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Abstract

Some implications of the fact PFNPIl = PFNPlog] are known in terms of equal-
ities between complexity classes of sets, but a characterization in the same terms
is still unknown. Here we provide a characterization in terms of polynomial-time
p-enumerators.

1 Introduction

This note is centered on two functional classes defined as restrictions of PFYF: the
classes PFNFI and PFVPlogl I the first case we restrict the queries to be made in
parallel (it is not allowed that a query depends on the answers of the others), and in
the second one, we allow at most O(log n) serial queries for inputs of length n.

At a first glance, there may seem to exist a parallelism between these function
classes and the set classes PN?, PPl and PNPIogl If we want to trace a correspondence
between them, we should compare A} with PF™P and the last two (which are equal and
known as ©3) with PFNPI This relationship is supported by the fact that A} = 05 if
and only if PFNF = PFN 1,

In the case of function classes, we have also the class PFNPlogl  This class was
studied by Krentel who showed that it is different from PFNP unless P = NP [5]. It
is also known that it cannot be equal to PFVP! ynless P = FewP, NP = R, [7, 6],
co-NP = US, and NP(log*) = P [3].

The following figure summarizes the known implications obtained from the equality

*This research was partially supported by ESPRIT-II Basic Research Actions Program of the
European Community under contract No. 3075 (project ALCOM), and by Acciones Integradas No.
131B

1From right to left, restrict the functions to one bit. From left to right, apply the operator /bit [4]
(consider the functions where every bit can be computed in the class). For an alternative proof, see
Selman [6].
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It is still an open problem obtaining a characterization of the equality PFNFI =
PFNPlogl i terms of set collapses like the above ones, or to prove some stronger collapse.
Here we give a characterization in terms of polynomial-time p-enumerators which says,
basically, that the NP oracle in PFNPRogl is not needed at all, and can be substituted
by an arbitrary oracle, having the equivalence:

Corollary 2.5 pFVPI c ppNPlogl s PFVPI C Uy PF¥ Qo]

2 Main Result

We use the definition of s-enumerators from [1].

Definition 2.1 Let f : &* = IN, and s : N —» N be two functions. The function E
is an s-enumerator for f if Vz E(z) is a list of at most s(|z]) strings in which f(z)
appears.

We say that a function has a p-enumerator if it has a p-enumerator for some
polynomial p.

The concepts of polynomial-time p-enumerators and Kolmogorov simple images for
functions are connected in [2]. This connection can also be written in the following
way.

Theorem 2.2 PFNI C Uy PFXledl if and only if PFNP has polynomial-time p-
enumerators.

Proof If. Let f € PFPll and E be a p-enumerator for f. Define
X = {(z,3,b} | f(z) appears in the j-th position in E(z) and the i-th bit of j is
b}.



It is clear that we can compute f(z) in polynomial time by making queries to X.

Only if. Let f be a function in PFNPIl. Then, there exists some polynomial-time
transducer M that, for any input z of length n, computes f(z) by making O(logn)
many queries to some oracle X. A polynomial-time p-enumerator for f would generate
a list with the output of M(z) corresponding to every possible sequence of answers to
the queries (which are polynomially many). O

Note that the set X defined in the previous proof belongs to the class ©5. Now we
prove that there exists another such set belonging to NP which provides a characteri-
zation of the equality PFNFI C PFNPlogl in terms of polynomial-time p-enumerators.

Theorem 2.3 PFNPI ¢ PENPUod if gnd only if PFNPU has polynomial-time p-enumer-
ators.

Proof If. Let f be a function in PFPIl and call M to the polynomial-time oracle
transducer that computes it by making queries to SAT. We define a polynomial-time
algorithm computing f that makes O(logn) queries to the oracle

Y = {{z1,...,Ts)#b1...bs | Vi,1 <1< s, xsar(z:) = bi}

on inputs of length n. Then, we show that these queries can be answered with only
O(log n) queries to SAT.

