s /Y00199133
copira

Concatenation versus Addition

in Knapsack Problems

Birgit Jenner

Report LSI-93-34-R

S

Facublal ¢'nd

de Barceiona -
{ B

)

Es

Fd
.

Concatenation versus Addition
in Knapsack Problems

Birgit Jenner *
Fakultat fiir Informatik

Technische Universitat Miinchen
80290 Miinchen, Germany

E-mail address: jenner@lsi.upc.es

October 22, 1993

Abstract

We consider the complexity of two knapsack problems that are
defined with the operation “concatenation” instead of “addition”.
Whereas both addition problems are NP-complete, the complexity
of the corresponding concatenation problems differ significantly. We
show that one concatenation knapsack problem remains NP-complete
while the other is NL-complete. We exhibit several related NP- and
NL-complete problems. Furthermore, we investigate unary knapsack
problems, presenting a unary knapsack that is contained in symimetric
logspace and a close-to-unary knapsack that is NL-complete.

1 Introduction

One of the historical challenges of complexity theory is to compare operations,
like addition, multiplication, concatenation, in terms of their complexity.

*On leave until March 1995, visiting Dept. Llenguatges 1 Sistemes Informatics, Univer-
sitat Politécnica Catalunya, Pau Gargallo 5, E-08028 Barcelona, Spain, supported by a
Habilitationsstipendium of the Deutsche Forschungsgemeinschaft (DFG-Je 154 2/1).

“Is multiplication harder than addition?” is a famous question posed by
Cobham [Co 65]. Recent approaches to this question show that addition is
computable with constant-depth circuits (in AC®), while multiplication is
not computable with such circuits [FSS 84]. Rather, multiplication is ACO-
equivalent to majority and binary-count, and hence “complete” for the bigger
class TC® of constant-depth threshold circuits (see [CKV 84] [Bu 92]).

We are interested in the related question: “Is addition harder than con-
catenation?” Both operations are known to be in the complexity class AC,
i.e., are computable with constant-depth circuits. To answer our question
one could intend to find a further classification of addition and concatena-
tion within AC®, e.g., within the logtime hierarchy of Sipser [Si 83] that is a
uniform version of AC® [BIS 90]. We will take however a different approach.
Instead of classifying the basic operations as such in terms of their complex-
ity, we consider more involved addition problems and want to know whether
their complexity decreases, when the problem is formulated with concate-
nation rather than addition, taking this as evidence that addition may be
harder than concatenation.

This approach is partly motivated by the fact that an operation op, like
concatenation, may be “characteristic” for a complexity class C in the sense
that C has complete problems (or contains problems) that are essentially de-
fined in terms of op. For example, consider the function class opt-L studied
in [AJ 92] [AJ 93] that is a subclass of AC'. As shown in [AJ 92}, a com-
plete problem for opt-L is iterated (MAX,-) matrix multiplication, where
the operations maximum (MAX) and concatenation (-) replace the opera-
tions addition (+) and multiplication (*) of matrix multiplication. Iterated
(MAX,+) matrix multiplication, in contrast, seems to be harder. It is known
to lie in the class AC?, but seems not to lie in the class opt-L nor in other

subclasses of AC? (like e.g. SAC! [Ve 92)).

The addition problems that we consider in the following are two simple
versions of the well-known knapsack problem:

0-1 knapsack

Given: a sequence wy,Ws, ..., Wy, of (not necessarily different) positive inte-
gers, and a positive integer w,
Problem: is there a sequence of 0-1 valued variables z1, 3, ...,z such that

— 7 TN {
w= X7, T; % w;!

Knapsack with (nonnegative) repetition
as 0-1 knapsack, but z3,22,...,Tn May be arbitrary nonnegative integers.

It is well known that both of these problems are NP-complete (see [PS 82]
or [GJ 79], where 0-1 knapsack is called “subset sum”). Do these problems
become easier when instead of addition, concatenation is considered? The
resulting problems are:

Concatenation knapsack (CK)

Given: a string w, and a sequence Wi, Wz, ..., Wn of (not necessarily different)
strings (over alphabet X).

Problem: is there a sequence i1, %z, - - - Uk of pairwise distinct indices such that
W= W Wiy - Wiy !

Concatenation knapsack with repetition (CKR)
as concatenation knapsack, but the indices are not required to be distinct.

