Concurrent Rebalancing on HyperRed-Black Trees

Joaquim Gabarró Xavier Meseguer Daniel Riu
Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics
Campus Nord–Mòdul C6
C/ Jordi Girona Salgado, 1–3
08034 Barcelona, Spain
Contact author: meseguer@lsi.upc.es

Abstract

The HyperRed-Black trees are a relaxed version of Red-Black trees accepting high degree of concurrency. In the Red-Black trees consecutive red nodes are forbidden. This restriction has been withdrawn in the Chromatic trees. They have been introduced by O. Nurmi and E. Soisalon-Soininen to work in a concurrent environment. A Chromatic tree can have big clusters of red nodes surrounded by black nodes. Nevertheless, concurrent rebalancing of Chromatic trees into Red-Black trees has a serious drawback: in big cluster of red nodes only the top node can be updated. Direct updating inside the cluster is forbidden. This approach gives us limited degree of concurrency. The HyperRed-Black trees has been designed to solve this problem. It is possible to update red nodes in the inside of a red cluster. In a HyperRed-Black tree nodes can have a multiplicity of colors; they can be red, black or hyper-red.

1 Introduction

Red-Black trees have been recognized as an important data structure [2]. They are highly balanced search trees. Each node n stores a key, denoted $\text{key}(n)$, and each internal node n stores three pointers $\text{left}(n)$, $\text{right}(n)$ and $\text{parent}(n)$ pointing respectively to its sons and parent. The trees satisfy the following red-black properties:

P_1: Every node is either red or black.

P_2: Every leaf (NIL) is black.

P_3: If a node is red then both its children are black. This is equivalent to, no path from the root to a leaf contains two consecutive red nodes.

P_4: Every simple path from a node to a leaf contains the same number of black nodes.

P_5: The last condition allow us to define the function blackness (called black-height in [2]):

$$\text{blackness}(n) = \text{the number of black nodes on any path from, but not including, a node } n \text{ to a leaf.}$$

The blackness is computed by counting the black nodes, therefore it makes sense to encode the color as a flag $\text{color}(n) \in \{1, 0\}$ such that:

1. A node n is black iff $\text{color}(n) = 1$.
2. A node n is red iff $\text{color}(n) = 0$.

Then we can write $\text{blackness}(n) = \sum \text{color}(u)$, being the sum on any path from, but not including, a node n to a leaf. And the fourth property P_4 can be rewritten:

P_4: Every simple path from a node to a leaf has the same sum of colors. Therefore, for any node n the $\text{blackness}(n)$ is well defined.

In the following sections, we deal with the concurrent rebalancing problem for Red-Black trees. First, let us consider the rebalancing problem in a sequential environment. The sequential insertion algorithm has two parts.
1. In a percolation part, the key to be inserted falls until it is attached to a new red node \(n \) at the bottom of the tree. As \(n \) is red, the property \(P_2 \) is maintained.

2. If the parent of \(n \) is black all the red-black properties are maintained and the insertion is over. Otherwise, \(n \) and parent(\(n \)) are red and \((P_2)\) is false. In this case a bottom-up reconstruction part starts. The redness of consecutive nodes rises up (see later the Red Propagation and Red Rotation rules). Finally, if the root becomes red it is colored black (see later the Blacking the Root rule).

Let us describe the preceding rules. Always, \(n \) and parent(\(n \)) are red but (if it exists) the grandparent of \(n \) is black. If uncle(\(n \)) is also red, it is possible to move up the redness “one step up” changing the color of the uncle. The “shape” of the tree is kept constant. Formally, we have the following rule:

Rule: Red Propagation

Guard: Both, parent(\(n \)) and uncle(\(n \)) are red (recall that grandparent of \(n \) is black).

Behavior: The parent(\(n \)) and uncle(\(n \)) become black and the grandparent becomes red.

Spatial Scope: Nodes parent(\(n \)), uncle(\(n \)) and the grandparent of \(n \).

If the uncle is black the preceding rule does not apply. In this case, a rotation or a double rotation allow us to move down the blackness of the uncle. The shape of the tree changes. This rule does not allow us propagate redness up.

Rule: Red Rotation

Guard: The parent(\(n \)) is red but uncle(\(n \)) is black (as before, the grandparent of \(n \) is black).

Behavior: A rotation (single or double) takes place around the grandparent of \(n \).

