« Yol 9/ 30

copia F

Constraint Satisfaction as Global Optimization

Pedro Meseguer
Javier Larrosa

Report LSI-95-24-R

VD B o
86 o ﬁﬁ%gﬂ
SHD l,“;&t,\)j i&

i
Faculial d'informdtica
de Barcelona - Biblioteca

Constraint Satisfaction as Global Optimization

Pedro Meseguer

Javier Larrosa

Universitat Politécnica de Catalunya
Dep. Llenguatges i Sistemes Informatics
Pau Gargallo 5
08028 Barcelona, SPAIN

Abstract

We present a optimization formulation for discrete
binary CSP, based on the construction of a
continuous function A(P) whose global maximum
represents the best possible solution for that
problem. By the best possible solution we mean
either (i) a solution of the problem, if it is
solvable, or (ii) a partial solution violating a
minimal number of constraints, if the problem is
unsolvable. This approach is based on relaxation
labeling techniques used to enforce consistency in
image interpretation. We have used a projected
gradient ascent algorithm to maximize 4(P) on the
n-queens problem obtaining good results but with
a high computational cost. To elude this problem,
we have developed a heuristic for variable and
value selection inspired in the direction in which
A(P) is maximized. We have tested this heuristic
with forward checking on several classes of CSP.

1 Introduction

The purpose of this paper is to show how discrete constraint
satisfaction problems (usually abbreviated as CSP) can be
effectively analyzed and solved as a kind of optimization
problems. This is not a strictly new approach; other authors
have used it to solve specific problems [Sosic and Gu,
1991; Minton et al., 1992; Selman et al., 1992; Morris,
1993]. The novel aspect we present here consists in the
following: we provide a way to construct, for any instance
of CSP with binary constraints, a continuous function
whose global maximum represents the best possible solution
for that problem. By the best possible solution we mean
either (i) a solution of the problem, if it is solvable, or (ii) a
partial solution violating a minimal number of constraints,
if the problem is unsolvable. Therefore, a CSP can be
solved constructing such a function and using any kind of
optimization techniques to compute its global maximum.
This function, A(P), is the average local consistency
function associated with the problem.

The present work is the result of applying relaxation
labeling techniques, used to enforce consistency in image
analysis, to CSP. Relaxation labeling considers labeling
problems (LP), which can be seen as a generalization of

CSP. LP and CSP have many points in common: both deal
with a finite number of variables {X;}, which take values on
discrete domains {D;} under a set of binary constraints
{R;;}. They differ in two main aspects: (i) in the problem
formulation and (ii) in what they consider as a solution.
With respect to the problem formulation, in CSP
assignments and constraints are purely boolean (the
assignment (X;, v)) is true or false, the constraint R;{vi, vi)

- allows variables X; and X; to take the values v and v; or

not), while in LP assignments can be weighted (assign
several values with different positive weights to the same
variable is a legal assignment, providing the sum of weights
is equal to 1), and constraints can express a graded level of
consistency (for a given pair of variables different pairs of
values can be consistent, but some more consistent —and
therefore preferred— than others). With respect to a
solution, both approaches look for a consistent assignment
but they differ in the level of consistency required. In CSP,
a solution must be globally consistent, that is, it must
satisfy all the constraints (or a maximal number of
constraints in the case of maximal constraint satisfaction).
In LP different criteria for a consistent solution have been
proposed; in this paper we will follow the proposal of
[Hummel and Zucker, 1983] which, for a LP with
symmetric constraints, identifies consistent solutions with
local maxima of A(P), the average local comsistency
function. Local maxima of A(P) are not guaranteed either to
satisfy every constraint or to restrict the assignment weights
to {0,1}, so they are not feasible solutions for CSP. After
this description, we can see a CSP as a particular instance of
LP, but with more demanding requirements for a solution.
We will show that the necessary and sufficient condition for
the best solution of a CSP is to be a global maximum of
A(P), and in this case it is always possible to restrict the
assignment weights to {0,1}.

This paper is organized as follows. In section 2, we
revise some of the previous work on CSP and relaxation
labeling. In section 3, we introduce the concepts needed to
analyze a CSP as a LP. In section 4, we provide the results
relating solutions with local and global maxima of A(P). In
section 5, we discuss some approaches to compute a global
maximum. In section 6, we discuss a heuristic approach for
variable and value selection. Finally, in section 7 we
summarize the main contributions of this work.

