MO0 YIRL

CC,PW

A co-semidecision procedure

for behavioral equivalence
Vicent Palasi

Report LSI-95-55-R

2 UPC

Faculial d'ing e"mgﬁca
de ESawakzna - Biblisteca

G G@

A co-semidecision procedure for behavioral
equivalence

Vicent-Ramon Palas{ Lallana.

Barcelona, November 23, 1995.

Abstract

We shall demonstrate that proving the behavioral equivalence of two algebraic
specifications is equivalent to proving a set of theorems in a given initial algebra.
Thus, it is possible to prove automatically this behavioral equivalence by use of
automatic deduction techniques.

1 Introduction.

Both in theory and in practice, the concept of equivalence between two modules is a matter
of great importance. Intuitively, this notion could be defined by saying that two modules
are equivalent if “they perform the same task” and, therefore, can be interchanged in
any software system. The importance attached to this notion is further increased by the
growing success of object-oriented programming. As a matter of fact, all the software in
a firm which follows the object-oriented philosophy is nothing more than a huge collec-
tion of classes. It is, then, a matter of vital importance to know which of these classes
are equivalent in order not to increase the size of the collection with redundant information.

In the domain of algebraic specification, this general concept becomes definite in the
equivalence of algebraic specifications. Each algebraic specification could be considered as
the definition of a certain set of modules. At this point the problem posed is that of the
equivalence between algebraic specifications, that is to say, the fact of knowing when the
sets of modules which have been defined for various specifications are equivalent. Unfor-
tunately, in the field of algebraic specification the word “equivalence” has several different
meanings.

The most widely-used meaning is that of equivalence based on initial semantics. Two
specifications would be considered as equivalent if their initial algebras were the same. If
we examine this approach at all, we shall clearly realize its shortcomings, particularly for
practical purposes. By way of example, the classic algebraic specification of a stack would
not be equivalent to another specification in which the stack is defined from an array and

1

a pointer. This fact appears as curious, for the usual implementation of a stack is, as a
general rule, precisely that of array + pointer.

The problem in question is that initial semantics are excessively restrictive. Several
alternative semantics to this one have been suggested. One of them, which is called “final
semantics”, is not good enough to solve the problem, either. In particular, the two spec-
ifications of battery previously mentioned would not be considered as equivalent by this
semantics, either.

Fortunately, there is actually a solution to this problem. The way is to define the
equivalence between two specifications out of behavioral semantics ([SaW83]), [SaT85],
[Rei81], [Rei84], though here we shall be using the approach of [Niv87]). According to
this semantics, that which defines a specification is regarded as a “blackbox” and, conse-
quently, the sorts (that is to say, the types) defined in it can be divided into observable
and non-observable ones. Non-observable sorts are not visible in themselves from outside
but only through operations which return observable results.

As regards this approach, two algebraic specifications would be equivalent if, for all
the computations possible, the “observable consequences” of the computations on the two
specifications were the same. Logically, we shall not be interested in the non-observable
consequences, since they are not visible.

The purpose of this paper is to prove that, in minimum reasonable conditions, this
concept of equivalence can be automatically proved. In other words, that proving that two
specifications are behaviorally equivalent is the same as proving a few theorems by using
automatic deduction techniques.

Let us be more specific. If we want to reduce the behavioral equivalence between two
specifications to automatic theorem proof, we are faced with the problem of there being
very little research available on automatic deduction with several different specifications.
In order to sort this problem out, we have decided on reducing the problem to one single
specification. That is to say, out of two specifications SPEC1 and SPEC2 (of which we
are interested in examining their behavioral equivalence) we shall build a new specification
SPEC4, which we shall call reunion of SPEC1 and SPEC2, and which contains all the in-
formation which was included in those two. Therefore, proving the behavioral equivalence

between SPEC1 and SPEC2 is reduced to proving a few given theorems on SPEC4.

. The conditions required for this to be workable is that the observable sorts must be al-
ready defined when we define the non-observable ones and that there is no equation which
has only variables on its right-hand side. We are here producing an article which removes
the need for these conditions.

The structure of this paper is as follows: in section 2 we define the basic concepts

2

concerning algebraic specification and behavioral semantics which are necessary in order
to follow the reasoning. In sections 3 to 10, we introduce the concepts and theorems which
are needed to prove what is intended in this paper. Finally, in section 11, we make a
summary of the applications of what has been proved and we expound our views on the
future lines of research.

Experts in algebraic specification may skip over section 2, though it would be advis-
able for them to look at it so as to become acquainted with the notation. As far as the
demonstrations contained in this article are concerned, they have been classified, according
to the degree of importance, into sublemmas, lemmas and theorems. Thus, the reader is
able to choose the degree of detail he prefers in order to read the article. Those readers
who should wish to go through all the reasoning will examine all the demonstrations, and
half-interested readers will be able to focus on the lemmas and theorems, whereas those
interested in great results may only read the latter. Finally, those who are not interested
in formal demonstrations but in the conclusions that can be drawn from them are advised
to directly read the last section.

2 Basic notions.

In this section, we state the notions that are necessary to understand the rest of the
paper. We describe some basic definitions on algebraic specification and behavioral se-
mantics. For the sake of uniformity in the notation, we have chosen to express all these
definitions in behavioral theory terms, though most of them are not exclusive to this theory
but are rather general results over algebraic specification.

Definition. A S-set C is a family of sets indexed by S, C = {C,},es.

Definition. A behavioral signature £ is a triple & = (Obs, S, F') where S is a set whose

members are called sorts, Obs is a subset of S whose members are called observable sorts
and Fisa 5™ x S-set F' = {Fy,}(w,s)esxs-

Ifo € Fy,s, where w = wl X ... x wn with wl, ..., wn,s € S, we say that ¢ is a function
symbol with domains wl,...,wn and sort s. We refer to this by either o € Fyy yn,s or
g:wl X ..X wn — s.

S is called sorts(X) and F is called opns(X). Variables of sort s are called vars(s).

2

Definition. Let ¥=(Obs,S,F) be a behavioral signature and X a set of variables. The
sets Tx,(X) are defined in the following way:

e If z € X and z € vars(s), then z € Ty, (X).

e If o € F),,then o € Ty, (X).
¢ {0 € Fupwnss 1 € Txypy ooyt € T, then o(ty, ..., t) € Tx,.

The members of Tx,(X) are called terms of sort s.

Definition. Let ¥ be a behavioral signature. We define T5(X) = {T%,}.;es and
Ty = Tx(D). The members of Tg(X) are called terms and those of Tx ground terms.

Definition. Let ¥=(Obs,S,F) be a behavioral signature. A X-algebra A is a tuple
(As, Ar) where Ag = {A;}ses and Ap = {04 }ser so that:

o if o€ Fy,, then o4 € A,.
o if 0 € Fyjwys, then oyg 0 Ay, ...y As, — As.

o4 is called interpretation of function symbol ¢ in A. We call Apys = {A4;s}scobs-

Definition. Let A be a E-algebra. A computation over A is a term of Tg(Aos;). An
observable computation is a term t of Tx(Aoss)s, with s € Obs.

Definition. Let t be a computation over a X-algebra A. We define €4(#) in the following
way:

o If t € Aoss, then c4(2) = ¢.
o If o € F\, where s € S, then e4(0) = 04.
o Ifo e le...wn,s’ 4L € Tzwl,..., t, € T};wn, then EA(G(tl, ery tn)) = O‘A(EA(tl), ...,€A(tn)).

€4(t) is called evaluation of t in A.

Definition. We say that a Y-algebra is finitely generated if the evaluation e4 : Ty —
A is exhaustive.

Comment. Notice that we only consider the evaluation in A over ground terms in this
definition. That is to say, A is finitely generated if Va € A, 3t € Tx such that e4(¢) = a.

Definition. Let ¥ = (0bs,S, F,E) be a behavioral signature. Let X be a set of
variables. We refer by Y-equation with arity n (or by X-equation with n conditions) to a
(2*n+3)-tuple (X, c1, dy, ..., Ca, o, t1, b)), Where ty, 8, € T (X); ¢1,d; € Ts,, (X); ooy Caydn €
Ts,, (X), with s,s1,8, € S.

Whenever we write ¢; = d; &..& ¢, = d, = t; =&, (or, also, e : ¢y = d; &..& ¢, =
dn = t = t;), we shall mean the equation e = (X, ¢, di,..., i, ds, t1,). The set of

4

variables of an equation e will be called vars(e).

A Y-equation with arity 0 is called simple or unconditional equation. A Y-equation e,
in which it is fulfilled that p;, p» € vars(e), is called equation which has only variables on
its right-hand side.

Lemma. If A is finitely generated, for each assignment v, there is an application
w: X — Ty such that v = €4 o v. In this paper, when we deal with finitely generated
algebras, we use indifferently the name “assignment of values” to refer either to v or to w.

Definition. Given an assignment of values v, (where v may be of the two kinds which
we have earlier said), and given a term ¢ € Tx(X), we define v*(¢) as follows:

o If t € X, then v*(¢) = v(t).
o If t has the form o(¢;,..., &,), with n geq 0, then v*(1) = o(v* (1), ..., v*(ta)).

Definition. We say that a Y-algebra A satisfies an equation e : ¢; = d; &..& ¢, =
dp = 8 = 1o if Vv : vars(e) — A it is fulfilled that: e4(v*(c1)) = €a(v*(d1)) A ... A
ca(v*(cn)) = €4(v*(dn)) implies €4(v*(t)) = €a(v*(f2)). If a X-algebra satisfies an equa-
tion e, we shall write A |= e

Lemma. If A is finitely generated, the last definition is equivalent to the following one:
Vw : vars(e) — Tx it is fulfilled that: e4(w*(c1)) = ea(w*(dy)) A ... A ea(w*(cn)) =
ca(w*(dy)) implies €4 (w™ (1)) = e4(w™(2)).

Definition. A behavioral specification is a 4-tuple SPEC=(0Obs,S;F,E), where £=(0Obs,S.F)
is a behavioral signature and E is a set of Y-equations. We define sig(SPEC) = X
and eqns(SPEC)=E. We refer by Ty ... to Tx if ¥ = sig(SPEC). Likewise, we de-
fine Ts ppe (X) and (Txgppe)s- Werefer by (Tegppe)obs to {t |t € (Tegppe)s A s € Obs}.

Definition. Given a specification SPEC=(Obs,5,F,E), we refer by =spgc to the con-
gruence being defined by SPEC. That is to say, =spgc is defined as follows:

1. Vie Tx

ceppc it is fulfilled ¢ =sppe t.

2. Vt,u€ TESPEC I =sppc u implies u =gpec L.

3. Vi, u,v € Tegppe ¢ Espec u N u Sspgc v implies t =gpgc v.

4. Ve:(a=d &.&c,=d, =ty =t) € E. Vv :vars(e) — Ty it is fulfilled that
v*(cl) Z=SPEC v*(dl) A A v*(cn) =gpEC v*(dn) implies ’U*(pl) Z=SPEC 'U*(pg)

Comment. Since =spgc is a congruence, the following property is fulfilled:

VO‘ E le...wn,s’ With wl, ...,'w'n,S E S, VSl, tl E (TESPEC)w17---1 Sn7 t'n, E (TESPEc)’wn
If sy =spec b1, ..., Su =spEC tn then o(sy, ..., 82) =spec O'(tl, ceny tn)

This property will be widely used in next proofs and we shall call it “property of con-
gruence”.

Definition. Suppose a behavioral specification SPEC. We divide the set Ty, ., into
classes of equivalence defined by relationship =gpgc. We refer to the class of equivalence
which contains the ground term t as [t]=pp-

Definition. Given a behavioral specification SPEC with sig(SPEC)=X, we refer by
quotient term algebra of this specification to the ¥-algebra which is defined as follows:

o As = {A,}ses, where A, = {[t]ESPEC}’ with ¢ € (TESPEC)S'

o Ap = {04} where 0 4([ti)zsppcs - [tnlzsppe) = [Slzspee ifand only if o(ty, ..., t) =spec
s.

Definition. Let SPEC be a behavioral specification and A an algebra. We say that
A is initial w.r.t. SPEC if it is isomorphic to the quotient term algebra of SPEC. In this
paper, we shall use the symbol Tsppc to refer indifferently either to the quotient term
algebra or to any initial algebra.

Lemma. Given a behavioral specification SPEC, it can be proved that Vi, u € Txgp,,

it is fulfilled that €75, () = €1gppo () if and only if ¢ =spec u if and only if [t]=;, .. =

[“]ESPEC'
Definition. We refer by (Tspec)oss to {[t)zgpze | t € (Tesppe)obs }-

Definition. Given a behavioral specification SPEC=(0bs,S,F E), we refer by Totsppc(X)
to the set of terms such that all their subterms are observable. That is to say, t €

Totspgc(X) if:
e t is a variable of sort s, where s € Obs.

e t has the form o(#,...,ts), where 0 € Fu,. un,s; Wiyeery Wn, s € Obs and t,...,tn €
TOtngc(X).

