
TRABAJO FINAL DE GRADO

TíTULO DEL TFG: Design of an Integrated SDN/NFV Management and
Orchestration Architecture

TITULACIÓN: Grau Enginyeria Telemàtica

AUTOR: Manuel Leiva Cabello

DIRECTOR: Cristina Cervelló-Pastor

FECHA: 27 octubre del 2016

Design of an Integrated SDN/NFV Management and Orchestration Architecture 2

Título: Design of an Integrated SDN/NFV Management and Orchestration Architecture

Autor: Manuel Leiva Cabello

Director: Cristina Cervelló-Pastor

Fecha: 27 de octubre del 2016

Resumen

Este proyecto se centra en la explicación y definición de la tecnología SDN y NFV y
finalmente con la integración de los dos. También vamos a ver la lógica de esta
tecnología aplicada a un programa diseñado para este proyecto.

El objetivo de este proyecto es entender para que se van a utlilizar estas
tecnologías, por que compañias como Google o Microsoft llevan años invirtiendo en
el desarrollo e implantación, para el uso tanto a nivel corporativo cómo a nivel de
usuario.

Inicialmente explicaremos de la tecnología SDN, qué es, para que se va a utilizar y a
dónde nos va a llevar. ¿Por que es tan importante SDN?
A continuación, se explicará el uso del NFV que va a cambiar la forma que tenemos
de ver las redes actualmente.

Una vez tenemos claros los conceptos básicos de las dos tecnologías, vamos a
realizar la explicación de la parte práctica de este proyecto.

Me gustaría comentar, que todo el software utilizado para la realización de este
proyecto, es libre, desde el SO de la máquina que realizaba las simulaciones y
escribía estas líneas.

La parte práctica consiste en simular cómo funcionarán los flujos de red cuando se
utilice esta tecnología. El programa optimizará los recursos que nosotros queramos
para un correcto funcionamiento del sistema global.
Por ejemplo, podemos optimizar el camino, el número de saltos que va a terner que
realizar el flujo, que utilize el menor delay posible, etc.

Para finalizar obtendremos unas conclusiones específicas del trabajo realizado y
unas conclusiones personales dónde se analizarán las dificultades encontradas
mientras se realizaba y la formación y conocimientos obtenidos gracias al trabajo.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 3

Tittle: Design of an Integrated SDN/NFV Management and Orchestration Architecture

Author: Manuel Leiva Cabello

Director: Cristina Cervelló-Pastor

Date: 27th October 2016

Overview

This project aims at explaining and defining the SDN technology with integration of
the NFV technology.
We will also see the logic of this technology applied to a program designed for this
project.

The objective of this project is to understand the purpose of this technology, where is
it going to be used, why companies like Google or Microsoft for over 2 years have
been investing time and resources to develop and to implement the technology on the
corporate level, as well as on the level of regular user like you and me.

Firstly we will focus on the explanation of the SDN technology, what it is, what for is it
going to be used and what is the future of this technology. Why the SDN is so
important?
Next, we will explain the use of the NFV and show how it is going to change the way
we see the network right now. NFV also works with the SDN.
Once we define the basics of the two technologies, we will proceed to the explanation
of the practical part of this project.

I would like to comment on the software used for this project is free, since the OS
used on the machine that realized the simulations, and wrote this lines, to the
package Rstudio.

The practical part is to simulate how will the network flow when this technology is
used. The program will optimize the resources that we want for the proper
performance of the global system.
For example, we can optimize the path, the number of machines the flow has to
cross, optimize the global delay of the flow, etc.

Finally, we will reach specific conclusions based on the work we have done, as well
as some personal outcome, such as the analysis of the difficulties encountered during
the performance as well as training and finally knowledge gained through work.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 4

Table of Contents
INTRODUCTION..5

CHAPTER 1. SDN...6

1.1 History...6

1.2 Starting with SDN...7
1.2.1 Why implement SDN?..8
1.2.2 Main SDN concepts..9

1.3 SDN Infrastructure...10
1.3.1 How SDN can improve current network infrastructures?..10
1.3.2 Centralized or distributed controller...11
1.3.3 Northbound and Southbound API...11

1.3.3.1 Southbound API...12
1.3.3.2 Northbound API...12

CHAPTER 2. NFV..12

2.1 NFV - Network Function Virtualization...12
2.1.1 History and explanation..12

2.2 NFV Issues to be resolved..14

 2.3 SDN and NFV together...14
2.3.1 No NFV and SDN implemented...15
2.3.2 NFV implemented...15
2.3.3 NFV and SDN implemented...16
2.3.4 Conclusion..17

CHAPTER 3. LINEAR PROGRAMMING..17

3.1 Presentation...17

3.2 Functions...18
3.2.1 Objective function...18
3.2.2 Constraints..18
3.2.3 NFV constraint..20

3.3 Files and script..21

3.4 Heuristic Programming..23
3.4.1 Introduction...23
3.4.2 Objective...24
3.4.3 Functions...24

3.5 Comparative Linear Programming vs Heuristic with python..24
3.5.1 CPU Comparative...24
3.5.2 Time path calculation..25
3.5.3 Network reduced...27
3.5.4 Delay path calculation..27
3.5.5 Energy saving calculation...28
3.5.6 Random network...28
3.5.7 Generic constrained path-finding algorithm...31

Design of an Integrated SDN/NFV Management and Orchestration Architecture 5

CHAPTER 4 CONCLUSIONS...33

4.1 Conclusion...33

4.2 Mention..34

4.4 Annex...35
4.4.1 GLPK - GNU Linear Programming Kit...35
4.4.2 R..36
4.3.3 RStudio...37
4.3.4 A* Algorithm..37
4.3.5 Illustrations...38
4.3.6 Python code of the algorithm..39

Design of an Integrated SDN/NFV Management and Orchestration Architecture 6

INTRODUCTION

The technology is part of the society. In our daily tasks, everyone uses something that
requires internet connection: at school, university, work…
15 years ago, it was unthinkable, but today it is a reality, and everyday we use more and
more our smartphones and computers.

The smartphones and computers that we use are connected to internet. For example, this
year over 1.5 billion smartphones will be sold all over the world. All this smartphones have
to connect to Google Play or AppStore to download apps or synchronize. Google and
Microsoft have big data centres all around the globe, but, how can we improve these
massive infrastructures?

