i=0.n
where C,; is a conjunction of literals such that the evaluation of {« I} at execution time

from E U IDB U EDB gives the same result as the evaluation of {« I} from IEM u
IDB v EDB u TR. If n=0 then TR does not induce 1. If C;is empty then TR

unconditionally induces a fact I. In this last case, if I corresponds to the insertion of an
inconsistency predicate, the transaction can never happen because it violates the
corresponding integrily constraint.

Applying this procedure to our example, at compilation time, assuming that the
current state of all derived predicates are stored in the EDB, we have to partially
evaluate, for each possible transaction, internal event predicates ticl(t), 1ic2(t),
1ic3(C,t), 1ic4(C,S,1), 1ic5(C,t), 1ic6(C,t), ric7(t), 1ic8(t), 1icH(t), 1ic10(t),
corresponding to the integrity constraints, and tsubject(S,t), iperson(P,t),
1course(C,Ti,t), Scourse(C,Ti,t), 1subject_of_course(S,C,t), dsubject_of_course(S,C,t),
1enrolled(P,C,t), denrolled(P,C,t), and tinterestedf(P,S,t) to derive the update conditions
of stored predicates.

Take, as an example, the transaction: TR={tenrol(p,c,t)}, where p and c are
parameters and t the occurrence time of TR. After application of our method, the set of
rules obtained at compilation time will be:

1ic8(t) « not person(p,t-1)

1ic9(t) « not ITi(course(c,Ti,t-1))

1ic10(t) « enrolled(p,c,!-1)

enrolled(p,c,t) « course(c,Ti,t-1)

tinterested(p,S,t) « subject_of_course(S,c,t-1), not interested(p,S,t-1)
meaning that constraint ic8 will be violated if p was not a person at previous time,
constraint ic9 will be violated if ¢ was not a course at previous time and constraint ic10
will be violated if p is already enrolled to course c. If the constraints are satisfied, the
fact enrolled(p,c) must be inserted into the EDB if ¢ was a course with title Ti at
previous time, and the fact interested(p,S) must be inserted into the EDB if it was not
already true, being S the previous value of subject_of_course(S,c). Note, however, that
1enrolled(p,c,t) can be unconditionally induced, instead of depending on the condition
course(c,Ti,t-1), because ic9 guarantees that there exists some course(c,Ti,t-1).

4.3 Example

Before giving the formal definition of the method, we illustrate our approach with an
example.
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Assume that we want to derive the transaction TR={1enrol(p,c,t)} and that the
current state of all derived predicates is stored in the EDB. We have first to partially
evaluate JEM U TR wrt 1icj, corresponding to the integrity constraints. Consider, for
example, the partial evaluation wrt 1ic8(t). Possible sets of conditions C; that would
lead to the violation of ic8(t) are obtained by having some failed derivation of IEM UL
TR U {«1ic8(1)} succeed. Figure 4 shows this derivation tree, were the circled labels
are references to the rules of the method, defined in section 4.4.

STEP RULE
Lic8(t)

e

DR17 | 1

« 1enrol(P,C,1), not person(P,t-1)
TR | 2 ®
« not person(p.t-1)
|
(
C={not person(p,t-1)}

Figure 4: derivation tree for 1ic8(t)

Steps 1 and 2 are SLDNF resolution steps. At step 1 rule IDR17 of the IEM acts as
input clause, while at step 2 the input clause is the base fact from TR. At step 3 the
selected literal not person(p,t-1) corresponds to an stored predicate and, therefore, it can
not be evaluated at compilation time because it depends on the concrete value of the
database at execution time. As a consequence, this literal is included in the condition set
C and its evaluation is delayed until execution time.

The set of condilions obtained for 1ic8(t) adds the following rule to the transaction
definition:

1ic8(t) « not person(p,t-1)

The partial evaluation wrt 1ic9(t) and 1ic10(t) is shown in figure 5.

STEP  RULE STEP  RULE
Rzl el 0

IDR18 1 @ IDR19 1

«_1enrol(P,C,T), not is_course(C,1-1) «-1enrol(P.C T), enrolled(P,C,t-1)

TR 2 TR 2

« nol is_course(c,t-1) < enrolled(p,c,t-1)
3 3
( [J
C={not is_course(c,t-1))} C={enrolled(p,c,t-1)}

Figure 5: derivation trees for 1ic9(t) and 1ic10(t)
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Figure 7 shows the failure tree for Scourse(c,Ti,t). Steps 1 and 2 are SLDNF resolution
steps. At step 1 rule IDR4 of the IEM acts as input clause. At step 2, the selected
literal is the external event wcancel(c,t) which has to be resolved with facts in TR. Given
that there is no fact 1cancel(c,t) in TR, the tree fails unconditionally.