We show in Section 2 that CK is NP-complete. This is surprising, since
the standard reductions from 3SAT to 0-1 knapsack via large “bit maps’
make essentially use of the fact that addition can force the simultaneous pres-
crice of ones at different places in the map of the goal integer (see e.g. [Sch 92
or [PS 82], which uses 9.EXACT COVER instead of 3SAT, the satisfiability
problem of Boolean formulas in conjunctive normal form with exactly three
literals in each clause [GJ 79].) At first look, such a “communication” does
not seem to be achievable via concatenation. Nevertheless, we present a re-
duction from 3SAT, where communication is achievable by letting the goal
word force the joint choice of particular subsets of words from the given word
sequence.

The concatenation knapsack problems CK and CKR are special cases
of a coloured version of the well-known graph accessibility problem (GAP),
that is NL complete [Jo 75]. We can reduce instances of the concatenation
knapsack problem with repetition to GAP by constructing a graph whose
vertex set is made up by the positions of the goal word w, and whose edges
indicate whether position 7 up to position j in w is covered by one of the
words wy. of the given word sequence.

As a corollary of the NP-hardness of CK , we obtain the NP-completeness
of the following problem:

Rainbow GAP (RGAP)

Given: a digraph G = (V, E, C) with colours (from the set C) on the edges,
E CV x C xV, and two designated vertices s and ¢ in V.

Problem: is there a “rainbow path” from s to t, i.e., a path that does not
encounter any colour twice.

(Note that in such a graph there may be as many edges between two vertices
¢ and J as there are colours in C.)

As another corollary of the NP-hardness of CK, also the following prob-
lem is shown to be NP-complete:

Permutation Word Problem for Regular Ezpressions (PWREG)

Given: a regular expression R over alphabet ¥ and operators {U,-,*} and
strings i, %2,...,%, € X7

Problem: is there a permutation (1,12, ...,4,) of the strings such that

T, Tip T, € R.

It turns out that CK becomes considerably easier when repetitions are
allowed. We show in Section 3 that concatenation knapsack with repetitions
(CKR) is complete for nondeterministic logspace (NL-complete). As a corol-
lary also the following restriction of PWREG is shown to be NL-complete:

Ordered Sequence Word Problem for Regular Ezpressions (OSWREG)
Given: a regular expression R over alphabet £ and operators {U,-,"} and
strings z1,Z2,...,%, € X7,

Problem: is there an ordered sequence i; < i3 < ... < i; of indices such that
T, Ti, T, € R?

With the NP-completeness on the one hand and the NL-completeness on
the other, there is a significant difference in complexity of the two concate-
nation knapsack problems, while the analogous addition problems are both
NP-complete. A similar decrease in complexity occurs for the unary versions
of the addition knapsack problems, where the integers are given as a string
of 1s. Both unary knapsack problems are solvable in NL. The standard ex-
planation for this complexity jump focuses on the size and the consequently
polynomial range of the given integers. Additionally, but less obviously, we
are confronted here with the operation “concatenation”: In the unary knap-
sack versions, addition is essentially concatenation. A still open question

is whether unary 0-1 knapsack is complete for NL [MS 80] [Co 85] [CH 88].
We show that when in the unary knapsack problem with repetitions the vari-
ables may also be negative integers, the problem is contained in symmetric
logspace [LP 82], and hence unlikely to be complete for NL.

Finally in Section 4, we present a restriction of 0-1 knapsack that is NL-
complete. Here all the given integers have the form w#2? and are represented
by the pair (1%,17) of unary strings. We call this problem close-to-unary
knapsack.

All the completeness results presented in the paper are via logspace-
uniform NC!-reductions, as can be easily verified. We do not further com-
ment on the complexity of the reductions.

2 Concatenation Knapsack

We will show in this section that concatenation knapsack (CK) is NP-
complete. By simple further reductions we also obtain the NP-completeness
of several other problems defined in the introduction.

Theorem 2.1 CK is NP-complete.

Proof. It is easy to see that CK is contained in NP, since it suffices
to guess a sequence of indices 71,72, .., U, k < n, and to check whether
W = Wi, Wy, Wy,

We show the NP-hardness of CK by an reduction from 3SAT, the satis-
fiability problem for boolean formulas in conjunctive normal form that have
exactly 3 literals in each clause [GJ 79]. Let therefore X = {z1,T2,...,%n}
be the set of variables and C = {C1,C3, ..., Crn} be the set of clauses of an ar-
bitrary instance of 3SAT. We must construct a sequence W = wy, Wy, ..., W
of strings and a goal string w such that there is a set of indices 11,...,%,
k < [, such that w = w;,w;, - w;, if and only if C is satisflable. The goal
word w will consist of n + m substrings of which n are variable substrings,
one for each variable z;, and m are clause substrings, one for each clause C;.
We denote these substrings by s, and sc;, respectively. w is obtained by
simply concatenating all variable and clause substrings:

W= Sz, 8z, 0 Sz, 8C1SC, "7 SCm-

We furthermore associate with each variable z; and each clause C; a set of
strings, Wy, and Wo;, respectively. All these strings together make up the
string sequence:

W = (Wa,, We, higignigism:

Let pair be a simple pairing function for strings ,j € {0,1}"* (computable
in logspace-uniform NC!). Then any of the strings in W will be composed
of the separator symbol # and substrings in (0,1)(0,1)"$ defined using pair
as follows:
Forall1<i<n,1<j<m,if literal z; appears in clause Cj, let

[¢5] = 1pair(s,5)$,

and if literal Z; appears in clause Cj, let

[¢7] := Opair(i,7)$.

For a variable z;, let 1 < 73 < j2 < ... < Jn, be all clauses in which the literal
z; appears, and 1 < 71 < J2 < ... < 7., be all clauses in which Z; appears.
The variable substring sg, associated with z; then is:

5oy o= #lia)(i2) -+ - lign)BT - - [iTul#

and the sequence of strings Wy, associated with the variable z; is:

Wx-‘ = ([7‘.71]7 [ijQ]’ Tt [ijn‘], [7'.7—:]’ [2j2]’ SR [2H]a
s, #liiga) - lige#, #ERIET] - [Tal#).

For a clause C, with literals ly;, l2;, 13, the clause substring sc, 1s defined
as follows:

____ ' ' ’ 1 J Gl ifmis the pth literal in Cj;
so, 1= llulit sl where 1) = { (i7), if Z is the pth literal in C;.

The word sequence for the clause Cj is:

We, = (#, #lh;l#, #lls]#, [0 # o) #, # o] #1s51%)-

The construction is such that any string [ij] (respectively, [i7]) occurs
exactly twice in w, once in the variable substring s, and once in the clause

6

substring sc,. Furthermore, to cover any variable substring s;; there are
exactly two possibilities, using the strings

(v1) [i71), [¢72), ..., [i7s;) and the two strings #, #[ij1][iga] - - [15r]#, or
(v2) [i1], [é72), .., [ijr] and the two strings #, #[ij1)[ij2] -+ - [i7u]#

To cover any clause substring sc;, there are exactly three possibilities, one
for each literal ly;, 135,35 of Cj:

(c1) [hs], and #, #(la;]#[ls;]#, or

(c2) [la5], and #[h)#, #[ls;]#, or

(c3) [ls;], and #[L;1# L%, #-

Note that the strings in W¢, (except #) do not fit at other places in w.

We claim that w can be covered by strings from W if and only if C is
satisfiable. First, assume that w can be covered by a sequence of strings from
W. Let v be the assignment for X that sets for all 1 < ¢ < n v(z;)=TRUE,
if the strings (v1) are used to cover s,,, and v(z;)=FALSE, in the other case
(v2). Because of (cl) up to (c3), for each clause C; there is a substring [[,;]
that must have been used to cover s¢,. By construction of {I,;], if [I;] = [i],
then z; is the pth literal in C; and v(z;) =TRUE, because otherwise the
string [i7] would have been used to cover s,;. Analogously, if [I,;] = [¢7], then
7; is the pth literal in C; and v(z;)=FALSE, because otherwise the string [¢]]
would have been used to cover s,,. Hence the literal /,; is set true by v for
any clause), i.e., v satisfies C.

Conversely, suppose C is satisflable and let v : X — {TRUE,FALSE}
be any satisfying assignment for C. Then we obtain a cover of any variable
substring s,, of w by choosing the strings (v1), if the variable z; is set TRUE
by v, and the strings (v2), otherwise. Note that any string [ij] (respectively,
[27]) not chosen so far corresponds to a literal z; (respectively, T;) set true by
v. To cover each clause substring s¢, we choose a string [l,;] that corresponds
to a literal p of clause C; that 1s set true by v (such strings are left untouched
after our first choices), and depending on whether p € {1,2,3} the two further
strings of cl, c2, or c3. Hence, we have obtained a cover for the complete
string w. O

By reducing concatenation knapsack to rainbow GAP (RGAP), we obtain
NP-completeness for a simple variant of the NL-complete graph accessibility
problem:.

Corollary 2.2 RGAP is NP-complete.