2 Related Work

A significant amount of work has been made on CSP in the
last twenty years (for an wide overview see [Tsang, 1993]).
The most common approach to solve CSP has been a
systematic search algorithm with backtracking. A consistent
partial solution is formed by a subset of variables and it is
extended by adding variables one by one until a complete
solution is found. When no consistent value exists for the
variable being added, backtracking occurs changing the
value of a previously assigned variable. This approach is
complete, it always finds a solution if it exists, but is has
an important drawback: backtracking is extremely
inefficient. To prevent this problem, several refinements and
additions to this approach has been developed, such as local
consistency pre-processing, backtrack-free problems, look-
ahead and look-back algorithms, heuristics, and
combinations of these strategies.

In the last years, a new iterative approach to solve CSP
has been proposed. Starting from an inconsistent global
assignment, each iteration modifies this assignment using
local information in such a way that the number of violated
constraints decreases (or in some cases, remains unchanged),
until global consistency is achieved [Sosic and Gu, 1991;
Minton et al.,, 1992; Selman et al., 1992]. This approach
can be seen as a hillclimbing procedure, where the number
of violated constraints is minimized. Given that it can be
stuck in local minima (where some constraints are still
violated), a way to escape from them is needed [Morris,
1993]. This approach is not complete. When a given limit
of iterations is achieved without reaching a solution, the
process is restarted from another initial assignment. In
practice and for some kind of problems, a few restarts are
enough to reach a solution, with less computational effort
than systematic search with backtracking.

On the other hand, image interpretation considers the
problem of assigning labels to image parts to produce a
global consistent interpretation. Given that the presence of a
particular object may impose constraints on other objects in
its neighbourhood, a common approach uses local
contextual information to obtain the most adequate label for
each image part. This process is iterated to allow local
information to propagate, until a stable state is reached
[Davis and Rosenfeld, 1981]. An early example of this
technique is the Waltz's work on interpretation of line
segments [Waltz, 1975]. This work allowed unambiguous
interpretations only. In general this is too restrictive, so
ambiguous interpretations where several labels are assigned
to the same image part with different weights are also
allowed. In this context a number of techniques, called
relaxation labeling, have been developed [Kittler and
Illingworth, 1985; Torras, 1989]. A relaxation procedure is
an iterative and parallel process which, starting from an
initial weighted assignment (weights in [0,1]), performs a
synchronous weight updating until it does not cause further
changes in the current weighted assignment (it converges to
a fixed point). Many updating formulas have been proposed
[Rosenfeld ef al., 1976], some of which have been proved
as approximations of a gradient ascent algorithm and their
fixed points are local maxima of a continuous function.

3 CSP as Labeling Problems

In this section we introduce the basic concepts for CSP and
LP, and we formulate a generic CSP as a LP. To keep the
maximum of clarity in our exposition, we use different
notations for CSP and LP. The real differences will become
apparent at the end of the section,

A discrete binary CSP is defined by a finite set of
variables {X;} taking values on discrete and finite domains
{D;} under a set of binary constraints {Ry}. A constraint R;;
is a logical expression which evaluates to true or false on
each pair of potential values for X; and X;. An assignment of
values to variables is csp-consistent if it satisfies every
constraint. A solution for the CSP is a csp-consistent global
assignment. The number of variables is 7 and, without loss
of generality, we will assume a common domain D for all
the variables, m being its cardinality.

A general LP is characterized by a finite set of units
{U}, a set of labels for each unit {A;}, a neighbour relation
over the units, and a constraint relation over tuples of
neighbouring units. In this paper we will assume that the
sets of labels are discrete and finite, and that all the
neighbour relations are binary, which imply binary
constraints {r;;}. The number of units is # and, without loss
of generality, we will assume a common set of labels A for
all the units, m being its cardinality. A constraint is a real-
valued function, r;;: A X A — R; a positive value of rif(Ag,
A)) indicates that the assignment of A to U, is consistent
with the assignment of 4; to U;, while a negative value
indicates an inconsistent assignment. The magnitude of
rij(Ak, A1) represents relative importance of r;; in the set of
constraints, as well as the relative preference for the pair of
values (4, A;) for this constraint. From now on, we will
assume that constraints are symmetric, rj(A, 4 = rii(As
A, fori,j=1,.n andl, k= 1,..m.