These huge companies need to optimize their infrastructure, study new technologies, and
implement solutions. We have talked about smartphones, but there are computers, servers
of companies, cloud computing, etc.

A few years ago, Google, Microsoft, TSPs, and other companies started to investigate new
ways to optimize their networks, and ended up developing SDN and NFV technologies.

In this project, we are going to explain these technologies, their main concepts, how they
work, and develop a program to optimize the resources of a given scenario.

Illustration 1: Google DataCenter.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 7

CHAPTER 1. SDN

1.1 History

Software-defined networking (SDN) is a technology that is changing the limitations of
current network infrastructures.
This technology did not appear in the last years, this was developed through a large
history of innovations to make the networks more programmable.

The history of SDN begins 20 years ago, when the appearance of internet was a success,
they needed to develop and manage the network properly.

At the beginnings of the nineties, older applications were replaced with modern ones. The
massive use of these modern applications made researchers to design and develop new
network protocols, but these new protocols needed the IETF approval, and it was too slow.
So, with that issue in mind, they thought about reprogramming the network, before the
conventional networks were not programmable. We could say that the SDN seed was born
in those times.

In the 2000s, network traffic was increasing every year, there was a need to find more
powerful and easier to manage networks, more predictable, and more confidence.
The hardware companies started to implement the logic of forwarding packets in hardware
of the equipment, separate control plane. Another innovation was the centralized logic
control in the network.
In that moment, the innovation was done: the distinction of the control plane and the data
plane. It was standardized by the IETF, and the bases of SDN were born.

Years later, companies and universities started to investigate new architectures to have the
logic control centralized. The results of these researches generated the Project 4D,
consisting in 4 main layers:

-Data plane, to process the packets using configurable rules.
-Discovery layer, to know what element is in the network and traffic requirements.
-Dissemination Layer, to install packet processing rules.
-Decision layer, consisting in centralized logic controllers.

With these premises, lots of investigations started. The first was the project Ethate and its
predecessor, project SANE.
Finally, Stanford University created Openflow.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 8

1.2 Starting with SDN

The static architecture of traditional networks does not support the modern computing
environments as data centres.
There are a couple of main reasons that are pushing companies to invest and evolve their
infrastructure.

-As we can see in the image above, global internet
traffic is increasing really fast.

--In 2002, we can see that it increased from 100GB per
hour to 100GB per second.

--In 2007, the traffic increases every month, and the
predictions say that it will grow exponentially.

This huge increase of the traffic is caused by
the streaming. Nowadays, most of the
retransmissions are in the conventional TV and in
internet streaming.Illustration 2: Historical

benchmark for total internet
traffic. Source: Cisco

Illustration 3: Representation of Illustration 2 in graph

1992 1997 2002 2007 2012 2017 2022

0

15000

30000

45000

60000

Global Internet traffic 1992-2020

Year

G
B

p
s

Design of an Integrated SDN/NFV Management and Orchestration Architecture 9

1.2.1 Why implement SDN?

Now, it is time to expose reasons why “big companies” are expending resources
developing SDN solutions:

-Today there are huge companies as IBM, Google[1], Amazon or Microsoft[2] offering that
are offering different cloud services, this situation induces many companies to not invest in
physical servers. They prefer to pay for these cloud services, so the infrastructures of data
centres offering that are growing every day, and it can be a problem to manage the all the
traffic that the infrastructure has to support.

- Big data is a reality. Thousands of databases are being analysed, so it requires the
massive processing power of thousands of servers. This is creating a demand of
bandwidth.

- Traffic patterns are changing. A few years ago, apps were client-server applications;
nowadays everything is much more complicated. There are different connections to
databases and servers. Now, anyone can connect from anywhere, at any time, with his
smartphone, tablet or laptop, generating lots of traffic crossing the WAN every second.

Illustration 4: Global devices and connections growth. Source: Cisco

*CAGR: Compound annual growth rate

Design of an Integrated SDN/NFV Management and Orchestration Architecture 10

1.2.2 Main SDN concepts

Networks defined by SDN[3] had a network architecture that has dynamism, adaptability
and profitability.

New architectures that provide this technology are going to push the technological
companies to the next level of cloud computing and cloud-based services.

First we have to define a couple of concepts:

-The control plane: Is the logical part of the router, with the protocols that are being used in
the network. Control plane is going to manage the routing tables.

-The data plane or user plane: Defines the part of the router’s architecture that decides
what to do with packets arriving on an inbound interface. Normally, the router looks into a
table to see the destination address of the incoming packet.

Illustration 5: Control and Data plane graphic

Design of an Integrated SDN/NFV Management and Orchestration Architecture 11

1.3 SDN Infrastructure

1.3.1 How can SDN improve current network infrastructures?

There are a couple of SDN properties that help in the objective of improve current network
infrastructures.

- SDN breaks the vertical integration, separating the network's control logic (control plane)
from the routers and switches that forward the traffic (data plane).

- Second, with the separation of control plane and data plane, network switches become
simple forwarding devices, and the control logic is implemented in a centralized controller.

SDN controller, or NOS (Network Operation System), is the brain of the network, the
strategic point of control, where it interconnects the data plane with control plane.
The controller generates network configuration based on the policies that has defined.
NOS has the topology network information, so it can do a device discovery and distribute
changes on the network.

1.3.2 Centralized or distributed controller

 There are 2 ways to implement controllers in SDN network, the centralized controller or
distributed controller[4]:

-A centralized controller is an entity that manages the entire network and all forwarding
devices. This can be critical due to the reason that it is a single point of failure: if this node
is down, all the network will be in trouble. This can happen for a lot of reasons, like a
hacking attack, such as a DDOS (Distributed Denial of Service) or a large number of data
plane elements that could induce a bottleneck if the controller can't handle the load.

-A distributed controller or network operating system, the main point is that it can be done
as a cluster of nodes.

This idea of distributed controllers offer weak consistency semantics, which means that
data updates on distinct nodes will eventually be updated on all controller nodes. This
implies that there is a period of time in which distinct nodes may read different values (new
value or deprecated value) for a same property.
For example, if a big provider has different data centres all around the world and one
controller of one data centre is down, we could have problems.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 12

1.3.3 Northbound and Southbound API

These interfaces are useful to interconnect SDN controller to the network elements.

1.3.3.1 Southbound API

In southbound API[5], the controller can make dynamic changes into the network switches,
if it is required.
The most common interface between controller and the network elements is Openflow,
which is developed by ONF (Open Networking Foundation)
Another different example is Cisco OpFlex.

