
Concurrent Rebalancing on HyperRed-Black Trees �

Joaquim Gabarró Xavier Messeguer Daniel Riu
Universitat Politècnica de Catalunya

Departament de Llenguatges i Sistemes Informàtics
Campus Nord–Mòdul C6

C/ Jordi Girona Salgado, 1–3
08034 Barcelona, Spain

Contact author: messeguer@lsi.upc.es

Abstract

The HyperRed-Black trees are a relaxed version of Red-
Black trees accepting high degree of concurrency. In the
Red-Black trees consecutive red nodes are forbidden. This
restriction has been withdrawn in the Chromatic trees. They
have been introduced by O. Nurmi and E. Soisalon-Soininen
to work in a concurrent environment. A Chromatic tree can
have big clusters of red nodes surrounded by black nodes.
Nevertheless, concurrent rebalancing of Chromatic trees
into Red-Black trees has a serious drawback: in big cluster
of red nodes only the top node can be updated. Direct
updating inside the cluster is forbidden. This approach
gives us limited degree of concurrency. The HyperRed-
Black trees has been designed to solve this problem. It is
possible to update red nodes in the inside of a red cluster.
In a HyperRed-Black tree nodes can have a multiplicity of
colors; they can be red, black or hyper-red.

1 Introduction

Red-Black trees have been recognized as an important
data structure [2]. They are highly balanced search trees.
Each node n stores a key, denoted key�n�, and each internal
noden stores three pointers left�n�, right�n� and parent�n�
pointing respectively to its sons and parent. The trees satisfy
the following red-black properties:

P� : Every node is either red or black.

P� : Every leaf (NIL) is black.

�This work has been partially supported by ESPRIT LTR Project
no. 20244 — ALCOM-IT and DGICYT under grant PB95-0787 (project
KOALA) and ACI with Universidad de Chile DOG 2320–30.1.1997.

P� : If a node is red then both its children are black. This
is equivalent to, no path from the root to a leaf contains
two consecutive red nodes.

P� : Every simple path from a node to a leaf contains the
same number of black nodes.

The last condition allow us to define the function black-
ness (called black-height in [2]):

blackness�n� � the number of black nodes

on any path from, but not

including, a node n to a leaf.

As the blackness is computed by counting the black nodes,
therefore it makes sense to encode the color as a flag
color�n� � f�� �g such that:

1. A node n is black iff color�n� � �.

2. A node n is red iff color�n� � �.

Then we can write blackness�n� �
P

color�u�, being the
sum on any path from, but not including, a node n to a leaf.
And the fourth property P� can be rewritten:

P� : Every simple path from a node to a leaf has the
same sum of colors. Therefore, for any node n the
blackness�n� is well defined.

In the following sections, we deal with the concurrent
rebalancing problem for Red-Black trees. First, let us con-
sider the rebalancing problem in a sequential environment.
The sequential insertion algorithm has two parts.



1. In a percolation part, the key to be inserted falls until
it is attached to a new red node n at the bottom of the
tree. As n is red, the property P� is maintained.

2. If the parent of n is black all the red-black properties
are maintained and the insertion is over. Otherwise, n
and parent�n� are red and (P�) is false. In this case
a bottom-up reconstruction part starts. The redness
of consecutive nodes rises up (see later the Red Prop-
agation and Red Rotation rules). Finally, if the root
becomes red it is colore black (see later the Blacking
the Root rule).

Let us describe the preceding rules. Always, n and
parent�n� are red but (if it exists) the grandparent of n
is black. If uncle�n� is also red, it is possible to move up
the redness “one step up” changing the color of the uncle.
The “shape” of the tree is kept constant. Formally, we have
the following rule:

Rule : Red Propagation

Guard: Both, parent�n� and uncle�n� are red (recall
that grandparent of n is black).

Behavior: The parent�n� and uncle�n� become black
and the grandparent becomes red.