Proof. It is easy to see that RGAP is contained in NP, since it suffices to
guess a path p from s to ¢ and to check whether on p no colour appears twice.
Furthermore, as mentioned in the introduction, CK can be reduced to RGAP
as follows. Let I = w,wy,ws,...,Ww, be an instance of the concatenation
knapsack problem, where m is the length of the string w. Then we express
the property “string wy is the subword of w formed by the bits of position
i -+ 1 up to position j” as an edge labelled k between the edges ¢ and j of a
digraph G with vertices for the positions 0 up to m. Clearly, I € CK, i.e.,
the string w can be decomposed as w;; Wi, - - - Wiy, 1 < k < n, for pairwise
distinct indices, if and only if there is a rainbow path with colours 71,12, .. ik
from vertex 0 to vertex m visiting vertices 0,5,19,..., 1k =min G, where
l; — ;-1 denotes the length of w;, for1<j<k O

Using similar constructions as in the preceding proof, other variations on
NL-complete problems result in NP-complete problems. For example, instead
of a graph we may construct a rightlinear (or leftlinear) grammar. Then the
NL-complete word and emptiness problem for such grammars become NP-
complete, when only the application of rules with different terminal symbols
is allowed.

Nonrepetitive derivation in linear grammars (NDLIN)

Given: a rightlinear (or leftlinear) grammar G = (N,T,R,S) with rules
A—zB,z €L, AEN, B e NU{\}, and a string w € &7,

Problem: can w be generated by G applying only rules that do not contain
the same terminal word?

Non-emptiness for nonrepetitive derivation in linear grammars (O NDLIN)
Given: a rightlinear (or leftlinear) grammar G = (N,T,R,S) with rules
A——zB, z€X, AEN, BENU{}}

Problem: is there a string that is generated by G applying only rules that
do not contain the same terminal word?

Corollary 2.3 NDLIN and ~QNDLIN are NP-complete. O

As mentioned in the introduction, the permutation word problem for
regular expression (PWREG) is another NP-complete problem closely related
to concatenation knapsack.

Corollary 2.4 PWREG is NP-complete.

Proof. It is not hard to see that PWREG is contained in NP, since we can
guess a permutation p of the given strings and then simulate an algorithm
for the problem “p € R?”. This problem is solvable in NL, and hence in P.

For NP-hardness, we reduce from CK. For strings w, ws, ..., wn OVer the
alphabet ¥ , we set R := w#XL", where # is a symbol not contained in X.
Clearly, then we have w,ws,...,w, € CK if and only if wy,...,wn,#, R €
PWREG, since all the strings not appearing in a cover of w are mapped to
the X* part of R. O

The problem remains NP-complete when R is a context-free grammar,
or when instead of a permutation a sequence 1,12,...,% of up ton =k
pairwise distinct indices is required.

3 Knapsack Problems with Repetitions

In this section we will see that the complexity of concatenation knapsacks
with repetitions may be significantly lower than the complexity of the cor-
responding problem without repetitions. First, we show that (general) con-
catenation knapsack is NL-complete by reducing a topological sorted graph
accessibility problem to it.

Theorem 3.1 CKR is NL complete.

Proof. For the containment in NL, let w,ws, ..., w, (strings over ¥) be an
instance of CKR such that w = biby...bn, b € . Construct a nondeter-
ministic machine M that uses a pointer p operating on w, and a counter with
maximal value m. Both the pointer and the counter are initially set to 0. M
repeatedly guesses indices ¢ for 1 < ¢ < n. After each guess ¢, M increases
the counter and compares the string w; with the substring of w with length
|lw;| following the pointer, i.e., the string bps1bp2* * * bptfus)- If the two strings
are not the same, M rejects, else M guesses the next index. M accepts when
the pointer p reaches position m, or, rejects when the counter has reached its
maximal value m and still p < m. Clearly, M accepts CKR. Furthermore,
M uses only logarithmic space (in the input length) for pointer, counter and
bit-by-bit comparison. Hence, CKR can be solved in NL.