Spatial Scope: Nodes involved in the rotation.

Finally, if the pair \(n \) and parent(\(n \)) of red nodes reaches the root of the tree (we mean parent(\(n \)) = root), the color of the root must be changed. Formally:

Rule: Blacking Root

Guard: The root is red.

Behavior: Color the root black.

Spatial Scope: The root.

The on-the-fly concurrent approach, designs algorithms as a set of local evolution rules. The control is kept as non-deterministic as possible. Any rule can be selected and applied to a node in any order as soon as its guards are satisfied. The rules assume temporal atomicity (they are composed by a small and fixed number of assignments and tests) and spatial atomicity (they need exclusive access to a fixed and small number of neighboring nodes). This approach was first undertaken by H.T. Kung and P.L. Lehman [6]. Later on, inspired by on-the-fly garbage collection algorithms [3], J.L.W. Kessels [5] found the first safe and live algorithm for AVL trees.

In a recent paper, O. Nurmi and E. Soisalon-Soininen[7] introduce an extension of Red-Black trees called Chromatic trees. Chromatic trees support concurrent rebalancing after a set of insertions or deletions. The authors are mainly interested in the concurrent rebalancing after a set of deletions. To deal adequately with this problem Chromatic trees verify:

1. The property \((P_2)\) of the Red-Black is maintained.

2. Condition \((P_2)\) is relaxed accepting overweighted nodes. In a Chromatic tree, a red node \(n \) has color(\(n \)) = 0 as before. The situation changes with black nodes which can be overweighted such that color(\(n \)) \(\in \{1, 2, \ldots \} \).

As in the case of Red-Black trees the blackness(\(n \)) is a well-defined function. To maintain this function after a set of deletions, the remaining nodes need to “charge with the redness” of missing black sons. This is the cause of color(\(n \)) \(\in \{1, 2, \ldots \} \).

In the Chromatic trees, many new red nodes can be attached before some rebalancing process starts. Therefore, big clusters of red nodes can be generated. As O. Nurmi and E. Soisalon-Soininen [7] are mainly interested in deletions, their concurrent rebalancing algorithm has the following drawback:

IMPROVEMENT: The redness of a node can be propagated even though the parent was red. Therefore, it is possible to work concurrently “in the middle” of red chains. Therefore it exists a better degree of concurrency.

This means that we deal with a new sort of hyper-red nodes, and a new sort of rules and trees. In our case, nodes cannot
be deleted, therefore we need just one black color (in the
case that a node is black color(n) = 1). However nodes can
be inserted, and we accept many red colors (if a node is red
color(n) ∈ \{0, -1, ...\}). These two assumptions are at the
base of the HyperRed-Black trees introduced in this paper.

The rest of paper is organized as follows. In section 2
we introduce HyperRed-Black trees. Section 3 is devoted to
explain the set of rules defined to overcome the grandparent
bottleneck. In section 4 we consider the correctness of the
algorithm and raising a conjecture. Finally we conclude our work introducing some
experimental evaluation and comparison with the Chromatic
concurrent rebalancing. Sections 5 and 6 are devoted to
the rest of paper.

2 HyperRed-Black trees

Our improvement consists in that the redness can be ac-
cumulated in nodes, then we accept nodes having a powerful
range of red tones. We define:

1. A node n is black iff color(n) = 1.
2. A node n is red iff color(n) = 0.
3. A node n is hyper-red iff
color(n) ∈ \{-1, -2, -3, ...\}.

Two reasonable consequences of redness accumulation
are the following:

- The condition P₂, which forces red nodes to have black
 sons, must be ignored. Notice that two hyper red
 sons may propagate some redness units up and remain
 hyper-red.

- The blackness function also takes into account the
 hyper-red nodes, blackness(n) = \sum color(u) being
 the sum on any path from, but not including, a node n
to a leaf.