Spatial Scope: Nodes parent�n� , uncle�n� and the
grandparent of n.

If the uncle is black the preceding rule does not apply. In this
case, a rotation or a double rotation allow us to move down
the blackness of the uncle. The shape of the tree changes.
This rule does not allow us propagate redness up.

Rule : Red Rotation

Guard: The parent�n� is red but uncle�n� is black
(as before, the grandparent of n is black).

Behavior: A rotation (single o double) takes place
around the grandparent of n.

Spatial Scope: Nodes involved in the rotation.

Finally, if the pair n and parent�n� of red nodes reaches the
root of the tree (we mean parent�n� � root), the color of
the root must be changed. Formally:

Rule : Blacking Root

Guard: The root is red.

Behavior: Color the root black.

Spatial Scope: The root.

The on-the-fly concurrent approach, designs algorithms
as a set of local evolution rules. The control is kept as nonde-
terministic as possible. Any rule can be selected and applied
to a node in any order as soon as its guards are satisfied. The
rules assume temporal atomicity (they are composed by a
small and fixed number of assignments and tests) and spa-
tial atomicity (they need exclusive access to a fixed and
small number of neighboring nodes). This approach was
first undertaken by H.T. Kung and P.L. Lehman [6]. Later
on, inspired by on-the-fly garbage collection algorithms [3],
J.L.W. Kessels [5] found the first safe and live algorithm for
AVL trees.

In a recent paper, O. Nurmi and E. Soisalon-Soininen [7]
introduce an extension of Red-Black trees called Chromatic
trees. Chromatic trees support concurrent rebalacing after a
set of insertions or deletions. The authors are mainly inter-
ested in the concurrent rebalancing after a set of deletions.
To deal adequately with this problem Chromatic trees verify:

1. The property (P�) of the Red-Black is maintained.

2. Condition (P�) is relaxed accepting overweighted
nodes. In a Chromatic tree, a red node n has
color�n� � � as before. The situation changes with
black nodes which can be overweighted such that
color�n� � f�� �� � � �g.

As in the case of Red-Black trees the blackness�n� is a
well defined function. To maintain this function after a
set of deletions, the remaining nodes need to “charge with
the redness” of missing black sons. This is the cause of
color�n� � f�� �� � � �g.

In the Chromatic trees, many new red nodes can be at-
tached before some rebalancing process starts. Therefore,
big clusters of red nodes can be generated. As O. Nurmi and
E. Soisalon-Soininen [7] are mainly interested in deletions,
their concurrent rebalancing algorithm has the following
drawback:

GRANDPARENT BOTTLENECK: Only nodes having
a black grandparent can be updated. Therefore, only the
top nodes of a red cluster can be updated. It is impossi-
ble to update these clusters in the middle. This constraint
highly decreases the degree of concurrency because almost
all nodes in a red cluster are “frozen”.

In our paper we overcome the above drawback with the
following improvement:

IMPROVEMENT: The redness of a node can be prop-
agated even though the parent was red. Therefore, it is
possible to work concurrently “in the middle” of red chains.
Therefore it exists a better degree of concurrency.

This means that we deal with a new sort of hyper-red nodes,
and a new sort of rules and trees. In our case, nodes cannot

2



be deleted, therefore we need just one black color (in the
case that a node is black color�n� � �). However nodes can
be inserted, and we accept many red colors (if a node is red
color�n� � f����� � � �g). These two assumptions are at the
base of the HyperRed-Black trees introduced in this paper.

The rest of paper is organized as follows. In section 2
we introduce HyperRed-Black trees. Section 3 is devoted to
explain the set of rules defined to overcome the grandparent
bottleneck. In section 4 we consider the correctness of the
concurrent rebalancing. Sections 5 and 6 are devoted to the
experimental evaluation and comparison with the Chromatic
approach. Finally we conclude our work introducing some
open questions and raising a conjecture.