As a consequence, the following rule will be added to the BT definition:
enrolled(p,c,t) « course(c,Ti,t-1)

The partial evaluation wrt vinterested(P,S,t) is shown in figure 8.

STEP RULE
«tinterested(P,S,0)

IDRS 1

« enrol(P,C,t), subject_of_course(S,C,t-1), not dsubject_of_course(S,C,t),
not interested(P,S,t-1)

TR 2

« subject_of_course(S,c,t-1), not dsubject_of_course(S,c,t),

not interested(p,S,t-1)

«8subject_of_course(S,c,t) fails 3 @
« subject_of_course(S,c,1-1), not interested(p,S t-1)

¢ ®
s ®

not interested(p,S,t-1)

[l
C={subject_of_course(S,c,t-1), not interested(p,S,t-1)}
STEP RULE

Ssubject of course(S.c.t

IDR6 1 @

« subject_of_course(S,c,1-1), Scourse(c. Tit)

IDR4 2
« subject_of_course(S,c,t-1), course(c,Ti,t-1), wcancel(c,1)

TR 3

fails

C={}

Figure 8: derivalion tree for tinterestec(P,S,t)
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4.4 The method

This section describes, in a formal way, the method explained in sections 4.2 and 4.3.
Our proposal is based on the partial evaluation procedure given in [L1S91]. The main
difference consists on the treatment given to the case in which a negative and non-
ground literal is selected during the SLDNF refutation. In some cases, for our particular
application, the failure of such kind of literals can be guaranteed by the subsidiary
derivation and, therefore, they can be evaluated at compilation time.

As we know, the transaction will be derived by partially evaluating IEMUTR wrt
internal events predicates corresponding to integrity constraints and stored predicates.

If I is the internal event predicate to be evaluated, C will be a set of conditions of I if
there exists a constructive derivation from (I {}) to ([]J C), having as input set
IEMUTR, where TR={1b(k,t)}, being b a base predicate and k a vector of constants.

We will call;

- Non-event literal to a lileral corresponding to a base,-derived or inconsistency
predicate.

- Accessible literal to a non-event literal corresponding to an stored predicate or to a
predicalte that can be deduced from stored predicates.

Constructive derivation. A constructive derivation from (I} C;) to (I, C;) viaa
seleclion rule R, that selects literals nol corresponding to evaluable predicates with
priority, is a sequence:

I; Cp, I ey, 0, C)
such that for each i21, I; has the form «Ly,... Ly, R()=L; and (I, C;,) is obtained
according to one of the following rules:

Al If Lj is a positive internal event or transition literal, and S is the resolvent of some
clause in [EM with J; on the selected literal L, then I; 4=S, and G; ,1=C;.

A2) If Lj is a positive, external event literal 1p(X,t), and S is the resolvent of fact in
TR with ]j on the literal L; using substitution o, then I;,; =S, and C;;=(Cj)a.

A3 If Lj is a negative, external event literal "not 1p(X,t)", and TR can not be unified
with 1p(X,t) then Ii+1= (—-Ll,...,Lj_l, Lj+1""’ Lk' and Ci+1=Ci.

Ad) If Lj is a negative, external event literal "not 1p(X,t)", and TR can be unified with
1p(X,0) uvsing substitution 6={X/k,}, then I; ;= <Ly,....L; 1, Lj,q,...Lg, and
Ci+1=Ci u{ Xl?‘ikl].

A5) If L; is an accessible literal then [ ;=¢Ly,....Lj_1,Lj4 1. L, and Cir1=CuiL;).
A6) If LJ is an evaluable literal then Ii+l=<_Ll""’Lj-l’ Lj+l""'Lk' and Ci+l=CiU[Lj}'
A7) If Lj is a ground internal event or transition literal "not Q" and there exists a
consistency derivation from («Q { }) to (] C') then

Ii+l =« Ll""' Lj-l’ Lj+1""’ Lk' and Ci+1 = CiUC'.

AB) If Lj is a ground internal event or transition literal "not Q" and it does not exist a
consistency derivation from (< Q { }) to (] C') then

1i+1 =« Ll""’ Lj-l’ Lj+1""’ Lk’ and Ci+l = CiU {L_]]

A9) If Lj is a non-ground internal event or transition literal "not Q" and there exists a
consistency derivation from («Q { }) to ([] { }) then

Il+1 =< Ll""? Lj-l! Lj+]""’ Lk, and Cl+l = Cl
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Al10) If Lj is a non-ground internal event or transition literal "not Q" and it does not
exist a consistency derivation from («~Q { })to ([1 { }) then

Ii+l = ¢ Ll""‘ Lj-l’ Lj+1""’ Lk' and Ci+1 = CiU {L_]}

The step corresponding to rule A1) is an SLDNF resolution step. The step of rule
A2) is also an SLDNF step, but now Lj is resolved with TR. In rule A3) not 1p(X,t) is
true because 1p(X,t) can not be unified with TR.

