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Summary

This thesis shows an approach to geometric quantisation of integrable systems.

It extends some results by Guillemin, Kostant, Rawnsley, Śniatycki and Sternberg

in geometric quantisation, considering regular fibrations as real polarisations, to the

singular setting: the real polarisations concerned here are given by integrable systems

with nondegenerate singularities, and the definition of geometric quantisation used

is the one suggested by Kostant (via higher cohomology groups). It also presents

unifying proofs for results in geometric quantisation by exploring the existence of

symplectic circle actions: the tools developed here highlight and unravel the role

played by circle actions in known results in geometric quantisation.

The originality of this thesis relies on the following aspects. Firstly, the use of

symplectic circle actions to obtain results in geometric quantisation, and secondly,

the nonexistence of Poincaré lemmata for foliated cohomology when the foliation has

singularities.

Previous results on circle actions, due to Rawnsley, could not be used when the

circle action is not free, and it is not straightforward to adapt them to accommo-

date fixed points. After developing these techniques, the computation of geometric

quantisation is performed in a series of situations, which includes: the cotangent bun-

dle of the circle and products of it with any quantisable exact symplectic manifold,

and neighbourhoods of nondegenerate singularities of integrable systems (hyperbolic

singularities need special treatment, since there is no natural circle action).

These computations imply that the Kostant complex is a fine resolution (for the

sheaf of sections of the prequantum line bundle which are flat along the polarisation)

when the real polarisations are given by integrable systems with nondegenerate sin-

gularities. It is important to mention that the proofs are original, since, contrary

to expectations, there is no Poincaré Lemma when singularities are allowed for the
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foliated cohomology associated to foliations induced by integrable systems. This non-

trivial result turns out to be interesting in its own right, but only the aspects related

to geometric quantisation are presented in the thesis, e.g. the need for a new proof

that the Kostant complex is a fine resolution for the sheaf of flat sections.

The thesis also provides a different proof of a theorem, firstly proved by Guillemin

and Sternberg, that shows that the set of regular Bohr-Sommerfeld fibres is discrete

—it not only bares the role played by circle actions, it also excludes the compactness

assumption from the theorem. The exploitation of circle actions culminate in an

alternative proof for the theorems of Śniatycki and Hamilton. It is an original and

unifying proof: the argument works for both situations, Lagrangian fibre bundles and

locally toric manifolds.

In addition, this approach casts some light on a conjecture about the contributions

coming from focus-focus type of singularities. It actually proves that there is no

contribution to geometric quantisation coming from focus-focus fibres for compact

4-dimensional almost toric manifolds in degree zero.
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Chapter 1

Introduction

Classical Hamiltonian (conservative) systems can be described by Symplectic Ge-

ometry. One starts with a configuration space, which is a manifold representing the

possible positions of a constrained system; states of the system are given by points

of the cotangent bundle: any state can be characterised by its position and momen-

tum. The dynamics of the system is given by a function, the so-called Hamiltonian

function.

In the Schrödinger picture, the quantum phase space is a Hilbert space and the

states are given by wave functions, which are, feckly, complex valued functions of

the configuration space with finite norm. The dynamics of the wave functions are

determined by the Schrödinger equation, in which the Hamiltonian is a selfadjoint

operator on the Hilbert space.

The present thesis aims to describe a quantisation rule, geometric quantisation,

that works at least for classical integrable Hamiltonian systems. This is a quote

from Kirillov [14] to support this idea: “As we understand now, there is no canoni-

cal and universal correspondence: the quantum world is different from the classical

one. Nonetheless, for many particular systems quantization rules which allow one to

construct a quantum system from the classical one were formulated.”

Geometric quantisation tries to associate a Hilbert space to a symplectic man-

ifold via a complex line bundle. Although it is possible to describe the canonical
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quantisation using this language [17], most of the difficulties arise when one tries

to mimic this procedure for symplectic manifolds which are not naturally cotangent

bundles. Those appear in the context of reduction and are far from being artificial

mathematical models.

The first difficulty is to isolate in a global way position and momentum, in order

to define wave functions as sections of a complex line bundle over the symplectic

manifold. This is done by introducing polarisations, which, roughly speaking, are

Lagrangian foliations. The second issue, that will not be addressed here, is how to

define a Hilbert structure; hence, the honest-to-goodness quantum phase space will

not be constructed.

Usually, the quantum phase space is constructed using global sections of the line

bundle which are flat along the polarisation. In case these global sections do not

exist, Kostant suggested to associate wave functions to elements of higher cohomology

groups, and to build the quantum phase space from these groups: by considering

cohomology with coefficients in the sheaf of flat sections.

The main objective of the thesis is to compute these cohomology groups, for which

at least two approaches can be used: Čech and de Rham. The results of Hamilton

and Miranda [11, 12] are based on a Čech approach, this thesis takes the de Rham

point of view, by finding a resolution for the sheaf. Following Kostant [27, 26], a

resolution for the sheaf of sections can be obtained by twisting the sheaves relative

to the foliated complex induced by the polarisation with the sheaf of flat sections.

This thesis follows closely Rawnsley’s ideas [26] and explores the existence of

circle actions to provide an alternative proof for the theorems of Śniatycki [27] and

Hamilton [11]. The tools developed here highlight and unravel the role played by

symplectic circle actions in known results in geometric quantisation. Not only that,

this approach casts some light on a conjecture about the contributions coming from

focus-focus type of singularities.

As a last remark, geometric quantisation might not have much to say about

Physics, but it might say something about Mathematics. The orbit method [14]
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alone justifies this: even if geometric quantisation is not able to give a satisfatory

quantisation rule, it does not imply that it cannot be used to find irreducible unitary

representations of Lie groups.

For completeness, some proofs of theorems that can be found on the literature

are given. But instead of state them in their original or most generalised version,

where possible, statements and proofs are adapted to the cases used in this thesis.

The reason is to not deviate from the main tools and to keep the reader grounded.

Inquiring readers are encouraged to go to the cited references.

Throughout this thesis and otherwise stated1, all the objects considered will be

C∞; manifolds are real, Hausdorff, paracompact and connected; and the units are

such that ~ = 1.

1.1 Organisation of the thesis

A collection of definitions and results about Symplectic Geometry, Hermitian line

bundles and Lie pseudoalgebras is given in chapter 2.

Chapter 3 describes the notions of prequantum line bundle and polarisation re-

quired to define geometric quantisation; it also describes the important notion of

Bohr-Sommerfeld fibres and provides a proof of a theorem (theorem 3.2 in this thesis)

that shows that the set of regular, and compact, Bohr-Sommerfeld fibres is discrete

[10].

The definition of geometric quantisation is provided in chapter 4, and the precise

cohomological definitions are presented in chapter 5; as well as, the results of Hamilton

and Miranda [11, 12].

In chapter 6 the line bundle polarised forms and Kostant complex are introduced.

These are presented as an example of Lie pseudoalgebra representations, and it is this

1One must reach to a compromise between being precise and being intelligible. Geometers tend

to be sloppy, and as a physicist, I shall follow them. For instance, all figures must be seen from a

topological point of view.
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point of view that allows one to introduce singularities into the picture. Howbeit, the

replacement of a subbundle of the tangent bundle by an integrable distribution offers

no obstruction, and the propositions of chapter 6 are simple extensions of results

contained in [26].

Chapter 7 further develops results from [26] and it contains the main tools of this

thesis: it conserns the use of symplectic circle actions to obtain results in geometric

quantisation (propositions 7.3 and 7.4). Rawnsley’s results cannot be used when the

circle action is not free, nor is it straightforward to adapt all the proofs to accommo-

date fixed points (e.g. lemma 7.2). In addtion, this chapter contains a different proof

of the theorem (for the alternative version, theorem 7.1 in this thesis) that shows

that the set of regular Bohr-Sommerfeld fibres is discrete [10] —it not only bares the

role played by circle actions, it also excludes the compactness assumption from the

theorem.

Detouring from the motif of the thesis, chapter 8 justifies the need for a different

proof that the Kostant complex is a fine resolution for the sheaf of flat sections.

It summarises what is known about foliated cohomology —with special emphasis

given to the existence of a Poincaré lemma when the foliation is singular. Contrary

to expectations, there is no Poincaré Lemma when singularities are allowed (for the

foliated cohomology associated to singular Lagrangian foliations induced by integrable

systems). This nontrivial result (presented here as theorem 8.3) was obtained by

Miranda and the author of this thesis [20], and it turns out to be interesting in its

own right.

Chapters 9 and 10 prove that the Kostant complex is a fine resolution in a series of

situations (theorem 9.2; propositions 9.1 and 9.2; corollary 9.2; theorems 10.1, 10.2,

and 10.4). Chapter 9 deals with regular polarisations and, apart from the two proofs of

the Poincaré lemma (both reducing to the Poincaré lemma for foliated cohomology), it

computes the quantisation of the cotangent bundle of the circle (proposition 9.2) and

gives a formula for products of the cotangent bundle of the circle with any quantisable

exact symplectic manifold (corollary 9.2), as well. The computations involving the
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cotangent bundle of the circle exploit the existence of a circle action.

The singularities are introduced in chapter 10, where Poincaré lemmata are proved

when the Williamson type of the singularity has at least one elliptic (theorem 10.1)

or focus-focus component (theorem 10.2), and when it has one or two hyperbolic

components (theorem 10.4)—the rank of the singularity can be bigger than zero in

all situations. It is important to mention that the proofs are original, since there is

no Poincaré lemma for the foliated cohomology when this singularities are allowed.

The circle action tools can be used when there are elliptic or focus-focus components,

but hyperbolic singularities need special treatment: there is no natural circle action.

The hyperbolic case has been done by Miranda and the author of this thesis [21], and

a proof is included in chapter 10.

The alternative proof of Śniatycki’s [27] and Hamilton’s [11] theorem are presented

in the last chapter of the thesis, chapter 11 (theorems 11.1 and 11.2). It is an original

and unifying proof: the argument works for both situations, Lagrangian fibre bundles

and locally toric manifolds. Action angle coordinates (more precisely, local normal

forms) are still important, although not anymore the main characters in this new proof

—a more prominent role is played by the circle actions. These circle actions actually

prove that, in degree zero, there is no contribution to geometric quantisation coming

from focus-focus fibres for compact 4-dimensional almost toric manifolds (proposition

11.2).
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Chapter 2

Preliminaries

This is just a collection of definitions and results to fix notation.

2.1 Symplectic manifolds

Although this thesis is essentially on Symplectic Geometry, it would be a waste

of time for readers to include an introduction to this field. For those who are not

familiar with it, a good reference is [1].

Definition 2.1. A pair (M,ω) is a symplectic manifold, if ω ∈ Ω2(M) is closed and

nondegenerate (if this is the case, ω is called a symplectic form); i.e. dω = 0 and the

map defined by X 7→ ıXω gives an isomorphism between X(M) and Ω1(M).

Remark 2.1. The space of smooth vector fields will be denoted by X(M) when

smooth vector fields are seen as derivations of the commutative algebra C∞(M) —

which, by the way, can represent both the space of complex-valued or real-valued

functions, depending on the context. When interpreted as smooth sections of the

tangent bundle TM , their space will be denoted by Γ(TM).

Nondegeneracy implies that all symplectic manifolds are even dimensional. In-

deed, at every point of M the symplectic form ω is an alternate bilinear form with

an invertible and antisymmetric matrix A associated, and since the determinant is
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invariant by transposition:

det(A) = det(A>) = det(−A) = (−1)dimMdet(A) .

Symplectic manifolds are orientable as well; the wedge product of n copies of ω,

with 2n being the dimension of M , is a volume form (this is also a characterisation

of the nondegeneracy condition).

Example 2.1. Orientable surfaces with area form: the closedness comes from the top

dimension of the de Rham cohomology, and the nondegeneracy from the orientability

hypothesis. ♦

Example 2.2. Let Q be a manifold, its cotangent bundle, T ∗Q, has a canonical

symplectic structure: the pullback of the natural projection T ∗Q → Q is a 1-form

on T ∗Q, called action or tautological form, and the symplectic structure on T ∗Q is

obtained by differentiating the action form. Thus, the closedness is trivially satisfied

and the nondegeneracy can be checked using trivialising coordinates on T ∗Q. ♦

Example 2.3. Let G be a Lie group, (g, ad) its Lie algebra and A : G→ Diff(G) the

action by conjugation. For each g ∈ G the pullback of Ag at the identity, Ad∗g := Ag
∗
e :

g∗ → g∗, defines an anti-representation of the Lie group in g∗. It is called the coadjoint

representation and its orbits, Oξ = {Ad∗g(ξ)}g∈G ⊂ g∗, the coadjoint orbits. If the

pushforward of the map g 7→ Ad∗g at the identity is denoted by ad∗ : g → End(g∗),

then the tangent space of the coadjoint orbit Oξ at a point ζ = Ad∗g(ξ) is given by

{ad∗x(ζ)}x∈g. The expression ω|ζ(ad∗x(ζ), ad∗y(ζ)) := ζ(adx(y)) defines a1 symplectic

form on Oξ. ♦

All symplectic manifolds look alike locally, but before stating Darboux theorem,

one needs to define a notion of equivalence.

1The expression ωξ|ζ(ad∗x(ζ), ad∗y(ζ)) := ξ(adx(y)) also defines a symplectic form on Oξ, which is

compatible, in a suitable sense [24], with the form previously defined.
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Definition 2.2. A diffeomorphism ϕ : M → N between two symplectic manifolds

(M,ω) and (N,$) is a symplectomorphism if ϕ∗($) = ω. And the subgroup of

symplectomorphisms of (M,ω) is denoted by Sympl(M,ω).

Theorem 2.1 (Darboux). For every symplectic manifold (M,ω), of dimension 2n,

there exists a local symplectomorphism ϕ : R2n → M , such that in a neighbourhood

of each point ϕ∗(ω) =
n∑

j = 1

dxi ∧ dyi, where (x1, y1, . . . , xn, yn) is a chart on R2n.

The charts on each point of M , given by the theorem, are called Darboux charts,

and ω is said to be in Darboux form under the symplectomorphism.

Definition 2.3. A submanifold N of a symplectic manifold (M,ω) is isotropic if ω

restricted to TN vanishes, ω
∣∣
TN

= 0. The submanifold is called Lagrangian if also

dimN = 1
2
dimM .

Remark 2.2. The notation α
∣∣
A

has a particular meaning depending on what A

stands for. If A is a point, as ζ is in exemple 2.3, α
∣∣
A

is the associated element

of the dual of the tangent space of M at the point A, for a k-form α ∈ Ωk(M).

If A is a set of points, α
∣∣
A

is the k-form restricted to the points of A: it makes

sense to take the inner product of it with any vector field of M restricted to points

of A. If A is a submodule of X(M), α
∣∣
A

is the restriction of the homomorphism

α ∈ HomC∞(M)(∧kC∞(M)X(M);C∞(M)), i.e. α
∣∣
A
∈ HomC∞(M)(∧kC∞(M)A;C∞(M));

in particular, if A is a submanifold of M , α
∣∣
TA

stands for the associated element of

Ωk(A).

Example 2.4. Every 1-dimensional submanifold of a symplectic manifold is isotropic;

the restriction of a 2-form always vanishes. ♦

Nontrivial examples of isotropic submanifolds appearing in integrable systems are

discussed below.

Remark 2.3. The imaginary part of the standard Hermitian form on Cn is a sym-

plectic structure, equivalent to the Darboux structure on R2n. The restriction of
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that symplectic structure over complex submanifolds of Cn induces symplectic struc-

tures as well. Kähler manifolds and its complex submanifolds are also examples of

symplectic manifolds. But none of them will be discussed in the thesis.

2.1.1 Symplectic and Hamiltonian vector fields

The nondegeneracy has yet another implication: it induces two particular Lie

subalgebras of (X(M), [·, ·]).

Definition 2.4. A vector field X ∈ X(M) of a symplectic manifold (M,ω) is a

symplectic vector field if ıXω is closed. In the particular case where ıXω is exact, X

is said to be a Hamiltonian vector field; and a function f satisfying ıXω = −df is

called a Hamiltonian function of X.

Each function f ∈ C∞(M) gives a unique Hamiltonian vector field, Xf , via the

equation

ıXfω = −df . (2.1)

Example 2.5. ForR2n with coordinates (x1, y1, . . . , xn, yn) and Darboux form
n∑

j = 1

dxi∧

dyi, the Hamiltonian vector field of a function f is given by
n∑

j = 1

(
∂f
∂xj

∂
∂yj
− ∂f

∂yj

∂
∂xj

)
.

By Darboux theorem this is the local expression for Hamiltonian vector fields in any

symplectic manifold. ♦

Example 2.6. The geodesic flow on a Riemannian manifold (Q, g) can be seen as the

flow of a Hamiltonian vector field of T ∗Q with the canonical form. The Hamiltonian

function is given by (x, y) 7→ 1
2
gy(v, v), where v ∈ TyQ is defined by x(·) = gy(v, ·). ♦

Example 2.7. For coadjoint orbits, the Hamiltonian vector field of a function f on

a point ζ on the orbit is given by ad∗df |ζ(ζ). Where the derivative of f at the point ζ,

df |ζ , is seen as an element of g; since is a linear functional in g∗. ♦
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The space of symplectic and Hamiltonian vector fields, respectively denoted by

Xsympl(M,ω) and Xham(M,ω), are Lie subalgebras of (X(M), [·, ·]) —as vector spaces

they are, respectively, isomorphic to the space of closed and exact 1-forms on M .

The following inclusions respect the Lie algebra structure [·, ·],

Xham(M,ω) ⊂ Xsympl(M,ω) ⊂ X(M) .

More can be said about these inclusions: the Lie bracket of two symplectic or Hamil-

tonian vector fields, X and Y , are Hamiltonian vector fields, and ω(X, Y ) is a Hamil-

tonian function of [X, Y ].

Symplectic vector fields preserve the symplectic structure.

Proposition 2.1. Let X ∈ X(M) be a vector field and φt ∈ Diff(M) its flow at time

t. The following are equivalent:

• d(ıXω) = 0;

• £X(ω) = 0;

• φt∗(ω) = ω for all t (where the flow is defined).

2.1.2 Poisson brackets

On a symplectic manifold there exists a related structure, the so-called Poisson

structure, endowing the space of smooth functions with a Lie algebra structure satis-

fying a Leibniz rule.

Definition 2.5. The Poisson bracket of two functions f1, f2 ∈ C∞(M) on a symplec-

tic manifold (M,ω) is the function defined by {f1, f2}ω := ω(Xf1 , Xf2).

The equality {f, ·}ω = Xf (·) holds for each f ∈ C∞(M), in other words, {f, ·}ω is

the Hamiltonian vector field associated to f . Wherefore, the Poisson bracket satisfies

the Leibniz rule,

{f1, f2f3}ω = {f1, f2}ωf3 + f2{f1, f3}ω .
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A consequence of the closedness of ω is the Jacobi identity:

{f1, {f2, f3}ω}ω + {f3, {f1, f2}ω}ω + {f2, {f3, f1}ω}ω = 0 .

As a result, X{f1,f2}ω = [Xf1 , Xf2 ]; thus, the Poisson bracket endows C∞(M) with a

Lie algebra structure homomorphic to the Lie algebra (X(M), [·, ·]).

Another consequence of Cartan’s magic formula is that integral curves of Hamil-

tonian vector fields are contained on the level sets of the Hamiltonian function —

contrasting gradient vector fields of a Riemannian manifold, which are orthogonal to

the level sets of the gradient function, Hamiltonian vector fields are tangent to the

level sets of the Hamiltonian function. And a function f2 is a first integral of the

Hamiltonian system generated by f1 if and only if {f1, f2}ω = 0.

Example 2.8. For functions f1, f2 ∈ C∞(g∗) the expression

{f1, f2}LP (ξ) := ξ(addf1|ξ(df2|ξ)) (2.2)

defines a Poisson structure on g∗ called Lie-Poisson (again, the identification of g as

linear functionals in g∗ is been used). When restricted to the coadjoint orbits, this

Poisson structure coincides with the one provided by the symplectic form2 previously

defined. ♦

2.1.3 Integrable systems

The classical Liouville theorem on the integrability of Hamiltonian systems is

stated in this section (using modern language and results). This is one of the central

theorems on which this thesis relies3. The book [5] is a good reference treating

concrete examples of integrable systems.

Definition 2.6. An integrable system on a 2n-dimensional symplectic manifold (M,ω)

is a map F = (f1, . . . , fn) : M2n → Rn, the so-called moment map, such that:

2As before, one can define a different, though compatible, Poisson structure for each ζ ∈ g∗ by

{f1, f2}ζ(ξ) := ζ(addf1|ξ(df2|ξ))
3And one of the most beautiful theorems of all times, in the humble author’s opinion.
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• is a submersion on an open dense subset of M ;

• its components, fj, Poisson commute among each other, {fj, fk}ω = 0 for any

j and k;

• the Hamiltonian vector fields generated by its components are complete4.