2 HyperRed-Black trees

Our improvement consists in that the redness can be ac-
cumulated in nodes, then we accept nodes having a powerful
range of red tones. We define:

1. A node n is black iff color�n� � �.

2. A node n is red iff color�n� � �.

3. A node n is hyper-red iff

color�n� � f��������� � � �g�

Two reasonable consequences of redness accumulation
are the following:

� The conditionP�, which forces red nodes to have black
sons, must be ignored. Notice that two hyper red
sons may propagate some redness units up and remain
hyper-red.

� The blackness function also takes into account the
hyper-red nodes, blackness�n� �

P
color�u� being

the sum on any path from, but not including, a node n
to a leaf.

Therefore we obtain the following relaxed version of
Red-Black trees so called HyperRed-Black trees:

Definition 1 An HyperRed-Black tree is a binary search
tree satisfying the following conditions:

P �

� : Every node is either red, black or hyper-red.

P �
� : Every leaf (NIL) is black.

P �
� : Every simple path from a node to a leaf has the same

sum of colors.

Note that a Red-Black tree is an HyperRed-Black tree
with the following two restrictions which can be locally
tested:

R� : all the colors are � or �

R� : if a node is red then both its children are black.

In the following, we are interested in the concurrent re-
balancing of (an arbitrary) binary search tree into a Red-
Black tree. Dealing with this problem we associate to any
binary search tree its basic HyperRed-Black tree, and we
design a set of local rules such that

� they translate HyperRed-Black trees into HyperRed-
Black trees, and

� they coul be applied as soon as the restrictions R� and
R� of Red-Black trees are not accomplished.

We start with the followingdefinitionof basic HyperRed-
Black tree:

Definition 2 Given a binary search tree T (having NIL
nodes as a leaves) its basic HyperRed-Black tree is obtained
coloring it as follows. The root is black color�root� � �.
All the internal nodes n (different from the root) are red,
color�n� � �. All the NIL nodes are black, color�NIL� �
�.

For any basic HyperRed-Black tree it holds for any
interior node n, blackness�n� � �, and for all leaves,
blackness�leaf� � �.

3 Rules

We design a set of rules dealing with red clusters. To do
this we focus the following problems:

1. The interior of a red cluster does not contain black
nodes. Brothers are colored red or hyper-red, then their
redness must be moved up. The followingPropagation
rules solve this problem.

2. In the frontier of a red cluster there are red or hyper
red nodes having black brothers. A way to solve the
problem consists to rotate black nodes down. The
rotation rules are given to deal with this situation.

3. Finally, if the root of the tree becomes red or hyper red
there is no problem to black it. The rule blacking the
root allows us to make the root black.

For the sake of clarity, we adopt the following notation:
n�A�B� denotes the (sub)tree with root n, left son A and
right son B. The final state of a node n once a rule has
been applied is denoted n�. Unless specified, it is identical
to the initial state. The figures are drawn with the same
convention. We have only added the color of a node n as
the superscript cn.

3



cn

cp
cp cq+1cq

cn-1

cn cn-1

A

n

p q

B C D
A

B C D

+1

n’

p’ q’

n’n

0 0
p q p’ q’

A

B D
C

A

BC
D

1 1

a) HyperRed Propagation

b) Red Propagation:

:

Figure 1. Propagation rule

3.1 Propagation rules

They can be applied when both brothers are red or hyper-
red, and move one unit of redness up from the sons to the
parent. Suppose we have a subtree n�p�A�B�� q�C�D��,
propagation can appears in two different cases:

1. If color�p� � � and color�q� � � then there is, at least,
one hyper red node p whose redness excess must be
propagated up. The following hyper red propagation
looks after this first case. We have also the symmetrical
case.

2. If color�p� � color�q� � � then both nodes are red. If
one of the roots of A�B�C�D is red or hyper-red we
have a chaining of two red nodes. The red propagation
rule looks after this second case.