Obviously, Totsprc(X) is a subset of Ty(X). We call the members of Totspgc(X)
totally observable terms.

Definition. Given a behavioral specification SPEC, we refer by (Tspec) 55 to {[t]=cpze |
t € TOtspEc}.

Definition. Given a behavioral specification SPEC=(0bs,S,F,E), we refer by Eg;, to
the set of equations e : ¢ = &y &...& ¢, = d,, =) = 1, such that ¢, dy, ..., cn, dy, 1,8 €
Totgpgc(vars(e)).

Definition. Let ¥=(Obs,S,F) be a behavioral signature. Let also be two X-algebras
A and B. A behavioral morphism is a function f between A¢;; and Bos,s such that for each
observable computation t over A it is fulfilled that: f(e4(t)) = ep(f*(t)).

If this function is bijective, we call it “behavioral isomorphism”.

Definition. Let ¥ be a behavioral signature. Let also be two L-algebras A and B. We

say that A and B are behaviorally equivalent if there is a behavioral isomorphism between
A and B.

3 Ewval-equivalence.

In this section, we shall prove that the notion of behavioral equivalence between two
algebras, which has been defined out of behavioral isomorphisms, may be defined out of
the interpretations of the ground terms in the algebras, if these ones are finitely generated.

This introduces a new notion, the “eval-equivalence”, which will be used in our demon-
strations and which will be the same thing as behavioral equivalence, in the case of working
with finitely generated algebras. '

In this section, we assume that ¥ is a behavioral signature of the form £=(Obs,S,F).

Definition *.Propl. Given two X-algebras A and B, we say that they are eval-
equivalent if there is a bijection ¢ between Aoy, and Boss such that:

Vte Tx,, withs € Obs, (ea(t)) =ep(t)

Sublemma *.Prop2. If a X-algebra is finitely generated, then for each observable
computation t, there is a ground term g with the same interpretation in A. That is to say,

Vit e Tx(Aoss)s, withs € Obs, Fg € Tx such that €4(t) = ea(g)
| Proof. We shall prove this by structural induction.

o Induction base. Suppose that t is a constant. We have two possible subcases.

— t € Tx. In this case, g is t and the lemma is fulfilled.

— t € Aoss- In this case, since A is finitely generated, there is a ¢ € Tx such
that £4(c) = . On the other hand, by definition of e4, £4(t) = . Therefore,
ea(c) = €a(g). Then, if we make g be c, we shall have that e4(¢) = € 4(g). This
is what we wished to prove.

e Induction step. Suppose that t has the form f(#,...,t,), where f € opns(X) and
ti, ...y tn € T(Aoss)s, with s € Obs. Then, by definition of €4, we have:

ealf(try o tn)) = falea(tr), .. ealtn))

Via the hypothesis of induction, there are ¢y, ..., g, € T such that ea(g) = €a(t), .. ea(gn) -
€4(tn). Therefore,

falea(tr),.,ea(tn)) = falea(gr), - €a(gn))
And, by definition of g4,
falea(g1): - ea(9n)) = ea(f (01,5 9n))
By making all the previous expressions equal, we have

ea(t) = ealf(gr, ..., gn))

Where f(g1, ..., .) € Ts. So, if we define g as f(g1, .-y 9n), Wwe have what we wished
to prove. [J

Sublemma *.Prop3. Given two Y-algebras A and B. We define f : Ag;, — Boy, in
the following way: Va € Ao, f(a) = ep(g) where g € Ts such that €4(g9) = a. Out of
f, we define f*: Tx(Aoss) — Ts(Boss) as:

o If t € Aoy, then f=(t) = f(2).

o If t has the form o((y, ..., t,), where n > 0, then f*(t) = o(f*(1,), .., f*(t:)).
Then, it is fulfilled that:

o If t € Tg, then f*(t) = ¢.

o If A and B are finitely generated, then V¢ € Ts(Aoss), 3g € Tx such that ealg) =
" ea(t) and ep(f*(t)) = en(9).

Proof. We shall prove the first property by structural induction.

e Induction base. If t € F),, where s € S, then f*(t) = t, by definition.

o Induction step. If t has the form o(4y,..., ¢,), with n > 0, then f*(¢) = o(f*(t1), .., f*(t))-
But since, via the hypothesis of induction, all f*(¢;) = ¢;, then f*(¢) = o(t1,.., 1) = t.

Now, we prove the second property by structural induction:

o Induction base. If ¢ € Agss, then f*(¢) = f(t). Since f(¢) € Boss, we have that
es(f*(t)) = ep(f(t)) = f(t). On the other hand, via the definition of {, f(t) = e5(g’)
where €4(¢’) = t. Consequently, ep(f*(¢)) = €p(g’). Since €4(t) = t, then e4(¢) =
€4(g'). Therefore, if we make g be g’, the property is proved.

¢ Induction step Examine the case in which t has the form o (4, ..., t,), withn > 0. Via
hypothesis of induction we have that for any ¢;, there is a g; such that e4(¢;) = €4(%:)

and eg(f*(t;)) = en(g:).

By applying this hypothesis of induction and the definition of €4, we write:
ealo(ty, ..., tn)) = calealts),...,ea(ts)) = calea(gr), - €a(gn)) =

Efi(a(tlv cees tn))

On the other hand, we have, via the hypothesis of induction and the definitions of
ep and f*:

ep(f*(o(tr; .y 1)) = e5(0B(f"(4), .. f"(ta))) = es(oB(en(91), - €8(gn))) =
e(0(g1s -+ gn))-

Therefore, if we take (¢, ...,9.) as g, we shall prove the property.

So, we have proved the sublemma. [J

Lemma *.Prop4. Let A and B be two -algebras finitely generated. If A and B are
eval-equivalent, then they are behaviorally equivalent.

Proof. In order to prove that they are behaviorally equivalent, we must prove that
there is a behavioral isomorphism f between A and B.

We define f: Agy; — Boys in the following way:
For each a € Agys, we have f(a)=ep(g) where g € Ty such that e4(g) = a.

(The exhaustivity of €4 guarantees that g exists, because A is finitely generated. To
avoid the problem that there may be several possible “g”’s, we define an arbitrary order
between ground terms and we choose the first of them w.r.t this order.)

If f has been defined in the previous way, f* has the form f~: Tx(Aoss) — Ts(Boss)
such that, by sublemma *.Prop3, it is fulfilled that:

Vte Te(Aoss), 3g € Ts such that e4(g) = e4(¢t) and ep(f*(t)) = ep(9).

(Sublemma *.Prop2 guarantees that g exists. If there are several possible “g”’s, we
apply the same solution as above.)

We want to check if f is a behavioral isomorphism. We must prove two things: fis a
behavioral morphism and f is bijective.

Now, we shall prove that { is a behavioral morphism. We want to see that
Vt € Ts(Aoss)s, with s € Obs, f(ea(t)) = e5(f*(2)).

On the one hand, we have, by definition of {, since 4(t) € Aos:
f(ea(t)) = ep(g), where g € Tx such that ea(g) = €a(t).

On the other hand, by sublemma *.Prop3, since t € Tx(Aos;):
es(f*(t)) = ep(g’), where g’ € Tx such that e4(g") = ca(t).

Therefore, proving the statement of equality f(e4(¢)) = es(f*(t)) has been reduced to
proving:

es(g) = en(g').

On the other hand, we have that €4(g) = €4(¢’), because the two terms of this equation
are equal to €4(t). In consequence, be ¢ as it may, it is fulfilled that ¢(c4(g)) = ¢(ea(g")).
Since, via the definition of eval-equivalence, we have that:

w(ealg)) = esly) w(calg’)) = es(9’)

We obtain €5(g) = €5(g’), which is what we wished to prove.

Now, we shall prove that f is bijective. First, we shall check that f is injective, that is
to say,

Va,b € AObs,f(a) =f(l)) = a=2>b

Via the definition of f, f(a) = €5(g) and f(b) = €5(g’), wheree4(g) = a and e4(¢') = b.
Therefore, the equation f(a)=f(b) becomes:

ep(9) = €p(g")

Now, we know by eval-equivalence that there is a bijection ¢ such that ¢(e4(g)) = e5(9)
and ¢(e4(g’)) = €p(¢’). Thus, the previous equality is transformed into:

wlealg)) = wlealy’)

Now, since ¢ is bijective, this produces:

10

That, as we have seen before, is equivalent to:
a=1b
And this is what we intended to prove.

Now, let us check that { is exhaustive, that is to say,
Vb € Bops 3a € Agss such that f(a) = b

Since B is finitely generated,
Jg € Ts, tal queep(g) = b.

Then, a is 4(g), because, as we shall prove next, f(ea(g)) = b.
f(ea(9)) = €8(g") where £a(g') = €a(9)

Trivially !,
¢(ealg") = pleal9))

And, by eval-equivalence,
ep(g’) = €8(9)

And, since f(a) = ep(¢’) and b = ep(g), we have:
fla) =10

which is what we wished to prove. [J

Lemma *.Prop5. Let A and B be two Z-algebras. If A and B are behaviorally equiv-
alent, they are eval-equivalent.

Proof. Since A and B are behaviorally equivalent:
Vt € Ts(Aoss)s, withs € Obs, f(ea(t)) = ea(f()).

Since all the observable ground terms are observable computations, we have:
Vit e Tx,, withs € Obs, f(ea(t)) =en(f*(¢)).

And, by sublemma *.Prop3, if ¢ € Ty then f*(t) = t, it is fulfilled that:
Vte Ts,, withs € Obs, f(ea(t)) = ep(?).

INotice that g doesn’t have to be g’, though £4(g) and £4(¢") can be equal

11

Which, if we make f be ¢, is the definition of eval-equivalence. [
The next theorem summarizes what is proved above.

Theorem *.Prop6 Let A and B be two finitely generated Y-algebras. A and B are
behaviorally equivalent if and only if they are eval-equivalent.

Proof. 1t is a direct consequence of lemmas *.Prop4 and * . Props. O

Definition *.Prop7 Let SPEC; and SPEC, be two behavioral specifications over the
same signature ©. We say that SPEC; and SPEC, are eval-equivalent if their respective
initial algebras are eval-equivalent.

Lemma *.PropEV Let SPEC, and SPEC; be two behavioral specifications which
have the same signature ¥. The definition of eval-equivalence between SPEC) and SPEC,
can be written as follows:

There is a bijection ¢ between (Tspec,) oss and (Tspec,)oss such that
Vo € Fy, . uns with s € Obs,

Yi,.. by € TESPEQ , 99(5Tspscl (o(tyy s ta))) = 57’5;:502(‘7“1» ey ta))
Proof. “SPEC, and SPEC, are equivalent” means “the initial algebras of SPEC; and

SPEC, are equivalent”. Therefore, if we apply the definition of eval-equivalence to algebras
Tsspre, and Txeppe,, We have the following statement:

There is a bijection ¢ between (Tspec,)oss and (Tspec,)oss such that
Vi€ (Trgppe,)sr with s € Obs, P(eTgpre, (1) = € Tsppc, (1)

Since t € (TgspEc])s , where s € Obs, then t must have the form o(t1,...,tn), where n
> 0,0 € Fuyoun,s with s € Obs, and 4y,..., 8, € Txgppe, - By replacing these equivalences

in the last statement, we obtain what we wished to prove. []

Theorem *.Prop8 Let SPEC; and SPEC, be two behavioral specifications over the
same signature ¥. SPEC; and SPEC, are behaviorally equivalent if and only they are
eval-equivalent.

Proof. This theorem is inferred easily from theorem *.Prop6, if we keep in mind that
Tspec, and Tspgc, are finitely generated because they are initial algebras. [

4 Renamings
In this section, we introduce the concept of “renaming”, which will be useful to define

that of reunion in section 5. We also describe some properties of renamings that will be
useful for next proofs.

12

4.1 Definition of renaming

In this subsection, the concept of renaming is defined. Intuitively, a specification
SPEC, is a renaming of another specification SPEC, if we can obtain SPEC; from SPEC;
by changing the names of the function symbols. To be more exact, only the names of the
function symbols which are related to the non-observable sorts are changed. The names of
the function symbols with observable parameters and result remain the same.

In more formal terms, the concept of renaming is defined as follows:

Definition *.Prop9. We say that a behavioral specification SPEC, = (0Obs, S, F,, E3)
is a renaming of another specification SPEC) = (Obs, S, F1, Ey) if there is a bijection-
¢ : Fy — F, such that:

1. Vo, Ywl,..,wn,s € 5; o € (F1)wl...un,s if and only if #(c) € (F2)wi..un,s

2. Yo € Fy U Fy it is fulfilled that

S ((ﬁwl)wl...‘w'n,s N (FQ)wl...w'n..s) if and Only if wl,..,wn,s € Obs

3. Vo € (F1)utuns Ywl,.,wn,s€S; #(c) = o if and only if wl,..,wn,s € Obs.

4. For each equation e : ¢; = dy &..& ¢u = du = p1 = P25 e € F; if and only if
¢*(c1) = ¢*(dh) &...& ¢™(¢ca) = ¢*(dn) = é*(p1) = ¢*(p2) € Ex,
where ¢* : Txgppe (X) — Tx (X) is defined as follows:

“SPECQ

o If x is a variable, ¢*(z) = z.

e If x has the form o(t1, ..., tn), where 0 € (F1)uw1
¢*(z) = ¢(o)(¢"(t1),..., ¢™(tn))

wn,ss thED

.....