Examples (just to cite some) include Hamiltonian systems in dimension 2, the

harmonic oscillator (in any dimension), the Kepler problem, the mathematical pen-

dulum, the spherical pendulum, geodesic flows on surfaces of revolution, some left

invariant geodesic flows on Lie groups [24] (the free rigid body is an example of this),

and various tops.

Theorem 2.2 (Liouville). Let F = (f1, . . . , fn) : M → Rn be an integrable system

on a symplectic manifold (M,ω).

• The Hamiltonian vector fields generated by its components define an integrable

(in the Sussmann [28] sense) distribution of TM whose leaves are generically

Lagrangian (with isotropic singular leaves).

• The connected components of the regular leaves are homogeneous Rn spaces;

they are diffeomorphic to Rn−k × Tk.

• The foliation is a Lagrangian fibration in a neighbourhood of each regular leaf;

it defines a fibre bundle with Lagrangian fibres.

• There exists a symplectomorphism on a local trivialisation of each Lagrangian

leaf that puts ω in a Darboux form and linearise the flows induced by fj.

The foliated structure immediately implies that the leaves are invariant with re-

spect to the flows of the Hamiltonian vector fields. Also the preimages of critical

points are a union of isotropic submanifolds, whilst the regular ones are a union of

Lagrangian submanifolds.

4Some authors do not assume this condition, yet it holds in some cases, e.g. when the symplectic

manifold is compact.
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The regular leaves, when compact, are called Liouville tori and the Darboux chart

that linearises the flows on a neighbourhood of each Liouville torus is called action-

angle coordinates. The torus components are the angles and the action coordinates

are first integrals of the system.

In other words, the Liouville theorem gives a description of integrable systems

near the regular points of the map F . The next subsection deals with some known

results about the structure near the critical points.

2.1.4 Normal forms for nondegenerate singularities

This is a sumary of the known local models for integrable systems, the reader can

find a detailed exposition in [3].

Let F = (f1, . . . , fn) : M → Rn be an integrable system and p ∈ M a critical

point of rank zero, i.e. dfi|p = 0 for i = 1, ..., n. One can linearise at the critical point

p each Hamiltonian vector field associated to the components of the moment map,

constructing in this way a linear operator T (fi) : TpM → TpM for each function fi.

The linear operators T (fi) belong to sp(TpM,ω|p), the Lie algebra of the group of

symplectic transformations of (TpM,ω|p), with ω|p being the invertible and antisym-

metric matrix associated to the simplectic form ω at p. In fact, they form an Abelian

Lie subalgebra: because {fi, fj}ω = 0 implies [T (fi), T (fj)] = 0.

Definition 2.7. A critical point p of rank zero is nondegenerate if hp = 〈T (f1), . . . , T (fn)〉R
is a Cartan subalgebra of sp(TpM,ω|p).

The Lie algebra of homogeneous quadratic polynomials on (TpM,ω|p), Q(2n,R),

is isomorphic to sp(TpM,ω|p), and Cartan subalgebras of Q(2n,R) were classified by

Williamson [30].

Theorem 2.3 (Williamson). For any Cartan subalgebra hp ⊂ sp(TpM,ω|p), there

exist linear coordinates (x1, y1, . . . , xn, yn) in R2n such that, p = 0, ω|p =
n∑

i = 1

dxi ∧

dyi, and hp has a basis {h1, . . . , hn} with each hi of the following form (under the

13



identification sp(TpM,ω|p) ∼= Q(2n,R)):

hi = x2
i + y2

i for 1 ≤ i ≤ ke , (elliptic)

hi = xiyi for ke + 1 ≤ i ≤ ke + kh , (hyperbolic)hi = xiyi + xi+1yi+1,

hi+1 = xiyi+1 − xi+1yi

for i = ke + kh + 2j − 1,

1 ≤ j ≤ kf
(focus-focus pair)

(2.3)

Therefore, the number of elliptic components ke, hyperbolic components kh and

focus-focus components kf is an invariant of hp.

Definition 2.8. The triple (ke, kh, kf ) is called the Williamson type of p.

For rank zero singularities, n = ke + kh + 2kf . Let {h1, . . . , hn} be a Williamson

basis of this Cartan subalgebra, the Hamiltonian vector field of hi with respect to the

Darboux form will be denoted by Xi. A vector field Xi is said to be hyperbolic (resp.

elliptic) if the corresponding function hi is so, and a pair of vector fields Xi, Xi+1

is a focus-focus pair if Xi and Xi+1 are the Hamiltonian vector fields associated to

functions hi and hi+1 in a focus-focus pair.

In the local coordinates specified above, the vector fields Xi take the following

form:

• Xi is an elliptic vector field,

Xi = 2

(
−yi

∂

∂xi
+ xi

∂

∂yi

)
; (2.4)

• Xi is a hyperbolic vector field,

Xi = −xi
∂

∂xi
+ yi

∂

∂yi
; (2.5)

• Xi, Xi+1 is a focus-focus pair,

Xi = −xi
∂

∂xi
+ yi

∂

∂yi
− xi+1

∂

∂xi+1

+ yi+1
∂

∂yi+1

(2.6)

and

Xi+1 = xi+1
∂

∂xi
+ yi+1

∂

∂yi
− xi

∂

∂xi+1

− yi
∂

∂yi+1

. (2.7)
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Remark 2.4. The nomenclature becomes clear when one looks at the eigenvalues

of the derivative at a fixed point of the Hamiltonian vector fields (the linearised

problem).

Example 2.9. For the simple pendulum the stable equilibrium point is an elliptic

singularity, whilst the unstable one is a hyperbolic.

♦

Example 2.10. The spherical pendulum has a stable equilibrium point that is a

purely elliptic singularity. The unstable equilibrium point is a focus-focus singularity.

♦
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Let F be a linear foliation on R2n with a rank zero singularity at the origin of

Williamson type (ke, kh, kf ); the linear model for the foliation is, then, generated by

the vector fields above. It turns out that these type of singularities are symplectically

linearisable, and the local symplectic geometry of the foliation can be described by

the algebraic data associated to the singularity (Williamson type). This is the content

of the following symplectic linearisation result [8, 9, 19]:

Theorem 2.4. Let ω be a symplectic form defined in a neighbourhood V of the origin

and F a linear foliation with a rank zero singularity, of prescribed Williamson type,

at the origin. Then, there exists a local diffeomorphism φ : V −→ φ(V ) ⊂ R2n such

that, φ preserves the foliation and φ∗(
n∑

i = 1

dxi∧dyi) = ω, with (x1, y1, . . . , xn, yn) local

coordinates on φ(V ).

Futhermore, if F ′ is a foliation that has F as a linear foliation model near a point,

one can symplectically linearise F ′ [19]. This is equivalent to Eliasson’s theorem in

the completely elliptic case [8, 9]: when the Williamson type of the singularity is

(ke, 0, 0).

There are normal forms for higher rank (dfi|p 6= 0 for some i’s) and also in the

case of singular nondegenerate compact leaves [19, 23]; the symplectic local normal

form works not only in a neighbourhood of the singular point, it can be extended

over a neighbourhood of a whole compact leaf.

When the rank of the singularity is greater than zero, a collection of regular vector

fields is attached to it. Hence, one can reduce the k-rank case to the 0-rank case via a

symplectic reduction associated to the natural Hamiltonian action given by the joint

flow of the moment map.

Definition 2.9. A moment map is said to be nondegenerate when all of its critical

points are nondegenerate.
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2.1.5 Symplectic actions and moment maps

A Lie group action ρ : G → Diff(M) induces a Lie anti-homomorphism between

(g, ad) and (X(M), [·, ·]), via the exponential map exp : g → G. This Lie anti-

homomorphism is given by the map ρ∗e : g → X(M) that for each x ∈ g associates

the vector field ρ∗e(x) ∈ X(M) whose flow at time t is ρ ◦ exp(tx) ∈ Diff(M); in

particular, ρ∗e(x) is a complete vector field.

Definition 2.10. A smooth Lie group action ρ : G → Diff(M) on a symplectic

manifold (M,ω) is said to be symplectic when ρ(g)∗(ω) = ω for all g ∈ G. So

the image of the action, ρ(G) ⊂ Diff(M), is a subgroup of the group of symplectic

diffeomorphisms of (M,ω). A symplectic action is called Hamiltonian when ρ∗e(g) ⊂

Xham(M,ω).

In other words, the notion of Hamiltonian action used in this thesis5 is the fol-

lowing: a smooth Lie group action of Lie group on a symplectic manifold acting by

symplectomorphisms, such that, the image of the associated infinitesimal action of

the Lie algebra lies on the subspace of Hamiltonian vector fields of the symplectic

manifold.

A Hamiltonian action is said to admit an equivariant comoment map (or equiva-

tently, moment map) if there exists a Lie anti-homomorphism between the Lie algebra

of the Lie Group and the Lie algebra of smooth functions on the symplectic manifold,

satisfying that the image of any element of the Lie algebra is a Hamiltonian function

for the Hamiltonian vector field corresponding to the infinitesimal action.

Definition 2.11. Let ρ : G → Diff(M) be a Hamiltonian action, a comoment map

for this action is a linear map µ∗ : g → C∞(M) such that µ∗(x) is a Hamiltonian

function of ρ∗e(x) for every x ∈ g. If in addition µ∗ is a Lie anti-homomorphism

between (g, ad) and (C∞(M), {·, ·}ω), then it is called an equivariant comoment map.

5One can find (or easily deduce) all these results in Arnold’s book [1]. He names things in a

slightly different way: in [1], instead of saying Hamiltonian action admitting an equivariant moment

map, Poisson action is used; the Lie bracket of vector fields is called a Poisson bracket there.
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A comoment map for a Hamiltonian action is equivariant if and only if µ∗ ◦

Adg(x) = µ∗(x) ◦ ρ(g)−1 for all g ∈ G and x ∈ g. For any Hamiltonian action there

exists a comoment map. However, in general, there is no way to guarantee the Lie

anti-homomorphism property: the Lie algebra cohomology of g has a say on this

matter.

It is important to notice that the Lie homomorphism between the space of smooth

functions (with the Poisson bracket associated to the symplectic structure) and the

Lie subalgebra of Hamiltonian vector fields (with the Lie bracket of vector fields)

given by f 7→ Xf , although surjective, is not injective: its kernel being the space of

constant functions. The existence of a right inverse of that map respecting the Lie

structure is not a trivial problem, and it is what makes the notion of equivariance

relevant.

If it was always true that there exists a right inverse respecting the Lie struc-

ture, then every Hamiltonian action would admit an equivariant comoment map:

the composition of the infinitesimal action with the right inverse provides a Lie anti-

homomorphism between the Lie algebra of the group G and the Lie algebra of smooth

functions on M .

There is also a dual notion of a comoment map.

Definition 2.12. A moment map for a Hamiltonian action ρ : G → Diff(M) is a

mapping µ : M → g∗ such that, for each x ∈ g and p ∈ M , the function defined by

f(x)(p) := µ(p)(x) is a Hamiltonian function for ρ∗e(x). And if µ ◦ ρ(g)−1 = Ad∗g ◦ µ

for all g ∈ G, then it is called an equivariant moment map.

The existence of a moment map is equivalent to the existence of a comoment map,

and the equivariance of µ is equivalent to µ∗ be a Lie anti-homomorphism.

Example 2.11. The cotangent bundle of a Lie group G is trivial and can be naturally

identified with G × g∗. The left action of the group on itself can be lifted to the

cotangent bundle, namely, ρg(h, ξ) = (gh, ξ). The map µ : G × g∗ → g∗ given by

µ(g, ξ) = Ad∗g−1(ξ) is a moment map for the canonical symplectic structure. ♦
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Example 2.12. Integrable systems form a particular class of examples of Hamiltonian

Rn-actions addmiting equivariant moment maps.

Supposing that ρ : G → Diff(M) is an action of the additive Lie group G = Rn,

for each basis of its Lie algebra {v1, . . . , vn} ⊂ g = Rn one can associate an integrable

distribution P := 〈X1, . . . , Xn〉C∞(M), with Xj := ρ∗e(vj). The vector fields Xj are

complete, and because ρ∗e is a Lie anti-homomorphism, [Xi, Xj] = 0 for all i, j. The

action is actually given by the joint flow of the vector fields Xj, since the exponential

map is surjective.

In case this action is Hamiltonian, each Xj belongs to Xham(M,ω), and a co-

moment map µ∗ : Rn → C∞(M) can be linearly defined by µ∗(vj) = fj, with

fj ∈ C∞(M) an arbitrary Hamiltonian function for Xj. In order to have an equivari-

ant comoment map from this construction, the choice of Hamiltonian functions must

be such that {fi, fj}ω = 0 for all i, j (their Poisson bracket is always a constant, but

not necessarily zero). The Lie algebra is commutative, ad vanishes, and µ∗ is a Lie

anti-homomorphism if and only if {fi, fj}ω = 0 for all i, j.

It is clear now that the moment map associated to an equivariant µ∗, if denoted

by F : M → Rn (after the identification g∗ ∼= Rn), is an integrable system when the

isotropy subgroups are discrete over an open dense subset of M . ♦

Another class of examples, which are also examples of integrable systems, are toric

manifolds. They are compact 2n-dimensional manifolds with an effective Hamiltonian

n-torus action admitting an equivariant moment map. Those manifolds are classified

[6] by their equivariant moment maps:

Theorem 2.5 (Delzant). Toric manifolds are classified by Delzant polytopes. More

specifically, the bijective correspondence between these two sets is given by the equiv-

ariant moment map:

{toric manifolds} −→ {Delzant polytopes}

(M,ω,Tn, F ) −→ F (M)
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2.2 Hermitian line bundles

Under the language of geometric quantisation, wave functions are associated to

sections of a complex line bundle; wherefore, some definitions and properties related

to complex line bundles will be important. The assertions of this section can be found

in [13].

A Hermitian line bundle L
C−→M is a fibre bundle over M with fibres diffeomor-

phic to C, together with a Hermitian structure 〈·, ·〉 defined on the space of sections

Γ(L). Any Hermitian line bundle is uniquely defined (up to isomorphism) by cocycle

conditions lying in U(1).

Sections of L can be represented by complex-valued functions over local triviali-

sations6. Let A = {Aj}j∈I be a contractible open cover of M such that each Aj is

a local trivialisation of L with unitary section7 sj (this can always be obtained, e.g.

using a convenient cover made of balls with respect to a Riemannian metric): each

line bundle L
∣∣
Aj

C−→ Aj is bundle isomorphic to the trivial one, Aj × C, and under

this bundle isomorphism, a section s ∈ Γ(L
∣∣
Aj

) is uniquely defined by a function

f ∈ C∞(Aj;C); s(p) ' (p, f(p)) for each point p ∈ Aj.

2.2.1 Hermitian connections and curvature

This subsection contains some properties of connections on complex line bundle.

Remark 2.5. From this point on, the distinction between the space of complex-

valued functions, C∞(M ;C), and the real-valued ones, C∞(M ;R), will not always

be explicitly made. The symbol C∞(V ) will usually refer to smooth complex-valued

functions over V .

6When there is an identification between a section s of the line bundle and a complex-valued

function f , the bundle isomorphism will be omitted, for the sake of simplicity, and the equality

s = f will be used.
7The existence of a trivialisation is equivalent to the existence of a unitary section. In particular,

a complex line bundle is trivial if and only if it has global unitary sections.
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Definition 2.13. A Hermitian connection is a linear map

∇ : Γ(L)→ Ω1(M)⊗C∞(M) Γ(L) (2.8)

satisfying:

∇(fs) = df ⊗ s+ f∇s , (2.9)

with [∇s](X) denoted by ∇Xs, and

X(〈r, s〉) = 〈∇Xr, s〉+ 〈r,∇Xs〉 , (2.10)

for any r, s ∈ Γ(L), f ∈ C∞(M) and X ∈ X(M).

With respect to a unitary section s, defined over a submanifold8 N ⊂ M , the

connection ∇ can be represented by a potential 1-form Θj ∈ Ω1(N):

∇s = −iΘ⊗ s . (2.11)

Since s is unitary, 〈s, s〉 = 1, the potential 1-form Θ is real:

0 = X(〈s, s〉) = 〈∇Xs, s〉+ 〈s,∇Xs〉

= 〈−iΘ(X)s, s〉+ 〈s,−iΘ(X)s〉

= −iΘ(X)〈s, s〉+ iΘ(X)〈s, s〉

= −iΘ(X) + iΘ(X) .

Lemma 2.1. The potential 1-forms of ∇ for each unitary section defined in a sub-

manifold of M are cohomologous. Conversely, if there is a unitary section over a

submanifold of M , any 1-form which is cohomologous to the potential 1-form of ∇ is

the potential 1-form of a unitary section.

Proof: Let s and r be two unitary sections defined over N ⊂M , and Θ and ϑ the

associated potential 1-forms. Since L is a Hermitian line bundle, s = eifr for some

real-valued f ∈ C∞(N); as a result,

∇s = −iΘ⊗ s = −ieifΘ⊗ r ,
8This includes open neighbourhoods of local trivialisations.

21



but

∇s = ∇(eifr) = (deif − ieifϑ)⊗ r = ieif (df − ϑ)⊗ r

and, therefore,

−ieifΘ⊗ r = ieif (df − ϑ)⊗ r ⇒

ϑ−Θ = df . (2.12)

Conversely, by the same computation, if s has Θ = ϑ − df as potential 1-form,

then r = e−ifs is a unitary section having ϑ as potential 1-form. �

Definition 2.14. The curvature of the connection is the operator

curv(∇) : Γ(L)→ Ω2(M)⊗C∞(M) Γ(L) (2.13)

given by

[curv(∇)s](X, Y ) = ∇X ◦ ∇Y s−∇Y ◦ ∇Xs−∇[X,Y ]s , (2.14)

for any s ∈ Γ(L) and X, Y ∈ X(M).

Again, over a submanifold N ⊂ M with unitary section s, the curvature of the

connection ∇ can be represented by a closed 2-form ω ∈ Ω2(N):

curv(∇)s = −iω ⊗ s . (2.15)

The next proposition implies, in particular, that the curvature 2-form is closed and

real-valued.

Proposition 2.2. If Θ is as potential 1-form for the connection ∇, over a submanifold

N ⊂ M , the curvature operator can be computed by curv(∇)
∣∣
TN

= −idΘ, and it is

independent of the choice of trivialisation.
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Proof: Assuming that s is the unitary section associated with Θ,

[curv(∇)s](X, Y ) = ∇X ◦ ∇Y s−∇Y ◦ ∇Xs−∇[X,Y ]s

= ∇X(−iΘ(Y )s)−∇Y (−iΘ(X)s) + iΘ([X, Y ])s

= −i(d(ıY Θ)(X)− iΘ(X)Θ(Y )

−d(ıXΘ)(Y ) + iΘ(Y )Θ(X)−Θ([X, Y ]))s

= −i(d(ıY Θ)(X)− d(ıXΘ)(Y )−Θ([X, Y ]))s

= −i(dΘ)(X, Y )s .

Independence of the choice of trivialisation comes from the fact that the difference

between potential 1-forms related to different unitary sections is exact (lemma 2.1).

�

The following lemma is the converse of proposition 2.2.

Lemma 2.2. At a submanifold N ⊂ M where curv(∇)
∣∣
TN

= −idΘ, there exists a

unitary section such that Θ is its potential 1-form.

Proof: Supposing curv(∇)
∣∣
TN

= −idΘ, let A = {Aj}j∈I be a contractible open

cover of N such that each Aj is a local trivialisation of L with unitary section sj (this

can always be obtained, e.g. using a convenient cover made of balls with respect to a

Riemannian metric). Each unitary section sj has Θj as a potential 1-form of ∇, and

since

curv(∇)
∣∣
TAj

= −id(Θ
∣∣
TAj

) = −idΘj , (2.16)

there exists real-valued functions fj ∈ C∞(Aj) such that Θ
∣∣
TAj

= Θj − dfj. By

lemma 2.1, the unitary sections rj = e−ifjsj have Θ
∣∣
TAj

as potential 1-forms.