Rule : HyperRed Propagation

Guard: A subtree n�p�A�B�� q�C�D�� such that p is
hyper-red and q red or hyper-red (see Figure 1a).

Behavior: Update colors with
color�n�� � color�n� � �

color�p�� � color�p�� � �

color�q�� � color�q� � �

Spatial Scope: Nodes n� p� q.

Note: If color�p� � � and color�q� � � we have the
symmetric case.

Rule : Red Propagation

Guard: A subtree n�p�A�B�� q�C�D�� such that
color�p� � color�q� � � and, at least, one of
the roots of the subtrees A�B�C and D is not
black (see Figure 1b).

Behavior: Update colors with
color�n�� � color�n� � �

color�p�� � color�q�� � �.

Spatial Scope: Nodes n� p� q.

Due to the local character of propagations, we have the
following easy lemma:

Lemma 1 The two rules HyperRed Propagation and Red
Propagation transform any HyperRed-Black subtree into an-
other HyperRed-Black subtree.

3.2 Rotation rules

They are applied when one son cannot propagate the
redness up because its brother is black. This obstruction is
weakened by rotating down the black brother. For instance,
given n�p�� � ��� q�� � ��� with p red or hyper-red and q black,
a single right rotation around node n gives the new root p �

and moves down the black node q. But the main drawback
appears with the maintenance of the propertyP �

� which says
that the sum of colors on any path from the root to any leaf
must remain unchanged. Note that the color of p only adds
to paths which traverse across its sons, then it cannot carry
its color when it is rotated. Therefore node p is forced to
be red, and this fact is only accomplished by restoring the
hyper redness of p down to its sons: rotations undo previous
propagations!

We consider two cases depending on the redness of p. In
both cases we do not need n black, node n can have any
color.

1. If color�p� � � we deal with hyper-red rotation rules.
These rules propagate the excess of redness of p down
and rotate around node n.

2. If color�p� � �, node p is red. The problem appears
when p has a red or hyper red son. In thiscase we have a
chain of red nodes. Therefore red rotation rules appear
as a generalization of the sequential case because they
deal with a chaining of two nodes.

HyperRed rotations: They occur when p is an hyper-red
node. After the color of p is propagated down, a single or
double rotation should be done. We perform the rotation
which moves more redness up. For instance, if r is “more
red” than s (formally color�r� � color�s�) a single rotation
moves the redness of r up. Otherwise we need a double
rotation. Let us formally define both cases.

4



cn

cp

cr cs

n

1
p q

r s

A
B

C
D

E
F

cn

cp cs+

cp cr+

p’

r’ n’

s’ q’

0

1

FE
A

B

C
D

Figure 2. Single HyperRed Rotation rule

Rule : Single HyperRed Rotation

Guard: n�p�r�A�B�� s�C�D��� q�E�F �� is a subtree
such that p is hyper-red, q is black and color�r� �
color�s�.

Behavior: It performs a single right rotation around
n getting p��r��A�B�� n��s��C�D�� q��E�F ����
Colors are updated as (see Figure 2)
color�p�� � color�n�,
color�n�� � �,
color�r�� � color�p� � color�r�,
color�s�� � color�p� � color�s�.

Spatial Scope: Nodes n� p� q� r� s.

Note: We have the symmetrical case: p is black, q is
hyper-red and the right son of q is more red than
its brother.

Recall that a double hyper-red rotations is needed in
n�p�r�� � ��� s�� � ���� q�� � ��� if s is more red than r. In this
case, in addition to the down propagation of p redness, the
redness of s must be propagated down. Formally:

Rule : Double HyperRed Rotation

Guard: n�p�r�A�B�� s�t�C�D�� u�E�F ��� q�G�H��
is a subtree with p hyper-red, q black and
color�r� � color�s�

Behavior: Perform a double right rotation around
node n and update colors (see Figure 3).

cn

cp

cr cs

ct cu

n

p q
1

r

A
B

C
D

E F

s G H

ut

cp

cr

0
n’

cn

s’

cs ct+ cp cs cu+ +

p’

r’ t’

A
B C

D

u’

E
F

q’
1

G H

Figure 3. Double HyperRed Rotation rule

color�s�� � color�n�,
color�n�� � �,

color�t�� � color�s� � color�t�,
color�u�� � color�p� � color�s� � color�u�,
The colors of p� r and q do not have changed.