9

For the completeness, we reduce the topological sorted version of the
graph accessibility problem (TOPGAP) that is known to be NL-complete
to CKR. TOPGAP is the problem: given a digraph G = (V, E) with V =
{0,1,2,...,n} and edge set E such that if (1,7) € E then i < j, determine
whether there is a path from 0 to n in G. Given an instance G of TOP-
GAP, define the corresponding knapsack instance with w := 1$2$--- n,
and for e = (1,j) € E, let wy := i+ 1$-.-$j$. Note that, since i < j,
wy will always contain the substring j$ as suffix. Then, if there is a path
(0,21), (1,42),. .., (4, m) from 0 to n in G, the concatenation of the strings
that correspond to the edge sequence, i.e., 1$---7,8, i + 18458, ...,
u41$ -+ n8, yield exactly w. Conversely, if w can be produced by a con-
catenation of such subwords, then there is a path from 0 to n in G that
passes (in that order) through the vertices that occur in each string just
before the last § symbol. O

Using the proof of Theorem 3.1, it is not hard to show that concatenation
knapsack (without repetition) is NL-complete when the sequence of indices
underlying the wordcover is ordered. (The instance of CKR constructed in
the hardness proof does not have a solution when words are repeated, and we
only have to make sure that the strings wy are produced in prefix order by
the reduction.) More precisely, the following variant of CK is NL-complete:

Ordered concatenation knapsack (OCK)

Given: a sequence wy, ws, ..., w, of strings (over alphabet ¥) and a string
wE X,

Problem: is there an ordered sequence of indices i; < i3 < ... < 14 such that

W= Wy wi, . ..w;, T

Corollary 3.2 OCK is NL-complete. O

As a second corollary, we obtain an NL-complete variant of the (general)
word problem for regular expressions WREG: given a string w and a regular
expression f, decide whether w € R. WREG is complete for NC! [Ba 89)].
The variant is the problem OSWREG(see the Introduction), obtained by
requiring in the NP-complete problem PWREG (Theorem 2.4) instead of a
permutation the existence of an ordered sequence of indices.

10

Corollary 3.3 OSWREG 1is NL-complete.

Proof. It is not hard to see that OSWREG € NL. Hardness follows with
Corollary 3.2, since OCK is the restriction of OSWREG with R=w. O

Note that we may substitute in OSWREG for “ordered sequence of in-
dices” just “sequence of indices” (with k not necessarily bounded by n) and
allow repetitions, and the problem remains NL-complete.

Unary 0-1 knapsack is the restriction of 0-1 knapsack (or, equivalently,
concatenation knapsack with repetition) to a one-letter alphabet. Unary 0-1
knapsack is known to be solvable with nondeterministic logspace, but remains
still an open problem whether it is NL-complete [MS 80] [Co 85] [CH 88].

We will show in the following that although most knapsack variants re-
main NP-complete, the corresponding unary versions may differ in complex-
ity. Consider the following variant of 0-1 knapsack with repetition, where
the variables may be arbitrary integers instead of nonnegative integers:

Knapsack with repetition (KR)

Given: a sequence wy,wsy, ..., W, of positive integers, and a positive integer
w,
Problem: is there a sequence of integers 21, . . ., T, such that w = X7, z;xw;?

Like the other variants of 0-1 knapsack, KR is NP-complete (see [PS 82]).
The following theorem shows that the unary version is contained in symmet-
ric logspace (SL) [LP 82], and hence, not likely to be complete for NL.

Theorem 3.4 Unary KR is contained in SL.

Proof. We will reduce unary KR to UGAP, the graph accessibility problem
for undirected graphs that is SL-complete [LP 82]. First note that CKR is
a special case of integer linear programming (ILP). In [PS 82] (Theorem
13.4) it is shown that if CKR has a feasible solution, then it has a feasible
solution 1, ..., &, such that for all 1 < ¢ < n, z; is bounded by the value
b= 1% (Wna)?(l + w), where wp,, is the maximum of the w;, 1 <1 < n.
Hence, given an instance 1*,1%1,1%2,...,1%" of the unary knapsack, b is
polynomially bounded in its length, and we can construct an undirected
graph G = (V, E) with vertices V = {0,1,2,..., 8%} and edges E = {(2,7) |
Jw,, 1 <k<n: |i~j]=]|wk|} Itis not hard to see that there is a path

11

from vertex 0 to vertex w in G if and only if there is a solution of the unary
knapsack. O

It would be interesting to see more results concerning the complexity of
other unary knapsack variants like, e.g., unary knapsack with nonnegative
repetition (unary KNR). Having in mind the jump from NP to NL for con-
catenation knapsack to its unary version, one would expect unary KNR to
be significantly easier than its corresponding nonunary version, shown to be
NL-complete in Theorem 3.1.