An unambiguous labeling is a mapping from the units
into their corresponding set of labels, associating each unit
with exactly one label. For each unit U;, this mapping can
be represented by a vector of m bits, p;, defined as follows,

pilA] = 1, if unit U; maps to label A;
0, if unit U; does not map to label A;

Obviously, p; has 1 in one position only and the remainder
m

positions contain zeroes, so Y, pj[A;] = 1. Concatenating
k=1

the vectors p,, p, ..., pn, ONe can obtain an assignment
vector Pe R"™, The space of unambiguous labelings K* is,

K*= {PEan | P= [p]"--, Pn]> pi= [Pi[A]]a--wPi[Am]]ERm;
m
pilAdd=0o0r L, ¥ pilA) =1,i=1,..n}
k=1

A weighted labeling is obtained by replacing the condition
PilA] = 0 or 1 by the condition 0<p;[A;]<1 for all i, k. The
space of weighted labelings X is defined as,

K ={PeR"™|P =|py,.. pu); Pi= [pilA1).....0il Am}}€R™;
0<p,[A4]<1; kg‘,l pilAd =1, i=1,...n}

An ambiguous labeling is a weighted assignment which is
not unambiguous. Given an assignment P, we define the
support for label A; at unit U; by the assignment P as,

n m
5i(A, P) = 21 121 riite A pilA)
A E

Given a labeling P, we define the average local consistency
function as,

APY=3 ¥ silMk, P) pilde) 1)
=1k=1

If P is an unambiguous labeling which maps each unit U; to
the label A/, the expression of A(P) is specialized as follows,

APY=T, Ty, X @

=1 j=1
The unambiguous labeling P is [p-consistent provided,

S,'(A,i, P) 2 Sj(z,k, P)s

In other words, P is Ip-consistent if the support that each
label obtains from P is higher or equal than the support that
any other label can obtain from P. Notice that the above
expression involves the maximization of » quantities, the
supports of the corresponding label on each unit. This
definition can be extended to weighted labelings as follows:
let P be a weighted labeling, P is Ip-consistent provided,

m m
kglpila’k] si(lks P) Zkglwila'k] Si(lk,P) i=1,...,n, all WekK

for i=1,..,n, k=1,....m.

Given a CSP, we can formulate it as a LP in the
following way: each variable X; corresponds to a unit U,
and the common domain of values D corresponds to the
common set of labels A. The set of binary constraints {Ry}
is transformed into the set of constraints {ry} over binary
neighbour relations in the following form:

for every pair of vanables (i, /), i j=1,...,n,
for every pair of values (v, v, k,/=1,....m
if Ri{(v, v)) exists then
ifR,_-](Vk, v) then r,:,(vk, vp=1
else rij(Vg, v)) = -1 endif
else 1;(v, v)) = 0 endif
endfor
endfor

A solution for this CSP will be an unambiguous
labeling with the condition of being csp-consistent. Now, a
natural question arises: what is the relation between csp-
consistency and Ip-consistency? A precise answer will be
provided in section 4, but now we can show that they are
not equivalent because there are Ip-consistent labelings
which are not csp-consistent. We can see this in a very
simple example using the 3-queens problem, where we have
to locate three queens on a 3 x 3 chessboard in such a way
that they are not attacking each other. The problem is
formulated as follows,

Units: {U,, U, Us}. U, represents the queen at the row i.
Labels: A={1, 2, 3}; label k represents a queen located at
column k.

Constraints: r;;(k, k') = 1 if queen i at column & does not
attack queen; at column £’, -1 otherwise.

1 2 3
Up 1 Q
U, Q
Us Q

Figure 1. A labeling for the 3-queens problem which is Ip-
consistent but not csp-consistent.

It is well known that this problem has no solution (the
general problem of n-queens has solutions for 7>4), so no
unambiguous labeling can be csp-consistent. However, there
are unambiguous labelings which are Ip-consistent. For
instance, the unambiguous labeling P = [[1,0,0] [0,0,1]
[0,1,0]] (see Figure 1) is lIp-consistent; computing the
supports we have,

si(1,P)=2 s;(2,P)==-2 5;3,P)=0
sx(1, Py=-2 52, P)=-2 52(3,P)=0
sy, P)y=0 532, P)=0 s33,P)=-2

From these figures we can see that, s;(1, P) > s,(i, P),
i=2,3; 523, P) 2 55(, P), j=1,2; s3(2, P) 2 53(k, P), k=1,3;
so P is Ip-conmsistent although obviously P is not csp-
consistent. In consequence, these two notions of consistency
are not equivalent. Lp-consistency is just a kind of partial
consistency, as we will see in the next section.