Spatial Scope: Nodes n� p� q� r� s� t� u� q.

Note: We have the symmetric case.

Red rotations: A subtree n�p�r�� � ��� s�� � ���� q�� � ��� needs
a red rotation when p is red, q is black and one of the sons
of p is red or hyper-red. Therefore we have a problem of
chaining of red red nodes. As before we consider two rules.
We give only the guards. To have behavior it is enough to
take cp � � in the hyper red rotation rules. It is necessary
to emphasize that red rotations are not an special case of
hyper-red rotations because they have different guards.

Rule : Single Red Rotation

Guard: n�p�r�A�B�� s�C�D��� q�E�F �� is a subtree
such that p red, q is black, one of the nodes r or s
is not black and color�r� � color�s�.

Behavior: (see Figure 4).

5



cn

cr cs cn

cr

cs

p’

r’

A
B

C
D E F

s’ q’
1

0
n’

n

0
p q

A
B

C
D

E

1

F
r s

Figure 4. Single Red Rotation rule

Rule : Double Red Rotation

Guard: n�p�r�A�B�� s�C�D��� q�E�F �� is a subtree
such that p red, q is black, one of the nodes r or s
is not black and color�s� � color�r�.

Lemma 2 The two HyperRed Rotation and Red Rotation
rules transform an HyperRed-Black subtree into another
HyperRed-Black subtree.

Proof: Only Hyper-Red Rotation rules increase the color
of some nodes, specifically node p on single rotations and
nodes p� s on double rotations (s can decrease too). Node
p increases from a negative value to zero, and node s, if so,
from color�s� to color�n�. Then none node acquire a color
bigger than one, therefore property P �

� holds.
Some nodes receive redness units from their parents. But
the guard of rotation rules forces these nodes to be interior
nodes. Therefore leaves are maintained blacks, and property
P �

� holds.
PropertyP �

� holds because the sum of colors from node n to
a leaf is the same as the sum from node p� to a leaf (single
rotation rules), or from node s� to a leaf (double rotation
rules). For instance, let l be a leaf of subtree E of Figure 3.
The nodes of E do not have changed, so blackness�u� �
blackness�u��. As color�n� � color�s�� we only take into
account the color of nodes nodes p� s� u and n�� u�. But
color�p�� color�s�� color�u� � color�n��� color�u��. 	


3.3 Blacking rule

As in the sequential algorithm the redness of the root can
be decreased

Rule : Blacking the Root

Guard: The root is red or hyper-red.

Behavior: Take one unit of redness off and updates
color�root�� � color�root� � �.

Spatial Scope: The root.

Lemma 3 The rule Blacking the Root transform an
HyperRed-Black tree into another HyperRed-Black tree

4 Correctness

The correctness is ensured by the safety and the liveness
properties. The safety property guarantees that, whenever
we start from a basic HyperRed-Black tree, any tree obtained
through the rules is fine: nothing bad may happen. The
liveness property ensures that the sequence of rules is finite.

To deal with correctness we need to consider a restricted
version of HyperRed-Black trees.

Definition 3 We call an HyperRed-Black tree standard if
any node n verifies:

� The blackness cannot be negative, then we have
blackness�n� � �.

� There is enough blackness to take care of the color.
More formally, blackness�n� � color�n� � �.

Note that any basic tree and any Red-Black tree are standard.
By induction on the set of rules we obtain the following
lemma:

Lemma 4 	safety

Any HyperRed-Black tree obtained starting from a basic tree
and applying a set of rules is standard. Moreover, if no rule
applies, the tree is a Red-Black tree.