4 A Knapsack for NL

If we restrict the NP-complete 0-1 knapsack to superincreasing sequences
of integers we obtain a P-complete problem, as is shown in [KR 89]. (A
sequence wy, . . ., wn of positive integers is superincreasing, if each w; is larger
than the sum of the previous integers in the sequence, i.e., for each wj,
1 < ¢ < n, it holds w; > E;_’._llw,-.) On the other hand, unary codification
of the integers yields a problem, namely unary 0-1 knapsack, that seems
to lack the structure of NL-complete problems (see the discussion in the
previous section). What restrictions must be posed on the knapsack values
to obtain an NL-complete problem?

In this section, we answer this question. We present a restriction of
0-1 knapsack that is almost unary and NL-complete. It presupposes that
the positive integers have the form w * 27 and are represented by the pair
(1*,17) of unary strings. (Hence, the binary representation of each integer
has a binary prefix of length logarithmic in the length of w that is followed
by a suffix of length p consisting of Os only). We call this codification close-
to-unary.

Close-to-unary knapsack

Given: a sequence (1*1,17),...,(1%",17*) of pairs and a pair (1*,17), rep-
resenting the integers w; * 27/, 1 < j < n, and w * 27,
Problem: is there a sequence of 0-1 valued variables z1, 3, ..., Z, such that

—_ n .. .
wx 2P =¥, zj* (wj* 27)?

12

Theorem 4.1 Close-to-unary knapsack is NL-complete.

Proof. For the containment in NL, consider the following algorithm, in
which the integers are guessed and summed up (in binary) according to their
p-values and compared bitwise with the goal.

Let bin(w % 27) = byby -+ - by, b; € {0,1}, be the binary representation of
the goal integer, and bin(w) = a; -+ am—p, a; € {0,1} the binary representa-
tion of w. Let B be an array of size m containing bin(w * 27) such that for

all 1 < i< m it holds B[i]={ 2’ ifzz:z:i’ e

Algorithm.
Input: (wy,p),...,(wn, pn) and the array B
k:=m;s:=0
for 1 =0 to ppoc do /* prae = maz(p;i |1 <1< n) +/
begin
guess (scanning input from left to right)
integers (wj;,pj,), -+ (Wj,Pir), { 2 0, such that pj, = ... =p; =1,
and compute their sum s, := Z*_, w;, in binary;
$ 1= 8; + S,

if (s mod 2) # (Blk] mod 2) then reject else s := s div 2; k:=k —1;
end

if s = B[1]--- B[k] then accept else reject;

end.

It is not hard to see that the algorithm can be executed with nonde-
terministic logarithmic space. Since the w; are given in unary, any of the
intermediate sums s, s; is polynomially bounded in the size of the input and
can be presented on the work tapes. The array B can be simulated on the
work tapes by representing w and p in binary. All the operations are com-
putations modolo 2, division by 2 or simple bit comparisons for integers on
the work tapes, and computable with logspace.

For hardness, we reduce from the following NL-complete variant of the
graph accessibility problem [Jo 75]: given a digraph G = (V, E) with V =
{0,1,...,n}, and E = E'U {(n,n)} for some £ C {(4,7) |0 <t <n, 1 <
J < n}, the problem consists in deciding whether there is a path of length
exactly n from 0 to n in G. (G is such that there are no ingoing edges for
node 0 in £ and a loop in node n.)

13

We construct the close-to-unary knapsack instance corresponding to G as
follows. Let M be a value greater than the length of the binary representation
of the sum of all vertex numbers; e.g., set M := 2 x [log(n + 1)]. Note that
2°M for a constant c is polynomially bounded in n. The goal integer is defined
with

(1w’ lp) = 2M * 22nM — 2(2n+1)M-
For each edge (¢,7) € E, 1 < 1,5 < n, there is a sequence of integers

(1%9,175) = ((2M — 7)2M — (2M —)) 4 22M
= (2M — j)# 22HEDM _(OM _)5 22M for0<I<n—1.

Additionally, there are the two integers

(1%0,170) = 2M 5 20 = 2M and
(1Wn’1pn) - n22M * 22(71-—1)M — n22nM.