Fix an input z for f and suppose that z1,...,z, are the strings queried to the
NP oracle by M(z). Let g be the function that outputs xsar(z1)--- xsar(z,) on z.
It is clear that g belongs to the class PFNPIl and then, by the hypothesis, it has a
polynomial-time p-enumerator, say E.

Let E(z) = (w1,...,Wn), and consider the matrix S that has the w;’s as its rows;
that is to say, row ¢ in S is w; and column j corresponds to the value of the query z;
in the different outputs of the p-enumerator £ (associating the value 0 to the answer
NO and 1 to YES). We denote with S;; the bit located in row ¢ and column j.

The number of rows of S is polynomial in the size of the input z. As each row of
the matrix is a possible answer vector for z;,---,z, and we know that one of them is
correct, we are interested in deleting incorrect rows and thus reduce them to one. The
following algorithm reduces the size of the matrix S in a constant factor of 4.

(1) Suppose that there is a column in §, j, such that its number of zeroes varies
between is and %s. In this case, if we find out the membership of z; to SAT, we
can delete at least § of the rows. Thus, we make the query z;#0 to Y.

(2) Suppose that every column in S has strictly less than 1s or more than 2s zeroes.
Let b; be the bit that appears more times in column j. We say that row i is
average up to column jif for all k, 1 < k < j, S;x = bx. Row ¢ is average if it is
average up to column m.

We consider two subcases:



(2.1) Assume that at least § of the rows are average. In this case, we ask
(x1,. .y Tm)F#b1 - b to Y. If the answer is YES, then we know the answer
to all the queries, and the algorithm halts. If the answer is NO, then the
row corresponding to the correct answers is not average, and we can delete
at least ;14- of the rows.

(2.2) Here assume that less than } of the rows are average. So, we have that
more than i’-s rows are average up to column 1, by the hypothesis of case (2),
while less than } of them are average up to column m. Taking into account
that at most ; of the rows which are average up to a certain column can lose
this condition in the next column, there must exist a column jo, 1 < jo < m,
such that the number of rows which are average up to jo is between 1s and
3.

We only have to know if the correct row is average up to jo or not in order
to delete 1 of the rows. We can do this by asking (z1,...,%j)#b1...bj, to

the oracle.

If we apply repeteadly the above algorithm to S, we can reduce the rows to one by
making only O(logn) queries to Y.

Assume that w = (z1,...,Zm)#b1 -+ by is a query to Y. Define wo (w;) as the
boolean formula that consists of the or (and ) of the z;’s such that b; =0 (& =1). It
holds that 2 € Y <= wo ¢ SAT A w; € SAT. Therefore, for each query to Y we only
need to make two queries to SAT, and the above algorithm can work with O(logn)
queries to SAT.

Only if. This direction follows from the previous theorem. 0O

The two preceeding theorems give us the following equivalence.

Corollary 2.4 PFYPIl ¢ pFNPled oy PFNPI C |y, PFXDE]

3 Discussion and Further Research

We can see two interesting paths to continue this research: obtaining a new char-
acterization of PFNFIl = PFNPlogl i terms of set collapses and/or getting stronger
implications specially with a stronger hypothesis such as PFNPIl = pFNFllilog] '

In the first case, it is noted in [6] that in the proofs that obtain set collapses from
PFNPl = ppNPllegl the power of NP in PFNPlogl is not used, and it is argued that,
because of this reason, we may be far obtaining a complete characterization of this
problem in terms of set collapses. Now we know by Corollary 2.4 that the power of NP
in PFNPlogl would not be needed at all in any characterization of the above equality.
In this sense, Corollary 2.4 can be useful to obtain such a characterization.

As for the second point, note that the proof of Theorem 2.2 also shows the following
fact.



Corollary 3.1 PFNPI ¢y PFXNRel i gnd only if PFNPU has polynomial-time p-
enumerators,

Although the requirement of nonadaptiveness can be made for an arbitrary oracle
(X in the corollary), we would like to know what are the implications if we require
nonadaptiveness to the queries to NP, that is to say, whether the inclusion PFNFIl C
PFNPlilogl is equivalent to the above ones or we can derive stronger collapses from it.
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