Comments.
o Condition 2 could have been written as follows:

o 6 ((Fl)wl...wn,s N (FZ)wl...wn,s) == ’LU]., AR wn, CS ObS

because the reciprocal implication can be easily deduced from conditions 1 and 3.
However, we have preferred to write the double implication for the sake of clearness.

. o It is easy to see that the algorithm which creates a renaming of a behavioral specifi-
cation has a linear complexity w.r.t the input.

Notation. If SPEC, is a renaming of SPEC), we write: SPEC, € Renam(SPEC).
The bijection ¢ is called renaming bijection.

13

4.2 Totally observable equations and terms of a renaming

In this subsection, we shall prove that if SPEC, is a renaming of SPEC), then the totélly
observable equations and terms of SPEC and SPEC; are the same. This result (and some
properties which we shall use for its demonstration) will be useful for next sections.

Sublemma *.Prop10 If SPEC; € Renam(SPEC), it is fulfilled that V¢ € Txgpp

o ¢°(t) € TESPEC;

o if t € Totspge, it is fulfilled that ¢*(¢) = ¢.
Proof. We prove this by structural induction:

e Induction base. Let ¢ € (Fy)y,, where s € S. By definition *.Prop9, ¢(t) € (F2)x,s
and, therefore, ¢*(t) = 8(t) € Tssppe, -

On the other hand, if t € Totspgc, then s € Obs and, by definition *.Prop9, o (t) =
$(t) = t.

¢ Induction step. t has the form o (i1, ..., t.), where all the ¢; € TESPEcl and o € F;. By
definition *.Prop9, ¢(c) € Fy and, via the hypothesis of induction, all the ¢*(t;) €
Tseppc, - Consequently, ¢*(t) = ¢(c)(*(t1), ..., 8"(tn)) € Tx which is what we

_ TsPEC,?
wished to prove.

On the other hand, if t € Totspgc,, then 0 € (Fi)wi..wn,s, Where wl,...,un,s €
Obs and all the #; € Totsppc,. Then, by definition *.Prop9, 6(0) € (F2)wi.un,s
and, via the hypothesis of induction, all the ¢*(¢;) = t. Replace in ¢*(¢) =
é(a)(*(t), ..., #*(t.)) and we obtain that ¢*(¢) = ¢, which is what we wished to
prove. [

Sublemma *.Prop81 Let SPEC; and SPEC; two specifications such that SPEC; €
Renam(SPEC). Let X be any set of variables. Suppose t1 € (Trgppe J(X) and & €
Totspec,(X) such that ¢*(t;) = L. Then & = ;.

Proof. We shall prove this by structural induction on the term 4.

o _Induction base. We can distinguish two subcases.

~ Suppose t; € (Fi)ys, where s € S. By definition * Prop9, ¢*(t1) = ¢(t1) and
é(t1) € (F2)ss. That is to say, t; € (F2)x,s. Now, since f € Totspgc,, this
means that s € Obs. Therefore, by condition 3 of definition *.Prop9, ¢(t) = 4.
That is to say, t; = ;.

— Suppose t; € X. By definition *.Prop9, ¢*(#) = 4 and, consequently, & = &.

14

o Induction step. Suppose # has the form o(4, ..., ,), where, for each ¢, [; € TESPECI
and 0 € (F})wi.uwns Consequently, by definition *.Prop9, t; is ¢(o)(my, ..., mn)
where é(0) € (F2)utuns M1 = ¢"(h),...., my = ¢*(l,). Since t; € Totspgc,,
then wl,...,wn € Obs and, on the other hand, my,...,m, € Totsprc,. Now, since
wl, ..., wn € Obs, by condition 3 of definition *.Prop9, ¢(¢) = 0. On the other hand,
since my,...,m, € Totspgpc,, by the hypothesis of induction, = mq,...,L, = m,.
That is to say, t; is o(k, ..., l,). Therefore, t; = t,, which is what we wished to prove.

O

Sublemma *.Prop80 Let SPEC) and SPEC; be two specifications such that SPEC; €
Renam(SPEC:). Let X be any set of variables. Suppose t € Txppe (X) and z € X such
that ¢*(¢) = z. Then ¢ € X.

Proof. We shall prove this by contradiction. Suppose t € X. Then, t has the form
o(t...t,). Therefore, x (which is equal to ¢*(t)) is ¢(o)(¢*(t1), ..., #*(ts)). Consequently,
X is not a variable, which is a contradiction.]

Sublemma *.Prop65 Let X be a set of variables. Suppose SPEC) and SPEC; such
that SPEC; € Renam(SPECl). It is fulfilled that TOtspEcl(X) = TOtngcz(X).

Proof. We must prove that V¢ € Totspgc, (X) it is fulfilled that ¢t € Totsprc,(X). We
shall prove this property by structural induction on t.

First, we prove that, if wl,...,wn,s € Obs, t € (F1)uy1..un,s if and only if £ € (F3)w1..un,s-
Suppose that ¢ € (Fi)yi.wn,s with wl,...,wn,s € Obs. Then, since SPEC; is a renaming
of SPEC}, by condition 2 of definition *.Prop9, t € ((F1)wi.we,s N (F2)wiown,s). And,
consequently, t € (F2)ui.wns Thus, we have proved that ¢ € (F1)wi.wn,s implies t €
(F2)w1..wn,s- The reciprocal implication can be proved analogously, by interchanging the

roles of SPEC; and SPEC;.

e Induction step. We can distinguish two cases:

— t is a variable. Then, since t € Totspec, (X), the sort of t is s € Obs. Now,
since SPEC; and SPEC, have the same observable sorts, then ¢ € Totspgc, (X).
Thus, we have proved that ¢t € Totgpgc,(X) implies t € Totspgc,(X). The
reciprocal implication can be proved analogously, by interchanging the roles of

SPEC1 and SPECQ

~ t: X — s. Therefore, if t € Totsppc,(X), then t € (Fy)y, with s € Obs.
By applying the property stated at the beginning of this proof, we have that
t € (Fy)oss and, consequently, ¢ € (TESPE%),\,S. Thus, we have proved that
t € Totspgc,(X) implies t € Totsppc,(X). The reciprocal implication can be
proved analogously, by interchanging the roles of SPEC, and SPEGC,.

15

e Induction step. t has the form o(#,...,%.). If t € Totspgc,, all the subterms of t
must be observable, and, consequently, t1,...,t, € Totspec, (X). On the one hand,
t1, ..., ta € Totspgc,(X), via the hypothesis of induction. On the other hand, since
0 € (F1)wl..wn,s, We have that o € (F2)w1..un,s, by applying the property given at the
beginning on this proof. Consequently, o(t,..., t,) belongs to Totspgc,(X). Thus,
we have proved that t € Totspec, (X) implies t € Totsprc,(X). The reciprocal impli-
cation can be proved analogously, by interchanging the roles of SPEC; and SPEC:. O

Corollary *.Prop66. Suppose SPEC; and SPEC, such that SPEC; € Renam(SPECY).
It is fulfilled that Totgpgc, = Totsprc,-

Proof. Tt is sublemma *.Prop65, when X is equal to &. .
Sublemma *.Prop14. If SPEC, € Renam(SPEC), then (Ey)oss = (E2)0bs-
Proof. We must prove that ¢ € (£1)os, if and only if e € (E2)oss.

First, we shall prove the implication which goes from left to right. Since e € (Ev)osbs,
then e has the form e : ¢; = dy &..& ¢, = dy = t; = t, where c1,..., Cn, i,y .oy dny b1y B2 €
TOtsPEcl(X).

By definition *.Prop9, ¢*(c1) = ¢*(d1) &...& ¢*(ca) = ¢*(dn) = ¢*(41) = ¢*(&) € En.
Now, by sublemma *.Propl0, this means that ¢y = &1 &..& cn =dy = h =H € E,. That
is to say, € € Fy. Since ¢i,..., Cny iy ooy duy b1, b € Totsppe, (X), by sublemma * Prop65,
Cluvees Cry A1y evey s by ta € Totsppe,(X). Moreover, e € Ep. Therefore, e € (E2) 0bs-

Now, we shall prove the implication which goes from right to left. Since e € (E2)0s,
then e has the form e : ¢; = d; &..& cn = dn = t = t, where ¢1,...,¢Cny d1, .0y dny i 12 €
TOtSPEcz(X)-

By sublemma *.Propl2, there are ci,..., ¢}, di,...,d,, 4,8 € Totsppc, (X) such that
(cl) = 1y 87(ch) = Cay 6(d)) = di,y .o, 87(d)) = dn, ¢7(8) = 1, ¢7(43) = t2. Therefore,
e: ¢*(c}) = ¢*(dl) &..& ¢*(c}) = ¢*(d}) = 4*(t]) = ¢*(t3) € E». By definition *.Prop9,
we have that ¢ = d] &..& ¢, = d, = t{ =, € E.

Now, since €1, ..., Cny dis -y duy b1, b2 € Tolsppc,(X), by applying repeatedly sublemma
* Prop81 on expressions ¢*(¢}) = ¢1y...,¢™(c}) = ¢, ¢7(d]) = d1,...,8"(dy) = dn, 9*(4) =
t, & () = tp, we have that ¢ = c1,., €) = €y @) = diy ey dy = dny b = t, ty = to. That
is to say, e is the same equation as ¢ = d] &..& ¢, = d, = 1} = 1;. Consequently, e € Ey.

Now, Since €1, ..., Cny @1, -y dn, b1, t2 € Totsppc,(X), by sublemma *.Prop65,
Cly ooy Cay Gy eney Aoy b1t € Totspge, (X). That is to say, e € (Ey) obs, which is what we

16

wished to prove. [J

4.3 Congruence and classes of equivalence of a renaming

In this subsection, we shall prove that, if SPEC; is a renaming of SPECy, the congru-
ences of SPEC; and SPEC; are the same (if we do not care about the changes of names

entailed by a renaming). This enables to define a bijection between the classes of equiva-
lence of SPEC; and SPEC;. Both facts will be useful for next proofs..

In other words: what we prove is that SPEC; contains the same information as SPEC,
that is to say, that the operation of renaming changes names but preserves the information.

Sublemma *.Prop26 Let v : vars(e) — Trgppe, be an assignment of values and ¢
a renaming bijection between SPEC; and SPEG,. If ¢* : TESPEcl — TESPECg is defined

out of ¢ as in the definition of renaming and w : vars(e) — Trgpp, s the assignment of
values such thatw = ¢* o v, then we have:

Vie Ty

YspEC,

it is fulfilled that ¢*(v*(t)) = w*(4(¢))

Proof. We shall prove this by structural induction on ¢.

o Induction base. Suppose that t is a variable. We wish to prove that:
¢*(v7(t)) = w(47(2))

Since t is a variable, by the definitions of ¢* and v*, we have that v*(t) = v(t) and
¢*(t) = t. So the last equality becomes:

Analogously, since t is a variable, we have that w*(¢) = w(¢) and, consequently:
¢"(v(t)) = w(t)

But, since w is defined as w = ¢~ o v, this becomes:
¢*(v(t)) = ¢7(v(1))

which is a trivial equality and, therefore, the induction base is proved.

o Induction step. Suppose that t has the form o(t1,..., t,) where n > 0. Then *(v*(t))
can be written as:

" (v*(o(tr, ..., ta)))

17

By definition of v*, this is equivalent to:
¢"(a(v*(f), .y v (i)

By definition of ¢~, this is equivalent to:
$(0) (¢ (v (1)), -, ¢7(v7 (1))

By the hypothesis of induction, this expression becomes:
$(o)(w* (¢ (1)), -, w™(¢"(En)))

Which, by definition of w*, is equivalent to:
w (o) (¢ (), o, ¢7(2a)))

By definition of ¢*, this is equivalent to:
w*(* (0 (t1y ey (£2)))

And, since t is (ty, ..., t2), then this is equivalent to:
w(¢"(1))

which is what we wished to prove. [J

Sublemma *.Propll If SPEC; € Renam(SPEG,),
th, t2 € TESPEcl’ tl =SPEC, tg if and Ol’lly if (}S*(tl) Z=SPEC, ¢*(t2)

Proof. We prove that t; =spgc, t2 implies ¢*(t)) =spec, ¢™(t2). The reciprocal impli-
cation can be proved analogously.