1.3.3.2 Northbound API

The northbound interface[6] can be used for innovation, organization, and automation of
the network. The could be many different applications there and it is a sensitive point. It is
developed by the Open Networking Foundation.

Illustration 6: SDN infrastructure

Design of an Integrated SDN/NFV Management and Orchestration Architecture 13

CHAPTER 2. NFV

2.1 NFV - Network Function Virtualization

2.1.1 History and explanation

Network Function Virtualization[7] was created by a consortium of service providers.
Service providers tried to speed up deployment of new network services in order to
increase their revenue and growth plans. They looked to standard IT virtualization
technologies and found NFV helped accelerate service innovation.

Network Function Virtualization is an architecture concept based on virtualizing some
functions made by the network. So, NFV does not need specific hardware to run a
particular software to define network functionality.
What NFV proposes is to use high number of servers, switches and storage, to virtualize
functions with hypervisor and install the different software that is going to make the
network operations.

There are few points to consider with NFV:

- Distinguish between software and hardware. In the development side, it is a superb
option, because each component can run regardless of the other.

- With high volume servers that have multiple network functionalities virtualized, the
infrastructure resources can be reassigned if needed.

- With NFV, the infrastructure will have a great level of flexibility, and the performance will
be dynamic and finer granularity.

Example:

Illustration 7: Service Provider Infrastructure

Design of an Integrated SDN/NFV Management and Orchestration Architecture 14

In the Illustration 7, we can have look at providers’ infrastructure with NFV architecture
applied.
On the customers’ side, we can identify only a modem, a switch and a Wi-Fi antenna.
On the service provider’s side, we can see all the services that can be virtualized. For
example, firewall, DHCP or routing.
So, if the service provider is going to implement in their high volume servers most of the
services, customer’s system will remain simple, meaning that even if the service provider
implements new functionalities, customer will, most likely, not be affected.

2.2 NFV Issues to be resolved

NFV technology has some issues that have to be resolved. It is a new technology and
needs some years of development.

- The performance has to be the similar if there is a NFV implementation or specific
software.
This implies that all the potential bottlenecks and layers have to be evaluated and solved.

- The functions or services of the different users should be protected from each other.

-The physical and virtual resources should be protected from the subscribers. One way to
secure them is using internal firewalls and, if something happen, it will impact the lowest
amount of users.

- Reliability and availability are not only a customer expectation, but often a regulatory
requirement, as TSPs are considered to be part of critical national infrastructure.

- The main point of NFV is based on breaking the barriers that result from proprietary
hardware-based service provision.
Any NFV platform must be an open shared environment, and capable to run different
applications from different companies. Infrastructure providers (InPs) must be free to make
their own hardware selection decision without any hardware-software compatibility
problem.

- NFV needs to be scalable, so it will be able to have millions of users at the same time
without any complication.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 15

 2.3 SDN and NFV together

Software-defined-network and network function virtualization[8] are highly complementary.
The two concepts and solutions combined can give great potential.
These two technologies can be applied separately, they are not dependent.

Considering this two technologies working together, we are going to see some figures that
explain the situation.

2.3.1 No NFV and SDN implemented

In illustration 8, we can see the traditional infrastructure that everybody knows, without any
of the technologies we have explained: a company that connects to the internet crossing
its router and firewall and then the central office with an aggregation router.

Illustration 8: Traditional infrastructure

Design of an Integrated SDN/NFV Management and Orchestration Architecture 16

2.3.2 NFV implemented

In the illustration 9, we have NFV implemented, so there are a couple of changes.

- Now we have virtualized the router function and all that is left at the customer side is a
Network Interface Device (NID) for providing some information of the client, performance,
etc.

Illustration 9: Infrastructure with NFV implemented

Design of an Integrated SDN/NFV Management and Orchestration Architecture 17

2.3.3 NFV and SDN implemented

Finally, in the illustration 10, we have the SDN and NFV solution:

The control plane and data plane are separate. Now, the data packets are forwarded by an
optimized data plane, and the control plane is running in a virtual machine with generic
hardware.

2.3.4 Conclusion

To conclude, the combination of SDN and NFV gives us an optimal solution:

-The expensive and dedicated hardware is replaced by a generic hardware with specific
and dedicated software.

-The control of the data plane has been separated and, if one of the two parts needs an
upgrade, it is not going to affect the other part. The upgrades of the software are easier,
and are the same for the generic hardware.

-Better optimization of Capex and Opex.

Illustration 10: Infrastructure with NFV and SDN implemented

Design of an Integrated SDN/NFV Management and Orchestration Architecture 18

CHAPTER 3. LINEAR PROGRAMMING

3.1 Presentation

The practical part of this thesis consists in the optimization of some parameters in a
network. This imaginary scenario will be implemented with SDN and NFV.
First, we will explain the variables that we used in the program, and then we will explain
the implemented formulas.

We used GLPK-GNU Lineal Programming kit, which is explained in the annex [9].

The variables used:

 → Topology, V are the nodes, E are the edges.
 → Source belongs to nodes.
 → Destination belongs to nodes.
 → Links belongs to edges.
 → Delay from i to j.
→ Set of sources/destination requesting traffic.

→ Path chosen between s and d.
→ Demand k from source to destination.

 → if I = source [k] → 1
→ if I = destination [k] → 1

 → Process delay of the node
 → If the path selected cross NFV is 1 if not is 0

3.2 Functions

3.2.1 Objective function

The objective function purpose is to minimize the latency. First, we assigned some delay to
the links and put in the objective function.
Finally, we used the variable procdelay, which is another variable, but, in this case, of the
node, so the function will minimize the sum of delay.

Illustration 12: Objective function

Illustration 11: Node delay

Design of an Integrated SDN/NFV Management and Orchestration Architecture 19

3.2.2 Constraints

There are a few constraints in the software.

- Flow conservation: it is a constraint that we have in all the programs, it is necessary. It
says that the flow in the source is the same as in the destination node.

-Capacity constraint: we assign bandwidth to all the nodes, so the demand can’t be higher
than the capacity of the node.

In illustration 16, there is the creation of the nodes. At this moment, with parameter
procdelay; in the next programs, we will put more characteristics.