Therefore we obtain the following relaxed version of
Red-Black trees so called HyperRed-Black trees:

Definition 1 An HyperRed-Black tree is a binary search
tree satisfying the following conditions:

\(P₁ : \text{Every node is either red, black or hyper-red.} \)

\(P₂ : \text{Every leaf (NIL) is black.} \)

\(P₃ : \text{Every simple path from a node to a leaf has the same} \)
\(\text{sum of colors.} \)

Note that a Red-Black tree is an HyperRed-Black tree
with the following two restrictions which can be locally
tested:

\(R₁ : \text{all the colors are 0 or 1} \)

\(R₂ : \text{if a node is red then both its children are black.} \)

In the following, we are interested in the concurrent re-
balancing of (an arbitrary) binary search tree into a Red-
Black tree. Dealing with this problem we associate to any
binary search tree its basic HyperRed-Black tree, and we
design a set of local rules such that

- they translate HyperRed-Black trees into HyperRed-
 Black trees, and
- they could be applied as soon as the restrictions \(R₁ \) and
 \(R₂ \) of Red-Black trees are not accomplished.

We start with the following definition of basic HyperRed-
Black tree:

Definition 2 Given a binary search tree \(T \) (having NIL
nodes as a leaves) its basic HyperRed-Black tree is obtained
coloring it as follows. The root is black color(root) = 1.
All the internal nodes n (different from the root) are red,
color(n) = 0. All the NIL nodes are black, color(NIL) = 1.

For any basic HyperRed-Black tree it holds for any
interior node n, blackness(n) = 1, and for all leaves,
blackness(leaf) = 0.

3 Rules

We design a set of rules dealing with red clusters. To do
this we focus the following problems:

1. The interior of a red cluster does not contain black
 nodes. Brothers are colored red or hyper-red, then their
 redness must be moved up. The following Propagation
 rules solve this problem.

2. In the frontier of a red cluster there are red or hyper
 red nodes having black brothers. A way to solve the
 problem consists to rotate black nodes down. The
 rotation rules are given to deal with this situation.

3. Finally, if the root of the tree becomes red or hyper red
there is no problem to black it. The rule blacking the
root allows us to make the root black.

For the sake of clarity, we adopt the following notation:
n(A, B) denotes the (sub)tree with root n, left son A
and right son B. The final state of a node n once a rule has
been applied is denoted \(n' \). Unless specified, it is identical
to the initial state. The figures are drawn with the same
convention. We have only added the color of a node n as
the superscript \(cₙ \).
a) HyperRed Propagation:

![Diagram](image)

3.1 Propagation rules

They can be applied when both brothers are red or hyper-red, and move one unit of redness up from the sons to the parent. Suppose we have a subtree \(n(p(A, B), q(C, D)) \), propagation appears in two different cases:

1. If \(\text{color}(p) < 0 \) and \(\text{color}(q) \leq 0 \) then there is, at least, one hyper red node \(p \) whose redness excess must be propagated up. The following hyper red propagation looks after this first case. We have also the symmetrical case.

2. If \(\text{color}(p) = \text{color}(q) = 0 \) then both nodes are red. If one of the roots of \(A, B, C, D \) is red or hyper-red we have a chaining of two red nodes. The red propagation rule looks after this second case.

Rule : HyperRed Propagation

Guard: A subtree \(n(p(A, B), q(C, D)) \) such that \(p \) is hyper-red and \(q \) red or hyper-red (see Figure 1a).

Behavior: Update colors with

\[
\begin{align*}
\text{color}(n') &= \text{color}(n) - 1 \\
\text{color}(p') &= \text{color}(p') + 1 \\
\text{color}(q') &= \text{color}(q') + 1
\end{align*}
\]

Spatial Scope: Nodes \(n, p, q \).

Note: If \(\text{color}(p) < 1 \) and \(\text{color}(q) < 0 \) we have the symmetric case.

b) Red Propagation:

![Diagram](image)

Rule : Red Propagation

Guard: A subtree \(n(p(A, B), q(C, D)) \) such that \(\text{color}(p) = \text{color}(q) = 0 \) and, at least, one of the roots of the subtrees \(A, B, C \) and \(D \) is not black (see Figure 1b).

Behavior: Update colors with

\[
\begin{align*}
\text{color}(n') &= \text{color}(n) - 1 \\
\text{color}(p') &= \text{color}(q') = 1.
\end{align*}
\]

Spatial Scope: Nodes \(n, p, q \).

Due to the local character of propagations, we have the following easy lemma:

Lemma 1 The two rules HyperRed Propagation and Red Propagation transform any HyperRed-Black subtree into another HyperRed-Black subtree.