Any two sections rj and rk such that Aj ∩ Ak 6= ∅ share the same potential 1-

form, and because of that, they differ by a nonzero constant function (lemma 2.1),

rj = cjkrk at Aj ∩ Ak. Trivially, cjk can be extended to the same constant over Ak,

and cjkrk is a section defined over Ak such that its restriction to Aj ∩Ak is exactly rj,

and it still has Θ
∣∣
TAk

as potential 1-form. Hence, they can be glued together, using
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the glueing condition of sheaves, to a unitary section r defined over N and having Θ

as potential 1-form. �

2.2.2 Parallel transport and holonomy

Let γ : N ↪→ M be a regular curve (open, N = R, or closed, N = S1) with

tangent vector field γ̇ ∈ X(γ), where, by simplicity, the submanifold γ(N) will be

denoted by γ. Given a vector sγ(0) belonging to the fibre Lγ(0) of L over the point

γ(0), there exists a unique section s of L, defined over γ, satisfying ∇γ̇s = 0

s(γ(0)) = sγ(0)

. (2.17)

Definition 2.15. The parallel transport Πγ(t) : Lγ(0) → Lγ(t), from the point γ(0)

to γ(t), over the curve γ is the linear operator defined by the flow of the system

2.17: Πγ(t)(z) = s(γ(t)), where the section s is the unique solution of the initial value

problem sγ(0) = z.

The parallel transport is a bundle automorphism (respecting the Hermitian prod-

uct), and one can write Πφt(s) to denote, for each p ∈M , the parallel transport from

p to φt(p) of the section s ∈ Γ(L) through the integral curve of X ∈ X(M): with φt

standing for its flow at time t. Moreover, by definition,

∇Xs =
d

dt
Π−1
φt

(s ◦ φt)
∣∣∣
t=0

. (2.18)

Proposition 2.3. The parallel transport of a section r = fs ∈ Γ(L
∣∣
γ
), where f ∈

C∞(γ) and s is a unitary section defined over γ with potential 1-form Θ, is given by

Πγ(t)(r ◦ γ(0)) = ei
∫ t
0 Θ(γ̇(t′))dt′f ◦ γ(0)s ◦ γ(t) . (2.19)

Proof: In fact,

∇γ̇(r) = γ̇(f)s− ifΘ(γ̇)s (2.20)

and γ̇(f)
∣∣
γ(t)

= d
dt
f ◦ γ(t); thus,

[∇γ̇(r)](γ(t)) =

(
d

dt
f ◦ γ(t)

)
s ◦ γ(t)− if ◦ γ(t)Θ(γ̇(t))s ◦ γ(t) (2.21)
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and the parallel transport equation (eq. 2.17) becomes
d

dt
f ◦ γ(t) = iΘ(γ̇(t))f ◦ γ(t)

r ◦ γ(0) = f ◦ γ(0)s ◦ γ(0)
. (2.22)

�

Since both Lγ(0) and Lγ(2π) are isomorphic to C and the connection is Hermitian,

when the curve is closed, γ(0) = γ(2π), there is an element of U(1) that realises the

parallel transport.

Definition 2.16. The holonomy of the loop, hol∇ω(γ) ∈ U(1), is the number given

by Πγ(2π)(z) = hol∇ω(γ)z.

The following is a corollary of proposition 2.3.

Corollary 2.1. The holonomy is given by

hol∇ω(γ) = exp

(
i

∫
γ

Θ

)
, (2.23)

if there is a unitary section defined over the loop γ with potential 1-form Θ.

Proof: Putting t = 2π and taking z ∈ Lγ(0)
∼= Lγ(2π) to be the value of the unitary

section at γ(0), equation 2.19 reads

Πγ(2π)(z) = ei
∫ 2π
0 Θ(γ̇(t′))dt′z = exp

(
i

∫
γ

Θ

)
z . (2.24)

�

2.3 Foliations and Lie pseudoalgebras

Relevant cohomology theories appearing in this thesis are going to be presented

in a unified way —as Lie pseudoalgebra representations. This section introduces the

basics of Lie pseudoalgebras and its relationship with foliated manifolds.
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2.3.1 Vector fields and some Lie subalgebras

Considering a manifold M , the space Γ(TM) is both a C∞(M)-module and a Lie

algebra (with the Lie bracket of vector fields [·, ·] in mind), and this two structures

are related by the Leibniz rule

[X, fY ] = X(f)Y + f [X, Y ] , (2.25)

for any X, Y ∈ Γ(TM) and f ∈ C∞(M). This Leibniz rule results from an (C∞(M)-

module) identification9 of Γ(TM) with the derivations of the commutative algebra

C∞(M), X(M) := DerR(C∞(M)).

This is just an example of a Lie pseudoalgebra, and it motivates the following

definition10.

Definition 2.17. A Lie pseudoalgebra is a triplet (g, C∞(M ;K), T ), where:

• K is either the field R or C;

• C∞(M ;K) is the commutative K-algebra of smooth functions over M with val-

ues in K;

• g is both a C∞(M ;K)-module and a K-Lie algebra, with Lie bracket denoted by

[·, ·];

• T : g → DerK(C∞(M ;K)) is a morphism of K-Lie algebras and C∞(M ;K)-

modules, such that

[x, fy] = T (x)(f)y + f [x, y] , (2.26)

for any x, y ∈ g and f ∈ C∞(M ;K).

When g is a K-Lie subalgebra and C∞(M ;K)-submodule of DerK(C∞(M ;K)), T

is going to be omitted if it is choosen to be the inclusion map.

The second example comes from foliated manifolds.

9This is true in the smooth category.
10The reader is invited to consult the survey [18] for a general and precise definition; as well for

a nice account of the history and, various, names of this structure.
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Example 2.13. Let (M,F) be a foliated m-dimensional manifold with n-dimensional

leaves. The (regular) foliation can be thought as a subbundle of TM , which is often

denoted by TF . Therefore, the space of sections of TF is a C∞(M)-module and,

because of the integrability condition, the restriction of the Lie bracket of vector

fields to Γ(TF) makes it a Lie subalgebra of (Γ(TM), [·, ·]); the Leibniz condition is

obviously satisfied. ♦

The two aforementioned examples, Γ(TM) and Γ(TF), are also Lie algebroids11;

nevertheless, the next one is a genuine Lie pseudoalgebra.

Example 2.14. Integrable systems defined on (M,ω) induce Lie subalgebras of

(Γ(TM), [·, ·]), namely, (P := 〈X1, . . . , Xn〉C∞(M), [·, ·]
∣∣
P), where Xi is the Hamil-

tonian vector field of the ith component of a moment map F : M → Rn. These Lie

subalgebras are C∞(M)-modules, as well, and the Leibniz rule applies. It is not an

example of a Lie algebroid because the rank of the distribution P may vary; thus,

there is no vector bundle attached to P in general. ♦

2.3.2 Representation theory

There is also a notion of representation for Lie pseudoalgebras [25].

Definition 2.18. A representation of a Lie pseudoalgebra (g, C∞(M ;K), T ) on a

C∞(M ;K)-module E is a morphism of K-Lie algebras and C∞(M ;K)-modules ρ :

g→ HomK(E;E), such that

ρ(x)(fs) = T (x)(f)s+ fρ(x)(s) , (2.27)

for all x ∈ g, s ∈ E and f ∈ C∞(M ;K).

In particular, the map ρ : g → HomK(E;E) is a representation of the K-Lie

algebra g on E.

11The reader can easily check that this definition of Lie pseudoalgebras includes Lie algebroids as

examples.
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There exists a cohomology for each representation of a Lie pseudoalgebra, similar

to the theory of Lie algebras. For each k ∈ Z, one can define a C∞(M ;K)-module

Ωk
g(M) := HomC∞(M ;K)(∧kC∞(M ;K)g;C∞(M ;K)) , (2.28)

if k < 0 or k > dim g, Ωk
g(M) = ∅, and Ω0

g(M) = C∞(M ;K). Then, one can take the

tensor product

Skg (E) := Ωk
g(M)⊗C∞(M ;K) E ∼= HomC∞(M ;K)(∧kC∞(M ;K)g;E) , (2.29)

and define a K-linear map dρ that takes α ∈ Skg (E) to an element of Sk+1
g (E), for any

k ∈ Z:

dρα(x1, . . . , xk+1) :=
k + 1∑
i = 1

(−1)i+1ρ(xi)(α(x1, . . . , x̂i, . . . , xk+1)) (2.30)

+
∑
i < j

(−1)i+jα([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xk+1) ,

with x1, . . . , xk+1 ∈ g.

The fact that ρ is a representation implies that dρ is a coboundary operator,

dρ ◦ dρ = 0, and it is possible to construct a complex of K vector spaces: the cochain

spaces are the C∞(M ;K)-modules Skg (E), and the differential is given by dρ.

Definition 2.19. The kth cohomology group associated to the complex

0 −→ Eg ↪→ E
dρ−→ S1

g (E)
dρ−→ · · · dρ−→ Sdim g

g (E)
dρ−→ 0 , (2.31)

with Eg := ker(dρ : E → S1
g (E)), is denoted by Hk(Sg

•(E)) and called the Lie

pseudoalgebra cohomology of g with respect to E.

In the particular case where E = C∞(M ;K), since DerK(C∞(M ;K)) ⊂ HomK(E;E),

one can use T in place of ρ and define a cohomology verbatim: the cochain spaces are

the C∞(M ;K)-modules Ωk
g(M), the differential is denoted by dg, and the cohomology

is denoted by Hg
•(M).
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Example 2.15. The de Rham cohomology. If E = C∞(M), g = Γ(TM), endowed

with the Lie bracket of vector fields, and ρ is the identification between sections

of TM and derivations of C∞(M): Hg
•(M) is the de Rham cohomology of M ,

HdR
•(M). ♦

The previous example also holds if one considers Lie subalgebras of the Lie algebra

of vector fields.

Example 2.16. Taking E = C∞(M), g = Γ(TF), the Lie subalgebra of vector fields

tangent to the foliation F , and ρ the identification between sections of the subbundle

TF and derivations of C∞(M), one has that Ωk
F(M) ∼= Γ(∧kTF∗) and Hg

•(M) is the

foliated cohomology, HF
•(M). ♦

The Lie pseudoalgebra (TF , [·, ·]
∣∣
TF) is being represented on C∞(M) as vector

fields acting on smooth functions. The differential dF is the restriction of the exterior

derivative, d, to TF , and Eg, which is denoted by C∞F (M), is the space of smooth

functions which are constant along the leaves of the foliation (for the de Rham com-

plex, Eg = R).

The Lie pseudoalgebra example of integrable systems, example 2.14, is of particu-

lar interest to this thesis. Its Lie pseudoalgebra cohomology with respect to C∞(M) is

very similar to the one of the foliated cohomology: P can be represented on C∞(M)

as vector fields acting on smooth functions. Yet, it is worth to mention here one

difference.

Definition 2.20. The vanishing set of a vector field Xi, generating P, is denoted by

Σi := {p ∈M ; Xi(f)(p) = 0 ∀ f ∈ C∞(M)}.

Proposition 2.4. If α ∈ Ωk
P(M), then α(Xj1 , . . . , Xjk)

∣∣
Σj1∪···∪Σjk

= 0.

Proof: At every point p ∈ M the map α ∈ Ωk
P(M) reduces to an element of the

dual of ∧kP
∣∣
p
, which is a finite dimensional vector space. Since Xi = 0 at Σi, for any

p ∈ Σi and vectors Y1(p), . . . , Yk−1(p) ∈ P
∣∣
p
, the following expression holds:

αp(Xi(p), Y1(p), . . . , Yk−1(p)) = 0 . (2.32)
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Therefore, α(Xj1 , . . . , Xjk)
∣∣
Σi

= 0 for i = j1, . . . , jk. �
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Chapter 3

Prequantisation

This chapter deals with some concepts needed to define wave functions. The first

attempt was to see them as sections of a complex line bundle over the symplectic

manifold, the so-called prequantum line bundle. The other notion described here,

polarisations, is a way to establish a global distinction between momentum and po-

sition.

3.1 Prequantum line bundle

Using a particular isomorphism between the Čech cohomology Ȟ2(M ;R) and de

Rham cohomology H2
dR(M ;R), a closed 2-form is integral if and only if it is in the

image of the homomorphism between Ȟ2(M ;Z) and Ȟ2(M ;R):

R Ȟ2(M ;R) ←→ H2
dR(M ;R)

↑ ↑

Z Ȟ2(M ;Z)

the inclusion of Ȟ2(M ;Z) in Ȟ2(M ;R) is induced by a homomorphism between Z

and R.

Definition 3.1. A symplectic manifold (M,ω) such that the de Rham class [ω] is

integral is called prequantisable. A prequantum line bundle of (M,ω) is a Hermitian
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line bundle over M with connection, compatible with the Hermitian structure, (L,∇ω)

that satisfies curv(∇ω) = −iω.

Example 3.1. Any exact symplectic manifold satisfies [ω] = 0, in particular cotan-

gent bundles with the canonical symplectic structure. The trivial line bundle is an

example of a prequantum line bundle in this case. ♦

The following theorem1 provides a relation between the above definitions:

Theorem 3.1. A symplectic manifold (M,ω) admits a prequantum line bundle (L,∇ω)

if and only if it is prequantisable.

Proof: Let A = {Aj}j∈I be a contractible open cover of M such that each Aj is

a local trivialisation of L with unitary section sj (this can always be obtained, e.g.

using a convenient cover made of balls with respect to a Riemannian metric).

(curv(∇ω) = −iω ⇒ [ω] is integral) By proposition 2.2, on each Aj the formula

ω = dΘj holds: Θj is the potential 1-form with respect to sj. As a consequence,

d(Θj −Θk) = 0 ⇒ Θj −Θk = dfjk on Aj ∩Ak, where eifjk ∈ U(1) are the transition

functions (equation 2.12). Now, d(fjk + fkl − fjl) = 0 ⇒ fjk + fkl − fjl = 2πajkl

on Aj ∩ Ak ∩ Al, with ajkl a constant. The cocycle conditions of the line bundle,

eifjkeifkl = eifjl , imply that ei2πajkl = 1; thus, ajkl ∈ Z and [ω] is integral.

Conversely, given an integral [ω] on each open set Aj, which is contractible, the

closedness of the symplectic form implies exactness, ω = dθj. Again, θj − θk =

dfjk on Aj ∩ Ak; therefore, ei2πfjk gives cocycle conditions (since [ω] is integral) on

the intersections of the open cover A, defining (in a unique way, up to equivalence

relations) a Hermitian line bundle. �

3.2 Polarisation

Classicaly, a real polarisation F is an integrable subbundle of TM (the bundle

TF) whose leaves are Lagrangian submanifolds: i.e. F is a Lagrangian foliation. But

1A proof can be found in [15].
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due to the example below another definition is considered.

For an integrable system F : M → Rn on a symplectic manifold, the Liouville

integrability condition implies that the distribution of the Hamiltonian vector fields

of the components of the moment map generates a Lagrangian foliation (possible)

with singularities. This is an example of a generalised real polarisation —i.e. an

integrable distribution on TM whose leaves are Lagrangian submanifolds, except for

some singular leaves.

Definition 3.2. A real polarisation P is an integrable (in the Sussmann’s [28] sense)

distribution of TM whose leaves are generically Lagrangian. The complexification of

P is denoted by P and will be called polarisation.

The most relevant real polarisation for this thesis is P = 〈Xf1 , ..., Xfn〉C∞(M): the

distribution of the Hamiltonian vector fields Xfi of the components fi of an integrable

system F = (f1, . . . , fn) : M → Rn.

Here is an example of a real polarisation that do not come from an integrable

system.

Example 3.2. The action of S1 on S1 × S1 given by (z, x, y) 7→ (z · x, y), with

z, x, y ∈ S1, is symplectic (taking as symplectic form the area form of the torus).

Because there are no fixed points, this action cannot be Hamiltonian —otherwise,

one would have a function over a compact manifold without critical points. ♦

Henceforth, (L,∇ω) will be a prequantum line bundle and P the complexification

of a real polarisation P of (M,ω).

3.3 Bohr-Sommerfeld fibres

The following definition plays a very important role in the computation of the

cohomology groups appearing in geometric quantisation:
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Definition 3.3. A leaf ` of P is a Bohr-Sommerfeld leaf if there exists a nonzero

section s : `→ L such that ∇ω
Xs = 0 for any vector field X of P restricted to `. Fibres

which are a union of Bohr-Sommerfeld leaves are called Bohr-Sommerfeld fibres.

Example 3.3. Consider M = R×S1 with coordinates (x, y) and ω = dx∧ dy. Take

as L the trivial complex line bundle with connection 1-form Θ = xdy, with respect

to the unitary section eix, and P =
〈
∂
∂y

〉
C∞(M)

.

Flat sections, s(x, y) = f(x, y)eix, satisfy[
∇ω

∂
∂y

s
]

(x, y) =

(
∂f

∂y
(x, y)− ixf(x, y)

)
eix = 0 . (3.1)

Thus, s(x, y) = g(x)eixyeix, for some function g, and it has period 2π in y if and only

if x ∈ Z, for S1 the unity circle: flat sections are only well-defined for the set of points

with x ∈ Z; wherefore, Bohr-Sommerfeld leaves are circles of integral height.

♦

Proposition 3.1. A leaf ` of P is a Bohr-Sommerfeld leaf if and only if the holonomy

is trivial, hol∇ω(γ) = 1, for any loop γ on a connected component of `.

Proof: In a Bohr-Sommerfeld leaf ` the nonzero section s can be used to define

a potential 1-form Θ of the connection on the whole leaf, lemma 2.1. The potential

1-form vanishes on `, since 0 = ∇ωs
∣∣
T`

= −iΘ
∣∣
T`
⊗ s. Thus, if γ is a loop on `, by

corollary 2.1, hol∇ω(γ) = ei
∫
γ Θ = 1.

Now, supposing that hol∇ω(γ) = 1 for any loop on a connected component of a

leaf ` of P , for any point p ∈ ` and a nonzero sp ∈ Lp (the fibre of L over p) it is
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possible to define a nonzero section s over ` by parallel transport: i.e. s(q) = Πγ1(sp),

where γ1 is any curve connecting p and q ∈ `. The section is well-defined because if

γ2 is another curve connecting p and q, and γ the loop formed by composing γ2 and

γ−1
1 ,

s(q) = hol∇ω(γ)s(q) = Πγ(s(q)) = Πγ2 ◦ [Πγ1 ]
−1(s(q))

= Πγ2 ◦ [Πγ1 ]
−1 ◦ Πγ1(sp) = Πγ2(sp) . (3.2)

The parallel transport respects the Hermitian product, and this guarantees that the

section defined in this way is nonzero. �

There is a stronger characterisation for the Bohr-Sommerfeld leaves in the case of

integrable systems.

On a neighbourhood N of a Liouville torus ` the symplectic form is exact, ω
∣∣
TN

=

dθ (Liouville theorem 2.2), and lemma 2.2 provides a unitary section s ∈ Γ(L
∣∣
N

) such

that ∇ωs = −iθ⊗ s. If ` is a Bohr-Sommerfeld leaf, there exist a flat unitary section

r ∈ Γ(L
∣∣
`
) and, because of lemma 2.1, a real-valued function f ∈ C∞(`) such that

θ
∣∣
T`
− df is the potential 1-form associated to r. Since 1 = hol∇ω(γ) = ei

∫
γ θ−df for

any loop γ in ` (proposition 3.1 and corollary 2.1), one has
∫
γ
θ ∈ 2πZ. Thus, using

the action variables as a local chart on F (M), the following theorem [10] has been

proved:

Theorem 3.2 (Guillemin and Sternberg). Under the assumption that the zero fibre

is Bohr-Sommerfeld, the image of the regular (Liouville tori) Bohr-Sommerfeld leaves

by the moment map is contained in Zn.

Example 3.4. For toric manifolds the Bohr-Sommerfeld leaves are the inverse image

by the moment map of integer lattice points in the polytope, with regular ones inside

the polytope.
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♦
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Chapter 4

Geometric quantisation à la

Kostant

The original idea of geometric quantisation is to associate a Hilbert space to a

symplectic manifold via a prequantum line bundle and a polarisation. Usually this

is done using flat global sections of the line bundle; in case these global sections do

not exist, one can define geometric quantisation via higher cohomology groups by

considering cohomology with coefficients in the sheaf of flat sections.

4.1 A cohomological definition

The existence of global flat sections is a nontrivial matter. Actually, Rawnsley

[26] (also proposition 7.3 in this thesis, under slightly different hypotheses) showed

that the existence of a S1-action may be an obstruction for the existence of nonzero

global flat sections.

Example 3.3 and the complex plane, endowed with the canonical symplectic struc-

ture and a polarisation induced by a circle action, provide explicit examples of the

nonexistence of nonzero global flat sections.

Example 4.1. Let M = C with coordinates (x, y) and Darboux form ω = dx ∧ dy,

L = C×C the trivial bundle with connection 1-form Θ = 1
2
(xdy− ydx), with respect
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to the unitary section ei(x
2+y2), and P =

〈
−y ∂

∂x
+ x ∂

∂y

〉
C∞(C)

.

Corollary 2.1 implies that the holonomy for a closed curve γ inside a leaf of P is

[hol∇ω(γ)](x, y) =

[
exp

(
i

∫
γ

Θ

)]
(x, y) = ei2π

(x2+y2)
2 . (4.1)

Therefore, by proposition 3.1, flat sections are only well-defined for the set of points

with (x2+y2)
2
∈ Z.