The liveness property is more difficult to prove because
the hyper-red rotation rules undo previous propagations. Re-
call that, intuitively“hyper-red rotations move redness down
and further rotate”. Then we need to analyze more carefully
the relationship between the blackness and the color. Given
a red or hyper-red node n having color �c (with c � �) we
split c into c � � units of red having labels

C�n� � fc� c� �� � � � � �g�

and we determine the set of levels

L�n� � f blackness�n�� c�

blackness�n�� �c� ��� � � � �

blackness�n�� �g�

6



2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000 16000

Figure 5. Number of rules applied to balance binary trees of size 10 with hyper-red rules.

We define the set of red or hyper-red nodes (with a red or
hyper-red brother) such that accept a unit of redness propa-
gation of level l:

Pl � fn j color�n� � �� l � L�n�

color�brother�n�� � �g�

Therefore, if the color of n is�c and the blackness is b, then
node n belongs to the following sets

Pb�c� Pb�c��� � � �Pb

Note that b � c � blackness�n� � color�n� is the smallest
index. An analog definition is given to split nodes accepting
rotations:

Rl � fn j color�n� � �� l � L�n��

color�brother�n�� � �g

Given n, this node can be considered as the root of a subtree.
We call Inside�n� the number of nodes in such a tree. We
define:

Il �
X
n�Rl

Inside�n�

In a given step t of the algorithm we can consider the fol-
lowing array (given a set S, we note as �S the number of
elements):

V�t� �

� �
I�

�P�

�
�

�
I�
�P�

�
� � � � �

�
Il

�Pl

�
� � � �

�

Given two arrays V and V�, we say that V � V� if exists an
index l � � such that for all j � l we have Ij � I�j and
�Pj � �P �

j, and

� I�l � Il

� or Il � I�l and �P �

l � �Pl.

The function V�t� can be used as a variant function in
HyperRed-Black trees as we see in the following lemma.

Lemma 5 	liveness

Any application of a propagation or a rotation rule strictly
decreases the function V�t�.

Proof: In a propagation rule from n�p�� � ��� q�� � ��� to
n��p��� � ��� q��� � ��� take l � blackness�p��color�p�. Then
l is the smallest index such that p� q � Pl. The propagation
rules increase the color of p and q. Therefore p� q �� Pl, and
P �

l � Pl � �. The quantity Il does not increase because Rl

remains constant. It could happen that Rl�� increases.
In a single rotation rule n�p�r�� � ��� s�� � ���� q�� � ��� take l �
blackness�s��color�s� and b � l�color�p�. Then l is the
smallest index such that r� s � Pl, and b the smallest index
such that p � Rb. As rotation rules undo previous jcolor�p�j
propagations, the nodes r� swill belong to the followingsets
with smaller indexes than l: Pl� Pl��� � � � � Pb. But, when
node p is rotated down, the inside of Rb strictly decreases,
therefore I�b � Ib. 	


The Blacking the Root rule does not change the variant
function V�t�. However, this variant function can be easily
modified to take care of this case. Therefore the proposed
algorithm is totally correct. In the following sections we
will consider their experimental behavior.

5 Experimental evaluation

In this section we analyze the performance of the con-
current rebalancing algorithm. We generate the sequence of

7



0

500

1000

1500

2000

2500

3000

20 40 60 80 100

Figure 6. Number of failures (two upper lines)
and successes (two down lines) needed to
rebalance a linked list of � � n � ��� nodes
into a Red-Black tree. Solid lines depict the
HyperRed-Black case. Dotted lines depict the
Chromatic case.

all binary trees of ten nodes, and for each one, we count the
number of rules needed to balance it.

