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Universitat Politècnica de Catalunya

Dr. Roel Verstappen
University of Groningen





A la Romina i la Mila
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Abstract
Direct Numerical Simulation (DNS) of complex flows is currently an utopia for

most of industrial applications because computational requirements are too high.
For a given flow, the gap between the required and the available computing resources
is covered by modeling/simplifying of some terms of the original equations, in order
to make the problem easier to be numerically solved. For example, turbulence
models attempt to mimic the effects of the unresolved scales of motion in the flow
or, in the simulation of flames, the effects of the radiation are usually introduced
using empirical correlations with the temperature. These are essential strategies to
make possible the numerical simulation of most of industrial flows. On the other
hand, the continuous growth of the computing power of modern supercomputers
contributes to reduce the gap between the required and the available computational
resources for DNS, reducing hence the unresolved physics that need to be attempted
with approximate models. This growth, consisting on doubling the supercomputing
capabilities roughly every year, widely relies on parallel computing technologies.
However, getting the expected performance from new complex computing systems
is becoming more and more difficult, and therefore part of the CFD research is
focused on this goal. Regarding to it, some contributions are presented in this
thesis1.

The first objective was to contribute to the development of a general purpose
multi-physics finite-volume CFD code. This code, referred to as TermoFluids (TF),
is programmed following the object oriented paradigm and designed to run in modern
parallel computing systems. Among its functionalities there is the possibility to
solve multi-physics problems with high-level methods including radiation effects,
reactive flows, multiphase flows, fluid-structure interactions, problems with dynamic
meshes or multi-scale systems. The code is intensively involved in many different
projects ranging from basic research to industry applications. Besides the capability
to properly simulate all these complex physical phenomena, one of the strengths of
TF is its good parallel performance demonstrated in several supercomputers, and
explicitly tested with up to 8192 CPUs.

In the context of this thesis, the work was focused on the development of two of
the most basic libraries that compose TF. The first one is the Basic Objects Library
(BOL), which is a parallel unstructured CFD application programming interface
(API), on the top of which the rest of libraries that compose TF are written. The
BOL frees its users of the important software development effort required to support
the basic discrete operations necessary to perform parallel unstructured CFD sim-

1This work comprises three main chapters, the second and the third chapters are based on the
contents of two papers published in international journals. Hence, they are written to be self-
contained and only minor changes have been introduced with respect to the originals. A complete
list of the publications carried out within the framework of this thesis is presented in Appendix C.
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ulations. Afterwards, the Linear Solvers Library (LSL) was developed containing
many different algorithms to solve the linear systems arising from the discretization
of the equations. The solution of these systems is one of the most time-consuming
parts of CFD simulations of incompressible flows and, therefore, it has an important
influence on the overall performance.

The first chapter of this thesis contains the main ideas underlying the design
and the implementation of the BOL and LSL libraries, together with some examples
and the description of some industrial applications. A detailed description of some
application-specific linear solvers included in the LSL is carried out in the following
chapters.

In the second chapter, a parallel direct Poisson solver restricted to problems with
one uniform periodic direction is presented. It can be applied to configurations such
as the flow around an airfoil or around a sphere, in which the uniformity and period-
icity imposed by the method fit with the isotropic nature of the flow in the span-wise
and azimuthal direction, respectively. The Poisson equation needs to be solved, at
least, once per time-step when modeling incompressible flows, to project the velocity
field onto a divergence-free space. Due to the non-local nature of its solution, this
elliptic system is one of the most time consuming and difficult to parallelize parts of
the code. The solver here proposed is a combination of a direct Schur-complement
based decomposition (DSD) and a Fourier diagonalization. The latter decomposes
the original system into a set of mutually independent 2D subsystems which are
solved by means of the DSD algorithm. Since no restrictions are imposed in the
non-periodic directions, the overall algorithm is well-suited for solving problems dis-
cretized on extruded 2D unstructured meshes. The load balancing between parallel
processes and the parallelization strategy are also presented and discussed in this
chapter. The scalability of the solver is successfully tested using up to 8192 CPU
cores for meshes with up to 109 grid points. Finally, the performance of the DSD
algorithm as 2D solver is analyzed by direct comparison with two preconditioned
conjugate gradient methods. For this purpose, the turbulent flow around a circular
cylinder at Reynolds numbers 3900 and 10, 000 are used as problem models.