♦

One is forced to work with delta functions with support over Bohr-Sommerfeld

leaves in order to use flat sections as analogue for wave functions, or deal with sheaves

and higher order cohomology groups. Both approaches can be found in the literature1,

but here only the sheaf approach is treated: as suggested by Kostant.

Definition 4.1. Let J denotes the space of local sections s of a prequantum line

bundle L such that ∇ω
Xs = 0 for all vector fields X of a polarisation P . The space J

has the structure of a sheaf and it is called the sheaf of flat sections.

Considering the triplet prequantisable symplectic manifold (M,ω), prequantum

line bundle (L,∇ω), and polarisation P :

Definition 4.2. The quantisation of (M,ω,L,∇ω, P ) is given by

Q(M) =
⊕
k≥0

Ȟk(M ;J ) , (4.2)

1Rawnsley cites works of Simms, Śniatycki and Keller in [26].

38



where Ȟk(M ;J ) are Čech cohomology groups with values in the sheaf J . In this case,

one implicitly assumes the extra structures and calls M a quantisable manifold.

The detailed construction of Ȟk(M ;J ) and the sheaf structure of J are described

in chapter 5. The present thesis can be summarised as an approach to compute and

understand the features of these cohomology groups.

Remark 4.1. Even though Q(M) is just a vector space and a priori 2 has no

Hilbert structure, it will be called quantisation. The true quantisation of the triplet

(M,ω,L,∇ω, P ) shall be the completion of the vector space Q(M), after a Hilbert

structure is given, together with a Lie algebra homomorphism (possibly defined over a

smaller subset) between the Poisson algebra of C∞(M) and operators on the Hilbert

space. In spite of the problems that may exist in order to define geometric quantisa-

tion using Q(M), the first step is to compute this vector space.

Remark 4.2. Flat sections behave in a different fashion for Kähler polarisations.

This thesis does not deal with this case3; however, much can be found in the literature

(e.g. [10, 11] and references therein). There is another aspect of the theory that

will be left aside by this thesis4: metaplectic correction. To imbue Ȟ0(M ;J ) ∼=

{s ∈ Γ(L) ; ∇ω
Xs = 0 ∀ X ∈ P} with a Hilbert structure, Kostant and Blattner

[16, 2] introduced half-forms on geometric quantisation5. Besides inducing an inner

product, half-forms also make a correction to the spectrum of the operators (Blattner,

Rawnsley, Simms and Śniatycki are referred to for this in [17, 26, 27]), this correction

does not always behaves as one would like, though (e.g. [7]).

2For the concrete cases presented in this thesis, Q(M) does admit Hilbert structures.
3This is particularly due to the author’s opinion on the famous Hadamard’s quote: “The shortest

path between two truths in the real domain passes through the complex domain”.
4See remark 6.1 for an explanation.
5It is not clear who did what, but both Kostant and Blattner say that it has roots on a joint

work of them with Sternberg.
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Chapter 5

The Čech approach

The results of Hamilton and Miranda [11, 12] concerning geometric quantisation

of integrable systems with elliptic and hyperbolic singularities are presented in this

chapter. Part of their strategy relies on the existence of local normal forms near

singularities of integrable systems.

5.1 Sheaf cohomology

Here is a review of the definition of sheaves and the construction of the Čech

cohomology in the context of geometric quantisation. This is a humble account of

a vast theory, and just the notions needed are introduced; for a more complete and

general treatment see [4].

5.1.1 Sheaf structure of J

Let (L,∇ω) be a prequantum line bundle and P a polarisation for (M,ω). Take

an open set V ⊂ M and denote by J (V ) the set of flat sections on V : i.e. sections

s of L defined on V such that ∇ω
Xs = 0 for all vector fields X of P defined over V .

For each open set V this is an Abelian group (indeed, it is a module over the ring

C∞P (M)).

Thus, for each open set of the manifold M , which is a topological space, J (V )
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associates an Abelian group, and the restriction of sections to an open subset W ⊂ V

induces restriction maps RW,V : J (V ) → J (W ), i.e. RW,V (s) := s
∣∣
W

for any s ∈

J (V ). The restriction maps respect the Abelian structure and satisfy RV,V = idJ (V )

and RW,U ◦RU,V = RW,V , whenever W ⊂ U ⊂ V . This is the definition of a presheaf

of Abelian groups over a topological space.

If s, r ∈ J (V ∪W ) satisfy RW,V ∪W (s) = RW,V ∪W (r) and RV,V ∪W (s) = RV,V ∪W (r),

they are equal over V ∪W . If s ∈ J (V ) and t ∈ J (W ) are such that RV ∩W,V (s) =

RV ∩W,W (t), this implies that they are equal over V ∩ W ; and one can define r ∈

J (V ∪W ) by the equations s = RV,V ∪W (r) and t = RV,V ∪W (r). The first property

is called local identity and the second one the glueing condition, a sheaf is a presheaf

satisfying these extra conditions.

5.1.2 Construction of Ȟk(M ;J )

Fix an open cover A = {Aα} of M . A section of J is assigned to each (k+ 1)-fold

intersection of elements from the cover, Aα0···αk := Aα0 ∩ · · · ∩ Aαk .

Definition 5.1. A k-cochain is an assignment fα0···αk ∈ J (Aα0···αk) for each (k+ 1)-

fold intersection in the cover A. The set of k-cochains is denote by Ck
A(M ;J ).

A coboundary operator δ is well-defined1 by

(δk−1f)α0···αk :=
k∑

j = 0

(−1)jfα0···α̂j ···αk
∣∣
Aα0···αk

, (5.1)

so one has a cochain complex for Ck
A(M ;J ).

Definition 5.2. The sheaf cohomology with respect to the cover A is the cohomology

of this complex,

Ȟk
A(M ;J ) :=

kerδk

imδk−1
. (5.2)

1A two pages tedious computation shows that δ ◦ δ = 0.
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The sheaf cohomology of M will be given by a direct limit over open covers. Let

A be a set of covers of M such that if A is an open cover, then R ∈ A is a refinement

of A. The order relation given by refinements makes A a direct set.

If S ≤ R, then

ΦRS(f)σ0···σk := fρ0···ρk
∣∣
Sσ0···σk

(5.3)

induces a homomorphism ΨRS : Ȟk
R(M ;J ) → Ȟk

S(M ;J ). Thanks to the presheaf

properties {Ȟk
R(M ;J )}R∈A and {ϕRS}R,S∈A forms a direct system.

Definition 5.3. The cohomology of M taking values on the sheaf J is

lim
−→

Ȟk
R(M ;J ) := Ȟk(M ;J ) . (5.4)

If Ȟk
R(M ;J ) ∼= Ȟk

S(M ;J ) for all R,S ∈ A, then Ȟk(M ;J ) ∼= Ȟk
R(M ;J ). The

set A is called cofinal in this case, and any covering on it can be used to compute the

cohomology.

5.1.3 The Mayer-Vietoris argument

Any open cover A = {Aα} of M induces a covering on open sets V,W ⊂M , and

also on their union and intersection. For simplicity they will be denoted by the same

symbol. The goal is to show that the sequence

0→ Ck
A(V ∪W ;J )→ Ck

A(V ;J )⊕ Ck
A(W ;J )→ Ck

A(V ∩W ;J )→ 0 (5.5)

is an exact sequence and use it to glue together the cohomology of pieces of M .

An injective linear map q : Ck
A(V ∪W ;J )→ Ck

A(V ;J )⊕Ck
A(W ;J ) can be defined

by

q(fα0···αk) =
(
fα0···αk

∣∣
V ∩Aα0···αk

)
⊕
(
fα0···αk

∣∣
W∩Aα0···αk

)
; (5.6)

if each component of q(fα0···αk) is zero by the local identity property fα0···αk must be

zero.

For the second part of the sequence, the linear map p : Ck
A(V ;J )⊕Ck

A(W ;J )→

Ck
A(V ∩W ;J ), given by

p(f ⊕ g)α0···αk := fα0···αk
∣∣
V ∩W∩Aα0···αk

− gα0···αk
∣∣
V ∩W∩Aα0···αk

, (5.7)
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is surjective and has its kernel in the image of q. It is clear, by definition, that p◦q = 0

and if p(f ⊕ g)α0···αk = 0 the glueing condition gives a hα0···αk ∈ J (V ∪W ) such that

q(hα0···αk) = fα0···αk ⊕ gα0···αk . The surjectivity comes from the existence of partitions

of unity for J (the sheaf is fine).

Remark 5.1. A proof that J is fine depends on the properties of the polarisation,

and the author of this thesis does not know any general proof of this when the

polarisation is singular. Hamilton and Miranda [11, 12] proved this for their cases:

with elliptic singularities in any dimension and with nondegenerate ones in dimension

2. Nevertheless, in this thesis, a fine resolution for the sheaf J is obtained when

the polarisation is nondegenerate. Thus, there is a Mayer-Vietoris sequence at the

cohomology level.

As usual, the short exact sequence of cochains induces a long exact sequence of

cohomology groups. There exists a lemma [4] asserting that direct limit of exact

sequences is exact: they must be indexed by the same direct set and the diagram

coming out of them needs to be commutative. Both conditions are satisfied using the

restriction of the maps of the direct system; thus,

· · · → Ȟk(V ∪W ;J )→ Ȟk(V ;J )⊕ Ȟk(W ;J )→ Ȟk(V ∩W ;J )→ · · · (5.8)

is an exact sequence not depending on any particular covering.

When Ȟk(V ∩ W ;J ) = {0}, for all k, the cohomology Ȟk(V ∪ W ;J ) will be

isomorphic to Ȟk(V ;J )⊕ Ȟk(W ;J ). In other words, if one finds a special covering

of M lying inside a cofinal A and such that the cohomology groups on the intersections

vanishes, the cohomology of the manifold can be computed piece by piece.

5.2 Known results for the singular case

Mark Hamilton found a very special covering for locally toric manifolds that not

only permits the use of the Mayer-Vietoris argument and lies on a cofinal set, but

allows one to use the local normal forms described in subsection 2.1.4 to compute
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the cohomology groups of each open set of the covering. In [11] he has shown that

Śniatycki’s theorem [27] holds in this situation, and the elliptic singularities give no

contribution to the quantisation (just the trivial vector space {0}):

Theorem 5.1 (Hamilton). For M a 2n-dimensional compact symplectic manifold

equipped with a locally toric singular Lagrangian fibration:

Q(M) = Ȟn(M ;J ) ∼=
⊕
p∈BSr

C , (5.9)

BSr being the set of the regular Bohr-Sommerfeld fibres.

With Eva Miranda they found a covering sharing the same properties for compact

orientable surfaces. The conclusion in [12] is that Śniatycki’s theorem holds as well;

elliptic singularities give no contribution and each hyperbolic singularity gives an

infinite dimensional contribution.

Theorem 5.2 (Hamilton and Miranda). For an integrable system defined over a 2-

dimensional compact symplectic manifold, whose moment map has only nondegenerate

singularities,

Q(M) = Ȟ1(M ;J ) ∼=
⊕
p∈H

(CN ⊕ CN)⊕
⊕
p∈BSr

C , (5.10)

BSr being the set of the regular Bohr-Sommerfeld fibres and H the set of hyperbolic

singularities.

Example 5.1. The coadjoint orbits of so(3)∗ are the origin and spheres centered at

the origin (with symplectic form given by the area form), and the Euler equations are

the free rigid body dynamics.

A choice of a momentum of inertia operator (a rigid body) is the same as a choice

of a quadratic form on so(3)∗. The quadratic form gives the kinetic energy and its

level sets are the concentric ellipsoids centered at the origin.

The moment map represents the angular momentum and its level sets are the

coadjoint orbits. The prequantisable spheres are those with integral area, or equiva-

lently, with radius
√
k/4π, k ∈ N.
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Due to conservation of energy and angular momentum, the integral curves are

contained in the intersection of the spheres and ellipsoids, and this gives the singular

foliation associated to the integrable system of a free rigid body.

If the principal axis of inertia satisfies I1 = I2 6= I3 the momentum of inertia

operator has 2 distinct eigenvalues. It is an example of a toric manifold having two

elliptic singularities and Q(M) is finite dimensional.

A generic body satisfies I1 < I2 < I3 and it is an integrable system containing

four elliptic and two hyperbolic singularities. It has an infinite dimensional Q(M).

♦
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Chapter 6

The Kostant complex

Instead of computing directly the Čech cohomology groups Ȟk(M ;J ), as done

by Hamilton [11] and Hamilton and Miranda [12], the strategy of this thesis is to

present a resolution for the sheaf J . For regular polarisations this has been done

by Kostant [27, 26]. In the singular case this can be achieved via Lie pseudoalgebra

representations.

This chapter only recasts Geometric Quantisation under the language of Lie pseu-

doalgebras and its representations, the proof that the Kostant complex is a resolution

for the sheaf is left to chapters 9 and 10.

6.1 Line bundle valued polarised forms

Recalling example 2.14, the polarisation induced by an integrable system provides

a Lie pseudo algebra, (P,C∞(M),C), and it can be represented on the space of

sections of the prequantum line bundle, Γ(L), via the Hermitian connection ∇ω.

• The complex Lie algebra and C∞(M ;C)-module g is going to be (P, [·, ·]
∣∣
P

);

• the space of complex-valued functions C∞(M ;C) will be denoted by C∞(M);

• the map T : P → X(M) is going to be the inclusion map;

• the C∞(M)-module E is going to be Γ(L);
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• the map ρ : P → HomC(Γ(L); Γ(L)) is going to be the restriction of the con-

nection ∇ω to the polarisation, ∇ := ∇ω
∣∣
P

;

• the cochain spaces Ωk
P (M)⊗C∞(M) Γ(L) will be denoted by SkP (L).

Proposition 6.1. The restriction of the connection ∇ω to the polarisation, ∇ :=

∇ω
∣∣
P

, defines a representation of the Lie pseudoalgebra (P,C∞(M),C) on Γ(L).

Proof: The space of sections of the prequantum line bundle L is clearly a C∞(M)-

module, and

∇ : Γ(L)→ Ω1
P (M)⊗C∞(M) Γ(L) (6.1)

satisfies (by definition) the following property:

∇(fs) = dPf ⊗ s+ f∇s , (6.2)

for any f ∈ C∞(M) and s ∈ Γ(L).

If X, Y ∈ P , thinking of ∇ as a linear map from P to endomorphisms of Γ(L),

∇[X,Y ] = ∇X ◦ ∇Y −∇Y ◦ ∇X − curv(∇)(X, Y ) . (6.3)

But since ω = i curv(∇ω) vanishes along P , curv(∇)(X, Y ) = 0 and ∇ is a Lie

algebra representation of (P, [·, ·]
∣∣
P

) on Γ(L) compatible with their C∞(M)-module

structures. �

Definition 6.1. ΩP
•(M) :=

⊕
k≥0

Ωk
P (M) is the space of polarised forms, and the space

of line bundle valued polarised forms is SP
•(L) :=

⊕
k≥0

SkP (L).

Therefore, ∇ : S0
P (L)→ S1

P (L) and SP
•(L) has a module structure which enables

an extension of ∇ to a derivation of degree +1 on the space of line bundle valued

polarised forms, as follows: if α ∈ Ωk
P (M) and β = β ⊗ s ∈ SlP (L),

α ∧ β = α ∧ (β ⊗ s) := (α ∧ β)⊗ s (6.4)

defines a left multiplication of the ring ΩP
•(M) on SP

•(L).
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Definition 6.2. The derivation on SP
•(L) is given by the degree +1 map d∇ :

SP
•(L)→ SP

•(L),

d∇(α⊗ s) := dPα⊗ s+ (−1)kα ∧∇s . (6.5)

With respect to line bundle valued polarised forms, proposition 6.1 asserts that

the degree +1 map d∇ is a coboundary (this map is the same as the one given by

equation 2.30).

Proposition 6.2. If α ∈ Ωk
P (M) and β ∈ SlP (L), then

d∇(α ∧ β) = dPα ∧ β + (−1)kα ∧ d∇β , (6.6)

and

d∇ ◦ d∇β = curv(∇ω)
∣∣
P
∧ β . (6.7)

Proof: By linearity, it suffices to prove it for elements of the form β = β⊗ s, with

β ∈ Ωl
P (M) and s ∈ Γ(L).

d∇(α ∧ β) = d∇[(α ∧ β)⊗ s] = dP (α ∧ β)⊗ s+ (−1)k+l(α ∧ β) ∧∇s

= [dPα ∧ β + (−1)kα ∧ dPβ]⊗ s+ (−1)kα ∧ [(−1)lβ ∧∇s]

= dPα ∧ (β ⊗ s) + (−1)kα ∧ [dPβ ⊗ s+ (−1)lβ ∧∇s]

= dPα ∧ β + (−1)kα ∧ d∇β ,

which proves the first statement.

Equation 2.30 reads:

[d∇(∇s)](X, Y ) = ∇X [(∇s)(Y )]−∇Y [(∇s)(X)]− (∇s)([X, Y ])

= curv(∇)(X, Y )s ,

for any X, Y ∈ P . As a result, (d∇ ◦ d∇)s = curv(∇ω)
∣∣
P
⊗ s and

d∇ ◦ d∇β = (d∇ ◦ d∇)(β ⊗ s) = d∇(dPβ ⊗ s+ (−1)lβ ∧∇s)

= dP ◦ dPβ ⊗ s+ (−1)l+1dPβ ∧∇s+ (−1)l[dPβ ∧∇s+ (−1)lβ ∧ d∇(∇s)]

= −(−1)ldPβ ∧∇s+ (−1)ldPβ ∧∇s+ β ∧ curv(∇ω)
∣∣
P
⊗ s

= curv(∇ω)
∣∣
P
∧ β ⊗ s = curv(∇ω)

∣∣
P
∧ β .
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Since ω = i curv(∇ω) vanishes along P , one has d∇ ◦ d∇ = 0.

Corollary 6.1. d∇ is a coboundary operator.

Remark 6.1. The only property of L being used here is the existence of flat connec-

tions along P ; any complex line bundle would do, not only a prequantum one —the

results here work if metaplectic correction is included.

Thus, the associated Lie pseudoalgebra cohomology of this representantion, H•(SP
•(L)),

induces a complex (at the sheaf level). If SkP (L) denotes the associated sheaf of

SkP (L), one can extend d∇ to a homomorphism of sheaves, d∇ : SkP (L) → Sk+1
P (L).

S0
P (L) ∼= S, the sheaf of sections of the line bundle L, and J is isomorphic to the

kernel of ∇ : S → S1
P (L).

Definition 6.3. The Kostant complex is

0 −→ J ↪→ S ∇−→ S1
P (L)

d∇−→ · · · d∇−→ SnP (L)
d∇−→ 0 . (6.8)

6.1.1 Interior product, Lie derivative and pullbacks

As expected, the notions of interior product and Lie derivative are available for

SP
•(L). The Lie derivative can be seen as a derivation along a flow, but for that, a

nontrivial notion of pullback is needed. The aim of this subsection is to describe all

this.

Definition 6.4. The contraction between line bundle valued polarised forms and el-

ements of P is given by a map i : P × SP •(L) → SP
•(L) that is a degree -1 map on

SP
•(L): i.e.

iX(∇s) := ∇Xs (6.9)

and

iXβ = iX(β ⊗ s) := (ıXβ)⊗ s (6.10)

hold for each X ∈ P and β = β ⊗ s ∈ SlP (L).

49



Proposition 6.3. If X ∈ P , α ∈ Ωk
P (M) and β ∈ SlP (L), then iX ◦ iX = 0 and

iX(α ∧ β) = (ıXα) ∧ β + (−1)kα ∧ iXβ . (6.11)

Proof: Due to linearity, it suffices to prove it for elements β = β ⊗ s.

iX ◦ iXβ = iX [(ıXβ)⊗ s] = (ıX ◦ ıXβ)⊗ s = 0 .

iX(α ∧ β) = iX([α ∧ β]⊗ s) = ıX [α ∧ β]⊗ s

= [(ıXα) ∧ β + (−1)kα ∧ ıXβ]⊗ s = (ıXα) ∧ β + (−1)kα ∧ iXβ .

�

For Ωk
P (M) the pullback still makes sense, if one restricts to diffeomorphisms that

preserve the polarisation P , but problems arise when one twists it with Γ(L). A way

to compare elements of L is by parallel transport, which in general is path dependent.

When it does not depend on the path, the pullback on SP
•(L) is well-defined (for

diffeomorphisms that preserve the polarisation); when it does, it is possible to make

sense of pullbacks over paths.