The trees have been created following M. Solomon
and R. A. Finkel [9]. The first tree of size h, denoted
firsth, is the linked list such that all internal nodes are left
sons, and the lasth tree is the symmetric one. The func-
tion next, which generates the sequence of trees, is de-
fined as follows. Let t � n�A�B� be a binary tree such
that size�A� � a and size�B� � b, if B �� lastb then
next�t� � n�A� next�B��. If B � lastb and A �� lasta then
next�t� � n�next�A�� firstb�. Finally, if A and B are the
last trees of their size transfer one node fromA toB and take
next�t� � n�firsta��� firstb���. Recall that the number of
trees is determined by the Catalan number

B�n� �

�
�n

n

�
�

n� ��
, then B���� � ��
���

The function next locates the balanced trees in the mid-
dle of the sequence, whereas the extremes contain linear
trees. Note that the firsts B��� � ���� trees of Figure 5 are
those trees with size�A� � � and empty B. The follow-
ing B��� � ���� trees, which start in point 4893 and end
in point 6322, are those trees such that size�A� � � and
size�B� � �, and so on. This construction technique gives
the fractal nature of the function.

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

Figure 7. Number of failures between consec-
utive successes when a linked list (of size
100) is transformed into a Red-Black tree.
Solid line depicts the a HyperRed-Black case.
Dotted line depicts the Chromatic approach.

For each tree we count the number of propagation and
rotation rules needed to obtain a Red-Black tree. At each
step, a node is selected randomly, and (if possible) updated.
As the rules have exclusive guards, at most one rule applies
every time. The process continues until no rule applies
anywhere. The idea of random selections is commonly used
in Hopfield networks [4] and it has also been used in the
concurrent rebalancing of the AVL trees in [8, 1].

The figure 5 shows the expected number of rules for the
sequence of trees. Each tree has been randomly balanced
one hundred times (this quantity ensure us a relative error
of data smaller than 5%). Balanced trees (located in the
middle) are quickly transformed into a Red-Black trees (with
less than 9 rules and in some cases only 2 rules). Unbalanced
trees need more than 10 rules (and in some cases 14 rules).

6 Average behavior of Chromatic versus
HyperRed-Black trees

In the following we compare HyperRed-Black trees with
Chromatic trees. More specifically, we consider the average
time rebalancing of trees. This time is computed by counting
the number of steps needed to obtain a Red-Black tree. At
each step, one node is selected randomly and (if possible)
updated. It is possible to choose a locally stable node,

8



0

100

200

300

400

500

600

20 40 60 80 100

Figure 8. Number of failures (two upper lines)
and successes (two almost equals down
lines) needed to transform a balanced tree of
� � n � ���nodes into a Red-Black tree. Solid
lines depict the HyperRed-Black case. Dotted
lines depict the Chromatic case.

where no rule applies. In this case, the rebalance of the tree
does not progress at all and we count this step as a failure.
Otherwise, the node is locally unstable and can be updated.
We make progress and we count this step as a success.

We analyze two extreme cases. First, the linked list case
in which the basic tree is a linked list. Second, the balanced
tree case in which the basic tree is an almost complete binary
tree fulfilled by levels.

� Linked list case: We explore the average time needed
to rebalance a linear linked list into a Red-Black tree
(see Figure 6). According to the experimental results
the number of successes is linear in relation to the num-
ber of nodes. The HyperRed-Black approach behaves
as ���n, and the Chromatic one gives us ��
n. On
the other hand, the number of failures is almost linear
for the HyperRed-Black case and clearly quadratic for
the Chromatic case. Specifically, we have ����n and
����n�.

The figure 7 confirms the quadratic behavior of the
Chromatic rules. Initially rotation rules can be applied
on many nodes. But when the tree has become ‘bal-
anced’ (after 60 successes) propagation rules must be
applied, and from this time, there are O�n� trials for

0

10

20

30

40

10 20 30 40

Figure 9. Number of failures between consec-
utive successes when a balanced tree (of size
100) is transformed into a Red-Black tree. The
solid line depicts the HyperRed-Black case,
the dotted line depicts the Chromatic case

each success.