In order to demonstrate t; =spec, t2, we must apply repeatedly the definition of =sprc, -
We refer by “step” to each of these applications. We make an induction on the number of
steps of the demonstration of t; =spec, b2

If &, =spgc, ta, by definition of =spgc, one of the following four cases may occur?:

1. In this case, ¢ = t,. Trivially, ¢*(t) = ¢*(t2) and, therefore, ¢*(t1) =spec, & (t2),
since =spgc, is reflexive.

2Case 1 belongs to the induction base, cases 2 and 3 belong to the induction step. Case 4 belongs to
the induction base when the applied equation is unconditional or, otherwise, it belongs to the induction
step

18

2. In this case, ; =spgc, t2 because t; =sppc, t. Since the demonstration of the latter
relationship of congruence has a step less than the former, we can apply the hypothesis
of induction. We have that ¢*(t;) =spec, ¢*(t) and, therefore, ¢*(t) =spec, ¢*(t2),
since=gpgc, is symmetrical.

3. In this case, t; =sprc, b because & =sprc, 13 and t3 =gsprc, l2. Since the demonstra-
tions of ¢, =sprc, ts and 3 =speg, t are shorter (in number of steps) than the for-
mer, we can apply the hypothesis of induction. So we have ¢*(t1) =spec, ¢*(ts) and
#*(t3) =spec, ¢™(t2). Since =sprc, is transitive, we have that ¢*(4) =spgc, ¢*(t2).

4. In this case, t; =spgc, b2 because there is an equation e : ¢; = d &.&c, =dp =
p1 = py, where ¢ € E; and an assignment of values v:X — Tsppe such that

(a) v*(p1) =t and v*(p2) = b, and, moreover,

(b) v*(cl) =SPEC, U*(dl), ey 'U*(Cn) =SPEC, ’U*(dn)

On the one hand, since demonstrations v*(c1) =spec, v*(d1), ..., v*(¢a) =spec,
v*(d,) are shorter (in number of steps) than the former, by the hypothesis of in-

duction, we have: ¢*(v*(¢1)) =spec, ¢*(v*(d1)),.... " (v*(cn)) =spec, &*(v*(dn)).
Since, by sublemma *.Prop26, ¢*(v*(z)) = w*(¢*(z)), we have the following result:

w*(¢*(e1)) =spec, w(¢™(d1)), ..., w(¢(¢a)) Zspec, w(67(dn)).

On the other hand, since SPEC, is a renaming of SPEC; and ¢ € Ej, we have
that (¢*(c1) = ¢*(d1) &..& ¢*(cn) = ¢7(dn) = ¢*(;) = ¢"(p2)) € En. At this
point, we can apply the fourth case of the definition of =spgc, on this equation and
on the result of the previous paragraph. We have that w*(¢*(p1)) =spec, w*(¢*(p2))-

By sublemma *.Prop26, ¢*(v*(z)) = w*(¢"(z)) and, therefore, ¢*(v*(p1)) =srsc,
#*(v*(p2)). Now, since v*(p1) = t1 1 v*(p2) = t;, we have that ¢"(41) =sprc, é*(t2),
which is what we wished to prove. [J

Sublemma *.Prop60. Suppose SPEC, € Renam(SPEC)). Let X be a set of vari-
ables. It is fulfilled that V&, € Tegppe (X) It € Trgppe, (X) such that ¢*(t) = to.

Proof. We shall prove this by structural induction.

+ o Induction base. We can distinguish two cases:

— Since ¢ is a bijection, if ¢, € (F2)y,s, then there is a ¢ such that ¢ € (F1)»,s and
#(c) = t,. By definition *.Prop9, ¢*(c) = ¢(c). Therefore, if we make ¢ be #,
we obtain what we wished.

19

~ If t; € X, then ty € Tygppe (X)- Since t is a variable, it is fulfilled that

¢*(t;) = tp, by definition * Prop9 Therefore, if we make # be t;, we obtain
what we wished.

o Induction step. t; has the form o(h, ...,), where, for any i, l; € Txsppo,- By the
hypothesis of induction, 3 ¢1,..., €a, such that, for any 7, ¢*(c;) = L. Since, by defi-
nition *.Prop9, thereisa ¢ € F1 such that ¢(c) = o, we have that ¢*(c(c1, .-, €a))=

d(c)(d*(c1)y ey @ (Cn))=0(ly ey). Therefore, if we make ¢ be c(c1, ..., ¢n), We ob-

tain what we wished.

Sublemma *.Propl12. If SPEC, € Renam(SPEC,), Vt; € TESPEC2 At € Tsgppe
such that ¢*(t) = .

Proof. It is a corollary of sublemma *.Prop60 when X is equal to @. O

Lemma *.Propl13. [f SPEC; € Renam(SPEC)), then there is a bijection 8 : (Tspec,)oss —
(T'spec,)obs. such that:

Vi€ (Trgppe,)sr with s € Obs, Blengppe, (1)) = Tsppg, (47())

Proof. Given a class of equivalence [t]=,, we define 5([t]=,) = ([¢*(t)]=,)-

Since we know, by definition of quotient term algebra, that for any specification SPEC:
eTsppo(t) = [Hzsppc

Replacing in the definition of 3:
6(5 Tspec, (t)) = ET5P502 (¢*(t))

which is what we intended to prove. Now, we shall see that 4 is a bijection. By
sublemma *.Propll, t; =spgc, t» if and only if ¢*(t1) =spec, ¢*(t2), that is to say,

[tl] =SPEC, [t2]—quc if and Only if [(ZS (tl)]_quc [d’ (tz)] SPEG, Therefore ﬁ is well
defined because it does not depend on the partlcular representative of the class that we use.

8 is injective, that is to say:

V[tl]—:-SPECl J [tQ]ESPEQ; ﬁ([tl]ispfzc,) = ﬂ([tz]ESPEcl) implies [tl]ESPEcl = [t2]ESPE01

. We start from:

6(“1] SESPEC,) ([t2]ESPE01)
By definition of S:

[¢*(t1)]ESPECQ = [¢*(t2)]ESPE02

This is the same as:
¢*(t) =spec, 97 (L)

Now, by sublemma *.Propl11l, this is equivalent to:
h =spec, b

That is to say,

[tl]EspEcl = [tQ]ESPEcl

and this is what we wished to prove.
Now, we shall see that § is exhaustive:

V[t2]EspEc2-v 3[t1]ESPE01§ ﬁ([tl]ispacl) = [t2]ESP302
We start from sublemma *.Propl2:

Vi, € Tsgppe, dt3 € Trgppe, such that ¢*(t3) = &
This implies

Vi, € T25P5c2 dis € TZSPEcl such that ¢*(&3) =spec, b2
That is to say,

Vlta)=speo, 3[ta]=sppc, such that [¢"(ta)]=spec, = [t2)=spee,
By definition of 3:

Vital=spee, ts]zgppc, such that Blltal=spsc,) = [t2)=spee,

That is to say, if we make [4]zgppo, be [ta]zsppc, » then the exhaustivity is proved. O

5 Reunions.

In this section, the concept of reunion is introduced and we prove some basic properties
about it.

21

5.1 Definition of reunion.

Intuitively, a reunion of two specifications SPEC; and SPEC, is a specification SPEC,
which contains all the information which SPEC; and SPEC, have individually. A naive
idea to do this could be to build a specification which has all the equations belonging to
SPEC; and SPEC,. But, if we do that, since SPEC, and SPEC; have the same signature,

there will be a naming conflict and SPEC; will have more equivalences than those ones
belonging to SPEC) and SPEC; individually.

The solution is to avoid the naming conflict, by using a renaming of SPEC;, instead of
SPEC;. As we have seen, the operation of renaming preserves the information but changes
the names.

The conditions required for this to be workable appear in definitions *.Prop27 and
*.Propl5. (We are working on a paper which removes the need for these conditions).

Definition *.Prop27 Let SPEC = (0bs, S, F, F) be a behavioral specification. Let
=045 be the congruence defined only by the equations of Eps,. We say that, in SPEC, the
definition of observable sorts does not modify the definition of the non-observable ones if it

is fulfilled that:

1. Any operation which has an observable result is totally defined over the observable
sort, that is to say, V¢ € (Trppe)s, With s € Obs, thereis a t’' € Totsppc such that,

sTSPEC(t) = ETSPEC(t/)'

2. Vi1, ty € Totspge it is fulfilled that

2] =0ps 1o if and only if t1 =spec b

Comment. In this second condition, the left-to-right implication is superfluous, since it
is fulfilled in any behavioral specification because Obs is a subset of E. However, we have
preferred to write the double implication for the sake of clearness.

Definition *.Propl5. Let SPEC, = (0Obs, S, F, Ey) and SPEC, = (0bs, S, F', k;) be
two behavioral specifications. We say that SPEC, and SPEC, share the same definition of
observable sorts if the following conditions are fulfilled:

o (E1)oss = (E2)0ss-

o All the equations belonging to SPEC; which have only variables on their right-hand
sides belong to (E;)oss. It happens the same with SPEC;.

i

e In SPEC; and in SPEC,, the definition of non-observable sorts does not modify that
of the observable ones.

22

Definition *.Prop16. Let SPEC, = (Obs, S, F,E,) and SPEC, = (Obs, S, F, Es)
be two behavioral specifications which share the same definition of the observable sorts.
Given a specification SPEC; = (Obs, S, Fs, Es), such that SPEC; € Renam(SPEC;). We
say that SPECy = (Obs, S4, Fy, E4) is a reunion of SPEC, and SPEC, via SPEC; (and we
write SPECy = SPEC| |y SPEC, via SPEC;) if:

o S54=5U~ wherey ¢ S.

o [y =FUPF3UF,,, where F,,, contains the following function symbols:

~ yes i— vy
— plus iy x v — 4
-~ For any s € §

trans; 1 s X s —>

where yes, _plus_, trans ¢ (F U F3)

o £y =FE UE;UE,,, where E,,, contains the following equations:

— plus(yes,yes) = yes
- VseS Vo€ (Fi),
trans,(o, ¢(c)) = yes.
-VseS Voe (Fl)wl..wn,s
trans,(o(t1, tyy ooy ta), B(0) (U, Uy oony Up)) =
plus(transy, (4, 1), plus(trans,, (tz, ug), ..., trans,, (t,, Up)...))

where Epe)y N (B U E3) = @

Comments.

e In this definition, we have used the names v, yes, plus and trans to mean the new
sort and the new function symbols which are introduced in a reunion. There may be
some trouble if, in SPEC; and SPEC,, any of these names have already been used
(because, as we have seen, v ¢ S and yes, plus, trans ¢ (F U F3)) . This naming
conflict is avoided easily by using names other than v, yes, plus and trans.

e [t is easy to see that the algorithm which creates a reunion out of two behavioral
specifications has a linear complexity w.r.t the input.

23

5.2 Basic properties.

In this subsection, we shall prove some properties which will be useful for next proofs.

Sublemma *.Prop41 Suppose SPEC;=SPEC,) SPEC, via SPEC;. Then, Vo €
F U Fs it is fulfilled that

0 € (Fut..um,s N (F3)w1..um,s) if and only if wl,..,wn,s € Obs

Proof. This sublemma is obtained by applying condition 2 of definition *.Prop9 to
SPEC; and SPEC;. This application is possible because SPEC; is a renaming of SPEC;,
by definition *.Prop16. [

Sublemma *.PropCI It is fulfilled that:

o Totsppc, © (Trgppc,)obs

o Totsppc, C (TEspEc3)0b5

Proof. We shall prove the first statement. The second statement can be proved analo-

gously, by interchanging the roles of SPEC; and SPECs;.
To be more specific, we shall prove that:
t € Totspec, implies t € (Tsgpps Jobs
We shall prove this by structural induction on ¢.

o _Induction base. In this case, ¢t € (Fy),, with s € Obs. By definition *.Propl6,
Fo=FUF;3U F,. Now, t € Fp.,, since there is no function symbol in F,.,, which
has an observable sort. Therefore, ¢t € F U F3. Now, since s € Obs, by sublemma
*.Prop4l, we have that ¢ € F\, N (Fs):s and, trivially, t € Fy,, with s € Obs.
Consequently, t € (TESPEq Yoss, by the definition of this one.

* Induction step. In this case, t has the form o(4,...,t,), where 0 € (Fi)u1.un,s
wl,...,wn,s € Obs and t,...,t, € Totsppc,. Then, we have that 0 € Fy1. yn,s by
the same reasoning that has been applied to ¢t in the induction base. We obtain
that ¢,....1, € (TESPEcl)Ob-” by the hypothesis of induction. And, consequently,
o(t1y . ty) € (TZS},EC1)oss, Which is what we wished to prove. OJ

Sublemma *.PropLI V¢ € (Tg Yobs, ¢7(t) € (Tx) Obs -

~“SPEC ~“SPEC;

Proof. t must have the form o({,...,t,), where n > 0, ¢ € Fy1.uns, s € Obs
Ity ot € Tsgppe . Since SPEC; € Renam(SPEC,), then, by definition *.Propl6,

24

#(0) € (F3)wi.un,s, where s € Obs.

On the other hand, since SPEC] and SPEC, have the same signature, we have tyey by
Tssppc, and, by sublemma *.Prop10, *(t1), ..., 9% (t,) € Tssppe, Therefore, ¢*(a(ty, ..., t,)) =
$(o)(9*(h),...,4"(ta)) € (TESPECS)OI’S’ by the definition of this one. [J

Sublemma *.Propl7. If SPEC, = SPECy Y SPEC, via SPEC;, then (E)oss =
(E3)0bs.