Illustration 15: Capacity constraint first program

Illustration 16: Node and path creation

Illustration 14: Capacity constraint

Illustration 13: Flow conservation

Design of an Integrated SDN/NFV Management and Orchestration Architecture 20

Finally we created links, the path that we want to find/optimize, and the connections of the
network.

We continued developing the program, and added the process delay, which simulates the
time that is processing the node when the flow is crossing the node.
The remaining part is the same as the previous program, which will be called “minimize
LATENCY”, as in the first version.

Illustration 17: Network creation with capacity weight and delay

Illustration 19: Objective function with process delay

Illustration 18: Node process delay

Design of an Integrated SDN/NFV Management and Orchestration Architecture 21

3.2.3 NFV constraint

The next version that we did included a new constraint called PASS_THROUGH_NF.

With this constraint, we force the flow to go through the node that is doing the functions of
Network Function Virtualization.

In this version, we increased the network, because we have more advantages. For
example, there are hundreds of new paths.

With the new network, we added more NFV and CONTROL nodes, which implies more
possibilities to study what is going to happen, but the problem is that the we had to add
250 lines to our code, and became more complicated to manage.

Illustration 20: NFV constraint

Illustration 21: New program nodes.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 22

3.3 Files and script

In the next version of the program, we solve that problem. We made the program to read
the data from another file so the main program only has 130 lines.

This option we have done from nodes, links and the paths that we want.

The files have the extension .csv, as we can see in the Illustration 19. We have to be very
careful with the spaces at the end of the line, because it is really easy to make a mistake
that will make the program to not compile.

Another improvement we made was to create as script in Linux which allowed us to run

Illustration 22: Reading data from another file

Illustration 23: Files that the main program has to load

Illustration 24: Example of csv file

Design of an Integrated SDN/NFV Management and Orchestration Architecture 23

the program writing ./script.sh in the console.
The script is simple, but really useful when you have to debug the program and run the
GLPK-GNU command.

The “gplsol” is the command in the GLPK-GNU package. This command solves the file
v0.12AL.mod and writes the output in solMan.txt.

We designed the network in R using Rstudio because, if we have an image of it, it is easier
to understand what is happening, checking if the paths that the program has selected are
correct using the constraints that we have programmed.

Illustration 25: Commands of the script

Illustration 26: Network design

Design of an Integrated SDN/NFV Management and Orchestration Architecture 24

3.4 Heuristic Programming

3.4.1 Introduction

Heuristic is a technique designed to solve problems quickly when classic methods are too
slow, or to find an approximate solution when classic methods fail to find any exact
solution.
An heuristic function, also called simply an heuristic, is a function that ranks alternatives in
search algorithms at each branching step based on available information to decide which
branch to follow, it may approximate the exact solution.

3.4.2 Objective

Our objective is to use heuristic programming to solve our path problem faster. We wrote
the code in python, and run it in Jupyter.

Finally, we will do some comparatives between linear programming and Heuristic to see
the results.

3.4.3 Functions

First, we load some libraries to plot several graphs using Python.

Then, we load the files, generate the graph, and run the algorithm to calculate what we
want.

The used algorithm is A*, with Python’s implementation. The explanation is in annex.

Illustration 27: Python libraries

Illustration 28: Generation of the graph

Design of an Integrated SDN/NFV Management and Orchestration Architecture 25

3.5 Comparative Linear Programming vs Heuristic with python

3.5.1 CPU Comparative

The first comparative will be the CPU usage. We detected that the management is the
same, when we run linear programming and heuristic with Python. Both types put the CPU
usage at 99% when trying to solve the problem.

In Illustration 29, we show 10 seconds as an example. During the rest of the program, it
remains the same. As we can see in the image, it has some delay until it gets to 100%.
The same happens at the end.

Illustration 29: CPU usage chart

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

CPU

Lp

HwP

Time in seconds

%
 C

P
U

 u
s

a
g

e

Design of an Integrated SDN/NFV Management and Orchestration Architecture 26

3.5.2 Time path calculation

Now we are going to show the comparative between paths.
In illustration 30, we can see the network that we are going to load. The image is
generated with Rstudio, and it has 2 Control nodes and 2 NFV nodes. The constrains are
the same as we showed previously.

Illustration 31: Time path calculation with Initial network*

1 2 3 4 5 15
0

50

100

150

200

250

300

Time path calculation

LP

HwP

Nº of paths

S
e

co
n

d
s

Illustration 30: Initial network

Design of an Integrated SDN/NFV Management and Orchestration Architecture 27

*There is a special number in x-axis Nº of paths in where we pass from 7 to 15; we do that
to prove that HwP is much faster with triple of nodes.

In illustration 31, we can see time path calculation in file demand; we added paths that the
program has to solve.
First, we did with 1 path, then 2 paths, and 3 paths, and the result was almost identical.
When we have 4 paths, LP adds some delay, even if it could be negligible. But, when we
add 5 paths, the difference is considerable, with almost 2 minutes of waiting compared to
the 10 seconds using python.

3.5.3 Network reduced

In this simulation, we reduced the network. Now we have 1 Control and 1 NFV. The
number of nodes is 11, instead of the 22 we had before.
Compared to illustration 31, now, when we have 5 paths, the time is almost the same, 10
seconds, but the same issue happens at step 6.
We can see that, using heuristic programming with python, the times remain the same,
even if we increase the number of paths.

* There is a special number in x-axis Nº of paths in where we pass from 7 to 15; we do that
to prove that HwP is much faster with double of nodes.

Illustration 32: Time path calculation with network reduced*

1 2 3 4 5 6 7 15
0

50

100

150

200

250

300

Time path calculation

LP

HwP

Nº of paths

S
e

co
n

d
s

Design of an Integrated SDN/NFV Management and Orchestration Architecture 28

3.5.4 Delay path calculation

Here we can find the delay path calculation.
There are two parameters that we are minimizing: delay of the link (Illustration 12), and
process delay of the machine, a new variable we had to add. The simulation consists in
finding the best path of every demand we ask for.

3.5.5 Energy saving calculation

This illustration is minimizing the nodes that we are going to use to go through the entire
path. For example, if node “Hotel” is used in 1st path, LP is going to try to use that node to
reach the destination in the following paths.

In this graphic, we can see that from 1 to 3 paths, the number of visited nodes doubled;
but if paths go from 3 to 5, it only increases by 3 nodes. That is because the algorithm is
using the same nodes every time it is possible, even if it is not the optimum path.