In the last chapter, a solver for the Boltzmann Transport Equation (BTE) is
presented. It can be used to solve radiation phenomena interacting with flows. The
solver is based on the Discrete Ordinates Method and can be applied to unstructured
discretizations. In the solution process, the flux for each angular ordinate is swept
across the discretization mesh, within a source iteration loop that accounts for the
coupling between the different ordinates. A spatial domain decomposition strategy
is used to divide the work among the available CPUs. The sequential nature of the
sweep process makes the parallelization of the overall algorithm the most challeng-
ing aspect. Several parallel sweep algorithms, which represent different options of
interleaving communications and calculations in the solution process, are analyzed.
The option of grouping messages by means of buffering is also considered. One of
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the heuristics proposed consistently stands out as the best option in all the situa-
tions analyzed, which include different geometries and different sizes of the ordinate
set. With this algorithm, good scalability results have been achieved regarding both
weak and strong speedup tests with up to 2560 CPUs.
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1

Design and implementation of a
CFD code

Abstract. One of the main objectives of this thesis has been to contribute to the development of a
general purpose multi-physics CFD code. This code, referred to as TermoFluids, has been programmed
following the object oriented paradigm and designed to run in modern supercomputers. Its functionalities
and performance are in constant evolution due to the increasing number of developers and users. In the
context of this thesis, two of the most basic libraries that compose the code were developed. These are
the Basic Objects Library, which is an unstructured CFD application programming interface, on the top
of which the rest of libraries that compose TermoFluids are written; and the Linear Solvers Library, which
contains several algorithms to solve the linear systems of equations, derived from the discretization of the
equations that model the physics under study. In this chapter, the main ideas underlying the design and
the implementation of these two libraries are presented, together with some examples and the description
of some industrial applications.

An important part of this research has been developed in Termo Fluids S.L. company, which is a
spin-off of the Centre Tecnològic de Transferència de Calor (CTTC) of the Universitat Politècnica de
Catalunya.
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1.1 Introduction

Fluids are ubiquitous (air, water, blood, lava...), therefore the knowledge, under-
standing and predictability of fluid flows is of great importance for our development
as a species. The Computational Fluid Dynamics (CFD) field is a scientific branch
focused on the numerical simulation of fluid flows. It includes, among other aspects,
the development of numerical methods and algorithms, the design and verification
of turbulence models, the physical analysis and understanding of the simulation
results, and also more practical issues such as the development of software and
the knowledge of the hardware to be used for the computations. It is therefore a
multidisciplinary knowledge which involves scientists from different areas, such as
physics, mathematics, engineering or computer science. Many industries and areas
of research can benefit from the advances in CFD. For example, to name a few,
the marine and off-shore engineering (resistance of ships or wave impact on vessels),
the automotive and aerospace industry (combustion in engines, climate control in
the passenger compartment, aerodynamics) and also biomedical applications (blood
flow through arteries, respiratory flow in lungs).

The basic model to predict a single-phase fluid flow are the Navier-Stokes equa-
tions, that describe the conservation of momentum, together with the continuity
equation, which expresses the conservation of mass. Other physical processes like
radiation transport, chemical reactions (for example the ones that occur in combus-
tion phenomena), thermal processes, interaction between different fluids and inter-
action with solids, or dynamic geometries, can also be included in the simulations
by means of simplified source terms or the addition of more differential equations to
the system. Thus, the flow simulation becomes a multi-physics problem.