3.2 Rotation rules

They are applied when one son cannot propagate the redness up because its brother is black. This obstruction is weakened by rotating down the black brother. For instance, given \(n(p(\ldots), q(\ldots)) \) with \(p \) red or hyper-red and \(q \) black, a single right rotation around node \(n \) gives the new root \(p' \) and moves down the black node \(q \). But the main drawback appears with the maintenance of the property \(P_2 \) which says that the sum of colors on any path from the root to any leaf must remain unchanged. Note that the color of \(p \) only adds to paths which traverse across its sons, then it cannot carry its color when it is rotated. Therefore node \(p \) is forced to be red, and this fact is only accomplished by restoring the hyper redness of \(p \) down to its sons: **rotations undo previous propagations!**

We consider two cases depending on the redness of \(p \). In both cases we do not need \(n \) black, node \(n \) can have any color.

1. If \(\text{color}(p) < 0 \) we deal with hyper-red rotation rules. These rules propagate the excess of redness of \(p \) down and rotate around node \(n \).

2. If \(\text{color}(p) = 0 \), node \(p \) is red. The problem appears when \(p \) has a red or hyper red son. In this case we have a chain of red nodes. Therefore red rotation rules appear as a generalization of the sequential case because they deal with a chaining of two nodes.

HyperRed rotations: They occur when \(p \) is an hyper-red node. After the color of \(p \) is propagated down, a single or double rotation should be done. We perform the rotation which moves more redness up. For instance, if \(r \) is “more red” than \(s \) (formally \(\text{color}(r) \leq \text{color}(s) \)) a single rotation moves the redness of \(r \) up. Otherwise we need a double rotation. Let us formally define both cases.
Rule: Double HyperRed Rotation

Guard: $n(p(r(A, B), s(C, D)), q(E, F))$ is a subtree such that p is hyper-red, q is black and $\text{color}(r) \leq \text{color}(s)$.

Behavior: It performs a double right rotation around n. Colors are updated as (see Figure 3)

- $\text{color}(s') = \text{color}(n)$,
- $\text{color}(n') = 0$,
- $\text{color}(r') = \text{color}(p) + \text{color}(r)$,
- $\text{color}(s) = \text{color}(p) + \text{color}(s)$.

Spatial Scope: Nodes n, p, q, r, s.

Note: We have the symmetrical case. p is black, q is hyper-red and the right son of q is more red than its brother.

Recall that a double hyper-red rotations is needed in $n(p(r, s, t), q(s, t, u))$ if such a subtree needs a red rotation when p is red, q is black and one of the sons of p is red or hyper-red. Therefore we have a problem of chaining of red red nodes. As before we consider two rules. We give only the guards. To have behavior it is enough to assume that red nodes do not have changed.

Rule: Single Red Rotation

Guard: $n(p(r(A, B), s(C, D)), q(E, F))$ is a subtree such that p is red or hyper-red and $\text{color}(r) \leq \text{color}(s)$.

Behavior: Perform a single right rotation around node n and update colors (see Figure 4).
3.3 Blacking rule

As in the sequential algorithm the redness of the root can be decreased

Rule : Blacking the Root

\[\text{Guard: } \text{The root is red or hyper-red.} \]
\[\text{Behavior: } \text{Take one unit of redness off and updates } \]
\[\text{color}(\text{root}') = \text{color}(\text{root}) + 1. \]
\[\text{Spatial Scope: } \text{The root.} \]

Lemma 3 The rule Blacking the Root transform an HyperRed-Black tree into another HyperRed-Black tree

4 Correctness

The correctness is ensured by the safety and the liveness properties. The safety property guarantees that, whenever we start from a basic HyperRed-Black tree, any tree obtained through the rules is standard: nothing bad may happen. The liveness property ensures that the sequence of rules is finite.

To deal with correctness we need to consider a restricted version of HyperRed-Black trees.

Definition 3 We call an HyperRed-Black tree standard if any node \(n \) verifies:

- The blackness cannot be negative, then we have \(\text{blackness}(n) \geq 0 \).
- There is enough blackness to take care of the color. More formally, \(\text{blackness}(n) \geq 0 \).

Note that any basic tree and any Red-Black tree are standard. By induction on the set of rules we obtain the following lemma:

Lemma 4 [safety]

Any HyperRed-Black tree obtained starting from a basic tree and applying a set of rules is standard. Moreover, if no rule applies, the tree is a Red-Black tree.