Illustration 33: Delay path calculation

1 2 3 4 5
0

10

20

30

40

50

60

Delay path calculation

Delay

Nº of paths

D
e

la
y

Illustration 34: Energy saving calculation

1 2 3 4 5
0

2

4

6

8

10

12

14

16

Energy Saving calculation

Nº: Active links

Nº of paths

C
o

s
t N

º
n

o
d

e
s

Design of an Integrated SDN/NFV Management and Orchestration Architecture 29

3.5.6 Random network

With the previous illustrations, we could see how powerful simulation with Python is. With
our 22 node network, the computer solves the network optimization easily.
Now, we want to find how powerful the computer that we are using is doing simulations
with massive networks.

With this command, python creates random network:

This network is one simulated in illustration, with 20k nodes and 50k links. The computer
takes less than 20 seconds to simulate that.

In illustration 36, we can see a piece of code where python’s timer is used to calculate the
time.
There is also a loop to calculate the network 25 times in order to get the best time.

Here we have all simulations to find the limit of our computer.

Illustration 35: Python command for random graph.

Illustration 36: Python code for calculate the solution.

Illustration 37: Python simulation of 20k nodes

50k 60k 90k
0

1

2

3

4

5

6

0

1

2

3

4

5

6

Random graph 20k nodes

Nº of links

S
e

co
n

d
s

Design of an Integrated SDN/NFV Management and Orchestration Architecture 30

Illustration 38: Python simulation of 30k nodes

90k 120k 150k
0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Random graph 30k nodes

Nº of links

S
e

co
n

d
s

Illustration 39: Python simulation of 60k nodes

180k 210k 240k
0

2

4

6

8

10

12

14

0

2

4

6

8

10

12

14

Random graph 60k nodes

Nº of links

S
e

co
n

d
s

Design of an Integrated SDN/NFV Management and Orchestration Architecture 31

3.5.7 Generic constrained path-finding algorithm

Although the LP model allows the attainment of optimal solutions for the constrained short-
path problem in SDN/NFV, it becomes challenging to solve on large and even medium-
scale topologies. This is because the difficulty of this routing problem is known to be NP-
Hard, so the consumption of resources and time complexity grow exponentially with the
network size. To reduce these metrics, in this section we develop a heuristic algorithm.

We consider random networks of 100 nodes, with different edge rewiring probability, p.
Nodes in sparse networks have p=0.1; in medium networks p=0.25, and in dense networks
between p=0.6. For each category we generated 100 networks.

In this case, we have determined the controllers position solving the optimal controller
placement problem as a clustering analysis problem and using the k-means clustering
algorithm to find the global optimal. We have also considered the same criterion for
deciding the NFV nodes position. The required number of both kind of nodes has been
fixed to 5 for sparse networks, 3 for medium networks and 1 for dense networks. In all
cases, this is the maximum number of controllers for which adding another controller
results in worsening the acceptance ratio (due to data path do not cross through
controllers).

The following figure shows a comparison of the acceptance ratio of demands in case of
having the NFV constraints (i.e., find paths that pass trough at least one NFV node) and in
case of having just shortest paths without this constraint. In both cases, paths do not cross
controllers nodes.

The objective of this figure is to analyse the influence of the NFV constraint in the
pathfinding procedure. It can be seen that the difference between both methods is less
than 5% in the worst case of our analyses (when the acceptance ratio decreases to 85%).

We present the simulation results for the heuristic together with their respective 95%
confidence intervals based on a standard normal distribution. With this heuristic algorithm
we have a tool to design and deeply analyse the SDN/DFV network but, it is beyond the
scope of this project.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 32

Graph of Acceptance ratio of demands

Net of 100 nodes with edge wiring probability 0.1

Illustration 40: Pathfinding comparison between heuristic and Short-Path models

Design of an Integrated SDN/NFV Management and Orchestration Architecture 33

CHAPTER 4 CONCLUSIONS

4.1 Conclusion

Once the project is over, we can see that our objectives are accomplished.
The main concepts, SDN and NFV, are explained in a clear and easy way, with some
examples and illustrations.

We have seen two different programming languages: Linear Programming and Heuristic
with Python. The comparative was clear: Python is better if there are more than 5
simultaneous paths, which it could happen easily in real life.

Another interesting Python characteristic are the simulations we did with random network.
We had more than 20k-30k nodes with 80k links.

 All the used software is free: the machine was running Debian 8.6, OpenOffice as text
processor, and all the packets use: GLPK-GNU, Rstudio, Okular and Python.
The experience using free software was absolutely satisfying. Most of the times, you only
needed to know what package you wanted to install and, with only a command, everything
was fast and easily installed. Everybody can now see the results of this project.

During the realization of this project, we had some problems that were solved during the
following weeks. Learning the GLPK-GNU language was challenging. It is difficult to find
information and examples in internet and the learning process was laborious. With the
other programming language, Python, it was more accessible and smooth.

Finally, I am absolutely satisfied with this project and I want to thank Cristina for her
collaboration, ideas, advices, cooperation, and support I needed during this months.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 34

4.2 Mention

[1]https://gigaom.com/2014/04/02/google-launches-andromeda-a-software-defined-
network-underlying-its-cloud/

[2]http://www.networkworld.com/article/2937396/cloud-computing/microsoft-needs-sdn-for-
azure-cloud.html

[3] https://es.wikipedia.org/wiki/Redes_definidas_por_software

[4] ttp://searchsdn.techtarget.com/tip/Centralized-vs-decentralized-SDN-architecture-Which-works-
for-you

[5] https://www.sdxcentral.com/sdn/definitions/southbound-interface-api/

[6]ttp://searchsdn.techtarget.com/guides/Northbound-API-guide-The-rise-of-the-network-
applications

[7] https://en.wikipedia.org/wiki/Network_function_virtualization

[8] https://www.sdxcentral.com/articles/contributed/nfv-and-sdn-whats-the-
difference/2013/03/