Apart from having proper formulated discrete equations (in some phenomena,
for instance the simulation of blood flow inside the human circulatory system, this
is one of the most challenging aspects), a major difficulty in order to generalize
the use of CFD to “real life” applications are its computational requirements. If
we consider the Direct Numerical Simulation (DNS) of basic isotropic turbulent
flows, the computational complexity of the simulation scales with Re11/4 [1], where
the Reynolds number, Re, is a dimensionless variable which measures the ratio
between the effects of convection and diffusion. This scaling is even worse for general
3D cases with turbulent boundary layers. For a typical aerodynamic application
(airflow around a flying plane airfoil for instance) the Re of the flow is around
107. If we consider the existing academic studies of turbulent boundary layers in
channel flows, one of the largest DNS simulation ever made, with Re ∼ 105, was
carried out by Hoyas et al. [2] in 2006. During an approximate period of half a
year they used 2048 CPU, and about 25 TB of data were generated. This means
that, using the same software and hardware, we would require at least 105 years
to carry out a DNS for a real aerodynamic case (Re ∼ 107) in such a simplified
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parallelepiped domain. As a consequence, for the simulation of most of turbulent
industrial flows there is no choice but to work with approximated equations, in
which the influence of the smallest scales of motion is modeled in order to decrease
the computational requirements. In any case, these approaches may be quite good
for many applications. In general, the two main families of turbulence modeling
approaches are the Reynolds Averaged Navier-Stokes (RANS) simulations, in which
a long-time temporal filter is applied resulting in a steady mean flow, and the Large
Eddy Simulation (LES), in which localized spacial filters are applied. In terms of
computational effort the LES lies in between the RANS and the DNS.

Together with the development of better turbulence models and numerical meth-
ods, one of the basic strategies to expand the capabilities of the CFD is to take
advantage of the constant growth of computing power. This growth implies some-
times qualitative changes in the technology, like the appearance of the graphical
processing units (GPU) computing in the recent years. In fact, numerical methods
are designed to be applied into computing systems, so their efficiency on the state
of the art or future computing equipments is of major importance. In accordance
with Moore’s law, the speed of the new supercomputers has been doubling every
13.2 months during the last 20 years [3]. This means that, if this trend continues,
just by adapting the software, each decade we could approximately increase an or-
der of magnitude the Re of the isotropic turbulent flows that can be directly solved.
However, the efficient usage of supercomputers is far from being trivial and the max-
imum possible performance is rarely achieved. Therefore, part of the research on
the numerical simulation field has to focus on the development of parallel software
to take advantage of the constantly growing computing power.

In the context of this thesis, we have worked on the development of a general
purpose multi-physics CFD software named TermoFluids (TF). This is an object
oriented software programed in C++ and designed to run in parallel computing
systems. TF is composed of several libraries arranged in a hierarchical scheme
from the most fundamental and general to the most specific ones (which deal for
instance with only a particular physical phenomenon). General unstructured meshes
are used for the geometric discretizations, and the basic equations are discretized
by means of a “symmetry-preserving”/“energy-conserving” approach [4, 5]. There
are also a number of LES [6, 7] and regularization turbulence models [8, 9], and
a library with general and application-specific linear solvers [10, 11]. In the last
years, TF has been evolving into a multi-physics software incorporating, for example,
radiation effects [11,12], reactive flows [13], multiphase flows [14–16], fluid-structure
interactions [17], dynamic mesh methods [18] and multi-scale systems [19]. Besides
the capability to properly simulate all these complex physical phenomena, one of
the strengths of the code is its good parallel performance, demonstrated in several
supercomputers (see Appendix B), and explicitly tested with up to 8192 CPUs [10].
TF is actually being used in both industrial and academic applications, ranging
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between DNS studies of the flow around a sphere [20, 21], in order to understand
the structures of turbulence in forced convective flows, and LES simulations of the
flow inside the power generator nacelle of a wind turbine [22] or inside a domestic
refrigerator [23].

TF has an increasing number of users and developers with different needs and
interests. The development of the code is a result of the interaction of between all
of them. In the context of this thesis initially the Basic Objects Library (BOL) was
developed, which is a parallel unstructured finite-volume CFD application program-
ming interface (API), on the top of which the rest of libraries of TF are written.
Afterwards, was developed the Linear Solvers Library (LSL), which has several gen-
eral purpose and application-specific algorithms to deal with the solution of the
linear systems derived from the discretizations.

The rest of the chapter is organized as follows. In Section 1.2 there is a general
explanation of the parts that constitute a CFD simulation. Sections 1.3 and 1.4
describe the concepts in which the design and implementation of the BOL and the
LSL are based, respectively. Section 1.5 presents, as a demonstrative example of an
implementation using the BOL and the LSL libraries, a code for the resolution of the
Poisson equation. Finally, some industrial applications are outlined in Section 1.6.