Definition 6.5. Let φ : M → M be a diffeomorphism that preserves P and γ :

R ↪→ M a curve joining p = γ(0) to φ(p) = γ(1) in M . The pullback (φ, γ)∗ of

α = α⊗ s ∈ SkP (L) over the path γ at the point p is defined by

[[(φ, γ)∗α](X1, . . . , Xk)](p) := Πγ(1)
−1([(φ∗α)(X1, . . . , Xk)](p) · s ◦ φ(p)) , (6.12)

for any X1, . . . , Xk ∈ P , where Πγ(1) : Lγ(0) → Lγ(1) is the parallel transport.

The parallel transport is, indeed, a bundle automorphism, so it makes sense to

write

[(φ, γ)∗(α⊗ s)] = (φ∗α)⊗ Π−1
γ (s ◦ φ) . (6.13)

Now, if X ∈ P , its flow φt already encodes both a curve and a diffeomorphism.
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Definition 6.6. The pullback φt
∗ of α⊗ s ∈ SkP (L) is defined by

φt
∗(α⊗ s) := (φ∗tα)⊗ Π−1

φt
(s ◦ φt) ; (6.14)

where, by the bundle automorphism property of the parallel transport, Π−1
φt

(s ◦ φt)

denotes the parallel transport between φt(p) and p of s through the integral curve of

the flow.

Proposition 6.4. Let X ∈ P with flow φt, α ∈ Ωk
P (M) and β ∈ SlP (L); then,

φt
∗(α ∧ β) = (φ∗tα) ∧ φt∗(β) , (6.15)

and the pullback φt
∗ commutes with d∇.

Proof: Again, by linearity, it suffices to prove it for elements β = β ⊗ s. The first

assertion is just a simple computation,

φt
∗(α ∧ β) = φt

∗((α ∧ β)⊗ s) = φ∗t (α ∧ β)⊗ Π−1
φt

(s ◦ φt)

= (φ∗tα) ∧ (φ∗tβ ⊗ Π−1
φt

(s ◦ φt)) = (φ∗tα) ∧ φt∗(β) .

For the commutation one has:

d∇(φt
∗β) = d∇(φt

∗(β ⊗ s)) = d∇((φ∗tβ)⊗ Π−1
φt

(s ◦ φt))

= dP (φ∗tβ)⊗ Π−1
φt

(s ◦ φt) + (−1)l(φ∗tβ) ∧∇Π−1
φt

(s ◦ φt) , (6.16)

and

φt
∗(d∇β) = φt

∗(d∇(β ⊗ s)) = φt
∗(dPβ ⊗ s+ (−1)lβ ∧∇s)

= φ∗t (dPβ)⊗ Π−1
φt

(s ◦ φt) + (−1)l(φ∗tβ) ∧ φt∗(∇s) . (6.17)

Since dP commutes with φ∗t , the subtraction of these two expressions gives

(d∇ ◦ φt∗ − φt∗ ◦ d∇)β = (−1)l(φ∗tβ) ∧ (∇Π−1
φt

(s ◦ φt)− φt∗(∇s)) . (6.18)

Therefore, if ∇Π−1
φt

(s ◦ φt) = φt
∗(∇s), then d∇ ◦ φt∗ = φt

∗ ◦ d∇: and one only needs

to prove this locally.
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Near any point, there exists a unitary section s of L such that, ∇ωs = −iΘ ⊗ s.

In case γ̇(t) is the vector field X at the point γ(t), with γ the integral curve of X,

equation 2.19 reads

Π−1
φt

(s ◦ φt) = exp

(
−i
∫ t

0

ıX ◦ φ∗t′Θ dt′
)
s . (6.19)

Defining f(t) =

∫ t

0

ıX ◦ φ∗t′Θ dt′ and r(t) = e−if(t)s, it is clear (lemma 2.1) that

(df(t) + Θ) is the potential 1-form relative to the unitary section r(t).

Computing the differential of f(t):

df(t) =

∫ t

0

d ◦ ıX ◦ φ∗t′Θ dt′ =

∫ t

0

(£X − ıX ◦ d) ◦ φ∗t′Θ dt′

=

∫ t

0

(
d

dτ
φ∗τΘ

∣∣∣
t=t′
− ıX ◦ φ∗t′ ◦ dΘ

)
dt′

= φ∗tΘ−Θ−
∫ t

0

ıX ◦ φ∗t′ ◦ ω dt′ , (6.20)

where Cartan’s magic formula and the commutation between the differential d and

the pullback φ∗t were used.

Hence, noticing that ω vanishes when restricted to the polarisation’s directions,

∇Π−1
φt

(s ◦ φt) = ∇ωr(t)
∣∣
P

= −i
(
φ∗tΘ

∣∣
P
−
∫ t

0

ıX ◦ φ∗t′ ◦ ω
∣∣
P

dt′
)
⊗ r(t)

= φ∗t (−iΘ
∣∣
P

)⊗ Π−1
φt

(s ◦ φt) = φt
∗(−iΘ

∣∣
P
⊗ s)

= φt
∗(∇s) . (6.21)

�

Definition 6.7. The Lie derivative £∇ : P × SP •(L)→ SP
•(L) is defined by:

£∇X(α) :=
d

dt
φt
∗α
∣∣∣
t=0

. (6.22)

Proposition 6.5. The Lie derivative £∇X commutes with the pullback φt
∗.

Proof:

φt
∗ ◦£∇X(α) = φt

∗
(

d

dτ
φτ
∗α
∣∣∣
τ=0

)
=

d

dτ
φt
∗(φτ

∗α)
∣∣∣
τ=0

=
d

dτ
φτ+t

∗α
∣∣∣
τ=0

= £∇X(φt
∗α) .

52



�

Cartan’s magic formula holds for the Lie derivative on SP
•(L).

Proposition 6.6. The Lie derivative £∇ can be characterised by

£∇X(α) = iX ◦ d∇α+ d∇ ◦ iXα . (6.23)

Proof: By definition of the parallel transport, if φt is the flow of X ∈ P , then

∇Xs = d
dt

Π−1
φt

(s ◦ φt)
∣∣
t=0

and similar for the Lie derivative: £X(α) = d
dt
φ∗tα

∣∣
t=0

.

And once more, linearity implies that it suffices to prove the assertion for elements

α⊗ s ∈ SkP (L).

On the one hand, by the Leibniz rule over tensor products,

d

dt
φt
∗(α⊗ s)

∣∣∣
t=0

=
d

dt
((φ∗tα)⊗ Π−1

φt
(s ◦ φt))

∣∣∣
t=0

= (φ∗0α)⊗ d

dt
Π−1
φt

(s ◦ φt)
∣∣∣
t=0

+
d

dt
φ∗tα

∣∣∣
t=0
⊗ Π−1

φ0
(s ◦ φ0)

= α⊗∇Xs+ £X(α)⊗ s .

On the other hand,

iX ◦ d∇(α⊗ s) + d∇ ◦ iX(α⊗ s) = iX(dPα⊗ s+ (−1)kα ∧∇s) + d∇(ıXα⊗ s)

= ıX(dPα)⊗ s+ (−1)kiX(α ∧∇s)

+dP (ıXα)⊗ s+ (−1)k−1(ıXα) ∧∇s

= £X(α)⊗ s+ (−1)k(ıXα) ∧∇s

+(−1)2kα⊗∇Xs+ (−1)k−1(ıXα) ∧∇s

= £X(α)⊗ s+ α⊗∇Xs .

�

Proposition 6.7. The Lie derivative £∇ commutes with the derivation d∇.

Proof: It is just a simple application of propositions 6.2 and 6.6.

£∇X ◦ d∇α = iX ◦ d∇ ◦ d∇α+ d∇ ◦ iX ◦ d∇α

= iX(curv(∇ω)
∣∣
P
∧α) + d∇ ◦ iX ◦ d∇α

= d∇ ◦ iX ◦ d∇α+ (ıX [curv(∇ω)
∣∣
P

]) ∧α+ curv(∇ω)
∣∣
P
∧ (iXα) ,
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d∇ ◦£∇Xα = d∇ ◦ iX ◦ d∇α+ d∇ ◦ d∇ ◦ iXα = d∇ ◦ iX ◦ d∇α+ curv(∇ω)
∣∣
P
∧ (iXα) ,

and subtracting each other, noting that curv(∇ω)
∣∣
P

= 0, one gets the result. �
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Chapter 7

Circle actions and homotopy

operators

This chapter explains the construction of an almost homotopy operator for the

Kostant complex when one has a symplectic S1-action, and how this implies the

vanishing of the stalks of points with nontrivial holonomy. Most results of this section

were previously provided in [26] with slightly less general hypothesis; some proofs

automatically hold (propositions 7.1, 7.2 and 7.3), but one (lemma 7.2) had to be

adapted.

7.1 An almost homotopy operator

Let X ∈ P be a generator of a symplectic S1-action. If φt stands for the flow of X

at time t, it is possible to define an induced action on SkP (L) via φt
∗. The holonomy

of the loop generated by flowing during a time 2π a point p ∈ M will be denoted by

hol∇ω(γ)(p), and since φt+2π = φt for every t ∈ R:

φ2π
∗(α) = φ2π

∗(α⊗ s) = φ∗2πα⊗Π−1
φ2π

(s ◦φ2π) = α⊗ (hol∇ω(γ)−1s) = hol∇ω(γ)−1α ,
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and

(hol∇ω(γ)−1 − 1)α = φ2π
∗α− φ0

∗α =

∫ 2π

0

d

dt
(φt

∗α) dt

=

∫ 2π

0

d

ds
φt+s

∗α
∣∣∣
s=0

dt =

∫ 2π

0

d

ds
φs
∗(φt

∗α)
∣∣∣
s=0

dt

=

∫ 2π

0

£∇X(φt
∗α) dt =

∫ 2π

0

(iX ◦ d∇ + d∇ ◦ iX)(φt
∗α) dt

= iX

(∫ 2π

0

d∇(φt
∗α) dt

)
+ d∇ ◦ iX

(∫ 2π

0

φt
∗α dt

)
.

Using that the pullback commutes with the derivative (proposition 6.4), one gets from

the last equation

(hol∇ω(γ)−1 − 1)α = iX

(∫ 2π

0

φt
∗(d∇α) dt

)
+ d∇ ◦ iX

(∫ 2π

0

φt
∗α dt

)
, (7.1)

which resembles the equation satisfied by a homotopy operator.

Proposition 7.1. The expression JX(α) = iX

(∫ 2π

0

φt
∗α dt

)
defines a degree −1

derivation on SP
•(L).

Proof: Propositions 6.3 and 6.4 imply that JX is a derivation, and the degree

comes from the fact that iX has degree −1. �

The equation 7.1 implies that JX satisfies

(hol∇ω(γ)−1 − 1)α = JX(d∇α) + d∇JX(α) , (7.2)

for any α ∈ SkP (L) if k ≥ 1, whilst for k = 0 it becomes

(hol∇ω(γ)−1 − 1)α = JX(d∇α) , (7.3)

since S−1
P (L) is empty and JX has degree −1.

Proposition 7.2. d∇((hol∇ω(γ)−1−1)α) = (hol∇ω(γ)−1−1)d∇α for any α ∈ SkP (L);

hence, hol∇ω(γ) is constant along P .

Proof: It is a direct consequence of equation 7.2:

d∇((hol∇ω(γ)−1 − 1)α) = d∇[JX(d∇α) + d∇JX(α)] = d∇JX(d∇α) , (7.4)
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(hol∇ω(γ)−1 − 1)d∇α = JX(d∇ ◦ d∇α) + d∇JX(d∇α) = d∇JX(d∇α) . (7.5)

�

Lemma 7.1. Let X be the generator of a symplectic S1-action; then,

hol∇ω(γ) = ei2πθ(X) ; (7.6)

where θ is a particular invariant potential 1-form for ω in a neighbourhood of γ.

Proof: Weinstein’s theorem for isotropic embeddings [29] asserts that in a neigh-

bourhood N of an orbit the symplectic form is exact, ω = dθ —the potential 1-form

can be chosen to be invariant by averaging it with respect to the flow of X. Let

s ∈ Γ(L
∣∣
N

) be the unitary section given by lemma 2.2 which has θ as the potential

1-form for ∇ω.

Cartan’s magic formula and the invariance of θ give:

0 = £X(θ) = ıXdθ + d(ıXθ) ⇒ ıXω = −dθ(X) ; (7.7)

wherefore, near γ, the action is Hamiltonian, and θ(X) is its Hamiltonian function.

In particular, since γ is an integral curve of the Hamiltonian flow, θ(γ̇(t)) is constant;

thus, corollary 2.1 asserts that

hol∇ω(γ) = ei
∫ 2π
0 θ(γ̇(t′))dt′ = ei2πθ(X) . (7.8)

�

Proposition 7.3. Supposing that (M,ω) admits a symplectic S1-action preserving

P , flat sections of L vanish if hol∇ω(γ) is nontrivial over a dense set.

Proof: Let s ∈ Γ(L) be a flat section, ∇s = 0. By equation 7.3 (hol∇ω(γ)−1−1)s =

0 and the flat section vanishes on the dense set where hol∇ω(γ) 6= 1. Consequently,

there are no nonzero flat sections. �

Connected to this result, one can provide an alternative proof for the theorem of

Guillemin and Sternberg 3.2 that holds not only for regular compact fibres; this is an

application of lemma 7.1.
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Theorem 7.1. Under the assumption that the zero fibre is Bohr-Sommerfeld, the

image of Bohr-Sommerfeld fibres by a moment map is contained in Rn−k × Zk; k

being the number of linearly independent Hamiltonian S1-actions generated by the

moment map.

Proof: As already mentioned, this was proved by Guillemin and Sternberg in [10]

when the fibres are Liouville tori —their proof holds for Lagrangian fibrations with

compact connected fibres over simply connected basis. Lemma 7.1 and proposition

3.1 imply that over a Bohr-Sommerfeld fibre each component of the moment map

generating a S1-action takes an integral value, depending only on the fibre. �

Lemma 7.2. Under the hypothesis that {hol∇ω(γ) 6= 1} is dense, a form α ∈ SkP (L)

vanishes where hol∇ω(γ) = 1 if and only if there exists a β ∈ SkP (L) such that α =

(hol∇ω(γ)−1 − 1)β.

Proof: If α = (hol∇ω(γ)−1−1)β it is obvious that α vanishes where hol∇ω(γ) = 1.

If the converse holds for functions on M , in any trivialising neighbourhood A with

unitary section s and coordinates (z1, . . . , z2n), the form α can be expressed by

α =

[
2n∑

j1, . . . , jk = 1

αj1,...,jk(z1, . . . , z2n)dzj1 ∧ · · · ∧ dzjk

]
⊗ s . (7.9)

Furthermore, α = 0 at {hol∇ω(γ) = 1} if and only if all the functions αj1,...,jk

vanish on A ∩ {hol∇ω(γ) = 1}. Hence, there exist functions βj1,...,jk such that

αj1,...,jk = (hol∇ω(γ)−1 − 1)βj1,...,jk . The manifold M can be covered by trivialis-

ing neighbourhoods, and the local functions βj1,...,jk piece together to give the desired

β ∈ SkP (L).

Therefore, given f ∈ C∞(A) satisfying f |A∩{hol∇ω (γ)=1} = 0 one must construct a

g ∈ C∞(A) such that f = (hol∇ω(γ)−1 − 1)g.

For points where 1 is a regular value of hol∇ω(γ), theorem 4 in [26] proves that

this expression holds for functions. On the other hand, lemma 7.1 implies that critical

points of hol∇ω(γ) are fixed points of the S1-action, and that locally hol∇ω(γ) = e2πih
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for some function h. This means that the singularities of the set {hol∇ω(γ) = 1}

form a closed submanifold —the set of points with trivial holonomy is a stratified

submanifold, and its top dimensional strata have codimension 1.

Let A be a neighbourhood of a critical point of {hol∇ω(γ) = 1}. By shrinking A,

and possibly changing h by a constant, one can assume that only 0, and no other

integer, satisfies A ∩ h−1({0}) 6= ∅. With the aid of the flow ϕt of the vector field

−hZ, where in local coordinates around the critical point Z = h
2n∑
j = 1

zj
∂
∂zj

, one can

define a function g ∈ C∞(A):

g =

∫ ∞
0

Z(f ◦ ϕt) dt

2πi

∫ 1

0

e−2πith dt

. (7.10)

In fact, for h = 0 ∫ 1

0

e−2πith dt = 1 , (7.11)

and for h 6= 0 ∫ 1

0

e−2πith dt =
hol∇ω(γ)−1 − 1

−2πih
. (7.12)

Thus, the denominator in expression 7.10 never vanishes, whilst

g =

∫ ∞
0

Z(f ◦ ϕt) dt

2πi(hol∇ω(γ)−1 − 1)/(−2πih)
=

−
∫ ∞

0

hZ(f ◦ ϕt) dt

hol∇ω(γ)−1 − 1

=

∫ 0

∞

d

dt
f ◦ ϕt dt

hol∇ω(γ)−1 − 1
=
f − lim

t→∞
f ◦ ϕt

hol∇ω(γ)−1 − 1
. (7.13)

For any point p ∈ A the limit lim
t→∞

ϕt(p) is the critical point (which, in particular,

has trivial holonomy) and f |A∩{hol∇ω (γ)=1} = 0; consequently, f = (hol∇ω(γ)−1 − 1)g

on A ∩ {hol∇ω(γ) 6= 1}. By continuity of f, g and density of {hol∇ω(γ) 6= 1}, this

must be true over all A. �

The next proposition is a key tool to prove that the Kostant complex is a fine

resolution when the (singular) polarisation comes from an almost or locally toric

structure.
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Proposition 7.4. Let α ∈ SkP (L) be closed, d∇α = 0, and k 6= 0.

• The form α is exact everywhere hol∇ω(γ) 6= 1. It is also globally exact if

{hol∇ω(γ) 6= 1} is dense and JX(α) = 0 where hol∇ω(γ) = 1.

• When {hol∇ω(γ) = 1} is a (not necessarily connected) submanifold, α is exact

on M if and only if JX(α)
∣∣
T{hol∇ω (γ)=1} is exact.

Proof: At points satisfying hol∇ω(γ) 6= 1 a (k − 1)-form β is well defined by

β =
JX(α)

hol∇ω(γ)−1 − 1
. (7.14)

Proposition 7.2 and equation 7.2, together with the hypothesis of α being closed,

imply that d∇β = α. In other words, JX/(hol∇ω(γ)−1 − 1) is a homotopy operator

where hol∇ω(γ) 6= 1.

For JX(α) = 0 at {hol∇ω(γ) = 1}, lemma 7.2 gives a σ ∈ Sk−1
P (L) such that

JX(α) = (hol∇ω(γ)−1 − 1)σ; therefore, β is well defined by the expression 7.14.

Assuming that {hol∇ω(γ) = 1} is a submanifold, one consequence of proposition

7.2 (as it was observed in [26]) is that the polarisation is tangent to it, and all

definitions make sense with M replaced by {hol∇ω(γ) = 1}.

If α = d∇β, by applying equation 7.2,

JX(α) = JX ◦ d∇β = (hol∇ω(γ)−1 − 1)d∇β − d∇ ◦ JX(β) ; (7.15)

and JX(α)
∣∣
T{hol∇ω (γ)=1} is exact.

Conversely, if JX(α)
∣∣
T{hol∇ω (γ)=1} = d∇

∣∣
T{hol∇ω (γ)=1}ζ, taking an extension η ∈

Sk−2
P (L) of ζ, the formula (JX(α) − d∇η)

∣∣
T{hol∇ω (γ)=1} = 0 holds and lemma 7.2

—the density of {hol∇ω(γ) 6= 1} is assumed— provides a β ∈ Sk−1
P (L) such that

JX(α)− d∇η = (hol∇ω(γ)−1 − 1)β. Proposition 7.2 implies that

d∇ ◦ JX(α) = d∇((hol∇ω(γ)−1 − 1)β) = (hol∇ω(γ)−1 − 1)d∇β , (7.16)

but equation 7.2 reads

d∇ ◦ JX(α) = (hol∇ω(γ)−1 − 1)α ; (7.17)
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thus, d∇β = α holds where hol∇ω(γ) 6= 1. Since d∇β is everywhere defined and

{hol∇ω(γ) 6= 1} is a dense set, α must be exact. �
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Chapter 8

Poincaré lemma I: foliated

cohomology

In [20], Miranda and the author of this thesis were able to compute the foliated

cohomology for local models of integrable systems with singularities of nondegenerate

type. They do explicit computations for the cohomology groups in some instances

(in particular degree 1 and top degree for smooth systems, and in all the degrees for

analytic ones), but the intention here is to justify the need for an alternative proof

showing that the Kostant complex is a resolution for the sheaf of flat sections, when

singularities are allowed in the polarisation.