The liveness property is more difficult to prove because the hyper-red rotation rules undo previous propagations. Recall that, intuitively “hyper-red rotations move redness down and further rotate”. Then we need to analyze more carefully the relationship between the blackness and the color. Given a red or hyper-red node \(n \) having color \(-c\) (with \(c \geq 0 \)) we split \(c \) into \(c + 1 \) units of red having labels

\[C(n) = \{ c, c - 1, \ldots, 0 \}, \]

and we determine the set of levels

\[L(n) = \{ \text{blackness}(n) - c, \text{blackness}(n) - (c - 1), \ldots, \text{blackness}(n) - 0 \}. \]
We define the set of red or hyper-red nodes (with a red or hyper-red brother) such that accept a unit of redness propagation of level l:

$$P_l = \{ n \mid \text{color}(n) \leq 0, \; l \in L(n), \text{color(brother}(n)) \leq 0 \}.$$

Therefore, if the color of n is $-c$ and the blackness is b, then node n belongs to the following sets

$$P_{b-c}, P_{b-c+1}, \ldots, P_b$$

Note that $b - c = \text{blackness}(n) + \text{color}(n)$ is the smallest index. An analog definition is given to split nodes accepting rotations:

$$R_l = \{ n \mid \text{color}(n) \leq 0, \; l \in L(n), \text{color(brother}(n)) = 1 \}$$

Given n, this node can be considered as the root of a subtree. We call $\text{Inside}(n)$ the number of nodes in such a tree. We define:

$$R_l = \sum_{n \in R_l} \text{Inside}(n)$$

In a given step t of the algorithm we can consider the following array (given a set S, we note as $\#S$ the number of elements):

$$\mathcal{V}(t) = \left[\left[\frac{l_1}{\#P_1} \right], \left[\frac{l_2}{\#P_2} \right], \ldots, \left[\frac{l_t}{\#P_t} \right], \ldots \right]$$

Given two arrays \mathcal{V} and \mathcal{V}', we say that $\mathcal{V} > \mathcal{V}'$ if exists an index $l > 0$ such that for all $j < l$ we have $l_j = I_j$ and $\#P_j = \#P_j'$, and

- $I_l' < I_l$
- or $I_l = I_l'$ and $\#P_l' < \#P_l$.

The function $\mathcal{V}(t)$ can be used as a variant function in HyperRed-Black trees as we see in the following lemma.

Lemma 5 [liveness]

Any application of a propagation or a rotation rule strictly decreases the function $\mathcal{V}(t)$.

Proof: In a propagation rule from $n(p, \ldots, q, \ldots)$ to $n'(p', \ldots, q', \ldots)$ take $l = \text{blackness}(p) + \text{color}(p)$. Then l is the smallest index such that $p, q \in P_l$. The propagation rules increase the color of p and q. Therefore $p, q \notin P_l$, and $P_l' = P_l - 2$. The quantity I_l does not increase because R_l remains constant. It could happen that R_{l+1} increases. In a single rotation rule $n(p(r), \ldots, s, \ldots, q, \ldots)$ take $l = \text{blackness}(s) + \text{color}(s)$ and $b = I + \text{color}(p)$. Then l is the smallest index such that $r, s \in P_l$, and b the smallest index such that $p \in R_b$. As rotation rules undo previous $\text{color}(p)$ propagations, the nodes r, s will belong to the following sets with smaller indexes than l: $P_1, P_2, \ldots, P_{b_0}$. But, when node p is rotated down, the inside of R_{b_0} strictly decreases, therefore $l_{b_0} < b_0$. □

The Blacking the Root rule does not change the variant function $\mathcal{V}(t)$. However, this variant function can be easily modified to take care of this case. Therefore the proposed algorithm is totally correct. In the following sections we will consider their experimental behavior.

5 Experimental evaluation

In this section we analyze the performance of the concurrent rebalancing algorithm. We generate the sequence of
Figure 6. Number of failures (two upper lines) and successes (two down lines) needed to rebalance a linked list of $0 \leq n \leq 100$ nodes into a Red-Black tree. Solid lines depict the HyperRed-Black case. Dotted lines depict the Chromatic case.

Figure 7. Number of failures between consecutive successes when a linked list (of size 100) is transformed into a Red-Black tree. Solid line depicts the a HyperRed-Black case. Dotted line depicts the Chromatic approach.