1.2 Anatomy of a CFD simulation

A typical CFD simulation can be divided into three main phases: i) the set-up or
pre-processing, ii) the time-integration, and iii) the post-processing. These phases
may be done consecutively, but sometimes it is necessary to repeat a previous phase
in order to modify some aspect of the simulation. For example, during the post-
processing, we may realize that the integration time is not long enough or that the
quality of the mesh is poor to capture all the physics. This would force us to return
to the time-integration or pre-processing phase, respectively. One key aspect is that
the simulation can be restarted at any specific point minimizing the computations
that must be repeated. This is achieved by storing intermediate results in binary
files.

Usually, the most expensive part in terms of computational time is the iterative
process necessary to carry out the time integration. The time step must be small
enough to capture all the details of the physics and to keep the simulation stable,
and this results into large numbers of time iterations to complete the simulations.
Some simulations require several months of computations, while others require only
a few minutes. It depends on the complexity of the physics that need to be captured
with them.

On the pre-processing phase, a mesh covering the physical domain must be de-
fined, and after that several calculations are carried out before starting the iter-
ative process. Among these, the most important are the calculation of geometric
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properties, the evaluation of the topological relations between different elements of
the discretization, the set-up of the iterators, the evaluation of the communication
schemes for the parallelization and the set-up of linear solvers. All these processes
are necessary before starting a simulation but, since the results are stored in files,
they are only carried out once independently of the number of executions necessary
to complete the simulation. The higher the number of iterations required by the
time-integration process, the less significant is the time spent in the set-up process
in relative terms.

Finally, the cost of post-processing the data generated during the time integra-
tion depends on the analysis required. Generating a movie with instantaneous fields,
in order to observe the dynamic structure of the fluid flow, may be rather expen-
sive, and in some cases demands parallel computation, while the evaluation of some
statistical flow features is mainly carried out on run time during the time integra-
tion. Nevertheless, while the computational resources for the simulations grow, the
storage and management of the data outputs are increasingly challenging problems
for the CFD community [24].

In the design of the code, it is important to identify the classes and methods that
form the most intensive part of the computations, to be considered when optimizing
the code. In our case these are the methods used in the time-integration process. By
contrast, the methods that are seldom used, are not a priority for the optimization
unless they represent an important cost respect to the total simulation time.

1.3 Basic objects library

The basic objects library (BOL) is an in-house parallel API used by the rest
of libraries that compose TermoFluids code. It has been designed to be of general
purpose and to have a good parallel performance in the different existing parallel
computational infrastructures. Following the Object Oriented (OO) paradigm, the
library is mainly composed by classes, representing types of data, and member
functions, which define the core operations to be performed with each data type.
The BOL library is divided into four main interrelated areas:

• The geometric classes which deal with the geometric elements and concepts
of the discretization: nodes, polygons, polyhedra, faces, cells, volumes, areas,
intersections, projections, distances, etc.

• The algebraic classes representing the algebraic structures and operations:
vectors, sparse matrices, norms, dot products, cross products, sparse-matrix
vector products, etc.

• The parallelism classes which represent the issues related with the paralleliza-
tion such as the domain decomposition, the communication schemes, the global
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and local labeling of elements, and the communication buffers.

• The utilities, to basically handle input/output (IO) and profiling operations.

This section describes the main ideas underlying the design of the first three
areas. The utilities are a more technical part of the code that will not be addressed
in this general explanation.

1.3.1 Geometric classes

Prior to carry out a simulation using the BOL, the mesh where the equations will
be discretized must be defined. Apart from some basic cases, like structured meshes
or meshes generated by extrusion or revolution of a given 2D mesh, it is not possible
to generate geometric discretizations using the BOL. Thus, mesh generators, such
as the ANSYS ICEM CFD [25] or GMSH [26] packages, are required.

Figure 1.1 shows different type of meshes that the BOL can deal with. In fact,
any type of mesh within the BOL is treated as a general unstructured 3D one.
Particular cases with structured patterns are not treated differently. On the other
hand, 2D cases are solved by means of 3D meshes with prismatic elements, using
Neumann boundary conditions at the front and back planes (see Figure 1.1.d).