4 Consistency as Optimization of A(P)

In this section we provide several results relating Ip-
consistency and csp-consistency with local and global
maxima of the A(P) function.

Theorem 1 [Hummel and Zucker, 1983; Banerjee, 1989]:
Let us consider a labeling problem with symmetric binary
constraints. A labeling P is Ip-consistent if and only if it is
a local maximum of 4(P) over XK.

This first result establishes the equivalence between Ip-
consistent labelings and local maxima of A(P). These
labelings can be ambiguous, and therefore unfeasible when
considering CSP (remember that only unambiguous
labelings are meaningful as potential solutions for CSP).
The following theorem relates ambiguous and unambiguous
Ip-consistent labelings.

Theorem 2 [Sastry and Thathachar, 1994]: Let us consider a
labeling problem with symmetric binary constraints. If there
exists an ambiguous Ip-consistent labeling Py, there exists
an unambiguous Ip-consistent labeling P; such that A(Py) =
A(P)). Further, P, is a convex combination of some
unambiguous Ip-consistent labelings, all sharing the value
A(Po) for the average local consistency function.

This theorem guarantees the existence of an
unambiguous Ip-consistent labeling for each ambiguous Ip-
consistent labeling with the same value of A(P). Therefore,
this theorem allow us to ignore —at least in theory— the

existence of ambiguous Ip-consistent labelings and to
consider only unambiguous ones.

Theorem 3: Let us consider a binary CSP formulated as a
labeling problem, and let Py be an unambiguous labeling.
Pg violates a2 minimal number of constraints if and only if
Py is a global maximum of A(P).
Proof. Let us assume that P, violates a minimal number of
constraints but it is not a global maximum of A(P). There
exist a P;e K such that A(Pg) < A(P;). By Theorem 2, there
exists Poe K* such that A(P)) = A(P). Using (2) A(Pg) and
AP)) are,
n n
APy =3 X ri(Ad, Ad)
i=1=1 i=1j=

where Agkand A are the labels assigned to unit k by the
labelings Pj and P; respectively. The summands ri(A, A"
canbe 1, 0, or -1, and A(Py) and A(P,) have the same zero
summands (r;(4, A) = 0 for every pair (X;, X)) of variables
which do not constraint each other). Therefore, if
A(P3) > A(Py) it implies that A(P;) has more positive
summands than A(Py). This means that P, satisfies more
constraints than P, what contradicts the initial assumption
on Py. So Py is a global maximum.
Conversely, if P, is a global maximum of A4 (P),
A(Pg) 2 A(P)), for all P,e K. In particular, A4(P;) > A(P3),
for all P,e K*. Then, by construction of A(P) it is easy to
see that Py violates a minimal number of constraints. ¢

This theorem gives a necessary and sufficient condition
for the best possible solution of a CSP: it must be a global
maximum of A(P). The theorem is restricted to
unambiguous labelings, because ambigunous global maxima
can exist. Theorem 2 assures the existence of unambiguous
global maxima which are the vertices of a convex hull in
which the ambiguous global maximum is located. It can be
seen that every point in this convex hull has the same value
for the function 4(P), that is, every point in this set is a
global maximum including the edges forming the border.
Then, if an ambiguous labeling is reached (a non-vertex
point of the convex hull) one can find an unambiguous
labeling (a vertex) after some exploration around the reached
labeling.

Lemma |: Let us consider a CSP formulated as a labeling
problem. Let A4,,,,, be twice the number of constraints {Ri}
with i<j. 4,4, is an upper bound of A(P).

Proof. Let Py be an unambiguous labeling. Using (2),

n n
A(Po) = 3, ¥ ri(Ag', Ag), where At is the label assigned
i=17=1
to unit k by Py. The summands ry(4,/, A¢/) different from
zero are those corresponding to existing constrained pairs of
variables. For a given Rj; the maximum value of rif(Ad, Ad)
is 1, so the maximum value for A(Py) is twice the number
of existing constraints, which is the value of Amax. This
proofs that 4,,, is an upper bound of A(P) for unambiguous
labelings. The extension to ambiguous labelings is
straightforward, using Theorem 2, ¢

Corollary 1: Let us consider a binary CSP formulated as a

APy =3 eri,(lzf, A7)

labeling problem. An unambiguous labeling Py is csp-
consistent if and only if 4(Pg) = 4,4

Proof. This corollary is a trivial specialization of Theorem 3
using Lemma 1 when the global maximum satisfies all the
constraints. ¢