For each tree we count the number of propagation and rotation rules needed to obtain a Red-Black tree. At each step, a node is selected randomly, and (if possible) updated. As the rules have exclusive guards, at most one rule applies every time. The process continues until no rule applies anywhere. The idea of random selections is commonly used in Hopfield networks [4] and it has also been used in the concurrent rebalancing of the AVL trees in [8, 1].

The figure 5 shows the expected number of rules for the sequence of trees. Each tree has been randomly balanced one hundred times (this quantity ensure us a relative error of data smaller than 5%). Balanced trees (located in the middle) are quickly transformed into a Red-Black trees (with less than 9 rules and in some cases only 2 rules). Unbalanced trees need more than 10 rules (and in some cases 14 rules).

6 Average behavior of Chromatic versus HyperRed-Black trees

In the following we compare HyperRed-Black trees with Chromatic trees. More specifically, we consider the average time rebalancing of trees. This time is computed by counting the number of steps needed to obtain a Red-Black tree. At each step, one node is selected randomly and (if possible) updated. It is possible to choose a locally stable node,
where no rule applies. In this case, the rebalance of the tree does not progress at all and we count this step as a failure. Otherwise, the node is *locally unstable* and can be updated. We make progress and we count this step as a success.

We analyze two extreme cases. First, the **linked list case** in which the basic tree is a linked list. Second, the **balanced tree case** in which the basic tree is an almost complete binary tree fulfilled by levels.

- **Linked list case**: We explore the average time needed to rebalance a linear linked list into a Red-Black tree (see Figure 6). According to the experimental results the number of successes is linear in relation to the number of nodes. The HyperRed-Black approach behaves as $2.0 \times n$, and the Chromatic one gives us $1.7 \times n$. On the other hand, the number of failures is almost linear for the HyperRed-Black case and clearly quadratic for the Chromatic case. Specifically, we have $11.0 \times n$ and $0.45 \times n^2$.

The figure 7 confirms the quadratic behavior of the Chromatic rules. Initially rotation rules can be applied on many nodes. But when the tree has become “balanced” (after 60 successes) propagation rules must be applied, and from this time, there are $O(n)$ trials for each success.

- **Balanced tree case**: Figure 8 shows the experimental results for this case. HyperRed-Black rules behaves as $0.58 \times n$ and Chromatic rules as $0.56 \times n$. The number of failures seems to be almost linear, specifically $4.18 \times n$ in the HyperRed-Black case and $6.36 \times n$ in the Chromatic case.

The Figure 9 shows clearly the drawback of chromatic rules. As the initial tree is balanced rotations do not take place and propagations can be made if the grandfather node is black. But the basic initial tree is a big cluster of red nodes with a black root. In this case, only the root accepts the application of a rule, and this node should be found randomly.

Of course, HyperRed-Black trees accept more rules than Chromatic trees. Therefore, it is easier to select an unstable node in a HyperRed-Black tree than in a Chromatic tree. Intuitively, HyperRed-Black trees have more freedom to evolve than Chromatic trees. However it is not clear why the increase of freedom is a good strategy. Note that, the total number of steps is minor in HyperRed-Black tree case. This fact is not obvious at all to us. The excess of freedom could generate a kind of almost-compensating effects giving very
low convergence rate (these facts makes proof of safeness difficult). However, this not happens with random access.

7 Conclusions

We have designed a new type of relaxed Red-Black trees called HyperRed-Black trees. These trees overcome the grandparent bottleneck problem appearing in Chromatic trees because HyperRed-Black trees accept hyper-red nodes (nodes with many degrees of redness). Then HyperRed-Black trees can always propagate the redness up.

We have found a set of propagation, rotation and blacking rules. They can be applied to a node in any order as soon as their guards are satisfied. Any final tree obtained applying these rules is a Red-Black tree (safety property), and any sequence of applications is finite (liveness property).

We have implemented and compared both HyperRed-Black with Chromatic trees. The experimental conclusions are

1. HyperRed-Black trees need more updates than Chromatic trees.
2. HyperRed-Black trees fail less than Chromatic trees.
3. HyperRed-Black trees progress better than Chromatic trees.

In section 4 we have proved the convergence of the rebalancing procedure. However, the variant function suggests us bad bounds when compared with experimental results. Based on the preceding results and also in similar results obtained for AVL trees [1] we conjecture:

Conjecture 1 The expected number of rules needed to rebalance a binary search tree is linear (in relation to the size of the tree) in Chromatic and HyperRed-Black trees.

References