Proof. (Ev)oss = (Es)oss is fulfilled, because, by definition *.Propl6, SPEC; and
SPEC, share the same definition of the observable sorts. Since, by definition *.Propl6,
SPECs € Renam(SPEC;), then, by sublemma *.Propl4, (Ez)oss = (E3)oss. Since the
equality of sets is transitive, the sublemma is proved. []

Sublemma *.Prop50 In SPEC; the definition of the non-observable sorts does not
modify that of the observable ones.

Proof. First, we prove that SPEC, fulfills the first condition of definition *.Prop27. We
want to prove that V¢ € (T25P3c3)s» with s € Obs, there is a ' € Totspgc, such that,
t =sppc, .

Suppose that ¢t € (Y‘KQSPECS)s- Since SPECs € Renam(SPEC;), by sublemma *.Propl2,
there is [€ (TESPEC2)S such that ¢*(/) = ¢.

By definition *.Prop16, in SPEC,, the definition of the observable sorts does not modify
the definition of the non-observable ones. Therefore, we can apply the first condition of
definition *.Prop27. Consequently, there is a I’ € Totspgc, such that, | =gpge, I'.

Now, by sublemma *.Propll, ¢*(/) =spec, ¢°(I'), that is to say, ¢ =gspge, (1)
Moreover, by sublemma *.Prop10, ¢*(I') = I, that is to say, ¢ =spec, . And, since
I' € Totspgc,, by sublemma *.Prop66, I € Totsppc,. Therefore, if we make t’ be I, we
have what we wished.

Now, we shall prove that SPEC; fulfills the second condition of definition *.Prop27. We
want to prove that V4, ¢, € Totspgc, it is fulfilled that ¢ =spgc, b if and only if ¢ =¢4,, 6
where =y, is the congruence defined only by the equations belonging to (E3)os,.

" Since t,1 € Totsppc,, by sublemma *.Prop66, #,t € Totsppc,. Therefore, by sub-
lemma *.Prop10, ¢*(4,) = t; i ¢*(t) = t,.

On the other hand, by sublemma *.Propll, we have that ¢ =spec, b if and only if
& (4) =spec, ¢*(t2). By the result of the last paragraph, we can reduce this to ¢ =spEC, b2

25

if and only if 4 =spEC, -

Now, since in SPEC,, the definition of the non-observable sorts does not modify that
of the observable ones, we have t, =spgc, t if and only if ; =04, f. By the result of
the last paragraph, we have that t; =spgc, t2 if and only if & =0y, t2, Where =0y, is the
congruence defined by the equations belonging to (E3)oss.

Now, by sublemma *.Propl4, (E2)oss = (E3)0ss and, therefore, =y, is the same con-
gruence as =oy,,. Consequently, we can write ¢, =gspgc, ¢ if and only if ¢ =4, t2, which
is what we wished to prove. (]

Sublemma *.Prop51 SPEC, and SPECs share the same definition of the observable
sorts.

Proof. We want to prove that both SPEC; and SPEC; fulfill the conditions which
definition *.Propl5 has. The first condition is fulfilled by sublemma *.Propl7. SPEC;
fulfills the second and the third ones by definition *.Prop16. SPECs; fulfills the third one
by sublemma *.Prop50. Therefore, the only part left to be proved is that SPEC; fulfills
the second condition of definition *.Propl5.

So, we want to prove that, in SPEC3, all the equations which have only variables on
their right-hand side belong to (E3)oss. Let e : ¢y = &) &..& ¢, = dy = t; = ¢, be an
equation which has only variables on its right-hand side (that is to say, &, t; € vars(e)).

Since all the terms in this equation belong to Txsppc,» by sublemma *.Propl2, there
are Cy ..., Gy dy, .oy diy, b1, by such that ¢ = ¢7(¢1), ..., cn = ¢*(c)),di = ¢*(d)),...,dn =
¢(d,), tr = ¢*(t]),t2 = ¢*(¢;). That is to say, e can be written as follows: e : ¢*(¢}) =
¢"(di) &..& ¢7(cy) = ¢7(d,) = 6(1]) = ¢"(t3).

Since e € E3, by definition *.Prop9, equation ¢’ : ¢} = d] &..& ¢, = d, = t| =t} € Es.
On the other hand, since t; = ¢*(4), &2 = ¢~(t;) and ty, t are variables, by sublemma
*.Prop80, we have that t;,t, are variables, too.

So, we have that e’ is a equation which has only variables on its right-hand side. Now,
SPEC) and SPEC, share the definition of the observable sorts. Therefore, by definition

*.Propld, ¢’ € (Ez)oss. Now, by definition of (E3) oss, this means that ¢j, ..., ¢}, df, ..., d., ¢, t; €

ey dl,
Totspec,. By applying sublemma *.Propl0, we have that ¢; = ¢*(¢7), ..., c;, = ¢*(c.), d] =
¢*(d)),...,d, = ¢*(d,), t; = ¢*(¢),t; = ¢*(13), that is to say, 1 = ¢,...,C = ¢}, dq =
diy.sdy = d), ty = t{,t; = tj. That is to say, e’ is the same equation as e.

This means that e € (E;)oss and, by sublemma *.Propl4, e € (E3)oss, which is what
we wished to prove. [J

26

6 SPFEC; contains all the information which there is

in SPEC, and in SPEC;

We have defined intuitively the reunion of SPEC; and SPEC; as the specification which
contained the information of SPEC; and of SPEC,. In this section, we shall prove formally
that this statement is true.

Actually, what we shall prove is that SPECy contains the information of SPEC; and
of SPEC;. Now, SPECs is a renaming of SPEC;, and we have already proved -subsection
4.3- that the operation of renaming preserves the information. Therefore, we have that
SPECy contains the information of SPEC], and SPEC,, as has just been stated.

Sublemma *.Prop40. Let SPEC = (0bs, S, F, E) be a behavioral specification. Let
X' = (0bs', S, F') be any signature. Let X be any set of variables. Let v : X — T/ be
an assignment of values . Suppose p € Tx/(X). Then, it is fulfilled that v*(p) € Txypp.
implies p € Ty pp. (X) .

Proof. We shall prove this by structural induction on p.

¢ Induction base.

— p € X. Then p € T, (X). Therefore, this sublemma is reduced to v*(p) €
Ts¢ppe implies true. Now, this is equivalent to true.

— p € F'. In this case, by definition of v*, v*(p) = p. Therefore, this sublemma
is reduced to p € Ty, implies p € Ty .. (X), which is trivially true.

¢ Induction step. p has the form o(py, ..., p,). Then, v*(p) is v*(a(p1, ..., Pn)) =
o(v*(p1)s s v*(pa))- Since v*(p) € Treppe, then o € F and Vi v*(pi) € Tr ppe-
By the hypothesis of induction, this means that p; € Ty, ,.(X). And, since o € F,
then o(p1,...,pn) € Tx (X). This is what we wished to prove. [J

~SPEC

Comment. This sublemma can be written as follows:

Let SPEC = (Obs, S, F, E) be a behavioral specification. Let X' = (0bs’, ', F') be
any signature. Let X be any set of variables. Let v : X — Tx/ be an assignment of val-
ues . Suppose p € Tyx/(X). Then, it is fulfilled that p € Tx,,,. (X) implies v*(p) & Txoppe

* because this formulation is counter-reciprocal w.r.t the previous one.
Sublemma *.Prop55 Suppose SPEC; = SPEC{4 SPEC, via SPEC;. Suppose

b, ty € TESPECI' If we have a demonstration of & =gpgc, t2, then we have a demon-
stration of {; =gpgc, 2 which does not use equations that do not belong to Ej.

27

Proof. In SPEC), the definition of non-observable sorts does not modify that of the
observable ones. Therefore, if t,t, € Totspgc, then, by definition *.Prop27, we have that
t, =obs b2, Where =g, is the congruence defined out of the equations of (E;)oss. Since
(E1)oss © Ei, then we have a demonstration of & =gpgc, t2 which does not use equations
that do not belong to E;.

Now, we shall prove the sublemma when ¢t € Totspgc,. In order to demonstrate
t, =spec, t2, we must apply repeatedly the definition of =gprc,. We refer by “step”
to each of these applications. We make an induction on the number of steps which the
demonstration of ¢ =gspge, {2 has.

If t, =sprc, b2, by definition of =gppc,, one of the following four cases may occur®:

1. In this case, t; = t;. Trivially, since =gpgc, is reflexive, there is a demonstration of
ty =spec, t2 which does not use equations that do not belong to Ej.

2. In this case, t; =sppe, t» because t, =gppe, 4. Since the demonstration of the
latter relationship of congruence has one step less than the former, we can apply
the hypothesis of induction on it. We obtain that the demonstration of ¢, =spge,
does not use equations that do not belong to E;. Consequently, by applying the
symmetrical property of =gspgc,, we can obtain a demonstration of 4 =gpgc, t
which does not use equations that do not belong to E;.

3. In this case, i =spgc, b2 becauset; =sppe, 13 and t3 =gpge, t2. Since the subdemon-
strations of ¢ =gpgc, ts and t3 =spgc, t; are shorter (in number of steps) than the
demonstration of ¢, =gpgc, t2, we can apply the hypothesis of induction. So we
obtain that (¢ =sprc, t3) and (& =spgc, t2) have demonstrations which do not use
equations that do not belong to E;. By applying the transitive property of =spzc,,
we have a demonstration of ¢ =gpgc, t; which does not use equations that do not
belong to ;.

4. In this case, t; =spgc, t2 because there is a equation ¢ : ¢ = d; &..& ¢, = d, =
p1 = P2, where e € Fy and an assignment of values v : X — T;;SPEC‘1 such that

e v*(p1) = & and v*(p;) = tp, and, moreover

L ’U*(Cl) =SPEC, ’U*(dl), . v*(cn) =SPEC, ’U*(dn)
We can distinguish the following cases:

o If e € F,.,. As we have seen in definition *.Propl6, all the equations belonging
to E,., have the form ; = [, where the sort of ; is 4. If ¢ belongs to E,.,, then

3Case 1 belongs to the induction base, cases 2 and 3 belong to the induction step. Case 4 belongs to
the induction base when the equation applied is unconditional or, otherwise, it belongs to the induction
step

28

p2 must be of the sort v. Now, v ¢ S and, therefore, p; ¢ Tegppe, (vars(e)).
Since v*(p;) = tp, by sublemma *.Prop40, ¢, ¢ TEspEcl° This is a contradiction
and, consequently, this case is impossible.

e ¢ € (E3\(E3)oss). We refer by s to the sort of p; and p;. We can distinguish
two cases:

— 5 € Obs. Be v as it may, we have that v*(p;), v*(p,) must be of sort s,
too. And, therefore, ¢, {, must be of sort s. Since #,t, € T):SPEC1 then,
t1, 1, € (TEspEcl)s with s € Obs.

By definition *.Propl5, in SPEC; the definition of non-observable sorts does
not modify that of the observable ones. Consequently, by second condition
of definition *.Prop27, there are l,}, € (Totspgc,) such that 4§ =gppc,
and I, =sppc, tr. Now, since Fy C Ey and t; =gpgeg, t2, we can obtain
L =spec, b, because =gpgc, is transitive.

Now, since Ui, € Totspgc,, by second condition of definition *.Prop27,
h =oss b, where =0y, is the congruence defined by the equations belong-
ing to (Ey)oss. Now, (Ei)oss € Ei and, therefore, j =sppc, h. Since
L =spec, t and b =gpge, b, i =spec, ta, because =spEc, 1s transitive.
That is to say, there is a demonstration of ¢ =gpgc, t2, which does not use
equations that do not belong to Fj.

— s &€ Obs. By sublemma *.Prop51, SPEC) and SPECs; share the same defi-
nition of observable sorts. By definition *.Propl5, this means that all the
equations which have only variables on their right-hand side must belong
to (£3)oss. Now, if p1,p; € vars(e), there must be an equation which has
only variables on its right-hand side and does not belong to (F3)oss. This
is a contradiction. Therefore, either p; & vars(e) or p; ¢ vars(e). Suppose,
without loss of generality, that p; & vars(e).

Since p; is not a variable, p; has the form o (4, ..., ;) where o € (F3)y1..um.s-
Since s € Obs, by sublemma *.Prop4l, 0 &€ (Fui. wa,s N (F3)w1.wn,s)- Since,
0 € (F3)wi.un,s then o & Fy1 ya,s and, therefore, p; & TEspacl(WTS(e))'
By sublemma *.Prop40, be v as it may, v*(p;) ¢ TESPECI’ And, conse-
quently, 4, ¢ Ty which is a contradiction. Therefore, this case is
impossible.

SPEC,?

¢ ¢ € E; By the hypothesis of induction, we have subdemonstrations of v*(¢;) =spgc,
v*(dy), ..., v*(¢n) =spec, v*(d.) which does not use equations that do not belong
to F;. By applying e to these subdemonstrations, we obtain a demonstration
of & =spec, t2 which does not use equations that do not belong to Ej.