This chapter revisits a Poincaré lemma for foliated forms with respect to a regular

foliation, and computes the foliated cohomology for a local model of integrable sys-

tems with nondegenerate singularities. A key point in this computation is the use of

some analytical tools; which are mainly a series of decomposition results for functions

with respect to singular vector fields.

What makes the difference between the regular and singular case are the solutions

of the equation X(f) = g for a given g and a given vector field X. When the vector

field is regular, one can solve this equation by simple integration, no matter which

function g is considered. If the vector field is singular, this is a nontrivial question:

solutions may exist or not, depending on some properties of the function g and the

62



singularity of the vector field X.

8.1 Regular foliations

Let (M,F) be a foliated m-dimensional manifold and n the dimension of the

leaves (for more details, the reader may consult section 2.3, in particular, examples

2.13 and 2.16). The foliated cohomology is the one associated to the following cochain

complex:

0 −→ C∞F (M) ↪→ C∞(M)
dF−→ Ω1

F(M)
dF−→ · · · dF−→ Ωn

F(M)
dF−→ 0 . (8.1)

Theorem 8.1. The foliated cohomology groups Hk
F(V ) vanish for k ≥ 1 and V any

contractible neighbourhood of a point of M .

A sketch of the proof is provided in [20]; it is based on a parametric version of the

homotopy formula used for proving a Poincaré lemma for the de Rham cohomology.

Just to illustrate what this theorem has to say, let α be a closed foliated 1-form:

α ∈ Ω1
F(V ) and dFα = 0. The foliation can be given locally by a set of vector fields,

F
∣∣
V

= 〈X1, . . . , Xn〉C∞(V ), and the exactness of α is equivalent to the existence of a

function f ∈ C∞(V ) satisfying

Xj(f) = α(Xj) , (8.2)

with j = 1, . . . , n. Hence, as a corollary, one can solve this equation provided that

Xi(α(Xj)) = Xj(α(Xi)).

Remark 8.1. Whilst the de Rham complex is a fine resolution for the constant sheaf

R, the foliated cohomology is a fine resolution for the sheaf of smooth functions which

are constant along the leaves of the foliation.

8.2 Singular foliations

The main objective of this section is to prove that one cannot assume, in general,

the existence of a Poincaré lemma for foliated cohomology when singularities are al-
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lowed. The nonexistence of solutions of equations of type X(f) = g can be interpreted

as an obstruction for local solvability of the cohomological equation dFβ = α, for a

given foliated closed k-form α.

Before proving the nonexistence result, special decompositions for functions with

respect to vector fields of a Williamson basis are presented.

Theorem 8.2 (Miranda and Vu Ngoc). Let g1, . . . gk, be a set of smooth functions

on R2n with k ≤ n fulfilling the following commutation relations

Xi(gj) = Xj(gi), ∀ i, j = 1, . . . , k , (8.3)

where the Xi’s are the vector fields of a Williamson basis. Then, there exist a smooth

function G and k smooth functions fi such that,

Xj(fi) = 0 , ∀ i, j = 1, . . . , k and (8.4)

gi = fi +Xi(G) , ∀ i = 1, . . . , k . (8.5)

It is also included in [22] an interesting reinterpretation of this statement in terms

of the deformation complex associated to an integrable system: an integrable system

with nondegenerate singularities is C∞-infinitesimally stable at the singular point.

In order to fix notation, the next definition recalls what is meant by a Taylor flat

function at a subset.

Definition 8.1. For Rm endowed with coordinates (p1, . . . , pm), a smooth function

g ∈ C∞(Rm) is said to be Taylor flat at the subset {p1 = · · · = pk = 0} when

∂j1+···+jkg

∂pj11 · · · ∂p
jk
k

∣∣∣∣∣
{p1=···=pk=0}

= 0 , (8.6)

for all j1, . . . , jk and some fixed k ≤ m.

One can find special decompositions for smooth functions like f = fi + Xi(Fi).

The following result is a summary of results contained in [8, 9, 19].
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Lemma 8.1 (Eliasson and Miranda). Assuming that the origin is a singularity of

Williamson type (ke, kh, 0), for any f ∈ C∞(R2n) there exist fi, Fi ∈ C∞(R2n) such

that, for each vector field Xi in a Williamson basis, f = fi +Xi(Fi). Moreover,

1. Xi(fi) = 0;

2. fi is uniquely defined if Xi defines an S1-action, otherwise fi is uniquely defined

up to Taylor flat functions at Σi;

3. one can choose fi and Fi such that Xj(fi) = Xj(Fi) = 0 whenever Xj(f) = 0

for j 6= i;

4. if f vanishes at the zero set of any vector of a Williamson basis, so does the

function fi and one can choose Fi vanishing at the zero set as well;

5. Xi(f) = 0 implies that f depends on xi and yi via hi:

f(x1, y1, . . . , xn, yn) = f̃(x1, y1, . . . , x
2
i + y2

i , . . . , xn, yn) ,

f(x1, y1, . . . , xn, yn)
∣∣
Qji

= f̃(x1, y1, . . . , xiyi, . . . , xn, yn) ,

where Q1
i = {xi > 0, yi > 0}, Q2

i = {xi > 0, yi < 0}, Q3
i = {xi < 0, yi > 0} and

Q4
i = {xi < 0, yi < 0}.

The case when Xi is an elliptic vector field was proved in [8, 9, 19]; [19] also has

a proof when Xi is a hyperbolic vector field.

Finally, the nonexistence result [20] can be presented.

Theorem 8.3 (Miranda and Solha). Considering (R2n,
n∑

i = 1

dxi ∧ dyi) endowed with

a distribution F generated by a Williamson basis of type (ke, kh, 0), the following

decomposition holds:

ker(dF : Ω1
F(R2n)→ Ω2

F(R2n)) = W 1
F(R2n)⊕ dF(C∞(R2n)) , (8.7)

where W 1
F(R2n) is the set of 1-forms β ∈ Ω1

F(R2n) such that £Xi(β) = 0 for all i, and

if Xi is of hyperbolic type β(Xi) is not Taylor flat at Σi (when it is nonzero).
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Thus, the foliated cohomology group in degree 1 is given by:

H1
F(R2n) ∼=

ke⊕
i=1

{f ∈ C∞F (R2n) ; f
∣∣
Σi

= 0}

n⊕
i=ke+1

{f ∈ C∞F (R2n) ; f = 0 or f
∣∣
Σi

= 0 and not Taylor flat at Σi}

Proof: For any α ∈ Ω1
F(R2n) the condition dFα = 0 implies

dFα(Xi, Xj) = Xi(α(Xj))−Xj(α(Xi)) = 0 , (8.8)

and theorem 8.2 says that α(Xi) = fi + Xi(F ), where F ∈ C∞(R2n) and fi ∈

C∞F (R2n). Thus, any closed foliated 1-form α is cohomologous to a foliated 1-form β

satisfying £Xi(β) = 0 for all i (proposition 2.4 and item 4 of lemma 8.1 guarantee

that the forms are well defined); the condition £Xi(β) = 0 automatically implies that

β is closed.

There exists g ∈ C∞(R2n) such that dFg = β if and only if β(Xi) = Xi(g).

Since £Xi(β) = 0, this implies Xi(β(Xi)) = 0 and by uniqueness (up to Taylor flat

functions, lemma 8.1) 0 = β(Xi) +Xi(−g) has a solution if and only if β(Xi) = 0 or

β(Xi) is Taylor flat at Σi (for i = ke + 1, . . . , n). Wherefore, β is exact if and only if

β = 0 or, if β(Xi) 6= 0 (for i = ke + 1, . . . , n), β(Xi) is Taylor flat at Σi.

The expression ker = W 1
F(R2n) ⊕ dF(C∞(R2n)) implies H1

F(R2n) = W 1
F(R2n),

by definition any β ∈ W 1
F(R2n) can be given by n functions vanishing at certain

points (proposition 2.4) and satisfying some Taylor flat condition: e.g. β(Xn) = f ∈

C∞(R2n), f
∣∣
Σi

= 0 and not Taylor flat at Σn, if it is nonzero. The Lie derivative

condition yields f ∈ C∞F (R2n). �

This theorem tells that, although in the regular case the foliated cohomology com-

plex (8.1) is a fine resolution for C∞F (the sheaf of functions which are constant along

the leaves of the foliation), for singular foliations, in general, the foliated cohomology

complex is not a resolution for the seaf C∞F .
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Chapter 9

Poincaré lemma II: regular

polarisations

It is included here a proof that the Kostant complex is a fine resolution for the

sheaf of flat sections when the polarisation is regular.

9.1 A fine resolution for J

The sheaves SkP (L) are fine: Γ(L) and Ωk
P (M) are free modules over the ring of

functions of M , and because of that, they admit partition of unity. Hence, via a

Poincaré lemma, the abstract de Rham theorem [4] offers a proof for the following:

Theorem 9.1. The Kostant complex is a fine resolution for J . Therefore, each of

its cohomology groups, Hk(SP
•(L)), is isomorphic to Ȟk(M ;J ).

Remark 9.1. There are particular situations in which a Poincaré lemma is available,

and only in these cases theorem 9.1 holds. This is true1 when P is a subbundle of

TM , and it can be extended to a more general setting; Chapter 10 of this thesis

provides Poincaré lemmata when P has nondegenerate singularities.

The following result uses the foliated Poincaré lemma for regular foliations, theo-

rem 8.1.

1Both Śniatycki and Rawnsley attribute this to Kostant, a proof is provided in [26].
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Lemma 9.1. There always exists a local unitary flat section on each point of M for

a given regular polarisation P .

Proof: The symplectic form is closed, dω = 0, and locally ω = dθ. Since P is

Lagrangian, ω vanishes in the directions tangent to the leaves of P , which implies

ω
∣∣
P

= dPΘ = 0: where Θ = θ
∣∣
P

is the restriction of θ in the directions tangent to

the leaves of the polarisation. By theorem 8.1, there exists a function f such that

dPf = Θ; therefore, θ−df satisfies d(θ−df) = ω and θ−df vanishes in the directions

tangent to the leaves.

Lemma 2.2 offers a unitary section s satisfying ∇ωs = −i(θ − df) ⊗ s, which

happens to be a flat section, ∇s = 0, because (θ − df)
∣∣
P

= 0. �

As a consequence of the existence of unitary flat sections, elements of SkP (L) which

are closed can be interpreted as closed polarised k-forms taking values on the sheaf

J .

Corollary 9.1. Let Ωk
P be the sheaf associated to Ωk

P (M); then, SkP (L) ∼= Ωk
P ⊗ J

and ker(d∇) ∼= ker(dP )⊗ J .

Proof: By lemma 9.1, for each point on M there exists a trivialising neighbourhood

V ⊂M of L with an unitary flat section s ∈ Γ(L
∣∣
V

). If α ∈ SkP (L), it can be locally

written as α
∣∣
TV

= α ⊗ s, where α ∈ Ωk
P (V ). The condition d∇(α ⊗ s) = 0 is, then,

equivalent to dPα = 0, because d∇(α ⊗ s) = dPα ⊗ s + (−1)kα ∧ ∇s, s 6= 0 and

∇s = 0. �

The Kostant complex (6.8) is just the foliated complex twisted by the sheaf of

sections S, and the exactness of the foliated complex (8.1) (which is guaranteed by

theorem 8.1) implies, by corollary 9.1, the exactness of the Kostant complex.

Theorem 9.2. At a sufficiently small neighbourhood of any point of M , the coho-

mology groups Hk(SP
•(L)) vanish for k ≥ 1 when P is a subbundle of TM .

Lemma 9.1 uses the existence of a Poincaré lemma for foliations in a crucial way.

Since there is no hope for a Poincaré lemma when the foliation has singularities
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(theorem 8.3), in order to prove a Poincaré lemma for the Kostant complex, different

strategies need to be adopted when nondegenerate singularities are included in the

picture. Chapter 10 provides Poincaré lemmata for this situation.

9.1.1 Symplectic vector spaces: linear polarisation

All symplectic vector spaces polarised by Lagrangian hyperplanes are equivalent

to this particular case: (M = Cn, ω =
n∑

j = 1

dxj ∧ dyj) and P =
〈

∂
∂y1
, . . . , ∂

∂yn

〉
C∞(Cn)

.

Since (M,ω) is an exact symplectic manifold, the trivial line bundle is a prequan-

tum line bundle for it: L = C × Cn with connection 1-form Θ =
n∑

j = 1

xjdyj, with

respect to the unitary section exp

(
i

n∑
j = 1

xj

)
.

The solutions of the flat equation, ∇s = 0, are complex-valued functions of the

type

s(x1, y1, . . . , xn, yn) = h(x1, . . . , xn) exp

(
i

n∑
j = 1

xjyj

)
. (9.1)

Therefore,

Ȟ0(M ;J ) = {s ∈ Γ(L) ; ∇s = 0} ∼= C∞(Rn) . (9.2)

Using the unitary flat section r = exp

(
i

n∑
j = 1

xjyj

)
as basis, if α ⊗ r ∈ SkP (L) is

closed:

0 = d∇(α⊗ r) = dPα⊗ r + (−1)kα ∧∇r = dPα⊗ r . (9.3)

Wherefore, Poincaré lemma for regular foliations (theorem 8.1) imply thatHk(SP
•(L)) =

{0} for k ≥ 1.

This provides an alternative proof of theorem 9.2; thus, theorem 9.1 concludes the

proof of:

Proposition 9.1. The quantisation of the cotangent bundle of Rn with linear polar-

isation is C∞(Rn).
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9.2 Semilocal examples

Some examples, that are going to be important later on, are computed in this

section. They also serve to illustrate how to apply the techniques from chapter 7.

9.2.1 The cylinder: polarisation by circles

Recalling example 3.3: (M = R × S1, ω = dx ∧ dy), L the trivial bundle with

connection 1-form Θ = xdy, with respect to the unitary section eix, and P =〈
∂
∂y

〉
C∞(R×S1)

.

The Hamiltonian vector field X = ∂
∂y

generates a S1-action, and the holonomy of

its orbits is given by hol∇ω(γ) = ei2πx (lemma 7.1, for S1 ∼= R/2πZ). Since Bohr-

Sommerfeld leaves satisfy x ∈ Z, the holonomy is nontrivial in a dense set of M

and proposition 7.3 holds. Hence, applying theorem 9.1, one gets Ȟ0(M ;J ) = {0}.

Furthermore, proposition 7.4 and theorem 9.1 can be applied, implying Ȟ l(V ;J
∣∣
V

) =

{0}, for l ≥ 1, for each neighbourhood V = (a, b)× S1 that does not contain a Bohr-

Sommerfeld leaf.

Let `k be the inverse image by the height function of the point x = k ∈ Z.

Wherefore, `k ∼= S1 is a Bohr-Sommerfeld leaf and {hol∇ω(γ) = 1} =
⋃
k∈Z

`k.

It is possible2 to define a linear map Ψ : S1
P (L)→

⊕
k∈Z

Γ(L|`k) by:

Ψ(α) = ⊕k∈ZJX(α)
∣∣∣
`k
. (9.4)

Because the dimension of M is 2, SlP (L) = {0} for l ≥ 2, and, for any α ∈ S1
P (L),

equation 7.2 reads

∇ ◦ JX(α) = (hol∇ω(γ)−1 − 1)α ⇒ ∇XΨ(α) = 0 . (9.5)

Thus, the image of Ψ is contained in the set of flat sections over Bohr-Sommerfeld

leaves.

2This construction is due to Rawnsley [26].
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Conversely, given ⊕k∈Zsk ∈
⊕
k∈Z

Γ(L|`k), where sk are flat sections (∇Xsk = 0),

there exists s ∈ Γ(L) such that s|`k = sk for each k ∈ Z: due the closedness of
⋃
k∈Z

`k.

Lemma 7.2 implies the existence of an α ∈ S1
P (L) satisfying

∇s = (hol∇ω(γ)−1−1)α ⇒ (hol∇ω(γ)−1−1)JX(α) = JX(∇s) = (hol∇ω(γ)−1−1)s .

(9.6)

By density and continuity, JX(α) = s; hence, the image of Ψ is the set of flat sections

over Bohr-Sommerfeld leaves.

Proposition 7.4 asserts that kerΨ = ∇(Γ(L)), and the first isomorphism theorem

S1
P (L) −→ Ψ(S1

P (L))y ↙

S1
P (L)/kerΨ

(9.7)

implies that Ȟ1(M ;J ) ∼=
⊕
k∈Z

C: the ring of flat sections over `k is isomorphic to C

(see example 3.3).

Proposition 9.2. The quantisation of a cylinder polarised by circles is Cbs, where bs

is the number of Bohr-Sommerfeld leaves.

9.2.2 Direct product type with a regular component

The following quantisation problem will be considered now: N = (−1, 1) × S1

endowed with the same structures (symplectic form, polarisation and prequantum

line bundle) of the model in subsection 9.2.1, and (M,ω) a prequantisable symplectic

manifold with real polarisation P and prequantum line bundle (L,∇ω). The product

N ×M admits
〈
∂
∂y

〉
C∞(N)

⊕C∞(N×M)P as a real polarisation for the symplectic form

dx∧ dy+ ω (its complexification will be denoted by P), and also a prequantum line

bundle (L , ∇̄dx∧dy+ω).

The vector field ∂
∂y

generates a Hamiltonian S1-action with nontrivial holonomy

over a dense set: the holonomy of its orbits is given by hol∇ω(γ) = ei2πx (lemma 7.1).

Wherefore, proposition 7.3 can be used to show that H0(SP
•(L )) = {0}.
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For the other groups one has:

Theorem 9.3. Supposing that (M,ω) is exact, ω = dθ, the map

Ψ : Hk(SP
•(L ))→ Hk−1(SP

•(L)) (9.8)

defined by Ψ([ᾱ]) =

[
J ∂

∂y
(ᾱ)
∣∣∣
{hol∇ω (γ)=1}

]
is an isomorphism.

Proof: Since the product symplectic manifold, (N ×M, dx ∧ dy + ω), is exact,

there exists a unitary section s̄ ∈ Γ(L ) satisfying ∇̄s̄ = −i(xdy+ θ)⊗ s̄ (lemma 2.2).

Let ᾱ = ᾱ ⊗ s̄ ∈ SkP(L ) and ᾱ = dy ∧ β̄ + σ̄, where β̄ = ı ∂
∂y
ᾱ and σ̄ = ᾱ − dy ∧ β̄;

thus, ı ∂
∂y
β̄ = ı ∂

∂y
σ̄ = 0.

J ∂
∂y

(ᾱ) =

∫ 2π

0

φ∗t β̄ ⊗ e−itxs̄ dt =

∫ 2π

0

φ∗t β̄e−itx dt⊗ s̄ ⇒ (9.9)

J ∂
∂y

(ᾱ)
∣∣∣
{hol∇ω (γ)=1}

= η ⊗ s̄|x=0 , (9.10)

where η =

∫ 2π

0

φ∗t β̄e−itx dt
∣∣∣
{x=0}

. The flow of ∂
∂y

preserves η; therefore, η ∈ Ωk−1
P (M).

For closed ᾱ,

d∇̄ ◦ J ∂
∂y

(ᾱ) = (hol∇ω(γ)−1 − 1)ᾱ ⇒ d∇̄ ◦ J ∂
∂y

(ᾱ)
∣∣∣
{hol∇ω (γ)=1}

= 0 . (9.11)

By definition, ∇̄ ∂
∂y
s̄ = −ixs̄ and ∇̄ ∂

∂y
s̄|x=0 = 0; wherefore, for each point p ∈ M ,

s̄|x=0 is uniquely determined by its value at (0, 0, p) ∈ N ×M by parallel transport

along integral curves of ∂
∂y

. This means that s̄|x=0 identifies itself as a section of L:

the restriction of L to {(0, 0)} ×M is a line bundle over M with a connection such

that its curvature is equal to ω; consequently, it must be isomorphic to L.

To summarise it, after some identifications, J ∂
∂y

(·)
∣∣∣
{hol∇ω (γ)=1}

maps closed k-forms

of SP
•(L ) to closed (k − 1)-forms of SP

•(L), and proposition 7.4 proves that Ψ is

injective —the set {hol∇ω(γ) = 1} is equal to {0} × S1 ×M .

Now, given r ∈ Γ(L) a unitary section, let r̄ ∈ Γ(L ) be an extension of the

following section defined on {x = 0}: after identifying L
∣∣
{(0,0)}×M with L, for each

point p ∈M , the parallel transport of r(p) by the integral curve of ∂
∂y

passing through

p defines a section of L over the set {x = 0}.
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Due to the inclusion Ωk−1
P (M) ⊂ Ωk−1

P (N ×M), the expression ζ̄ = ζ ⊗ r̄ defines

an element in Sk−1
P (L ) for any [ζ ⊗ r] ∈ Hk−1(SP

•(L)).