We claim that there is a solution of the close-to-unary knapsack instance
defined above iff there is a path of length n from 0 to n in G. Assume first
that there exists a path of the required form in G:

(0 = ioa’il)»(’il,iz), sy (ij,ij+1)> o -,(in-l,in = n)

Then one checks easily that we obtain a solution of the knapsack with the

integers (10, 170), (1¥~,1P"), and (1", lpﬁl"lﬂ) for0<I<n—-1.
Conversely, assume that S is an arbitrary solution of the knapsack, i.e.,

S is the subset of all pairs (1*/,17) for which z; = 1, 1 < ¢ < n. Consider

the binary representation of the goal integer that is a 1 followed by a 0-string

of length (2n 4 1)M, and divide the 0-string into blocks By,iq -+ By of size

M each. Then S must be such that it contains

1. the integer (1*°,17°) and exactly one further integer (1¥h°, 1’”910) with p-

value 0, because otherwise the blocks By, B; could not be cleared;

2. the integer (1%, 17") and exactly one further integer (1*'»-17, lp?"—ll") with

p-value 2(n — 1)M to clear block Bj,i1; and

3. for each [, 0 < | < n — 1 exactly one integer with p-value 2IM such

that 3y : (1“"1,1”3) €S5S <= dk: (11”1"‘,1”;7:1) € 5, to clear the blocks

B(i41)s Ba(i42)-

It is not hard to see that 1.-3. can only be fulfilled if there is a path of length

nfrom0OtoninG. O

14

Acknowledgement

The author is grateful to Klaus-Jorn Lange for discussions about Theorem
3.1, to Ricard Gavalda and Kim Gabarré for helpful comments on an earlier
version of this report, and especially to Jacobo Toran for many invaluable
comments (including the misleading ones).

References

[AJ 92]

[AJ 93]

[Ba 89]

[BIS 90]

[Bu 92]

[CKV 84]

[CH 88]

[Co 65]

[Co 85]

C. Alvarez, B. Jenner, A note on logspace optimization, Report
LSI1-92-30-R, Dept. L.S.1., Universitat Politecnica de Catalunya,
Barcelona, 1992.

C. Alvarez, B. Jenner, A very hard logspace counting class, The-
oretical Computer Science 107 (1993), pp. 3-30.

D. Barrington, Bounded-depth polynomial size branching pro-
grams recobnize exactly those languages in NC!, J. Comput. Sys-
tem Sci. 38 (1989), pp. 150-164.

D.A.M. Barrington, N. Immerman and H. Straubing, On unifor-
mity within NC!, J. Comput. System Sci. 41 (1990), pp. 274-306.

S.R. Buss, The graph of multiplication is equivalent to counting,
Inform. Process. Letters 41 (1992), pp. 199-201.

A K. Chandra, L. Stockmeyer and U. Vishkin, Constant depth
reducibility, STAM J. Comput. 13 (1984), pp. 423-439.

S. Cho and D.T. Huynh, On a complexity hierarchy between L
and NL. Techn. Report Univ. of Texas at Dallas, 1988.

A. Cobham, The intrinsic computational difficulty of functions,
Proc. 1964 Intern. Congress for Logic, Methodology, and Philoso-
phy of Sciences, 1965, 24-30.

S.A. Cook, A taxonomy of problems with fast parallel algorithms,
Information and Control 64 (1985), pp. 2-22.

15

[FSS 84]

(GJ 79]

[Jo 75]

[KR 89]

[LP 82]

[MS 80]

[PS 82]

[Sch 92]

[Si 83]

[Ve 92

M. Furst, J.B. Saxe, M. Sipser, Parity, circuits and the polynomial
hierarchy, Math. Syst. Theory 17 (1984), pp. 13-27.

M.R. Garey and D.S. Johnson, Computers and Intractability, A
Guide to the Theory of NP-completeness, Freeman and Company,
New York, 1979.

N.D. Jones, Space-bounded reducibility among combinatorial
problems, J. Comput. System Sci. 11 (1975), pp. 68-85.

H.J. Karloff, W.L. Ruzzo, The iterated mod problem is P-
complete, Information and Computation 80 (1989), pp.193-204.

H. Lewis and C.H. Papadimitriou, Symmetric space-bounded com-
putation, Theoret. Comput. Sci. 19 (1982), pp. 161-187.

B. Monien, LH. Sudborough, Formal language theory, in:
R.V. Book (ed.), Formal Language Theory, Academic Press, 1980.

C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization,
Prentice-Hall, New Jersey, 1982.

U. Schoning, Skript zur Vorlesung Informatik IV, Fachbereich In-
formatik, Universitat Ulm, 1992.

M. Sipser, Borel sets and circuit complexity, in: Proc. 15th ACM
STOC Symp. (1983), pp. 61-69.

H. Venkateswaran, Circuit definitions of nondeterministic com-
plexity classes, SIAM J. Comput. 21 (1992), pp. 655-670.

16

LSI-93-1-R

LSI-93-2-R

LSI-93-3-R

LS1-93-4-R

LS5I-93-5-R

LSI-93-6-R

LSI-93-7-R

LS 93 -8R

LS1-93-9-R

LS1-93-10~-R

LSI-93-11-R

LSI-93 12-R

LSI 93 13 R

LS5I-93-14-R

LSI-93-15-R

LSI-93-16-R

Departament de Llengatges i Sistemes Informatics
Universitat Politécnica de Catalunya

List of research reports (1993).