S Solving CSP by Gradient Ascent

Using the results of section 4, given a CSP we can compute
a solution in the following steps: (i) construct the A(P)
function, (ii) compute a global maximum P, and (iii) if
A(Pg) = Amax then we can compute a solution from Po,
otherwise no solution exists. Steps (i) and (iii) are trivial
but step (ii) is very difficult. Computing a global maximum
of a continuous function which in general is not convex is a
very difficult task [Horst and Tuy, 1993]. When possible,
this issue is solved looking for a local maximum satisfying
an additional condition which guarantees that it is a global
one. In our case, we know that Py is a global maximum
when A(Pg) = Apmax, for solvable CSP. To look for a global
maximum of A(P) we take a very simple approach: starting
from a random point, we look for a maximum using a
continuous gradient ascent algorithm. If the value of 4(P)
on this maximum is A,,,y, the point is a global maximum.
Otherwise, we discard this local maximum and restart the
process starting from another random point.

The maximization of A(P) is subjected to a set of

m
constraints, given that 0<p,[4;]<1 and ¥ pjA;] = 1, for
k=1

i=1,...,n. That is, A(P) should be maximized without
leaving the set K. The pure continuous gradient ascent
algorithm is not directly applicable, because the gradient
may point out of X and in this case, this algorithm will
compute a new point out of X. To prevent this, we have
used the projected gradient ascent algorithm [Gill et al.,
1981], which uses the projection of the gradient on X as the
direction of maximum increase of 4A(P). The gradient of
A(P) at the point Pe X is the vector Qe R™™, such that g=
[915--49n]), i = [gi[A1).....qi[Am]]. Each component g;{A)
has the following form,

il = 2 5i(A, P) €)

The projection of Q on K is obtained using the operator
Proj, which is built from the constraints defining X [Gill ef
al., 1981]. The new point P’ is computed as,

P' =P+ a Proj(Q) C))]

where o is the length of the step taken in the direction
Proj(Q). Given that A(P) is a quadratic form, the optimal
value of a can be exactly computed.

We have implemented this algorithm to solve the n-
queens problem. For n<50 the algorithm achieves a
maximum in approximately n iterations, and it needs
between 2 to 4 restarts to achieve a global maximum (a
solution). The number of restarts does not depend on n, the
problem dimension. The local maxima reached present a
low number of conflicts (1 or 2 pairs of attacking queens).
The algorithm starts from a random unambiguous labeling.
These results are reasonably good but the algorithm requires
significant computational efforts when » increases, due to

the dimension of vectors P and Q increases as n2.

We have also implemented a discrete hill-climbing
algorithm, which starts from a random configuration of
queens (a queen for row), selects a row at random and
performs a change in the position of its queen if the number
of conflicts decreases. When the algorithm stops on a local
minimum, the process restarts from another random
configuration. For #<50, the algorithm reaches a minimum
in approximately » iterations, and it needs between 107 to
1007 restarts to achieve a solution. The number of conflicts
in local minima commonly ranges from 2 to 4. Regarding
computational cost, this approach is globally less expensive
than the projected gradient algorithm described above. The
reason is simple: an iteration of the projected continuous
gradient is far more costly than an iteration of hill-climbing,
and this cost is not compensated by the lineal number of
restarts needed by hill-climbing with respect to the constant
number of restarts of the projected gradient.

6 A Heuristic for Variable / Value Selection

While using the projected gradient algorithm to optimize
A(P) is not cost-effective with respect to previous
approaches, intermediate results of this algorithm are still of
interest for CSP solving. This algorithm computes the
direction in which A(P) increases more, and updates weights
accordingly. At this point, we can use weights as a heuristic
source for variable and value selection in a systematic search
algorithm. In this way we obtain completeness (by
systematic search), taking advantadge of the information
coming from the optimization approach. With this idea, we
have developed two optimization-inspired heuristics for
variable and value selection inside forward checking.