The form d∇̄ζ̄
∣∣
{hol∇ω (γ)=1} is completely determined by d∇(ζ ⊗ r), via parallel

transport (which commutes with the derivation). And because d∇(ζ⊗ r) = 0, lemma

7.2 provides an ᾱ ∈ SkP(L ) such that d∇̄ζ̄ = (hol∇ω(γ)−1 − 1)ᾱ. Hence,

0 = d∇̄ ◦ d∇̄ζ̄ = (hol∇ω(γ)−1 − 1)d∇̄ᾱ , (9.12)

implying that ᾱ is closed over the dense set {x 6= 0}, and, by continuity, ᾱ is closed.

As consequence of ı ∂
∂y
ζ being zero, J ∂

∂y
(ζ̄) = 0 and equation 7.2 reads

(hol∇ω(γ)−1−1)ζ̄ = J ∂
∂y
◦d∇̄ζ̄ = J ∂

∂y
((hol∇ω(γ)−1−1)ᾱ) = (hol∇ω(γ)−1−1)J ∂

∂y
(ᾱ) ,

(9.13)

which implies J ∂
∂y

(ᾱ) = ζ̄ where x 6= 0; and by density and continuity, it must hold

true everywhere. This proves that Ψ is onto. �

The theorem still holds if N is replaced by (a, b)× S1 with (a, b) ∩ Z = {k}. For

(a, b)∩Z = ∅, propositions 7.3 and 7.4 assert that all cohomology groups H l(SP
•(L ))

vanish: the quantisation of the product is trivial when there is no Bohr-Sommerfeld

leaf.

By a Mayer-Vietoris argument3, similar to one that will be described below

(subsection 10.1.1), one can compute the product quantisation for (a, b) ∩ Z =

{k1, . . . , kbs}. It suffices to take the cover A = {Aj}j∈{1,...,bs}, where A1 = (a, k1 +

3/4) ×M , Abs = (kbs − 3/4, b) ×M and Aj = (kj − 3/4, kj + 3/4) ×M (supposing

k1 ≤ k2 ≤ · · · ≤ kbs).

Corollary 9.2. Assuming that the Kostant complex is a fine resolution for the sheaf

of flat sections of L, the quantisation of the product between a cylinder polarised by

circles and an arbitrary quantisable exact symplectic manifold M is a direct sum of

bs copies of Q(M): where bs is the number of Bohr-Sommerfeld leaves with respect to

the quantisation of the cylinder.

3One might also use, instead, a global argument as in subsection 9.2.1.

73



Chapter 10

Poincaré lemma III: singular

polarisations

Following Rawnsley [26], given a prequantisable symplectic manifold (M,ω) with

polarisation P , it is possible to construct a fine resolution for the sheaf of flat sections

J . Using the results of chapter 7 and [21], it is even possible to do it when P has

nondegenerate singularities: this is the content of theorems 10.1, 10.2 and 10.4.

As it was said before, the proof of lemma 9.1 relies on the existence of a Poincaré

lemma for foliations. When the foliation is not regular such theorem might not exist1,

and the proof of lemma 9.1 is of no use; therefore, one needs a different method to

prove that the Kostant complex is a fine resolution for the sheaf of flat sections.

10.1 Elliptic singularities

This section contains a Poincaré lemma for singularities of elliptic type.

1This is exactly the situation for polarisations induced by nondegenerate integrable systems, as

it was discussed in chapter 8, for which it has been proved that there is no Poincaré lemma for the

foliated complex [20].
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10.1.1 The complex plane: polarisation by circles

Let (M = C, ω = dx ∧ dy) and F : M → R be a nondegenerate integrable

system of elliptic type, i.e. F (x, y) = x2 + y2. For this case, the real polarisation is

P =
〈
−y ∂

∂x
+ x ∂

∂y

〉
c∞(C)

and the Hamiltonian vector field X = −2y ∂
∂x

+ 2x ∂
∂y

is the

generator of a S1-action —this is example 4.1, again.

As in the previous cases, (M,ω) is an exact symplectic manifold and the trivial

line bundle is a prequantum line bundle for it: L = C × C with connection 1-form

Θ = 1
2
(xdy − ydx), with respect to the unitary section ei(x

2+y2).

Proposition 10.1. At a sufficiently small neighbourhood of the origin of C, the

cohomology groups Hk(SP
•(L)) vanish for k ≥ 0 when P is generated by −y ∂

∂x
+x ∂

∂y
.

Proof: Using lemma 7.1 this time, [hol∇ω(γ)](x, y) = eiπ(x2+y2), and it is clear that

{hol∇ω(γ) 6= 1} is a dense set. As a result, proposition 7.3 can be applied to prove

that H0(SP
•(L)) = {0}.

The set {hol∇ω(γ) = 1} is the union of the origin and concentric circles with R2/2

integer (R being the radius), and since the origin is a fixed point, the operator JX is

the null operator when restricted to the origin (proposition 2.4). Hence, proposition

7.4, applied for each contractible neighbourhood of the origin that does not contain

any other Bohr-Sommerfeld leaf, implies that elliptic singularities give no contribution

to quantisation2, Hk(SP
•(L)) = {0} for k ≥ 1. �

Refrasing the previous proposition, theorem 9.1 holds in this particular setting.

Proposition 10.2. The quantisation of an open disk polarised by circles is Cbs, where

bs is the number of nonsingular Bohr-Sommerfeld leaves.

Proof: M can be divided up3 into an open disk V of radius b < 1 centred at the

origin, and an annulus W centred at the origin with small radius a ∈ (0, b) and an

infinite big radius: M = V ∪W and V ∩W is an annulus with small radius a and big

2This was first proved in [11] using different techniques.
3The complex plane will be considered; for an arbitrary open disk the same argument works.
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radius b. Proposition 10.1 implies that Ȟk(V ;J
∣∣
V

) = {0} for all k, and proposition

9.2 gives Ȟk(V ∩W ;J
∣∣
V ∩W ) = {0} for all k as well, since V ∩W ∼= (a, b)×S1 (polarised

by circles). Thus, the Mayer-Vietoris argument works and Ȟk(M ;J ) ∼= Ȟk(W ;J
∣∣
W

).

It happens that W ∼= (a,∞)×S1 (polarised by circles), and proposition 9.2 concludes

the proof. �

10.1.2 Direct product type with an elliptic component

The quantisation problem to be considered here is: N = {(x, y) ∈ C ; x2 +y2 < 1}

endowed with the same structures (symplectic form, polarisation and prequantum line

bundle) of the model in subsection 10.1.1, and (M,ω) a prequantisable symplectic

manifold with real polarisation P and prequantum line bundle (L,∇ω). The product

N ×M admits
〈
−y ∂

∂x
+ x ∂

∂y

〉
C∞(N)

⊕C∞(N×M) P as a real polarisation for the sym-

plectic form dx ∧ dy + ω (the complexification of it will be denoted by P), and also

a prequantum line bundle (L , ∇̄dx∧dy+ω).

Lemma 10.1. The cohomology groups Hk(SP
•(L )) vanish for k ≥ 0 in the partic-

ular case described in this subsection.

Proof: The group H0(SP
•(L )) is trivial because X = −2y ∂

∂x
+ 2x ∂

∂y
gener-

ates a Hamiltonian S1-action with nontrivial holonomy over a dense set: lemma 7.1

gives hol∇ω(γ) = eiπ(x2+y2); wherefore, proposition 7.3 holds. Whilst for higher order

groups, one needs to note that the set {hol∇ω(γ) = 1} is equal to {(0, 0)} ×M , and

that (0, 0, p) are fixed points for any p ∈M ; thus, the operator JX is the null operator

when restricted to {(0, 0)}×M (proposition 2.4). Therefore, by applying proposition

7.4, Hk(SP
•(L )) = {0} for k ≥ 1. �

By a Mayer-Vietoris argument similar to the ones used in subsections 10.1.1 and

9.2.2, one has:

Proposition 10.3. Assuming that the Kostant complex is a fine resolution for the

sheaf of flat sections of a prequantum line bundle of (M,ω), the quantisation of the
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product between an open disk polarised by circles and an arbitrary quantisable manifold

M is a direct sum of bs copies of Q(M): where bs is the number of nonsingular Bohr-

Sommerfeld leaves with respect to the quantisation of the open disk.

The following theorem is the Poincaré lemma for singularities of elliptic type.

Theorem 10.1. Assuming that p ∈M is a nondegenerate critical point of Williamson

type (ke, kh, kf ), with ke ≥ 1 and ke + kh + 2kf ≤ n (it does not need to be a rank zero

critical point, but it has to have an elliptic component), for an integrable system F :

M → Rn on a prequantisable symplectic manifold (M,ω), with polarisation induced by

the moment map: the cohomology groups Hk(SP
•(L)) vanish for k ≥ 0 in a sufficiently

small neighbourhood of p.

Proof: The normal form theorem (theorem 2.4 or its version for nonzero rank

singularities [8, 9, 19]) says that the model near a critical point of that type is exactly

the one of lemma 10.1: as long as ke ≥ 1, along one of the elliptic directions a

neighbourhood of p splits into a product as the model of lemma 10.1. �

10.2 Focus-focus singularities

Let F = (f1, f2) : M → R2 be an integrable system on a prequantasible (M,ω),

with a rank zero nondegenerate critical point of Williamson type (0, 0, kf ). Near the

singular point, f2 generates, via its Hamiltonian vector field flow, a Hamiltonian S1-

action —Zung [32] demonstrated that this action is defined semilocally, i.e. near a

neighbourhood of a focus-focus singular fibre.

In a small enough neighbourhood W of a singular point of a focus-focus fibre, JX

is the null operator over the points where {hol∇ω(γ) = 1}. Indeed, the symplectic

local model is given by4, W ∼= C2 with coordinates (x1, x2, y,1 , y2), L|W ∼= C × C2

with connection 1-form

Θ =
1

2
(x1dy1 − y1dx1 + x2dy2 − y2dx2) , (10.1)

4Zung [31, 32] cites Eliasson, Lerman and Umanskiy and Vey.
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with respect to the unitary section s = ei(x1y1+x2y2+x1y2−x2y1).

The integrable system takes the form

F (x1, x2, y1, y2) = (x1y1 + x2y2, x1y2 − x2y1) , (10.2)

and, therefore, the polarisation is generated by

X1 = −x1
∂

∂x1

− x2
∂

∂x2

+ y1
∂

∂y1

+ y2
∂

∂y2

(10.3)

and

X2 = x2
∂

∂x1

− x1
∂

∂x2

+ y2
∂

∂y1

− y1
∂

∂y2

. (10.4)

The Hamiltonian vector field X2 is the generator of the S1-action. Its periodic

flow is given by:

φt(x1, x2, y1, y2) = (x1 cos t+x2 sin t, x2 cos t−x1 sin t, y1 cos t+y2 sin t, y2 cos t−y1 sin t) .

(10.5)

By lemma 7.1, the holonomy of its orbits is

hol∇ω(γ) = ei2π(x1y2−x2y1) . (10.6)

Now, given any α ∈ S1
P |W (L|W ), using the unitary section s, it can be written as

α = α⊗ s = (α1dx1 + α2dx2 + α3dy1 + α4dy2)⊗ s (10.7)

and

ıX2φ
∗
tα|(x1,x2,y1,y2) = [α(γ̇(t))] ◦ φt(x1, x2, y1, y2)

= α1 ◦ φt(x1, x2, y1, y2)(−x1 sin t+ x2 cos t)

+α2 ◦ φt(x1, x2, y1, y2)(−x2 sin t− x1 cos t)

+α3 ◦ φt(x1, x2, y1, y2)(−y1 sin t+ y2 cos t)

+α4 ◦ φt(x1, x2, y1, y2)(−y2 sin t− y1 cos t) . (10.8)

Therefore, using

A(t, p) = x2α1 ◦ φt(p)− x1α2 ◦ φt(p) + y2α3 ◦ φt(p)− y1α4 ◦ φt(p) (10.9)
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and

B(t, p) = x1α1 ◦ φt(p) + x2α2 ◦ φt(p) + y1α3 ◦ φt(p) + y2α4 ◦ φt(p) , (10.10)

the expression JX(α) at a point p = (x1, x2, y1, y2) near the singular point is:

[JX(α)] (p) =

(∫ 2π

0

A(t, p)e−it(x1y2−x2y1) cos t dt

−
∫ 2π

0

B(t, p)e−it(x1y2−x2y1) sin t dt

)
s . (10.11)

The following upper bound proves that the expression above is zero over the set

{(x1, x2, y1, y2) ∈ C2; x1y2 − x2y1 = 0} (the points where hol∇ω(γ) = 1):

|JX(α)| ≤
∣∣∣∣ max
t∈[0,2π]

A(t, p)

∣∣∣∣ ∣∣∣∣∫ 2π

0

e−it(x1y2−x2y1) cos t dt

∣∣∣∣
+

∣∣∣∣ max
t∈[0,2π]

B(t, p)

∣∣∣∣ ∣∣∣∣∫ 2π

0

e−it(x1y2−x2y1) sin t dt

∣∣∣∣
=

∣∣∣∣ max
t∈[0,2π]

A(t, p)

∣∣∣∣ ∣∣∣∣(x1y2 − x2y1)(e−i2π(x1y2−x2y1) − 1)

(x1y2 − x2y1)2 − 1

∣∣∣∣
+

∣∣∣∣ max
t∈[0,2π]

B(t, p)

∣∣∣∣ ∣∣∣∣e−i2π(x1y2−x2y1) − 1

(x1y2 − x2y1)2 − 1

∣∣∣∣ . (10.12)

The proof of lemma 10.1 works verbatim if N is replaced by the local model W

describe here. Hence, this can be interpreted as a proof of the Poincaré lemma needed

for the proof of theorem 9.1 when the real distribution has focus-focus singularities.

Theorem 10.2. If p ∈ M is a nondegenerate critical point of Williamson type

(ke, kh, kf ), with kf ≥ 1 and ke + kh + 2kf ≤ n (it does not need to be a rank zero

critical point, but it has to have a focus-focus component), for an integrable system

F : M → Rn on a prequantisable symplectic manifold (M,ω), with polarisation in-

duced by the moment map: the cohomology groups Hk(SP
•(L)) vanish for k ≥ 0 in a

sufficiently small neighbourhood of p.

10.3 Hyperbolic singularities

The content of this section covers results of a joint work [21] between Miranda

and the author of this thesis.
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The proofs of theorems 10.1 and 10.2 are based on the existence of symplectic

circle actions. Hyperbolic singularities do not share the same kind of symmetry as

elliptic or focus-focus: i.e. there is no natural symplectic circle action near purely

hyperbolic singularities. Wherefore, different techniques need to be employed to prove

a Poincaré lemma for hyperbolic singularities.

Let (M = C, ω = dx ∧ dy) and h : M → R be a nondegenerate integrable

system of hyperbolic type, i.e. h(x, y) = xy. For this case, the real polarisation is

P = 〈X〉C∞(C), with X the Hamiltonian vector field −x ∂
∂x

+ y ∂
∂y

.

(M,ω) is an exact symplectic manifold and the trivial line bundle is a prequantum

line bundle for it: L = C×C with connection 1-form Θ = 1
2
(xdy−ydx), with respect

to the unitary section eih.

Considering a section feih of the prequantum line bundle, the flat section equation

can be written as,

∇feih = 0 ⇔ X(f) = ihf . (10.13)

This equation has been studied in [12], in particular, proposition 3.5 of that paper

says:

Proposition 10.4 (Hamilton and Miranda). Any flat section s can be written as a

collection

sj = aj(xy)e
i
2
xy ln |x

y
| j = 1, 2, 3, 4 ; (10.14)

where aj is a complex-valued smooth function of one variable, Taylor flat at 0, with

domain such that aj(xy) is defined on the jth open quadrant of R2. Conversely, given

four such aj, they fit together to define a flat section s using the formula above.

Thus, (up to a different choice of sign) this implies that

f(x, y)eixy =



0 if x = 0, y = 0

a1(xy)e
i
2
xy ln y

x if x > 0, y > 0

a2(xy)e
i
2
xy ln −y

x if x > 0, y < 0

a3(xy)e
i
2
xy ln y

−x if x < 0, y > 0

a4(xy)e
i
2
xy ln y

x if x < 0, y < 0 ,

(10.15)
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where aj is a smooth complex-valued function of one variable (defined for z ∈ [0,∞)

if j = 1, 4 or z ∈ (−∞, 0] if j = 2, 3) and such that
dkaj
dzk

(0) = 0 for all j and k.

The converse of proposition 10.4 guarantees that H0(SP
•(L)) is not trivial and is

given by quadruples of Taylor flat smooth complex-valued functions of one variable,

as above.

For the computation of the first cohomology group the strategy is going to be

close to the one used in [19, 22]: firstly, a formal solution is obtained and, thereafter,

a closed formula is given for the case of Taylor flat functions.

A 1-form α⊗eih ∈ S1
P (L) is exact if and only if there exists a g ∈ C∞(C) satisfying

∇geih = α⊗ eih ⇔ X(g) = ihg + α(X) . (10.16)

The Taylor series in (x, y) of g and α(X) near the origin (0, 0) ∈ C are denoted

by,
∞∑

k, l = 0

gk,lx
kyl (10.17)

and
∞∑

k, l = 0

fk,lx
kyl , (10.18)

with f0,0 = 0, by definition (proposition 2.4).

The cohomological equation in jets reads

∞∑
k, l = 0

(l − k)gk,lx
kyl =

√
−1

∞∑
k, l = 0

gk,lx
k+1yl+1 +

∞∑
k, l = 0

fk,lx
kyl . (10.19)
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And the following recursive relations lead to a solution,

g0,0 = 0 ;

gk,k =
√
−1fk+1,k+1 , k > 0 ;

g0,k =
f0,k +

√
−1g0,k−1

k
, k > 0 ;

gk,0 =
−fk,0 −

√
−1gk−1,0

k
, k > 0 ;

gk,l =
fk,l +

√
−1gk−1,l−1

l − k
, k 6= l > 0 .

(10.20)

One can even write a closed expression for the jets,

g0,0 = 0 ;

gk,k =
√
−1fk+1,k+1 , k > 0 ;

g0,k =
1

k!

k − 1∑
j = 0

(−1)
j
2 (k − j − 1)!f0,k−j , k > 0 ;

gk,0 =
1

k!

k − 1∑
j = 0

(−1)
j
2

+1(k − j − 1)!fk−j,0 , k > 0 ;

gk,l =
k − 1∑
j = 0

(−1)
j
2

(l − k)j+1
fk−j,l−j +

l − k − 1∑
j = 0

(−1)
k
2

+ j
2 (l − k − j − 1)!

(l − k)k(l − k)!
f0,l−k−j , l > k > 0 ;

gk,l =
l − 1∑
j = 0

(−1)
j
2

(l − k)j+1
fk−j,l−j +

k − l − 1∑
j = 0

(−1)
l
2

+ j
2

+1(k − l − j − 1)!

(l − k)l(k − l)!
fk−l−j,0 , k > l > 0 .

(10.21)
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This procedure solves the equation only formally. According to Borel’s theorem,

there exists, up to Taylor flat functions5 at the origin, a unique smooth function with

such Taylor series.

Hence, the following have been proved:

Lemma 10.2. Any smooth function g̃ whose Taylor series is defined by the previous

recursive relations satisfies

X(g̃)− ihg̃ − α(X) = F , (10.22)

where F is a Taylor flat function at the origin.

Therefore, if it is possible to find a solution for

X(G)− ihG = F (10.23)

such that, G is Taylor flat at the origin, the difference g̃−G defines a smooth solution

for the cohomological equation.

One can solve this problem with the aid of the logarithmic function ln γ : {(x, y) ∈

C ; xy 6= 0} → R, where ln γ(p) is the time that it takes for a point in the diagonal,

{(x, y) ∈ C ; x = y}, to reach p via the flow of X (the diagonal point and p lie over

the same integral curve of X). This function is well defined for xy 6= 0.

Lemma 10.3. For a given Taylor flat function F , a solution to the equation X(G)−

ihG = F is given by

G =

∫ 0

− ln γ

e−ihtF ◦ φt dt . (10.24)

This solution is actually well defined and smooth over all points of C.

Remark 10.1. The smoothness of this formula prevails if parameters are consid-

ered in the function F . This observation will be needed in the higher dimensional

discussion.

5Observe that, two smooth functions which have the same Taylor expand at a point differ by a

smooth function which has vanishing jets at all order at that point.
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Proof: The first thing, before proving that the expression for G is smooth and

well defined, is to prove that G solves the equation by computing X(G).