[9]https://en.wikipedia.org/wiki/GNU_Linear_Programming_Kit

https://en.wikipedia.org/wiki/AMPL

https://en.wikibooks.org/wiki/GLPK

https://en.wikibooks.org/wiki/GLPK/GMPL_(MathProg)#Official_documentation

https://cran.r-project.org/web/packages/Rglpk/index.html

[10]https://www.r-project.org/

[11]https://cran.r-project.org/doc/contrib/Short-refcard.pdf

[12]https://en.wikipedia.org/wiki/A*_search_algorithm

https://gigaom.com/2014/04/02/google-launches-andromeda-a-software-defined-network-underlying-its-cloud/
https://gigaom.com/2014/04/02/google-launches-andromeda-a-software-defined-network-underlying-its-cloud/
https://en.wikipedia.org/wiki/A*_search_algorithm
https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://www.r-project.org/
https://cran.r-project.org/web/packages/Rglpk/index.html
https://en.wikibooks.org/wiki/GLPK/GMPL_(MathProg)#Official_documentation
https://en.wikibooks.org/wiki/GLPK
https://en.wikipedia.org/wiki/AMPL
https://en.wikipedia.org/wiki/GNU_Linear_Programming_Kit
https://www.sdxcentral.com/articles/contributed/nfv-and-sdn-whats-the-difference/2013/03/
https://www.sdxcentral.com/articles/contributed/nfv-and-sdn-whats-the-difference/2013/03/
https://en.wikipedia.org/wiki/Network_function_virtualization
http://searchsdn.techtarget.com/guides/Northbound-API-guide-The-rise-of-the-network-applications
http://searchsdn.techtarget.com/guides/Northbound-API-guide-The-rise-of-the-network-applications
https://www.sdxcentral.com/sdn/definitions/southbound-interface-api/
http://searchsdn.techtarget.com/tip/Centralized-vs-decentralized-SDN-architecture-Which-works-for-you
http://searchsdn.techtarget.com/tip/Centralized-vs-decentralized-SDN-architecture-Which-works-for-you
https://es.wikipedia.org/wiki/Redes_definidas_por_software
http://www.networkworld.com/article/2937396/cloud-computing/microsoft-needs-sdn-for-azure-cloud.html
http://www.networkworld.com/article/2937396/cloud-computing/microsoft-needs-sdn-for-azure-cloud.html

Design of an Integrated SDN/NFV Management and Orchestration Architecture 35

4.4 Annex

4.4.1 GLPK - GNU Linear Programming Kit

The GNU Linear Programming Kit (GLPK) is a software package intended for solving
large-scale linear programming, mixed integer programming, and other related problems.
It is a set of routines written in ANSI C and organized in the form of a callable library. The
package is a part of the GNU Project and is released under the GNU General Public
License.

Problems can be modelled in the language GNU MathProg which shares many parts of
the syntax with AMPL and solved with standalone solver GLPSOL.

GLPK was developed by Andrew O. Makhorin (Андрей Олегович Махорин) of the
Moscow Aviation Institute. The first public release was in October 2000.

-Version 1.1.1 contained a library for a revised primal and dual simplex algorithm.
-Version 2.0 introduced an implementation of the primal-dual interior point method.
-Version 2.2 added branch and bound solving of mixed integer problems.
-Version 2.4 added a first implementation of the GLPK/L modelling language.
-Version 4.0 replaced GLPK/L by the GNU MathProg modelling language, which is a
subset of the AMPL modelling language.

Characteristics:

• Original author: Andrew O. Makhorin
• Developers: GNU Project
• Stable release: 4.58 / February 18, 2016
• Written in: C
• Operating system: Cross-platform
• License: GNU General Public License

¿What is AMPL?

A Mathematical Programming Language is an algebraic modelling language to describe
and solve hight-complexity problems for large-scale mathematical computing.
It was developed by Robert Fourer, David Gay, and Brian kernighan at Bell Laboratories.
AMPL supports dozens of solvers, both open source and commercial software.
AMPL is used by more than 100 corporate clients, and by government agencies and
academic institutions.

Characteristics:

Paradigm: multi-paradigm: declarative, imperative.
Designed by: Robert Fourer, David Gay, Brian Kerninghan
Developer: AMPL Optimization
First appeared: 1985, 31 years ago
Stable release: October 12, 2013
Operating System: Cross-platform.

Design of an Integrated SDN/NFV Management and Orchestration Architecture 36

Filename extensions: .mod

4.4.2 R

The R[10] software is a free software environment for statistical computing and graphics.
It is a GNU project which is similar to the S language and environment which was
developed at Bell Laboratories by John Chamerts and colleagues. R can be considered as
a different implementation of S.

R provides a wide variety of statistical (linear and non-linear modelling, classical statistical
tests, time-series analysis, classification, clustering, …) and graphical techniques, and is
highly extensible. The S language is often the vehicle of choice for research in statistical
methodology, and R provides an Open Source route to participation in that activity.

R is available as Free Software under the terms of the Free Software Foundation’s GNU
General Public License in source code form.
It compiles and runs on a wide variety of UNIX platforms and similar systems (including
FreeBSD and Linux), Windows and MacOS.

With the s.o that I am doing this work, (cat /etc/*-release)

PRETTY_NAME="Debian GNU/Linux 8 (jessie)"
NAME="Debian GNU/Linux"
VERSION_ID="8"
VERSION="8 (jessie)"
ID=debian
HOME_URL="http://www.debian.org/"
SUPPORT_URL="http://www.debian.org/support"
BUG_REPORT_URL="https://bugs.debian.org/"

The program R is installed so we can start working with the software.
If you are working with windows or Mac, in the link:

https://cran.r-project.org/mirrors.html
You can find the mirror of your county and download the package for install the software.

When the R software is executed, it looks like a simple console which you can find in any
operating system, but investigating I have found a software that complements R quite
good.

https://cran.r-project.org/mirrors.html
https://bugs.debian.org/

Design of an Integrated SDN/NFV Management and Orchestration Architecture 37

4.3.3 RStudio

RStudio[11] is an integrated development environment (IDE) for R. It includes a console,
syntax-highlighting editor that supports direct code execution, as well as tools for plotting,
history, debugging and workspace management.

For install Rstudio you only have to download Rstudio Desktop and execute this
command:

Download in:

https://www.rstudio.com/products/rstudio/

For install in linux (debian8):

sudo dpkg --install rstudio-0.99.902-amd64.deb

4.3.4 A* Algorithm

Is a computer algorith[12] that is generally used in pathfinding and graph traversable path
between multiple points, called nodes. Noted for its performance and accuracy, it enjoys
widespread use.