� Balanced tree case: Figure 8 shows the experimental
results for this case. HyperRed-Black rules behaves as
����n and Chromatic rules as ����n. The number of
failures seems to be almost linear, specifically ����n in
the HyperRed-Black case and ����n in the Chromatic
case.

The Figure 9 shows clearly the drawback of chromatic
rules. As the initial tree is balanced rotations do not take
place and propagations can be made if the grandfather
node is black. But the basic initial tree is a big cluster
of red nodes with a black root. In this case, only the
root accepts the application of a rule, and this node
should be found randomly.

Of course, HyperRed-Black trees accept more rules than
Chromatic trees. Therefore, it is easier to select a unstable
node in a HyperRed-Black tree than in a Chromatic tree.
Intuitively, HyperRed-Black trees have more freedom to
evolve than Chromatic trees. However it is not clear why
the increase of freedom is a good strategy. Note that, the total
number of steps is minor in HyperRed-Black tree case. This
fact is not obvious at all to us. The excess of freedom could
generate a kind of almost-compensating effects giving very

9



low convergence rate (these facts makes proof of safeness
difficult). However, this not happens with random access.

7 Conclusions

We have designed a new type of relaxed Red-Black trees
called HyperRed-Black trees. These trees overcome the
grandparent bottleneck problem appearing in Chromatic
trees because HyperRed-Black trees accept hyper-red nodes
(nodes with many degrees of redness). Then HyperRed-
Black trees can always propagate the redness up.

We have found a set of propagation, rotation and blacking
rules. They can be applied to a node in any order as soon as
their guards are satisfied. Any final tree obtained applying
these rules is a Red-Black tree (safety property), and any
sequence of applications is finite (liveness property).

We have implemented and compared both HyperRed-
Black with Chromatic trees. The experimental conclusions
are

1. HyperRed-Black trees need more updates than Chro-
matic trees.

2. HyperRed-Black trees fail less than Chromatic trees.

3. HyperRed-Black trees progress better than Chromatic
trees.

In section 4 we have proved the convergence of the rebal-
ancing procedure. However, the variant function suggests
us bad bounds when compared with experimental results.
Based on the preceding results and also in similar results
obtained for AVL trees [1] we conjecture:

Conjecture 1 The expected number of rules needed to re-
balance a binary search tree is linear (in relation to the size
of the tree) in Chromatic and HyperRed-Black trees.

References

[1] L. Bougé, J. Gabarró, X. Messeguer, and N. Schabanel. Con-
current rebalancing of AVL trees: a fine-grained approach.
In EuropeanConference in Parallel Processing (Europar’97),
To be published by Springer-Verlag in LNCS, 1997. Also
appeared as a Tech. Rep LSI-97-10R. LSI. UPC. Barcelona.

[2] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algo-
rithms. McGraw Hill, MIT, 1990.

[3] E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and E. Stef-
fens. On-the fly garbage collection: an exercise in cooperation.
CACM, 21:966–975, 1978.

[4] J. Hopfield. Neural networks and physical systems with emer-
gent collective computational abilities. In Proc. of National
Academy of Science, USA, volume 79, pages 2554–2558,
1982.

[5] J. Kessels. On-the-fly optimization of data structures. CACM,
26(11):895–901, 1983.

[6] H. Kung and P. Lehman. Concurrent manipulation of binary
search trees. ACM Trans. Database Systems, 5(3):354–382,
1980.

[7] O. Nurmi and E. Soisalon-Soininen. Chromatic binary search
trees: A structure for concurrent rebalancing. Acta Informat-
ica, 33(6):547–557, 1996. Also appearedin 10th ACM PODS,
1991.

[8] N. Schabanel. Equilibrage AVL distribué d’arbres binaires de
recherche. Stage de D.E.A, Printemps 1996.

[9] M. Solomon and R. Finkel. A note on enumerating binary
tree. JACM, 27(1):3–5, 1980.

10