We prove next that we have seen all the possible cases. Since e € E; and, by

29

definition *.Propl6, Fy; = E; U E3 U E,.,. By properties of sets, we have E; =
(EY\(E1) 065)Y (E1) 05s U(E3\(E3) 05) U (E3) 085 U Frews - Since, by sublemma *.Prop17,
(E1)oss = (E3)obs, then Ey = (E3\(E1) 0bs) U (E1) 0ss U (Es\(Es) 0ss) U Enew. And, by
properties of sets, this is equivalent to Fy = Ey U (E3\(F3)04s) U Enew. Consequently,
we have seen all the possible cases. [l

Sublemma *.Prop56 Suppose SPEC; = SPEC, W) SPEC, via SPEC3. Suppose t;,t, €
Tsopp G If we have a demonstration of t; =spgc, t2, we have a demonstration of ¢, =gpgc,
t which does not use equations that do not belong to Es.

Proof. 1t is obtained out of the proof of sublemma *.Prop55, by interchanging the roles
of SPECy and SPEC;. O

Lemma *.Prop57. Let there be SPECy = SPEC, ¢ SPEC, via SPEC;. The following
two statements are fulfilled:

o Vi ue Ty

£spEC, 1 t =spEc, U if and only if ¢ ZspEC, U.

o Vi, ue€E TESPEC;,’ t =spEc, U if and only if t =SPEC, U.

Proof. We shall prove the first statement. The second one is proved analogously, by
interchanging the roles of SPEC) and SPEC; and by using sublemma *.Prop56 instead of
sublemma *.Prop55.

The fact that t =spgc, v implies t =spge, u is obvious, because all the equations which
appear in SPEC), also appear inSPECy. Consequently, the congruence defined by SPEC;
includes that of SPEC;. :

Since t,u € TESPEC1 ,if t =sppc, u, we have a demonstration of ¢t =gpgc, v which does
not use equations that do not belong to E; , by sublemma *.Prop55. In other words, we
have a demonstration of ¢ =gprc, u. Consequently, the right-to-left implication is proved.

O

Comment. Lemma *.Prop57 can be written in the following way:

o Vi,u€ Txgppe s €Tsppe, (1) = €Tgppe, (u) if and only if €75pp0, (1) = €15ppc, (u)

e Vi, ué€ TEspEcs’ ETSPEC3(t) = ETspEca(u) if and only if ETSPEQ(t) = 6TSPEC4(U)

7 Reason for the existence of F,,,

We have seen in the previous section that the reason why a reunion includes the equa-
tions belonging to E; and Ej is that, by doing so, the reunion contains all the information

30

of SPEC, and of SPEC,.

Now, which is the reason why a reunion includes the equations belonging to E,.,,7 The
answer to this question is that the equations of F,., enable us to express the fact that a
term is the “renaming” of another one, that is, that a given ¢, is equal to ¢*(¢;). Moreover,
E,c., enables us to express this in an inductive theorem.

Specifically, we want to prove that it is fulfilled that trans(t;, t2) =sppc, yes if and only
if t; =spgc, ¢*(t1). This statement has left-to-right and right-to-left implications, which
will be proved in separate subsections.

7.1 Left-to-right implication.
In order to prove the left-to-right implication, the concept of trans-irreducibility will

be of much help to us.

Definition *.PropA1l Let there be [€ Tzsqu. We say that 1 is trans-irreducible
(T-I, hence) if it contains a subterm transm(s,t) (with m € S) such that Vw € Trgppe it
is fulfilled that, either not w =gpgc, s or not ¢*(w) =sprc, t

In other words, a term [is not T-I, if for any of its subterms which have the form
trans,(s,t) (with m € S), Jw € TESPECI such that w =gpge, s and ¢*(w) =sprc, ¢

Comment. For the sake of clearness, we refer by trans(s,t) to trans,(s,t), because the
subindex of trans can be deduced easily (since m is the sort of s and t).

Sublemma *.PropAM Let | € Tx be a T-1 term and let u be the result that

SsPEC,

we obtain by applying an equation e € Fy to [. Then u is T-1.

Proof. Since 1 is T-1, there must be a subterm trans(s, ¢) such that Vw € Tygpp. it is
fulfilled that, either not w =gpge, s or not ¢*(w) =spgc, t.

We can distinguish the following cases:

o If ¢ is applied on any subterm different to trans(s, t), u will preserve the same subterm
trans(s, t) and, therefore, u will be T-I, too.

o If e is applied on trans(s,t), the following three cases may occur:

— It is applied on ¢. Then u will contain a subterm of the form trans(s,t’) where
t' =spgc, t. Since lis T-1, for each w which belongs to TESPECI’ one of the
following conditions must occur:

* not w =sprc, S.

31

* not ¢*(w) =spgc, t. Since t' =gppc, t and =gppc, s transitive, if
¢*(w) =spec, t' was fulfilled, then it would be fulfilled that ¢*(w) =spgc, ¢
too. Now, this is a contradiction. Therefore, not ¢*(w) =gpgc, t' is proved.

That is to say, u is T-I, since it contains a subterm of the form trans(s,t') such
that Vw € T;;SPEC1 it is fulfilled that, either not w =gpgc, s or not ¢*(w) =spge,
.

It is applied on s. Then u will contain a subterm of the form trans(s’,¢) where
s’ =spgc, s. Since lis T-I, for each w which belongs to TESPECI’ one of the
following conditions must occur:

* not w =sppc, S. Since s’ =sppc, s and =spge, is transitive, if w =gpge,
s', then it would fulfilled that w =gppe, s. Now, this is a contradiction.
Therefore, not w =gpgc, s’ is proved.

* not aS*(w) =spec, .
That is to say, u is T-I, since it contains a subterm of the form trans(s’,t) such

that Vw € TESPEC, it is fulfilled that, either not w =gppc, s’ or not ¢*(w) =spgc,
t.

It is applied on the whole subterm trans(s,t). Since this subterm begins by
trans, only two equations can be applied.

* trans(o, ¢(c)) = yes This equation is impossible to apply, since its applica-
tion entails that Jw € TESPEC1 such that w =sppc, s and ¢*(w) =spgc, t
(in this case, w = s). Now, we have chosen trans(s,t) as the subterm
of | such that not 3w € TESPEcl which fulfills that w =gsppe, s and
¢*(w) =spec, t. So we have a contradiction here and this case is impossible.

* trans(o(sy, ..., $u),0(0) (b1, ..., &) =plus(trans(sy, &), plus(trans(sy, t)...
trans(s,, tz)...)). Then the subterm of [onto which the equation is applied
must have the form trans(o(v*(s1),..., v*(sa)), #(o)(v*(t1),...,v™(¢,)) and the
resulting subterm of u has the form plus(trans{v*(s1),v*(#)),
plus(trans(v*(sz), v*(&))...trans(v*(sz), v*(t))...))

Suppose that, for any ¢, 3 w; such that w; =gspge, v*(s;) and ¢*(wi) =sprc,
v*(%;). Then, it is fulfilled that o(wy,..., w) =spec, o(v*(s1),...,v*(s,))

and
dlo(wy, ..., wy)) = ¢(U)(¢*(wl)a~-w¢*(wn)) =S$PEC ¢(a)(v*(t1)"'-7v*(tn))‘
That is to say, if we make w be o(w, ..., wy), then 3w such that w =gpge, s

and ¢"(w) =sppe, t. Now, this is a contradiction, since we had cho-
sen trans(s,t) as the subterm which fulfilled that there is no w such that

w =gppe, § and ¢*(w) =spge, t.

32

Therefore, we can deduce that there is a ¢ such that, either not w; =spgc,
v*(s;) or not ¢*(w;) =sprc, v*(t;). Now, since trans(v*(s;),v*(4)) is a
subterm of u, it is fulfilled that u is T-I, which is what we wished to prove.[]

Sublemma *.PropA2 Let [€ Tseppc, be a term and let u be the result that we
obtain by applying an equation e € Fy to t. Then, if I is not T-I, neither is u.

Proof. We shall prove this by contradiction. Suppose that 1is not T-I and u is T-I.
Therefore, when we apply the equation e, we must introduce a subterm trans(s,t) such
that Vw € TESPEC, it is fulfilled that, either not w =gpgc, s or not ¢*(w) =sprc, t.
Now, there are only two equations which can introduce a subterm trans:

1. trans(o, (o)) = yes, in inverse order. If we apply this equation, by making w be o, it
is fulfilled that Jw € Tgs},EC1 such that w =gpgc, s and, moreover, ¢*(w) =gprc, t.
That is to say, the subterm introduced does not fulfill the conditions which must be
fulfilled and, in consequence, u is not T-IL.

2. trans(o(s1, ..., $a),@(0)(t, ..., ta)) = plus(trans(s;, t1),plus(trans(ss, ty)... trans(s,, t,)
...)), in inverse order. Then, the subterm which is introduced by the equation has the
form trans(o(v*(sy), ..., v*(sn)), ¢(o)(v*(#),...,v*({,)) and the corresponding subterm
of [has the form

plus(trans(v*(s1),v*(41)),plus(trans(v*(s2), v*(t2))...trans(v*(s,), v*(t.))...))

Now, | is not T-1. That is, for any i, Jw; € TESPEcl such that w; =sppc, v*(si) and
¢*(wi) =spec, v*(t). Then, we have that, if we make w be o(w, ..., w,), it is ful-
filled that 3w € TESPECI such that w =gspge, o(v*(51), ..., v*(sx)) and ¢*(w) =sprc,
é(o)(v*(t1),...,v*(¢s)). Therefore, u is not T-1. I

Corollary *.PropA3 Suppose [€ TESPEC4 and let u be the result which we obtain
by applying an equation e € E; to t. Then, [is T-1 if and only if u is T-I.

Proof. 1t i1s the immediate consequence of sublemma *.PropAM and of the counter-
reciprocal of sublemma *.PropA2. OJ

Sublemma *.PropA4 Let there be ¢,u € TESPEC4 such that ¢t =gpgc, u . Then, it is
fulfilled that ¢ is T-1 if and only if u is T-1.

Proof. If t =spgc, u, by definition of =spgc,, one of the following four cases may occur:

1. In this case, { = u. The sublemma can be reduced to “t is T-I if and only if ¢ is
T-1", which is trivial.

33

2. In this case, t =gpgc, u because u =gppg, t. Since the demonstration of the last
relationship of congruence is shorter (in number of steps) than that of the first one,
we can apply the hypothesis of induction on it. We obtain that “u is T-I if and only
if ¢ is T-1”. Since the double implication is symmetrical, we have what we wished.

3. In this case, t =gppc, u because t =gpge, v and v =gpge, u. Since the subdemon-
strations of ¢t =gsppe, v and v =gpgc, v are shorter (in number of steps) than that
of ¢t =gpgc, u, we can apply the hypothesis of induction on them. So we have “¢ is
T-I if and only if v is T-1” and “v is T-1 if and only if » is T-I”. Since the double
implication is transitive, we have what we wished.

4. In this case, t =sppc, u because u is the term which we obtain when we apply an
equation e to {. Now, by corollary *.PropA3, we have that “¢ is T-1if and only if u
is T-17. OJ

Lemma *.PropAC. Let there be si,..., 54, t1,..., tn € T;;SPEq. It is fulfilled that:

trans(o(s1, ..., $n), #(0)(t1, ...tn)) =spEc, yes implies that, for any ¢, Jw; € TESPECI
such that w; =gpgc, s and ¢*(w;) =spre, t

Proof. By applying an equation belonging to E,.,, we have that trans(o(si,..., $x),
A{o)(t,...tn)) =spec, plus(trans(sy, i), plus(..., trans(s,, t,))). But, since =gpgc, is tran-
sitive, we obtain that plus(trans(s, t;), plus(.... trans(s,, t,))) =spec, yes. Now, since yes
is not T-I (because it does not contain any subterm which has the form trans(s,¢)), then
plus(trans(sy, ty), plus(..., trans(s,, t,))) is not T-1, by sublemma *.PropA4.

Then, since the last term is not T-I, any subterm of this term which has the form
trans(s,t) must fulfill that Jw such that w =gpge, s and ¢*(w) =sprc, t. This means
that, for any ¢, Jw; € TzspEcl such that w; =sppe, s and ¢*(w;) =sprc, ti, which is what
we wished to prove. []

7.2 Right-to-left implication.

Now, we shall prove the right-to-left implication of the statement stated at the begin-
ning of this section.

Sublemma *.PropA6 plus(yes, plus(yes, ..., yes)...) =sprc, yes.
Proof. We shall prove this by induction on the structure of the term.

e Induction base. In this case, we must prove that plus(yes, yes) =spgc, yes. Now,
this is trivial, since there is an equation plus(yes, yes) = yes.