The composition of G with the flow of X at time s is:

G ◦ φs =

∫ 0

− ln γ ◦ φs
e−ith◦φsF ◦ φt ◦ φs dt =

∫ 0

− ln γ − s
e−ithF ◦ φt+s dt . (10.25)

The logarithmic function satisfies ln γ ◦φs = ln γ+s and h◦φs = h; thus, by a change

of coordinates τ = t+ s,

G ◦ φs =

∫ s

− ln γ − s+ s

e−ih(τ−s)F ◦ φτ dτ = eish
∫ s

− ln γ

e−ithF ◦ φt dt . (10.26)

Then, one differentiates G ◦ φs with respect to s

d

ds
G ◦ φs = iheish

∫ s

− ln γ

e−ithF ◦ φt dt+ F ◦ φs , (10.27)

and, finally, evaluate it in s = 0 to get

X(G) =
d

ds
G ◦ φs

∣∣∣∣
s=0

= ih

∫ 0

− ln γ

e−ithF ◦ φt dt+ F = ihG+ F . (10.28)

It is clear that G is smooth and well defined over the points where the logarithmic

function ln γ is well defined (the set {(x, y) ∈ C ; xy 6= 0}). The idea now is to prove

that it is continuous and well defined at the points where h = 0.

For each point of {(x, y) ∈ C ; xy 6= 0},

|G| ≤
∫ 0

− ln γ

∣∣e−ihtF ◦ φt∣∣ dt =

∫ 0

− ln γ

|F ◦ φt| dt ≤ | ln γ| max
t∈[− ln γ,0]

|F ◦ φt| . (10.29)

When h approaches zero, ln γ diverges in a logarithmic fashion. It is left to

understand how max
t∈[− ln γ,0]

|F ◦ φt| behaves.

At a point p = (x, y) ∈ C, the flow of the Hamiltonian vector field X = −x ∂
∂x

+y ∂
∂y

is given by φt(p) = (e−tx, ety). Let p0 = (z, z) be a point of C satisfying φt(p0) = p;

then,

ln γ(p) =


1
2

ln
y

x
if xy > 0

1
2

ln
−y
x

if xy < 0
, (10.30)

since

e−tz = x ⇒ t = ln
z

x
(10.31)
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and

etz = y ⇒ t = ln
y

z
. (10.32)

Wherefore,

φ− ln γ(p)(p) = (|h(p)|
1
2 , |h(p)|

1
2 ) , (10.33)

which implies lim
|h|→0

F ◦φ− ln γ = 0 and it goes sufficiently fast to zero to guarantee that

G is continuous and vanishes at h = 0, because the function F is Taylor flat at the

origin.

One can see that G is actually smooth at h = 0 by analising its differential (it is

clear that the argument that follows holds for the higher order partial derivatives):

dG =

∫ 0

− ln γ

(
e−ihtφt

∗ ◦ dF
)

dt− iGdh+ e−ih ln γF ◦ φ− ln γd ln γ . (10.34)

The first term converges to zero, as h approaches to zero, by the same argument

used above, the partial derivatives of a Taylor flat function are still Taylor flat by

definition. The second term is continuous and well defined at h = 0 because G is

and h is smooth. It remains to analise the term F ◦ φ− ln γd ln γ. By l’Hôpital’s rule

lim
h→0

e−ih ln γ = 1 and the fact that F is Taylor flat guarantees that lim
h→0

F ◦φ− ln γd ln γ =

0. �

Since the dimension of the generic leaves is 1, the only cohomology group to check

is the first cohomology group.

Lemmata 10.2 and 10.3 yield the following,

Theorem 10.3. In a neighbourhood of a hyperbolic singularity, the first cohomology

group H1(S •P (L)) vanishes when the polarisation is given by an integrable system on

a two-dimensional manifold.

10.3.1 The hyperbolic-hyperbolic case

Let (M1×M2 = C2, ω = dx1∧dy1+dx2∧dy2) andH = (h1, h2) : M1×M2 → R be a

nondegenerate integrable system of hyperbolic-hyperbolic type, i.e. H(x1, y1, x2, y2) =
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(x1y1, x2y2). For this case, the real polarisation is P = 〈X1, X2〉C∞(C2), with Xj the

Hamiltonian vector field −xj ∂
∂xj

+ yj
∂
∂yj

.

Again, (M1×M2, ω) is an exact symplectic manifold and the trivial line bundle is

a prequantum line bundle for it: L = C× C2 with connection 1-form Θ = 1
2
(x1dy1 −

y1dx1) + 1
2
(x2dy2 − y2dx2), with respect to the unitary section s = ei(h1+h2).

To have a Poincaré lemma, one needs to prove that H1(S •P (L)) and H2(S •P (L))

are trivial6.

Proposition 10.5. The second cohomology group H2(S •P (L)) vanishes for hyperbolic-

hyperbolic singularities.

Proof: Any line bundle valued polarised 2-form, α⊗ s, is automatically closed in

dimension 4, and it is exact if and only if there exists a β such that,

d∇(β ⊗ s) = α⊗ s . (10.35)

Because ∇s = −iΘ⊗ s, the exactness of α⊗ s is equivalent to

α = dPβ − iΘ∧ β ⇔ α(X1, X2) = X1(β(X2))− ih1β(X2)−X2(β(X1)) + ih2β(X1) .

(10.36)

One can find a solution for this equation by taking β(X1) = 0 and solving for

β(X2), using the parametric versions of lemmata 10.2 and 10.3. This ends the proof

of the proposition. �

In order to computeH1(S •P (L)) one needs to prove parametric versions of lemmata

10.2 and 10.3 when the unknown functions possess a special property if the known

functions have it. Concretely:

Lemma 10.4. If X1(f) = ih1f , there exists a smooth function g̃ such that, X1(g̃) =

ih1g̃ and X2(g̃)− ih2g̃ = f .

6The cohomology group H0(S •P (L)) can also be computed by a parametric version of proposition

10.4. Since the aim here is to provide a Poincaré Lemma, this simple computation is left aside.
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This can be proved by keeping track of the proofs of lemmata 10.2 and 10.3,

since the condition on f is with respect to one set of variables, x1 and y1, whilst the

differential equation X2(g̃)− ih2g̃ = f deals only with x2 and y2 and treats x1 and y1

merely as parameters.

Proposition 10.6. The first cohomology group H1(S •P (L)) vanishes for hyperbolic-

hyperbolic singularities.

Proof: A line bundle valued polarised 1-form, α⊗ s, is closed if and only if

X1(α(X2))− ih1α(X2) = X2(α(X1))− ih2α(X1) , (10.37)

and it is exact if and only if there exists a smooth function g such that

Xj(g)− ihjg = α(Xj) , (10.38)

for j = 1, 2.

The first equation,

X1(g)− ih1g = α(X1) , (10.39)

can be solved by using the parametric versions of lemmata 10.2 and 10.3. The closed-

ness of α⊗ s would, then, imply that

X2(α(X1)) = X2 ◦X1(g)− iX2(h1g) = X1(α(X2))− ih1α(X2) + ih2α(X1) ; (10.40)

and, because [X1, X2] = X1(h2) = X2(h1) = 0, one can write

X1(X2(g)− ih2g − α(X2)) = ih1(X2(g)− ih2g − α(X2)) . (10.41)

Lemma 10.4 can be aplied to prove that there exists a function g̃ such that,

X1(g̃) = ih1g̃ (10.42)

and

X2(g̃)− ih2g̃ = X2(g)− ih2g − α(X2) ; (10.43)
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As a result,

Xj(g − g̃)− ihj(g − g̃) = α(Xj) , (10.44)

for j = 1, 2.

This proves that the system of equations above has a solution and finishes the

proof of this proposition. �

Wherefore, theorem 10.3, propositions 10.6 and 10.5, and corollary 9.2 entail the

following:

Theorem 10.4. If p ∈ M is a nondegenerate critical point of Williamson type

(0, kh, 0), with kh ≤ 2 ≤ n (it does not need to be a rank zero critical point), for

an integrable system F : M → Rn (whose regular fibres are compact) on a prequanti-

sable symplectic manifold (M,ω), with polarisation induced by the moment map: the

cohomology groups Hk(SP
•(L)) vanish for k ≥ 0 in a sufficiently small neighbourhood

of p.

Together with theorems 10.1 and 10.2, this theorem asserts that the Kostant com-

plex computes geometric quantisation when the polarisation is given by nondegenerate

integrable systems in dimension 2 or 4.
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Chapter 11

The resolution approach

As opposed to the approach taken by Hamilton and Miranda [11, 12], this chapter

deals with geometric quantisation à la de Rham. The results of chapters 9 and 10

provide a resolution for the sheaf of flat sections, and, by exploiting the existence of

symplectic circle actions, this chapter presents alternative proofs for Śniatycki’s [27]

and Hamilton’s theorems [11].

More than just an extention of Rawnsley’s ideas [26], the tools developed in chapter

7 give a unifying view, and also add new information about the contributions coming

from focus-focus type of singularities.

11.1 Nonsingular case

The aim of this section is to compute geometric quantisation for Lagrangian fi-

brations. The first section is devoted to compute geometric quantisation semilocally,

near a Liouville fibre; the second section deals with the global computation.

11.1.1 Neighbourhood of a Liouville fibre

The Liouville theorem for integrable systems provides a symplectic normal form

for a neighbourhood of a regular fibre. What follows is the computation of the

quantisation of that model.
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Let M = Rn×(Rn−k×Tk) and 0 ≤ k ≤ n, where Tk ∼= Rk/2πZk, with coordinates

(x1, . . . , xn, y1, . . . , yn−k, . . . , yn) and symplectic form ω =
n∑

j = 1

dxj ∧ dyj. It admits as

a real polarisation P =
〈

∂
∂y1
, . . . , ∂

∂yn

〉
C∞(M)

, and since (M,ω) is an exact symplectic

manifold, it also admits as a prequantum line bundle L = C ×M with connection

1-form Θ =
n∑

j = 1

xjdyj, with respect to the unitary section exp

(
i

n∑
j = 1

xj

)
.

The next lemma computes the contributions to geometric quantisation for each

trivialising neighbourhood of a Lagrangian fibre bundle.

Lemma 11.1. Hk+l(SP
•(L)) = {0} for all l 6= 0 and

Hk(SP
•(L)) ∼=


⊕
m∈Zk

C∞(Rn−k) , if k 6= n⊕
m∈Zk

C , if k = n
. (11.1)

Proof: Supposing k 6= n, when M is written as (R × S1)k × Cn−k it becomes

clear that the use of theorem 9.3 (more precisely, corollary 9.2) k times reduces the

problem of computing the quantisation of M to the computation of the quantisation

of Cn−k: which by proposition 9.1 is just C∞(Rn−k). If k = n, one just need to apply

theorem 9.3 n− 1 times, and, then, proposition 9.2 to conclude. �

11.1.2 Lagrangian fibre bundles

In [27] Śniatycki studies the case when the polarisation is a Lagrangian fibration.

He uses a resolution for the sheaf and proves the vanishing of the groups Ȟ l(M ;J ),

for l 6= k: k being the rank of the fundamental group of a fibre.

Theorem 11.1 (Śniatycki). If the base space N is a manifold and the natural pro-

jection F : M → N is a Lagrangian fibration, then Q(M) = Ȟk(M ;J ), and

Ȟk(M ;J ) ∼= Ȟ0(`BS;J |`BS), where `BS ⊂ M is the union of all Bohr-Sommerfeld

fibres.

A slightly different proof of his theorem is given here when k 6= 0. When k = 0

there is no symplectic circle action and the techniques presented in chapter 7 are of
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no use; wherefore, apart from the presentation, the proof is the same as the original

one and is omitted.

Any atlas of the base space satisfies that the projection F : M → N on each open

set V of the atlas is a moment map. Assuming dimM = 2n, if χ : V → Rn is a

coordinate system over V , F := χ ◦ F
∣∣
F−1(V )

: F−1(V )→ Rn is an integrable system

because each fj := prj ◦ F is constant along the fibres of F , dfj = 0 along them. In

other words, dfj annihilates vector fields tangent to the fibres and the Hamiltonian

vector fields of the others fj’s are, indeed, tangent to the fibres: {fi, fj}ω = 0.

The open sets F−1(V ) are just the model in lemma 11.1 with a fixed number of

Bohr-Sommerfeld fibres; thus, the quantisation of it is just a sum of copies of C, or

C∞(Rn−k), depending on the value of k, for each Bohr-Sommerfeld fibre.

Assuming that k 6= 0, so that theorem 7.1 can be used, the atlas can —and it

will— be chosen in such a way that no Bohr-Sommerfeld fibre is contained in more

than one of the open sets F−1(V ). In particular, if V and W are two open sets of

the atlas such that V ∩ W 6= ∅, then F−1(V ) ∩ F−1(W ) has no Bohr-Sommerfeld

fibre. Proposition 3.1 implies that one of the periodic Hamiltonian vector fields of the

components of F has orbits with nontrivial holonomy over F−1(V ) ∩ F−1(W ); thus,

by proposition 7.4, its quantisation is just the trivial vector space {0}. This means

that a Mayer-Vietoris argument works for the cover {F−1(V )} of M , and this finishes

the proof for k 6= 0.

Remark 11.1. Śniatycki works with the prequantum line bundle twisted by a bundle

of half forms normal to the polarisation, and here the result is presented for the

nontwisted prequantum line bundle. As it was mentioned before, the techniques

used here apply to any complex line bundle admitting a flat connection along the

polarisation: the only difference being that the Bohr-Sommerfeld fibres may not be

the same.

Example 11.1. The Kodaira-Thurston manifold is an example of a Lagrangian bun-

dle (there is a description of it in [11]). Moreover, it is a symplectic manifold which is
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not Kähler that gives at least one reason for developing a trully symplectic geometric

quantisation apparatus. ♦

11.2 Singular case

Śniatycki [27] computed the cohomology groups, but to achieve that he had

to assume mild topological hypothesis for the base space. Unfortunately, it turns out

that for a large class of examples —toric manifolds included— the base space is not

a manifold, and what seems to be a mild assumption is, indeed, a strong restriction.

Hamilton and Miranda [11, 12] avoided this restriction by computing the coho-

mology groups over the manifold. Not only that, they do not use any resolution. So

their approach is different from Rawnsley [26] and Śniatycki in two aspects.

For the singular case Śniatycki’s result is expected to hold for integrable systems

with nondegenerate singularities in any dimension.

Conjecture 11.1 (Miranda and Hamilton). For a 2n-dimensional compact inte-

grable system, whose moment map has only nondegenerate singularities, Q(M) =

Ȟn(M ;J ). Moreover, the cohomology Ȟn(M ;J ) has contributions of the form C

for each regular Bohr-Sommerfeld leaf, CN ⊕ CN for the hyperbolic singularities and

elliptic and focus-focus fibres give no contribution (just the trivial vector space {0}).

11.2.1 Neighbourhood of an elliptic fibre

Toric, or locally toric, manifolds also have a normal form for a neighbourhood of

its fibres, even if they are singular: Zung [31] attributes this normal form to Dufour

and Molino and Eliasson. The model and its quantisation are described below.

For 0 ≤ k ≤ n, let (M = Rn+k × Tn−k, ω =
n∑

j = 1

dxj ∧ dyj), with coordinates

(x1, . . . , xn, y1, . . . , yk, . . . , yn), and F : M → Rn be a nondegenerate integrable system

of elliptic type, i.e.

F (x1, . . . , xn, y1, . . . , yn) = (x2
1 + y2

1, . . . , x
2
k + y2

k, xk+1, . . . , xn) . (11.2)
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The real polarisation in this case is

P =

〈
−y1

∂

∂x1

+ x1
∂

∂y1

, . . . ,−yk
∂

∂xk
+ xk

∂

∂yk
,

∂

∂yk+1

, . . . ,
∂

∂yn

〉
C∞(M)

, (11.3)

and since (M,ω) is an exact symplectic manifold, it also admits as a prequantum line

bundle L = C×M with connection 1-form Θ = 1
2

k∑
j = 1

(xjdyj − yjdxj) +
n∑

j = k + 1

xjdyj,

with respect to the unitary section exp

[
i

k∑
j = 1

(x2
j + y2

j ) + i
n∑

j = k + 1

xj

]
.

Proposition 11.1. Q(M) ∼= Cbs, where bs is the number of nonsingular Bohr-

Sommerfeld fibres.

Proof: One can first use proposition 10.3 k times, corollary 9.2 n − k − 1 times,

and, finally, proposition 9.2. �

It is important to notice that, if the case of bs = 0 was considered (x2
1+y2

1, . . . , x
2
k+

y2
k < 1), the previous proof would give that all cohomology groups vanish when

k 6= 0. This implies, as a corollary, that Bohr-Sommerfeld fibres of elliptic type give

no contribution to geometric quantisation.

11.2.2 Locally toric manifolds

Hamilton [11] has shown, via Čech approach, that Śniatycki’s theorem holds for

locally toric manifolds and that the elliptic fibres give no contribution to the quanti-

sation.

Theorem 11.2 (Hamilton). For M a 2n-dimensional compact symplectic manifold

equipped with a locally toric singular Lagrangian fibration:

Q(M) = Ȟn(M ;J ) ∼=
⊕
p∈BSr

C , (11.4)

BSr being the set of the regular Bohr-Sommerfeld fibres.

Remark 11.2. Regarding metaplectic correction, contrary to Śniatycki’s, Hamilton’s

result does not include a twisted prequantum line bundle. Using the framework
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described in this thesis, it is straightforward to twist the prequantum line bundle by

a bundle of half forms normal to the polarisation and achieve the same result —only

noticing that the Bohr-Sommerfeld fibres may not be the same.

The previous reasoning used for the fibre bundle case works in this singular setting.

This provides a proof for Hamilton’s theorem via a de Rham approach.

A locally toric singular Lagrangian fibration on a symplectic manifold (M,ω) is a

surjective map F : M → N , where N is a topological space such that for every point

in N there exist an open neighbourhood V and a homeomorphism χ : V → U ⊂ {z ∈

Rk ; z ≥ 0} ×Rn−k satisfying that (F−1(V ), ω
∣∣
F−1(V )

, χ ◦ F
∣∣
F−1(V )

) is an integrable

system symplectomorphic to an open subset of the model of proposition 11.1.

Hence, by definition, the open sets F−1(V ) are just the model in proposition

11.1 with a fixed number of Bohr-Sommerfeld fibres; thus, the quantisation of it is

just a sum of copies of C, or {0}, depending on the fibre dimension, for each Bohr-

Sommerfeld fibre.

Choosing an open cover for N in such a way that no Bohr-Sommerfeld fibre is

contained in more than one of the open sets F−1(V ) (theorem 7.1 allows one to make

this choice), if V and W are two open sets of the atlas such that V ∩W 6= ∅, then

F−1(V )∩F−1(W ) has no Bohr-Sommerfeld fibre. Proposition 3.1 implies that one of

the periodic Hamiltonian vector fields of the components of the integrable system has

orbits with nontrivial holonomy over F−1(V )∩F−1(W ); wherefore, by proposition 7.4,

its quantisation is just the trivial vector space {0}. This means that a Mayer-Vietoris

argument works for the cover {F−1(V )} of M , and this finishes the proof.

11.2.3 Focus-focus contribution to geometric quantisation

Let F = (f1, f2) : M → R2 be an integrable system on a prequantasible (M,ω),

with a nondegenerate focus-focus singular fibre `ff which is Bohr-Sommerfeld. In [32]

it is demonstrated the existence of a neighbourhood of `ff over which f2 is a moment

map for a Hamiltonian S1-action.
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Proposition 11.2. In the neighbourhood of `ff over which a Hamiltonian S1-action

is defined, there exists a neighbourhood V containing only `ff as a Bohr-Sommerfeld

fibre such that Ȟ0(V ;J
∣∣
V

) = {0}.

Proof: Lemma 7.1 guarantees that the holonomy of the orbits of the Hamiltonian

S1-action is nontrivial over a dense set in V ; hence, proposition 7.3 asserts that there

are no nonzero flat sections on V . �

Concerning how focus-focus fibres behave under geometric quantisation, this par-

tially answers conjecture 11.1.

Believing that the conjecture is true, one could try to use proposition 7.4 to prove

it for the neighbourhood V . The first obstacle is that {hol∇ω(γ) = 1} is not a

submanifold, and one needs to prove that JX is the null operator over the points

where {hol∇ω(γ) = 1} (which, looking at the proof of theorem 10.2, seems to be the

case). Another approach would be to prove only the exactness of JX and check out

convergence over the singular points of {hol∇ω(γ) = 1}.

As it was seen from the quantisation of Lagrangian fibrations and locally toric

manifolds, quantisation of neighbourhoods of Bohr-Sommerfeld fibres computes the

quantisation of the whole manifold. Consequently, if one knows how to compute

the higher cohomology groups for a neighbourhood of a focus-focus fibre, one is able

to compute the quantisation for the almost toric case using the factorisation tools

(corollary 9.2 and proposition 10.3) and proceeding like the Lagrangian bundle and

locally toric cases.
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