The data necessary to define an unstructured mesh consists of: i) The coordinates
of the vertices, ii) The ordered sequence of IDs of vertices that defines each face,
and iii) The IDs of the faces that define each cell. Note that the ID of an element
refers to its relative position on the input file. Some other details like the boundary
conditions and the distinction between different zones in the domain can also be
defined in the mesh input file.

Each basic element of the geometric discretization (vertex, face, cell or node)
has its corresponding class in the library. Moreover, they are all grouped as pri-
vate members of the class Mesh1 which has a Container<T> for each element type,
i.e. it has a Container<Vertex>, Container<Node>, Container<Face> and a
Container<Cell>. The Container<T> template is derived from the standard class
vector<T>, defined in the C++ Standard Template Library (STL).

To get an element from a Mesh object there are two options: i) If the position
of the element in its container, referred to as its lid (local identification), is known,
then it can be accessed directly with the member function Container<T>::getL(lid),
ii) Using a Container<T>::iterator: iterating through all the elements of the con-
tainer the required element is also accessed.

Most of the operations carried out with the BOL are generic, designed to be
applied to groups of elements of the same type. For this reason, using iterators is
a natural way of programming with it. For example, in order to know the volume
of the domain covered by the mesh, it is necessary to iterate through all the cells

1The common typography of code editors is used to write the name of the elements of the BOL.



§1.3. Basic objects library 31

(a) (b)

(c) (d)

Figure 1.1: Different type of geometric discretizations solved with the BOL.
a) General three dimensional mesh composed of polyhedrons, b) Structured mesh,
c) Mesh obtained by extrusion of a 2D unstructured grid, d) Mesh for a 2D case.

and add the volume of each one to a global summation variable. The lid of each
specific cell is not needed, because cells are treated as a group applying the same
process to each of its elements. Sometimes we need to iterate through a subset of the
elements of a container. For example, we may need to iterate through the boundary
faces, through a specific set of nodes forming a stencil, etc. These partial iterators
are defined by means of a vector<int> containing the specific lid of the elements
that must be swept. Thus, a PartialIterator iterates through the previously
defined vector of lids and accesses to the corresponding elements of the container.
The class Mesh has several partial iterators defined on the pre-processing member
function Mesh::close(). An example of its usage is:

double surface=0;
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Mesh::boundary_face_iterator bfend=mesh.bfEnd();

for(Mesh::boundary_face_iterator i=mesh.bfBegin(); i!=bfend; ++i){

surface+=i->getSurface();

}

In this case, the iterator through the boundary faces of the mesh is used to find the
surface of the domain covered by it. Other iterators defined in the class Mesh are:

Mesh::face_iterator

Mesh::vertex_iterator

Mesh::boundary_cell_iterator

Mesh::inner_node_iterator

Mesh::const_inner_vertex_iterator

...

Each iterator typedef is composed of words separated by the underscore character
“ ” . At the last place the word “iterator” is always written. This is preceded by
the type of item for which it iterates, “vertex”, “node”, “face” or “cell”. Previ-
ously the words “boundary” or “inner” can be used to determine if it is restricted
to the elements located in the boundary of the domain, or the complementary of
the boundary, respectively. And finally the name of the iterator is preceded by the
word “const” when the elements accessed by the iterator are not modified. Having
an exhaustive set of iterators helps a lot in the programing of the routines of a CFD
code. Most of discretization operations are carried out by means of iterators through
subsets of equivalent elements, therefore, the iterators must be well optimized.

Hereafter the main characteristics of the classes that represent the basic element
of the mesh are described:

• Vertex. The class Vertex is derived from the generic class D3, which is a
vector with three coordinates2. The Vertex in the Mesh requires the definition
of some iterators in order to access the elements of its environment. These
iterators can not be defined independently by any Vertex object, because the
information of the whole set of mesh elements related with it is necessary.
Therefore, the set-up of these partial iterators is carried out in the function
Mesh::close(). Finally, the member function Vertex::close() is just called
to check that all the data is consistent. Some examples of vertex iterators are:

Vertex::neighbor_vertex_iterator

Vertex::const_neighbor_node_iterator

Vertex::containing_face_iterator

Vertex::const_containing_cell_iterator

2Class D3 has some geometric methods such as the distance to another D3 object, or the distance
to a Plane or Line object, respectively. The generic classes D3, Line and Plane, do not represent
basic elements of the mesh but are used in numerous geometric routines of TF code.
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...