34

o Induction step. In this case, the term is plus(yes, plus(yes, ..., yes)...). By applying
the hypothesis of induction on plus(yes, ..., yes), we have that plus(yes, ..., yes) =srrc,
yes. Therefore, by applying the property of congruence on the term, we have
plus(yes, plus(yes, ..., yes)...) =sprc, plus(yes, yes). Now, as we have seen,
plus(yes, yes) =sppc, yes. Consequently, since =gpgc, is transitive, we obtain what

we wished. [

Lemma *.PropA5. Let there be t,u € Trsppe, - 1t is fulfilled that

u =gppc, ¢*(t) implies trans(t, u) =gppe, yes

Proof. We shall prove this by structural induction on ¢.

Induction base. If t € (Fy),,, then ¢*(t) = ¢(¢) and, therefore, u =gppc, o(1).
Now, there is the equation trans(t,¢(t)) = yes, then trans(t,$(t)) =sprc, yes. Since
u =gppc, ¢(t) and =gppc, is a congruence, then we have trans(t, v) =sprc, yes.

Induction step. If ¢ has the form o (¢, ..., t,), then ¢*(¢) has the form ¢(o)(¢*(%1), ...,
Therefore, trans(t, ¢*(t)) is, by applying the equation trans(o(zy, ..., 20), () (Y1, --es Yn)
plus(trans(zy, y1), plus(trans(zz, y2)...lrans(z,, Yo)...)), the term plus(trans(ty, ¢*(4)),
plus(trans(tz, ¢™(t2))...trans(t,, 9*(tn))...)). By the hypothesis of induction, for any ¢ it is
fulfilled that trans(t;, ¢*(%)) =spec, yes. Then trans(t, ¢*(1))
=spec, plus(yes, plus(yes, ..., yes)...). By sublemma *.PropAS6, trans(t, ¢*(t)) =sprc, yes.
And, since u = ¢*(t), then trans(t, v) =gpgc, yes. O

¢*(tn))-
) =

8 Proof of soundness.

In this section, we shall prove the soundness of our method. That is, we shall prove
that, if some inductive theorems are fulfilled in the initial algebra of SPECy, then SPEC;
and SPEC, are eval-equivalent (and, therefore, behaviorally equivalent, as we have proved
in section 3). This property is stated in theorem *.PropV1.

8.1 Useful properties.
Now, let us prove some properties which will help us to prove theorem *.PropV1.

Lemma *.Prop22. Let there be SPEC, = SPEC, § SPEC, via SPEC3. There are two
bijections 8y and 3, such that :

o Vi€ Tsgppg,, it is fulfilled that 7y, (8) = Bi(eTsppe, (1))

35

o Vit € Trgpy,, it is fulfilled that e7gpp (6°(£)) = Bale Tappe, (47(1))).

Proof. Let us prove the first statement.

Since Tsprc, and Tspgc, are initial algebras, their members are classes of equivalence
of the congruence that has been defined among their ground terms. So, we can define §;
as:

Vte TESPEc,v 'Bl([t]ESPECl) = [t]ESPBC4'

Notice that 8y is well defined, since it does not depend on the representative of the
class that we are using, because, by lemma *.Prop21:

t =sppc, U if and only if ¢ =spEC, U
That is to say,

[t]ESPEC; = [u]ESPEC'1 if and Ol'lly if [t]ESPEC'4 = [U]ESPEC4

Starting from the definition of f;, and since Tspge, and Tspge, are initial algebras, we
have:

Vt € Tsgppe,» it is fulfilled that ergppe, (1) = Bi(eTspge, (1))

and this is what we wished to prove.

Now, we want to prove that f; is a bijection. First, let us see that 8; is injective, that
1s:

€ (Tsprc,) oss it is fulfilled that

PEC
ﬁl([t]ECPEcl) = B U]ESPECI) implies ["']Esm-:c]L = [u]ESPEcl
By definition of §;, this is equivalent to:

v{t]ESPEcl s [U]ESPECI € (TSPEC;l)Obs it 1s fulfilled that

[t1=spec, = [Wlzspee, 1mplies [tlzsppe, = [Ulzspse,

By definition of quotient term algebra, this is equivalent to:

Vi, ue€ (Tv-

TspEC Yous 1t is fulfilled that t =gppc, = v implies ¢ =SPEC,= U

Which is true, by sublemma *.Prop57.
Now, let us prove that f; is exhaustive, that is:
v[t}ESPEC4 € (TSPJ“JCX)STsv3[“]5513301 € (Tspec,)oss such that ﬁl([u]ESPECI) = [t]ESPEC4

36

By definition of f;, this is equivalent to:

\71[15]Es}='1~7(,1i S (TSPEQ)gzts?B[u]EspEcl € (TSPEQ)Obs such that [u]

=SsPEC, [t]ESPEC4

By definition of quotient term algebra:
Vite TOtspEcU Ju € (TESPEG])01,3 such that u =spEC, t

By sublemma *.PropCl, Totsprc, C (’[';;SPECl Joss- Consequently, if we make u be ¢,
then it is proved.

Now, let us prove the second statement. By repeating the same procedure as we have
done with the first one, we can prove the following:

V¢ € Trgppe,, it is fulfilled that ergppe, () = BalE repp, (1))

Now, since Tgs},EC1 = TESPECQ , because the two specifications have the same signature

and, on the other hand, SPEC; € Renam(SPEC;), we obtain by sublemma *.Propl0:
Vi€ Teoppe,87(1) € Tsspge,
Therefore, by replacing t by ¢*, we ha\;e:
Vi € Tsgppe,, it is fulfilled that €Tsppc, (87(1)) = '33(5Tsp5c3(¢*(t)))

and this is what we wished to prove. O

Lemma *.Prop23. If SPEC, and SPEC; are eval-equivalent, for any ¢ € Tsspzen, >
with s € Obs it is fulfilled that 85(8(¢(fl(ETSPEC4(t))))) = ETSPEC4(t)’

(where 81, 85 are the bijections of lemma *.Prop22, § is the bijection of lemma *.Prop13
and ¢ is the bijection of eval-equivalence).

Proof. First, let us prove Vt' € Totsppcy. Since SPEC;, and SPEC, are eval-equivalent,
we obtain:

P(eTsppq, (1)) = €T5ppe, ()
By applying lemma *.Propl3:
(e Teppo, (1)) = B Teppe, (6°(E)))
By applying lemma *.Prop22:
P(BT (€ Tspae, (1)) = B7H(B5 (e Topic, (7(1))))

Now, since t' € Totspgc,, then, by sublemma *.Propl0, ¢*(#') = t'. So we have:

37

99(/8;1(ETSPEC4 (¢)) = :34(53_1(5%19504 (¢')))
If we pass all bijections to the left-hand side of the equation:
Bs(B(e(BT (e Tsppe, (1)) = €Tgppe, ()

This is what we wished to prove. Now, we shall prove this for any t € Txgpgc,, - Since,
in SPEC}, the observable sorts are defined when we define the non-observable ones, there
is a t' € Totgpgoy such that:

€Tspec, (1) = €Tspec, (')
Now, as we have proved above,
53(5(‘10(61—1(5%;:3@(t/))))) = €Tsppc, (1)

And, since, by lemma *.Prop21, V¢, u € TESPECI ,sTSPEcl(t) = ETSPECI(u) if and only
if € Tspae, (t) = €Tspre, (u). By replacing in the previous expression, we obtain:

ﬁS(ﬁ(‘P(ﬂl—l(E TSPEC4 (t))))) = ETSPEC4 (t)
And this is what we wished to prove. [J

8.2 Core of the proof of soundness.

Now, let us prove the theorem which states the soundness of our method.

Theorem *.PropV1 The statement

Vo € Fy,..ups withs € Obs, Vay, 11 € vars(wy); ...; Zn, yn € vars(w,) it is fulfilled that
Tspec, = trans(o(z1, ..., %), ¢(0) (W1, .o, Yn)) = yes = o (2, oy @) = &) (Y1, e, Un)

implies the statement

SPEC; and SPEC; are eval-equivalent
Proof. We shall begin with the first statement.

Vo € Fu,..wn,s with s € Obs, Yy, y1 € vars(wy); ...; Tn, Yo € vars(w,) it is fulfilled that
Tspec, k= trans(o(zy, ..., 2), ¢(0) (11, .o, Yn)) = yes = (21,0, 20) = S0) W1, .0, Yn)

By definition of fulfilment of an equation in a given algebra, the last expression is
equivalent to:

Vo € Fu,.ups withs € Obs, YV, € vars(wy); ...; @n, yn € vars(wy,),
Vov: X — Tspgc, it is fulfilled that

STSPEQ(U*(trans(a(ml, s T)y $() Y1y ooy ¥)))) = 5TSPEC4(U*(yes))
implies ETSPEC4(U*(0'($1, ey Tn))) = £Tsprc, (v (D)W Y1y s Yn)))

33

Now, since the only variables of the expressions o(z1, ..., 2,) and ¢(o)(zy,..., 7,,) are the
z;’s, we can apply the definition of v* and we have:

Vo € Fyp.up,s With s € Obs, Vsy,t1, ..., 84, tn € TESPEC4 it is fulfilled that
€ Tsppc, (trans(o(sy, ..., 1), (o) (1, .., ta)))) = €T5ppc, (eS)
implies €TSPEC4(0(31’ ey 8n)) = 5Tspzc4(¢(‘7)(t1’ ey ta))

Since this property is fulfilled for all the ¢’s, it must be fulfilled specifically when
t = ¢"(s:).

Vo € Fy,..up.s With s € Obs, Vsy,...,8, € TEsqu it is fulfilled that
5T5PEC4(tran3(U(5h s 80), (WD (51)y ooy D*(50))) = STSPEC4(yes)
implies € Tgppe, ({5155 80)) = €Tgppe, (8(0)(7(81), -0, ¢7(50)))

By definition of ¢*, we have:

Vo € Fuy,..up,s With s € Obs, Vsy,...,8, € TESPEq it is fulfilled that
sTSPEq(trans(a(sl, vy S0), (081, -0, 82))) = ETspre, (yes)
implies € 75p5c, (0(515 5 80)) = ETgppe, (67(0 (515 -, 82))

By lemma *.PropAb5, we have that the left-hand side of the implication is fulfilled and,
therefore, the last equality can be reduced to:

Vo &€ Fy..ups Withs € Obs, Vsy,...,s, € TESPEQ it is fulfilled that

true implies € 7gppe (0(51,.0080)) = €Tsppc, (97(0(s1, -y $0))

That is,

Vo € Fy, . s withs € Obs, Vs1,...,8, € TESPEC4 it is fulfilled that

5T5PEC4 (0(51, R Sn)) - ETSPEC4 (¢*(O-(’Sl, ey Sn))
By lemma*.Prop22, we obtain that this is equivalent to:

Vo & Fu.uns withs € Obs, Vs,...,8, € TESPEC, it is fulfilled that

ﬁl(gTSPECI (O'(Sl’ teey sn))) = ﬁ3(ETSPEC3 (¢*(U(Sla ey Sn))))
And, since SPEC; € Renam(SPEC;), by lemma *.Prop13:

Vo€ Fu,.ups withs € Obs, Vs,...,8, € TESPEq it 1s fulfilled that
/61(5 Tsprc, (0(51’ e Sn))) = ﬂ3(ﬂ(ETSPEcz (‘7(317 ceey Sn))))

Now, B, f1, 85 are bijections. The bijections are inverses and their inverses are bijections
too. So we have:

Vo € Fy,.ups with s € Obs, Ysy,...,8, € TESPEcl it is fulfilled that
BB (Bule oo, (9515 30))))) = ETepo, (7515 52)

39

Since 871, 81, B3 ' are bijections, their composition is a bijection too. So, ¢ = 8~ 1of5 0
By is a bijection. Moreover, since 8 : (Tspee,)oes — (Tsprc,)oss, B1: (Tspec,) oss —

(Tspec,) 5t and B3 : (Tspec,)oss — (Tspec,)55t, then ¢ : (Tsppc,)oss — (Tspec,)obs-
Therefore, we obtain:

There is a bijection ¢ between (Tsprc,)oss and (Tspgc,) oss such that
Vo € Fuy.um,s With s € Obs, ¥ s1,...,8, € Tzspz-zcl it is fulfilled that

90(8TSPE01 (0'(81, i) sn))) = €TSPEC2 (0'(81, vy Sn))

Which is the definition of eval-equivalence between SPEC; and SPEC,, according to
lemma *.PropEV. (]

9 Proof of completeness.

In this section, we shall prove the completeness of our method. That is, we prove that,
if SPEC, and SPEC, are eval-equivalent (and, therefore, behaviorally equivalent, as we
have proved in section 3), then some inductive theorems are fulfilled in the initial algebra
of SPECy. This property is stated in theorem *.PropV2.