In this new view, we have to relate systematic search
with label updating. At a given time, the current state of
past and future variables is reflected in a labeling P in the
following form. If U; is a past variable with value A/, p;[A]]
=landp,{A]=0,A€ A, A=A If U, is a future variable,
PilAl = 1m; , A € feasible(A, U,) and p;[A] =0, A € A -
Seasible(A, U;), where the set feasible(A, U,) is the set of
remaining values for variable U, at this state of the search,
and m; = card (feasible(A, U,)). In other words, the labeling
of past variables is unambiguous and the labeling of future
variables is ambiguous with an even distribution of weights
among remaining values. To update weights, we substitute
(4) by the following updating formula for relaxation
labeling [Rosenfeld et al., 1976],

Pi'lAd = pilAln + g A / glpf[lk](% +qilA) (5)

which is an approximation of the projected gradient
[Hummel and Zucker, 1983], but less expensive to
compute. Formula (5) does not cause any change for values
with initial weights either 1 or 0. Therefore, (5) is only
meaningful for remaining values of future variables, and in
this case p;'[A] can be simplified to,

pilAl= 2n+qA)/ 2 2n+gfAl)
A€ feasible(A, U;)
Initially, we used updated weights p,’[A] as heuristic

source, selecting as the next variable that with the highest
weight corresponding with a value of its domain. However,
(6) is a ratio between supports (from (3)), where 27 is added
to assure a positive fraction. This ratio is sensitive to small
variations of support and it exhibits some unstable
behaviour. Looking for robustness in variable selection, we
moved to another criterion: select the variable with the
lowest sum of supports for its remaining values, and order
its values by decreasing support. We will refer to this
heuristic as the lowest-support heuristic. It is obviously
related to the optimization approach: it means to select a
variable with a low denominator in (6) which implies that
this variable will have high values of p,’[A] although not
necessarily the highest.

The lowest support heuristic is computed each time a
new variable has to be selected. Assignment is performed
as in standard forward checking. When a new variable is
assigned, future domains are filtered, a new labeling is
constructed and the heuristic is computed again to select the
next variable. When backtracking occurs (a future domain
becomes empty), the last assigned variable is reassigned
using the value ordering set when it was selected.

This heuristic is expensive to compute. To simplify
computation, we have considered two approximations.
First, restrict heuristic computation to the set of variables
with minimal domains, because there is a high chance that
the selected variable will belong to this set. Second, after
assigning a variable we still use the computed supports for
further assignments if the next lowest sum of supports is
close enough to the initial one. We have accepted sum of
old supports when they have become smaller (due to
domain pruning) than the initial one,

We will refer to forward checking with lowest-support

without approximations as fc-Is, and with approximations
as fc-ls-app. We will refer to the standard forward checking
with first-fail (selecting variable with the smallest domain,
breaking ties randomly and selecting values randomly) as fc-
ff. We have tested these algorithms on two problems:
random solvable graph colouring, and random problems.
Empirical results are given in the following.
Graph colouring. Following [Minton et al. 92], we tested
our heuristic on graph 3-colourability problems.
Specifically, we have considered solvable random graphs
with n nodes and m arcs, forming two classes: sparsely-
connected graphs (m = 2n) and densely-connected graphs (m
=n (n-1) /4). We generated graphs on the range from =
10 to n = 180, incrementing n by 1. For densely-connected
graphs, fc-Is does not bring any real improvement to fc-ff.
Almost all problem instances were solved without
backtracking for both algorithms, and regarding CPU time,
fc-ls took a bit longer than fc-ff, because the time required
by support computing. For sparsely-~connected graphs, both
fc-Is and fc-1s-app outperformed clearly to fc-ff in
backtrackings and CPU time. Results are given in Table 1.

#inst. | algorithm #backs CPU time
fo-ff 18,719,163 12.693
170 | fc-Is 4,503 564
fc-Is-app 13,988 64

Table 1. Sparsely-connected graph 3-colourability problems.

n m | #inst.] algorithm | #backs | CPU time
' fo-ff 9,466 7.0
10, 10| 300 | fc-lIs 4,446 19.3
fc-1s-app 5,124 13.0
fc-Af 156,540 127.7
20,10 200 |fc-Is 53,258 435.3
fc-Is-app 64,000 91.3
jiogid 686,247 752.3
30, 10 50 fc-Is 285,965 3,204.5
fc-ls-app 320,752 497.9

n_m | #inst. | algorithm | #backs | CPU time
fcff 19,500 11.8
10,10 170 | fc-ls 13,926 30.5
fc-Is-app 14,573 17.4
fc-ff 377,867 280.6
20,101 100 | fc-ls 265,393 1,487.4
fc-Is-app 289,905 327.2

Table 3. Densely-connected random problems.

Table 2. Sparsely-connected random problems.