• Node. The class Node is also derived from the class D3, however each Node

is univocally associated to a boundary face or a cell, and generally located
in its centroid. The lid of the associated face or cell is stored as a private
member of the class and can be obtained by means of the member function
Node::getFaceOrCellLid(). The Node has some member functions to carry
out basic operations and iterators to access to the other mesh elements related
with it.

• Face. A face is a polygon and can be defined as an ordered set of inte-
gers corresponding to the lid of its vertices. On the preprocessing phase
(Face::close()) some geometric information is calculated to be used on
the discretization: the face area, the centroid, a unitary normal vector, the
distances between its centroid and each of its vertices, etc. All this infor-
mation can then be obtained by calling the corresponding member functions
(Face::getSurface(), Face::getCentroid(), etc). Some checking is also
carried out such as the coherence of the iterators, the convexity of the polygon,
and coplanarity of the vertices that form it.

• Cell. A Cell is a polyhedron and is defined with the lids of the Face objects
that form it. In this case no ordering is needed: a set of faces determines only
one possible polyhedron. The Cell has also a set-up method (Cell::close())
in which all the geometric information required in the discretization operations
is evaluated. In particular to evaluate the volume and the centroid we use
the algorithms described in [27]. The coherence of all the data including the
iterators is also cheeked.

To recap, a Mesh object includes all the elements that define a geometric dis-
cretization arranged in different containers. The basic elements by themselves are
simple but more complex are their interactions. The class Mesh and the classes
representing the basic elements (Vertex, Node, Face, and Cell), gather all this in-
formation and a natural way, using its member functions and a comprehensive set of
iterators, to obtain both the properties of a particular element and the relationship
between them.

1.3.2 Algebraic classes

The algebraic elements used in the BOL are the vector and the matrix. The
vectors are introduced in the code by means of the template Container<T> param-
eterized in this case with the type double or D3. Some specific member functions,
such as the maximum and Euclidean norms, are defined, and some basic operators
(+, -, *, +=, *= ...) are overloaded. When possible, for these algebraic opera-
tions the BLAS [28] standard routines are implicitly used. The code needs therefore
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to be linked with some BLAS implementation installed in the system in which it is
executed.

In many cases, the components of a vector are associated to elements of the mesh,
becoming then scalar or vectorial fields. In these cases there is a correspondence
between the container of geometric elements and the container used to store the
components of the vector. This way, the elements of the vector can be accessed by
means of mesh iterators, using the function Iterator::lid(), which returns the
lid of the element pointed by the iterator, to access the corresponding element of
the vector. In the discretization of the Navier-Stokes equations, for example, the
pressure and the velocity are an scalar and a vectorial field, respectively, defined in
the nodes of the mesh.

On the other hand, the class SparseMatrix is derived from a Container<SparseRow>
while, at the same time, the SparseRow is derived from the STL class map<int,double>3.
Therefore, an SparseMatrix is essentially a vector<map<int,double>>. This for-
mat is very flexible and allows to introduce the matrix elements without following
any particular order, or worry about issues related to the dynamic memory. However,
this flexibility comes at a price in terms of memory consumption and computational
inefficiency. For this reason, it is only used to manipulate the matrix and, before
starting the algebraic operations, the entries are moved to a compressed storage
format, reducing the memory requirements and improving the cache performance of
the operations.

The compressed storage format is generally sparse. However, in some specific
cases, when the percentage of entries is high, the option of storing the matrix in a
dense pointer is also considered. This increases the memory requirements but allows
to use the optimized dense algebraic routines of the BLAS libraries, which are much
faster than the sparse routines. On the other hand, sparse storage schemes allocate
contiguous positions in memory only for the nonzero elements of the matrix. Thus,
they require a scheme to know where the elements fit into the full matrix. Despite
there are many sparse matrix formats [29], in the BOL only the standard Compressed
Sparse Row (CSR) format is used, because it fits with the parallelization strategy
explained in next subsection, and it makes absolutely no assumptions about the
sparsity structure of the matrix.