In A4) not 1p(X,t) will be true only if X,#k;. Assume, for example, that the
current goal is < nol wenrol(P,c,t),a and that TR={1enrol(p,c,t)). By applying A4) we
get the new goal « P #p,a.

Atsteps AS) and A6) accessible and evaluable literals are added to the condition set
C because their evaluation have to be delayed until execution time. Steps corresponding
to rules A7) and A8) deal with the evaluation of ground and negative internal event or
transition literals "not Q". If the failure of Q can be ensured via a consistency derivation
(A7), the set of conditions is added to the condition set C. On the contrary (A8), the
literal itself has to be added to the condition set C because it can not be evaluated at
compilation time. Finally, steps corresponding to rules A9) and A10) perform the
evaluation of non-ground and negative internal event or transition literals "not Q". If a
consistency derivation ensures an unconditional failure of Q (A9), the selected literal can
not fail, and thus, it can be eliminated from the goal I in order to have a failed derivation
of IEM U TR U {1} succeed. On the contrary (A10), the literal has to be added to the
condition set C because its evaluation has to be delayed until execution time.

There are different ways in which a constructive derivation can succeed. Each one
may lead to different insertion or deletion rule.

Consistency derivation. A consistency derivation from (F; C;) to (F, C,) via a
safe selection rule R, that selects literals not corresponding to evaluable predicates with
priority, is a sequence:

F, Cp, (Fy Cy),..., F, C)
such that for each i21, F; has the form {«L,,..., Ly} U F; and for some j=1..k,
(Fi41 Ci41) is obtained according to one of the following rules:
B1) If Lj is a positive internal event or transition literal, and §' is the set of all
resolvents of clauses in IEM with «-Ly,..., Ly on the literal L;, then Fj 1= §' U F;
and Ci+1=Ci.
B2) If L, is a posilive external event literal , and TR can not be unified with Lj then
Fir1=F; and C;,1=C;.
B3) If L; is a ground positive external event literal \p(x,t), and §' is the resolvent of TR
with «Lj,..,, Ly on the literal L;, and [J¢ §', then F; ;| = §' U F and C;;1=C;.
B4) If Lj is a ground negative external event literal "not 1p(x,t)" and TR can be unified
with 1p(x,t) then F; .y = F, and C;=C;.
B5) If Lj is a negative external event literal "not 1p(X,t)", and TR can not be unified
with 1p(X,t) then Fi+1 =& Ll""’ I“j-l’ Lj+1""' Lk V] F’i' and Ci+l=Ci'
B6) If Lj is a ground negative internal event or transition literal "not Q" and there
exists a constructive derivation from («Q { }) to ([] C') then F;,=F';, and
Ci+l= Ci v C.

Steps corresponding to rules B1) and B3) are SLDNF resolution steps. In case B2)
and B4) the current branch fails and thus, it can be eliminated. In case B5) the selected
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literal can not fail, and thus, it is eliminated from the subgoal set F; in order to make a
successful SLDNF branch fail. Finally, in case B6) the current branch can be dropped if

there exists a constructive derivation for the negation of the selected literal. This ensures
failure for it.

5 Conclusions

We have presented the main components of a Deductive Conceptual Model (DCM). We
have then discussed the main decisions involved in the design and implementation
process: data base design and transaction design. Data base design can not be completely
automated, although some tools to aid the designer in alternatives' generation and
analysis can be built.

Once the data base has been designed, transactions can be derived automatically.
Preconditions of the transactions can be determined from the integrity rules, and database
updates from the deductive rules of the DCM. We have presented a formal method to
derive the transactions from the DCM. The method is based on the use of the SLDNF
proof procedure and can be implemented easily in Prolog.

We plan to extend our work in several directions. First, we would like to be able to
simplify even more the transaction specifications. Second, we plan to consider the case
of transactions consisting of multiple base facts, instead of just a single one. Finally, it
might be convenient to consider the design and implementation of transactions in
conventional architectures. In this sense, our current transaction must be seen as a
transaction specification.

Finally, we would like to build a library of rule schemes, such that a particular
DCM, and its corresponding IEM, could be developed by reusing the components of the
library.
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