Random problems. We tested our heuristic on random
problems following [Prosser, 1994}. We worked on problem
instances on the peak by choosing the appropriate tightness
(p2) for a given connectivity (p;) and problem size (n, m).
We considered two types: sparsely-connected instances,
(with p; = 0.4) and densely-connected instances (with p; =
1). To select problems on the peak, we used the Prosser's
formula to compute the appropriate tightness. Around this
value, we varied p; by steps of 0.001, in the interval where
a fifty percent of problems happened to be solvable. Ten
instances of each p) setting were used for testing. The
results are given in Tables 2 and 3. For sparsely-connected
problems, fc-Is saves around half number of backtrackings
required by fc-ff, although it needs more CPU time.
Including approximations, fc-Is-app is slightly worse than
fc-1s in backtrackings, but it requires less time than fc-ff
(except in the 10, 10 case). For densely-connected problems,
although the heuristic decreases the number of backtrackings
performed by fc-ff, it is not cost-effective regarding time.

Our results on graph colouring and random problems
show that the proposed heuristic provides good advice (fc-ls
always performs less backtrackings than fc-ff in every
problem type), although it may not be cost-effective for
some problem classes. It seems to be appropriate for
sparsely-connected problems with a high number of
variables relative to the number of values. In these
problems, first fail variable selection heuristic is not enough
to reduce drastically the number of backtrackings. Relation
between the usefulness of the heuristic and the shape of A(P)
requires further investigation.

7 Conclusions

This paper offers two main contributions. On the theoretical
side we have shown that any binary discrete CSP can be
formulated as an optimization problem of a continuous
function A(P), which is constructed from the set of initial
constraints. A global maximum of A(P) corresponds to the
best possible solution of the CSP, that is, an assignment
violating a minimal number of constraints. On the practical
side we have applied this result to solve some CSP
problems. Computing a global maximum of A(P) is quite
costly, so we moved to an heuristic approach: use the
direction of change that increases A(P) to generate a heuristic
for variable and value selection. The results on two kind of
CSP show that it causes a low number of backtrackings,
being cost-effective for sparsely-connected problem:s.

Acknowledgements

First author has been supported by the Spanish CICYT
under the project #TAP93-0451. We thank Carme Torras
and David Cohen for their useful comments.

References

[Banerjee, 1989] Banerjee S. Stochastic relaxation paradigms
Jor low level vision. PhD thesis, Dept. of Elect. Eng., Indian
Inst., of Science, India, 1989,

[Davis and Rosenfeld, 1981] Davis L. A. and Rosenfeld A.
Cooperating Processes for Low-level Vision: A Survey,
Artificial Intelligence, vol. 17, 245-263, 1981.

[Gill er al., 1981] Gill P., Murray W. and Wright M. Practical
Optimization, Academic Press, 1981.

[Horst and Tuy, 1993] Horst R. and Tuy H. Global
Optimization, 2nd edition, Springer-Verlag, 1993.

[Hummel and Zucker, 1983} Hummel R. A. and Zucker S. W. On
the Foundations of Relaxation Labeling Processes, JEEE
Trans. Pattern Analysis Machine Intelligence, vol. 5, no. 3,
267-287, 1983.

[Kittler and Illingworth, 1985] Kittler J. and Illingworth J.
Relaxation labelling algorithms - a review, Image and Vision
Computing, vol. 3, no. 4, 206-216, 1985.

[Minton et al., 1992] Minton S., Johnston M. D., Philips A. b.
and Laird P. Minimizing conflicts: a heuristic repair method
for constraint satisfaction and scheduling problems,
Artificial Intelligence, 58, 161-205, 1992.

[Morris 1993] Morris P. The breakout method to escape from
local minima, Proceedings of AAAI-93, 40-45, 1993.

[Prosser, 1994] Prosser P. Binary constraint satisfaction
problems: Some are harder than others, Proceedings of ECAI-
94, 95-99, 1994,

[Rosenfeld ez al., 1976] Rosenfeld A, Hummel R. and Zucker S.
Scene Labeling by Relaxation Operators, IEEE Trans.
Systems, Man, Cybernetics, vol. 6,10.6,420-433, 1976.

[Sastry and Thathachar, 1994] Sastry P. 8. and Thathachar M. A.
L. Analysis of Stochastic Automata Algorithm for Relaxation
Labeling, IEEE Trans. Pattern Analysis Machine Intelligence,
vol. 16, no. 5, 538-543, 1994,

[Selman et al,, 1992] Selman B., Levesque H. and Mitchell D. A
new method for solving hard satisfiability problems,
Proceedings of AAAI-92, 440-446, 1992.