9.1 Useful properties.

First, we shall prove some properties which will be useful in order to prove theorem

*.PropV2.
Lemma *.PropB1 The statement

\V’S'l, veey Sy tl, veey t.,L € TESPEQ
Ly =sPec, ¢*(81) AN Aty Espec, qﬁ*(sn) implies 0'(51, ...,sn) =SPEC, ¢(0)(t1, - tn)

implies the statement

VSl.,.. Sn,tl,.. ,tn € TY‘S
trans(o(sy, ...y $2), @(0) (b1, ...s &) =spec, yes implies o(sy, ..., 8,) =sprc, ¢(0)(t1, .- ta)

.:;

Proof. Suppose that the first statement is fulfilled. Suppose that it is fulfilled that
trans(o (1, ...y Su), (o) (1, ..y tn)) =sprc, yes. We want to prove that it is fulfilled that

0(31’ ooy Sn) = SPEC, ¢(O’)(t1, s tn)

Since it is fulfilled that o(s1, ..., 8), ¢(0)(t1, ..., ta)) =spec, yes, by sublemma *.PropAC,
we have that, for any 7, Jw; € TESPECI such that w; =gpgc, si and ¢*(w;) =spec, ti- On
the one hand, this implies that o(wy, ..., w,) =spec, o(s1, ..., $x), by property of congruence.

40

On the other hand, since, for any ¢, it is fulfilled that ¢*(w;) __spgc4 t;, we can apply the
first statement. We obtain that a(wl, vy Wa) Zsppc, #(0)(t, ..., ts). Then, since =gppq,
is transitive, we have that o(s,...,s:.) =spec, ¢(0)(t, ..., ta), Wthh is what we wished to
prove. []

Lemma *.PropB2 The statement

Vs1y.y 8 € TESPEQ
o (81, ..y 80) ZspEC, H(0)(E%(51), e, 8*(n))
implies the statement
Vsl, veey Sny t], ceny l‘.n c 7"1,&1_‘,1_““1
b Z=spec, ¢*(s1) A ... A by =gpre, ¢7(sn) implies (s, ..., s,) =spec, ¢(0)(t, .. ta)

Proof. Suppose that the first statement is fulfilled. Suppose that t;, =spgc,
¢™(s1) A oo A tw =spec, ¢7(sa). We want to prove that o (s, ..., $,) =spre, é(o)(t, .., ta).

Since the first statement is fulfilled, we have that o(sy, ..., 5,) =spec, $(0)(¢*(51), -, 8*(52))-
Now, since 4 =sppc, ¢*(51) A ... Aty =sprc, $*(s,), we obtain that ¢(a)(t, ..., t.) =sprc,
6(o)(¢*(s1), ..., 9*(sx)), by property of congruence. Since =spgc, is transitive, we have that
o(S1y.s80) =spec, ¢(0)(t,..,t,), which is what we wanted to prove. O

Lemma *.PropB3 The following statements are equivalent:

o Vo € Fyyup,s Withs € Obs, Vty,..,t, € TESPE‘C] it is fulfilled that
€Tsppe, (O(ts s tn)) = €1gppe, (67(0(ty s ta)))

o Vo € Fywp,s Withs € Obs, Vt,...,1, € T;;SPEQ it is fulfilled that
€Tsppe, (0(ty s ta)) = € Tsppc, (87(0(t1y s 1))

Proof. We shall prove that the first statement implies the second one. The reciprocal
implication is trivial, since JSQPW C T~¢PF<,

Now, let us focus on the second statement. In order that expression ETsppc, (0(ts 0y ta)) =
€ Tsprc, (¢*(o(t, ..., ta))) makes sense, o(ty, ..., t,) must belong to TESPEC1 , because if it does
not, ¢* cannot be applied. (Remember that, by definition *.Prop9, the domain of ¢* is

TESPECJl)-

Since o(ty,..., ;) € Tsspge, » then b, ..., t, must belong to Tssppe, - Consequently, the
second statement can be written as follows

VO' € le...wn,.s 'U)lth s € ObS, thv veey tn € TEQPEC lt iS fulﬁ].].ed that
€Tsppe, (O(hy oy 1)) = E1gppe, (67 (0 (b, 1a)))

Now, this is the first statement. Therefore, the lemma is proved. [

41

9.2 Core of the proof of completeness

Now, we shall prove the theorem which states the completeness of our method.

Theorem *.PropV2 The statement
SPEC, and SPEC; are eval-equivalent
implies the statement

Vo € Fuy..wp,s withs € Obs, Vi, y1 € vars(wi); ...; Tn, Ya € vars(w,) it is fulfilled that
Tspec, = trans(o(zy, ..., 2.), (o) (31, -, Yn)) = yes = (1, ooy Tn) = A(0)(Y1y-err Un)

Proof. Let us start from the definition of eval-equivalence between SPEC; and SPEC;.
By lemma *.PropEV, there is a bijection ¢ between (Tspgc,)oss and (Tspec,)oss such
that:

V0 € Fuy..ug,s with s € Obs, V..., ty € Trgpp, it is fulfilled that
QQ(ETSPECI (U(tla seey tn))) = ETSPECZ(a(t17 ceey t,,z))

By applying lemma *.Prop13, we obtain:

V0 € Fuy.uns With s € Obs, Vhy, ..ty € Trgpps it is fulfilled that
S‘o(sTspgcl (U(tlv sy tn))) = 5—1(57"313503 (¢*(0(t17 ceny tn))))

Via lemma *.Prop22:

Vo € Fu . ups withs € Obs, Yit;,...,t, € TESPEQ it is fulfilled that
99(/51_1(5T5PEC4 (ot ta)))) = B7Y(3»—1(5T5PEC4<¢*(0(t1a s ta)))))

If we pass all bijections to the left-hand side, we have

Vo € Fu,.oup,s With s € Obs, Yty,...,t, € TESPECX it is fulfilled that
53(/8(99(5;1(€T5P5c4 (a(tl’ e tn)))))) = ETSPEC4 (é*(a(tlv ey tn)))

By lemma *.Prop23, this is equivalent to:

Vo € Fu,. un,s withs € Obs, Vi,...,t, € TESPEcl it is fulfilled that
ETSPEC4 (a(tl'l AR tn)) = 6T5P504(¢*(0-(t17 veey tn)))

" Now, by lemma *.PropB3, this is equivalent to:

Vo € Fuy.wp,s withs € Obs, Vi, ..., tn € Txgpp, it is fulfilled that
€Tsppc, (Ot oy tn)) = Ergppg, (87(0(t1, s a)))

Via the definition of ¢*, we obtain:

Vo € Fuy.wy,s Withs € Obs, Vt,...,t, € TZ:SPEC., it is fulfilled that
€Tsppc, (0(ty s ta)) = ETgppc, ($(0)(87(11), - 67(24))))
By lemma *.PropB2, the last statement implies the following one:
Vo € Fu,.up,s with s € Obs, Vi, ..., by, g,y uy € TESPEC4 it is fulfilled that

espec, (1) = €spec, (¢*(t)) A ... A espre,(ta) = €spac, (¢7(1,)) implies
espec,(0(ty, ..., 1)) = espec, (¢(0)(wu, .., us))

By lemma *.PropB1, this statement implies the following one:
Yo € Fuy.wg,s With s € Obs, Viy, .oy ty, g, .nny Uy € TESPEQ it is fulfilled that

espec, (trans(o(ty, ..., tn), (o) (u, ..., un))) = €sppc, (yes) implies
€SPEC4(0(t1’ ceey tn)) - ESPEC'4(¢(0)(u13 vy un))

Via the definition of v*, this is equivalent to:

Vo € Fu . was withs € Obs, Yy, y € vars(wy); ...; I, Yo € vars(w,)
Vv: X — T;;SPEC4 it is fulfilled that

espec, (v*(trans(o(zy, ..., 2.), 8(0) (11, ., ¥)))) = €spEC, (v (yes)) implies
€s5pec, (V' (0 (21, .., 2a))) = €spEc, (v (¢(0) (41, -+, ¥n)))

Which, by definition of fulfilment of an equation, is equivalent to:

Vo € Fu..un,s with s € Obs, Yy, y1 € vars(wy); ...; Tn, Yo € vars(w,) it is fulfilled that

Tspec, = trans(o(zy, ..., 2.), (o) (W1, ..., Ya)) = yes = o(z1, .., 2,) = 6(0) (v, -, Yn)

And this is the second statement, so the theorem is proved. [J.

10 End of proof.

In this section, we shall make the last steps of our proof. Actually, the hardest part of
our work is already done and now we must only draw some trivial conclusions.

Theorem *.Prop24. Both statements are equivalent:

o Vo € Fy . w5 withs € Obs, Vi € vars(w), ..., 2, € vars(w,) it is fulfilled Tsppe, =
(21, 0y Tn) = S(0) (1, 0vy Tn)-

e SPEC) and SPEC;, are eval-equivalent.
" Proof. 1t is a corollary of theorem *.PropV1 and of theorem *.PropV2. (J

Comment. Hence, we shall call the first statement of this theorem “fundamental prop-
erty”.

Theorem *.Prop25. Both statements are equivalent:

43

¢ (Fundamental property). Vo € Fuy..wm,s With s € Obs, Vo1 € vars(wy), ..., Tn €
vars(w,) it is fulfilled Tspgc, = (a1, ..., 2n) = $(0)(21, .., Tn).

e SPEC; and SPEC, are behaviorally equivalent.

Proof. It is a corollary of theorem *.Prop24 and of theorem *.Prop8. By the former
the fundamental property is equivalent to eval-equivalence. By the latter, eval-equivalence
is, in this case, equivalent to behavioral equivalence. []

11 Conclusions

Taking up the result obtained in the previous section:
Theorem *.Prop25. Both statements are equivalent:

o (Fundamental property). Yo € Fuj . w,s withs € Obs, Yz, € vars(wy),...,Z, €
vars(w,) it is fulfilled Tsppe, = o(y, .. 20) = Ao} (T2 .my Tn).

e SPEC;, and SPEC, are behaviorally equivalents.

This means that proving the behavioral equivalence between SPEC1 and SPEC2 is
equivalent to proving the fundamental property in initial algebra of SPEC4 (where SPEC4
is the reunion of SPEC1 and SPEC2 via some arbitrary renaming SPEC3).

Now, the fundamental property is only a set of theorems and there are techniques for
proving the fulfillment or non-fulfillment of theorems in initial algebras. These are the
systems for theorem proof via inductionless induction, which are based on rewriting tech-
niques. By submitting the theorems of the fundamental property to these systems we can
know whether two algebraic specifications are behaviorally equivalent or not.

We can prove that the algorithm which builds SPEC4 is of a quadratic complexity in
relation to the number of equations. We can also prove (as will be done in a subsequent
article) that, if we direct the equations of TRANS in a given way, if the rewriting systems
derived from SPEC1 and SPEC?2 are canonical, so is the system of SPEC4.

The lines of research in the near future are several. The work is on removing the nec-
essary conditions which say that specifications must share the definition of the observable
sets and that there are no equations which have only variables on their right-hand side.
Furthermore, the intention is to prove what was stated in the previous paragraph.

The possible applications of this theoretical work would be two. On the one hand, it

would be useful in order to build tools for verifying the equivalence between programming
modules and, more precisely, between the classes of object-oriented programming. Thus, if

44

we have these classes formally specified, we shall be able to tell when a new class is useful
or, otherwise, when it only adds redundant information to our collection.

On the other hand, this paper is part of the thesis entitled “Automatic Verification of
Object-Oriented Programming”. The underlying idea is as follows: for a given program
and its algebraic specification, we shall build a specification which is equivalent to the
program. Then, we shall see via automatic deduction whether the two specifications are
behaviorally equivalent and, if it is so, the program will then be correct. As one may see,
this proof of the behavioral equivalence would be along the lines proposed in this paper.

12 References

[EhM85] EHRIG,H. MAHR,B. Fundamentals of Algebraic Specification. ETACS mono-
graphs on theoretical computer science, Springer-Verlag, Berlin,1985.

[Mey88] MEYER,B. Object-Oriented Software Construction. C.A.R. Hoare Series Edi-
tor, Prentice-Hall, University Press, Cambridge, 1988.

[Niv87] NIVELA,P. Semdntica de Comportamiento en Lenguajes de Especificacion PhD
thesis, directed by Fernando Orejas Valdés, Barcelona, 1987. Universitat Politécnica de
Catalunya. Facultat d’Informatica.

[Rei81] REICHEL,H. Behavioural equivalence -a unifying concept for initial and final spec-
ification methods Proceedings third Hungarian Computer Science Conference. Budapest
(1981) 27-39.

[Rei84) REICHEL,H. Behavioral validity of equations in abstract data types Contributions
to General Algebra 3, Proceedings of the Vienna Conference, Verlag B. G.Teubner, Sttugart
(1985) 301-324.

[SaT85] SANNELLA,D. TARLECKY, A. On observational equivalence and algebraic spec-
ification Journal of Computer and System Science, 34 (1987) 150-178.

[SaW83] SANNELLA,D WIRSING,M. A kernel language for algebraic specification and im-
plementation Proceedings International Conference on Foundations of Computation The-

ory. Sweden. Springer LNCS 158 (1983) 413-427.

[Wir90] WIRSING, M. Algebraic Specification In Handbook of Theoretical Computer Sci-
ence, volume B. Elsevier, Amsterdam. 677-788

45