Peter Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute (now SRI
International) first described the algorithm in 1968. It is an extension of Edsger Dijkstra's
1959 algorithm.
A* achieves better performance by using heuristics to guide its search.
Solves problems by searching among all possible paths to the solution (goal) for the one
that incurs the smallest cost (least distance travelled, shortest time, etc.), and among
these paths it first considers the ones that appear to lead most quickly to the solution.

https://www.rstudio.com/products/rstudio/

Design of an Integrated SDN/NFV Management and Orchestration Architecture 38

4.3.5 Illustrations

• Illustration 1: Google DataCenter.
• Illustration 2: Historical benchmark for total internet traffic. Source: Cisco
• Illustration 3: Representation of Illustration 2 in graph
• Illustration 4: Global devices and connections growth. Source: Cisco
• Illustration 5: Control and Data plane graphic
• Illustration 6: SDN infrastructure
• Illustration 7: Service Provider Infrastructure
• Illustration 8: Traditional infrastructure
• Illustration 9: Infrastructure with NFV implemented
• Illustration 10: Infrastructure with NFV and SDN implemented
• Illustration 11: Node delay
• Illustration 12: Objective function
• Illustration 13: Flow conservation
• Illustration 14: Capacity constraint
• Illustration 15: Capacity constraint first program
• Illustration 16: Node and path creation
• Illustration 17: Network creation with capacity weight and delay
• Illustration 18: Node process delay
• Illustration 19: Objective function with process delay
• Illustration 20: NFV constraint
• Illustration 21: new nodes of the program
• Illustration 22: Reading data from another file
• Illustration 23: Files that the main program has to load
• Illustration 24: Example of csv file
• Illustration 25: Commands of the script
• Illustration 26: Network design
• Illustration 27: Python libraries
• Illustration 28: Generation of the graph
• Illustration 29: CPU usage chart
• Illustration 30: Initial network
• Illustration 31: Time path calculation with Initial network*
• Illustration 32: Time path calculation with network reduced*
• Illustration 33: Delay path calculation
• Illustration 34: Energy saving calculation
• Illustration 35: Python command for random graph.
• Illustration 36: Python code for calculate the solution.
• Illustration 37: Python simulation of 20k nodes
• Illustration 38: Python simulation of 30k nodes
• Illustration 39: Python simulation of 60k nodes

Design of an Integrated SDN/NFV Management and Orchestration Architecture 39

4.3.6 Python code of the algorithm

import matplotlib.pyplot as plt
from random import randint
import operator
import numpy as np
from numpy import *
from scipy.cluster.vq import vq, kmeans, whiten
import scipy.stats as stats
```
```python
Define k Controller positions
We solve the optimal controller placement problem as clustering analysis problem, and
use the
typical clustering algorithm named K-means algorithm to find the global optimal
solution.
def DefineControllers(G, k):
controllers = []
Convert adjacencies matrix into numpy matrix
A = nx.to_numpy_matrix(G)
whitened = whiten(A)
book = array((whitened[0],whitened[2]))
km=kmeans(whitened,book)
mat= km[0][0]
while len(controllers) < k:
c=mat.argmax()
if c not in controllers:
controllers.append(c)
mat = np.delete(mat, c)
return(controllers)
```
```python
Define k NFV positions. We use the same criterion than in controllers location definition
def DefineNFV(G,listcontrollers, k):
nfv = []
Convert adjacencies matrix into numpy matrix
A = nx.to_numpy_matrix(G)

whitened = whiten(A)
book = array((whitened[0],whitened[2]))
km=kmeans(whitened,book)
mat= km[0][0]
while len(nfv) < k:
c=mat.argmax()
if c not in listcontrollers:
if c not in nfv:
nfv.append(c)
mat = np.delete(mat, c)
return(nfv)

Design of an Integrated SDN/NFV Management and Orchestration Architecture 40

```
```python
Choose a node in the graph G (nor NFV neither controller)
def ChooseNode(G):
n=randint(0,NumNodes-1)
while n not in G.nodes() or n in nfv:
n=randint(0,NumNodes-1)
return(n)
```
```python
Determine demands randomly
def ObtainDemands(G, NumDemands):
drequest = {}
DEMAND = []
num = 0
while num < NumDemands:
drequest = {
'source': ChooseNode(G),
'destination': ChooseNode(G),
'demand': 100,
'dweight': 5,
}
if drequest['source']!= drequest['destination'] and \
(drequest['source'],drequest['destination']) not in G.edges():
DEMAND.append(drequest)

num = num+1
return DEMAND
```
```python
Heuristic to be used in the A* ("A star") algorithm via
networkx.algorithms.shortest_paths.astar
inside Acceptance function
def Heuristic(node1, node2):
global G2
fullcost = 0
if G2.get_edge_data(node1,node2) is None :
fullcost = 1
return fullcost
elif G2.get_edge_data(node1,node2)['vfn']:
return 1
else:
fullcost = G2.get_edge_data(node1,node2)['weight'] + G2.node[node1]['costN']+\
G2.node[node2]['costN']
return fullcost
```
```python
Compute the acceptance ratio of demands
def Acceptance(G, controllers, NumDemands):
global G2

Design of an Integrated SDN/NFV Management and Orchestration Architecture 41

For searching data paths SDN control nodes are removed
G2rand = G.copy()
for i in controllers:
G2rand.remove_node(i)
Determine demands randomly
DEMAND = ObtainDemands(G2rand, NumDemands)
numsuccesful=0
numNONsuccesful=0
lengths=0

for i in range(NumDemands):
G2 = G.copy()
Eliminate edges with no enough capacity for the current demand
for j in G2.edges():
if G2.get_edge_data(j[0],j[1])['capacity'] <= DEMAND[i]['demand']:
G2.remove_edge(j[0],j[1])
try:
m = nx.astar_path(G2, DEMAND[i]['source'],DEMAND[i]
['destination'],heuristic=Heuristic)
numsuccesful = numsuccesful+1
lengths=lengths+len(m)
Reduce the link capacity due to current demand value
for k in range(len(m)-1):
G[m[k]][m[k+1]]['capacity'] = G[m[k]][m[k+1]]['capacity'] - DEMAND[k]['demand']
except nx.NetworkXNoPath:
numNONsuccesful=numNONsuccesful+1
ratio = numsuccesful/(numsuccesful+numNONsuccesful)
lmean = lengths/NumDemands
return(ratio,lmean)
```
```python
Compute the acceptance ratio of demands in case of Shortest-Paths without the
constraint of passing through at
least one NFV node
def AcceptanceSP(G, controllers, NumDemands):
For searching data paths SDN control nodes are removed
G3rand = G.copy()
for i in controllers:
G3rand.remove_node(i)
Determine demands randomly
DEMAND = ObtainDemands(G3rand,NumDemands)
numsuccesful=0
numNONsuccesful=0

lengths=0
for i in range(NumDemands):
G3 = G.copy()
Eliminate edges with no enough capacity for the current demand
for j in G3.edges():
if G3.get_edge_data(j[0],j[1])['capacity'] <= DEMAND[i]['demand']:

Design of an Integrated SDN/NFV Management and Orchestration Architecture 42

G3.remove_edge(j[0],j[1])
try:
m = nx.shortest_path(G3,DEMAND[i]['source'],DEMAND[i]['destination'])
numsuccesful = numsuccesful+1
lengths=lengths+len(m)
Reduce the link capacity due to current demand value
for k in range(len(m)-1):
G[m[k]][m[k+1]]['capacity'] = G[m[k]][m[k+1]]['capacity'] - DEMAND[k]['demand']
except nx.NetworkXNoPath:
numNONsuccesful=numNONsuccesful+1
ratio = numsuccesful/(numsuccesful+numNONsuccesful)
lmean = lengths/NumDemands
return(ratio,lmean)
```
```python
def GenerateGraph(NumNodes, p, NumControllers, NumNFV):
Grand=nx.erdos_renyi_graph(NumNodes, p, seed=None, directed=False)
nx.set_edge_attributes(Grand, 'capacity', 2000)
nx.set_edge_attributes(Grand, 'weight', 8000)
nx.set_edge_attributes(Grand, 'delay', 1)
nx.set_edge_attributes(Grand, 'bwcontrol', 1)
nx.set_edge_attributes(Grand, 'vfn', 0)
nx.set_node_attributes(Grand, 'costN', 300)
nx.set_node_attributes(Grand, 'capacity', 300)
nx.set_node_attributes(Grand, 'procdelay', 1)
controllers = DefineControllers(Grand,NumControllers)
nfv = DefineNFV(Grand,controllers,NumNFV)
for i in controllers:
Grand.node[i]['name'] = 'CONTROL'+str(controllers.index(i)+1)

Grand.node[i]['costN'] = 1000
for i in nfv:
Grand.node[i]['name'] = 'NFV'+str(nfv.index(i)+1)
Grand.node[i]['procdelay'] = 5
Grand.node[i]['costN'] = 1500
Change the value of vnf field in links connected to NFV nodes
li=[]
for i in range(Grand.number_of_nodes()):
for n in Grand.edge[i].keys():
if n in controllers:
continue
if n in nfv:
if i not in li: li.append((n,i))
for n,i in li:
Grand[n][i]['vfn'] = 1
Grand[n][i]['delay'] = 500
Grand[n][i]['weight'] = 1
return(Grand, controllers, nfv)
```
```python


Design of an Integrated SDN/NFV Management and Orchestration Architecture 43

NumNodes = 100
p = 0.1 # edge rewiring probability
NumControllers = 5
NumNFV = 5
ListDemands = [500,1000,1500,2000,2500,3000, 4000, 5000]
ListMeanAcceptance = []
ListMeanSPAcceptance = []
ListStdAcceptance = []
ListStdSPAcceptance = []
for NumDemands in ListDemands:
ListAcceptance = []
ListSPAcceptance = []
for i in range(100): #100 iterations for each case

print(NumDemands)
Grand, controllers, nfv = GenerateGraph(NumNodes, p, NumControllers,NumNFV)
Compute the acceptance ratio of demands with the NFV contraint
ratio1, len1 = Acceptance(Grand, controllers, NumDemands)
ListAcceptance.append(ratio1)
Grand, controllers, nfv = GenerateGraph(NumNodes,p,NumControllers,NumNFV)
Compute the acceptance ratio of demands
ratio2, len2 = AcceptanceSP(Grand, controllers, NumDemands)
ListSPAcceptance.append(ratio2)
ListMeanAcceptance.append(np.mean(ListAcceptance))
ListStdAcceptance.append(np.std(ListAcceptance))
ListMeanSPAcceptance.append(np.mean(ListSPAcceptance))
ListStdSPAcceptance.append(np.std(ListSPAcceptance))
```
```python
print(ListMeanAcceptance)
print(ListStdAcceptance)
```
```python
print(ListMeanSPAcceptance)
print(ListStdSPAcceptance)
```
```python
Compute the confidence intervals
z_critical = stats.norm.ppf(q = 0.975) # Get the z-critical value
sample_size = len(ListStdAcceptance)
intervals1 = []
for i in range(sample_size):
margin_of_error = z_critical * (ListStdAcceptance[i]/math.sqrt(sample_size))
confidence_interval=(ListMeanAcceptance[i] - margin_of_error, \
ListMeanAcceptance[i] + margin_of_error)

intervals1.append(confidence_interval)
sample_size = len(ListStdSPAcceptance)
intervals2 = []
for i in range(sample_size):

Design of an Integrated SDN/NFV Management and Orchestration Architecture 44

margin_of_error = z_critical * (ListStdSPAcceptance[i]/math.sqrt(sample_size))
confidence_interval=(ListMeanSPAcceptance[i] - margin_of_error, \
ListMeanSPAcceptance[i] + margin_of_error)
intervals2.append(confidence_interval)
```
```python
Plot the results
fig = plt.figure(figsize=(6,6))
x = np.array([500,1000,1500,2000,2500,3000, 4000])
y = np.array(ListMeanAcceptance)
e = np.array([(top-bot)/2 for top,bot in intervals1])
l1=plt.errorbar(x, y, e, marker='^', label='cas11')
y = np.array(ListMeanSPAcceptance)
e = np.array([(top-bot)/2 for top,bot in intervals2])
l2=plt.errorbar(x, y, e, marker='o', label='cas2')
plt.legend([l1, l2], ['with NFV', 'SP without NFV'])
plt.hlines(xmin=0, xmax=4000,
y=1,
linewidth=2.0,
color="red")
fig.suptitle('Acceptance ratio of demands\n Nets of 100 nodes with edge rewiring
probability 0.1', fontsize=12)
plt.xlabel('Number of Demands', fontsize=10)
plt.ylabel('Acceptance Ratio', fontsize=10)

fig.savefig('acceptance01.png')
plt.show()
```
```python