[Sosic and Gu, 1991} Sosic R. and Gu J. Fast Search Algorithms
for the N-Queens Problem, JEEE Trans. Systems, Man,
Cybernetics, vol. 21, no.6, 1572-1576, 1991.

[Torras, 1989] Torras C. Relaxation and neural learning: points
of convergence and divergence, Journal of Parallel and
Distributed Computing, vol. 6, 217-244, 1989,

[Tsang, 1993] Tsang E. Foundations of Constraint
Satisfaction, Academic Press, 1993.

[Waltz, 1975] Waltz L. D. Understanding line drawings of
scenes with shadows, in The psychology of computer vision,
Winston P. H. editor, McGraw-Hill, 1975.

LSI-95-1-R

LSI-95-2-R

LSI-95-3-R

LSI-95-4-R

LSI-95-5-R

LSI-95-6-R

LSI-95-7-R

L51-95-8-R

LSI-95-9-R

LSI-95-10-R

LSI-95-11-R

LSI-95-12-R

LSI-95-13-R

LSI-95-14-R

LSI1-95-15-R

LSI-95-16-R

Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya

Research Reports — 1995

“Octree simplification of polyhedral solids”, Dolors Ayala and Pere Brunet.
“A note on learning decision lists”, Jorge Castro.
“The complexity of searching implicit graphs”, José L. Balcazar.

“Design quality metrics for object-oriented software development”, Alonso Peralta, Joan Serras,
and Olga Slavkova.

“Extension orderings”, Albert Rubio.
“Iriangles, ruler, and compass”, R. Juan-Arinyo.

“The modifiability factor in the LESD project: definition and practical results”, Nuria Castell
and Olga Slavkova.

“Learnability of Kolmogorov-easy circuit expressions via queries”, José L. Balcdzar, Harry
Buhrman, and Montserrat Hermo.

“A case study on prototyping with specifications and multiple implementations” , Xavier Franch.

“Evidence of a noise induced transition in fluid neural networks”, Jordi Delgado and Ricard V.
Solé.

“Supporting transaction design in conceptual modelling of information systems”, Joan A.
Pastor-Collado and Antoni Olivé.

“Computer (PC) assisted drawing of diagrams for forecasting soaring weather”, Lluis Pérez
Vidal.

“Animats adaptation to complex environments as learning guided by evolution”, Mario Martin,
Marius Garcia, and Ulises Cortés.

“Learning to solve complex tasks by reinforcement: A new algorithm”, Mario Martin and Ulises
Cortés.

“Analysis of Hoare’s FIND algorithm with median-of-three partition”, Peter Kirschenhofer,
Conrado Martinez, and Helmut Prodinger.

“MDCO to B-Rep conversion algorithm”, Dolors Ayala, Carlos Anddjar, and Pere Brunet.

LSI-95-17-R

LSI-95-18-R

LSI-95-19-R

LS1-95-20-R

LSI-95-21-R

LSI1-95-22-R

LSI-95-23-R

LS1-95-24-R

LSI-95-25-R

LSI-95-26-R

“Augmented regular expressions: A formalism to describe, recognize, and learn a class of
context-sensitive languages”, René Alquézar and Alberto Sanfeliu.

“On parallel versus sequential approximation”, Maria Serna and Fatos Xhafa.

«A set of rules for a constructive geometric constraint solver”, Robert Juan-Arinyo and Antoni
Soto.

“From degenerate patches to triangular and trimmed patches”, Marc Vigo, Nuria Pla, and Pere
Brunet.

“Learning Ordered Binary Decision Diagrams”, Ricard Gavalda and David Guijarro.

“The complexity of learning minor closed graph classes”, Carlos Domingo and John Shawe-
Taylor.

“Approximating the permanent is in RNC”, J. Diaz, M. Serna, and P. Spirakis.
“Constraint satisfaction as global optimization”, Pedro Meseguer and Javier Larrosa.
«A rule-constructive geometric constraint solver”, R. Juan-Arinyo and Antoni Soto.

«External schemas in object oriented databases” (written in Spanish), José Samos.

Hardcopies of reports can be ordered from:

Nuria Sanchez
Departament de Llenguatges i Sistemes Informatics
Universitat Politécnica de Catalunya
Pau Gargallo,
08028 Barcelona, Spain
secrelsi@lsi.upc.es

See also the Department WWW pages, http://www—lsi.upc.es/www/