“A methodology for semantically enriching interoperable databases”, Mali Castellanos.
“Extraction of data dependencies”, Mali Castellanos and Felix Saltor.

“The use of visibility coherence for radiosity computation”, X. Pueyo.

“An integral geometry based method for fast form-factor computation”, Mateu Sbert.
“Temporal coherence in progressive radiosity”, D. Tost and X. Pueyo.

“Multilevel use of coherence for complex radiosity environments”, Josep Vilaplana and Xavier
Pueyo.

“A characterization of PFNFIl = PFNFUogl Antoni Lozano.
“Computing functions with parallel queries to NP”, Birgit Jenner and Jacobo Torén.
“Simple LPO-constraint solving methods”, Robert Nieuwenhuis.

“Parallel approximation schemes for problems on planar graphs”, Josep Diaz, Maria J. Serna,
and Jacobo Toran.

“Parallel update and search in skip lists”, Joaquim Gabarrd, Conrado Martinez, and Xavier
Messeguer.

“On the power of Equivalence queries”, Ricard Gavalda.

“On the learnability of output-DFA: a proof and an implementation”, Carlos Domingo and
David Guijarro.

“A heuristic search approach to reduction of connections for multiple-bus organization”, Patri-
cia Avila.

“Toward a distributed network of intelligent substation alarm processors”, Patricia Avila.

“The Odissea approach to the design of information systems from deductive conceptual models”,
Maria Ribera Sancho and Antoni Olivé.

LSI-93-17-R

LS1-93-18-R

LSI-93-19-R

LSI-93-20-R

LSI-93-21-R

LS1-93-22-R

LSI-93-23-R.

L51-93-24-R

LS1-93-25-R

LS1-93-26~-R

LSI-93-27-R

LS1-93-28-R

LS1-93-29-R

L51-93-30-R

LSt-93-31-R

LS1-93-32-R

“Constructing face octrees from voxel-based volume representations”, Robert Juan i Arino and
Jaume Solé i Bosquet.

“Discontinuity and pied-piping in categorial grammar”, Glyn Morrill.

“El frau i la delingiiéncia informatica: un problema juridic i &tic”, Miquel Barcelé (written in
Catalan).

“Non-homogeneous solid modeling with octrees. A geological application”, Anna Puig, Isabel
Navazo, and Pere Brunet.

“Extending a single resolution system towards a distributed society”, Karmelo Urzelai.

“LINNEO*: A classification methodology for ill-structured domains”, Javier Béjar, Ulises
Cortés, and Manel Poch,

“Especificacié d’una biblioteca de tipus” (written in Catalan), Xavier Franch.

“Proceedings of the Fourth Barcelona-Ulm Workshop on Probabilistic Complexity Classes and
Nonuniform Computational Models” (Barcelona, September 13th-17th, 1993), José L. Balcdzar
and Antoni Lozano (editors).

“Proceedings of the Fourth International Workshop on the Deductive Approach to Information
Systems and Databases” (Lloret de Mar, 1993), Antoni Olivé (editor).

“Modelo para el control de calidad en LESD basado en la medicién del software” (written in
Spanish), O. Sldvkova.

“On the robustness of ALMOST-R”, Ronald V. Book and Elvira Mayordomo.

“Lexicografia computacional: Adquisicién automética de Conocimiento Léxico” (written in
Spanish), Irene Castellén Masalles.

“Analisi de les definicions verbals del diccionari Vox” (written in Catalan), Mariona Taulé
Delor.

“The structure of a logarithmic advice class”, Montserrat Hermo.

“Toward a realistic semantics of possible worlds for logics of belief”, Gustavo Niiiez, Matias
Alvarado, and Ton Sales.

“Conocimiento en mundos posibles mediante una relacién de posibilidad constructiva” (written
in Spanish), Matias Alvarado.

LS1-93-33-R “Not-Yet classification algorithm”, Josep Roure and Javier Béjar.

1.51-93-34-R “Concatenation versus addition in knapsack problems”, Birgit Jenner.

Internal reports can be ordered from:

Nuria Sanchez
Departament de Llenguatges i Sistemes Informatics (U.P.C.)
Pau Gargallo b
08028 Barcelona, Spain
secrelsi@lsi.upc.es