The basic routines for algebraic operations with matrices and vectors are de-
fined by means of member functions or overloaded operators. Both alternatives are
maintained but, despite the operators are more elegant and make the code more
user-friendly, they become less efficient for some operations. This is illustrated in
the next example:

3Maps are sorted associative containers that store elements formed by the combination of a key
value and a mapped value.
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b=A*x;

A.prod(x,b);

In both cases the result of A*x is stored in vector b. However, when the member
function is used (second line), a pointer to b is given, as function argument, in
order to store in it the result of the product. On the contrary, using the operator
(first line), an intermediate object is automatically created to store the result of the
product, and then is copied to b. The creation of these intermediate objects produce
a degradation of the performance.

Linear solvers are very important in CFD codes because deal with one of the most
computationally intensive parts of the simulation. They could also be considered
as algebraic objects but in TermoFluids they are all grouped in a separated library
explained in Section 1.4.

1.3.3 Parallelization

The BOL has been designed as a parallel library from the beginning. Running
the code in parallel is of major importance in order to divide the computational
and memory requirements. Up to now, in the explanation of the geometric and
algebraic classes, the parallelization issues have been omitted for clarity, however,
the library is fully designed to produce parallel objects and methods. In fact, the
parallelization is mostly generated from the distribution of the containers, using the
class DistributedContainter<T> instead of its base class Container<T>. This way,
the mesh elements, the components of the vectors and the rows of the sparse matrices
become automatically distributed. Sequential runs of the code are also possible but,
nowadays, when even desktop computers have multi-core architectures, they are
almost not used in practice. The main items of the parallelization are explained in
the following paragraphs.

Distributed memory model. Current supercomputers are composed of many net-
worked individual nodes, being each node itself essentially an independent computer,
generally with a multi-core processor. Moreover, in the last years the idea of using
general purpose Graphical Processing Units (GPU) as co-processors is becoming
increasingly popular, and several supercomputers are composed of heterogeneous
nodes which also incorporate these stream processing units. For example, according
to the statistics provided by the TOP500 foundation (http://www.top500.org/), at
this moment 3 of the top 10 general purpose supercomputers, and 12% of the top
500, appear as hybrid supercomputers incorporating GPU accelerators.

To make processors located in different nodes working together, the distributed
memory paradigm, based in message-passing, becomes indispensable. The BOL is
implemented using the Message Passing Interface (MPI) standard, which makes the
code portable across all distributed memory systems. The distributed model can
be combined with the shared memory multi-threading model to engage the cores



§1.3. Basic objects library 36

inside each node. However, except for some specific cases, this option hasn’t major
advantages because, generally, the overhead due to transport of data between local
caches, produces a similar or even greater degradation than the communications
between cores of the same node [30]. As a consequence, the BOL has been imple-
mented following a pure distributed model by means of the MPI standard. Only in
some specific routines the threading option is used. Finally the possibility to use
GPUs as co-processors is now being studied to accelerate the solution of the linear
systems derived from the discretization [31].

Domain decomposition. The parallelization of the BOL is mainly originated from
a mesh partition. It can be roughly stated that the computational cost of the
numerical solution of a fluid in each cell is proportional to its number of faces.
Following this idea, the mesh decomposition is derived from a partition of the graph
of cells in which each cell has a weight equal to its number of faces. In many cases,
in fact, it is not necessary to use a weighted graph because all the cells have similar
number of faces. The graph partitioning is carried out by means of an external
tool such as the METIS library [32]. Apart than providing a good load balance,
METIS routines minimize the edge cuts, reducing the data exchange requirements
in the simulation. If necessary, multilevel mesh partitions can also be generated
by calling the graph partition routines recursively. Imbalanced partitions, to be
used on heterogeneous clusters with nodes of different computational power, are
also possible.

After the mesh partition, each parallel process deals with a subset of cells, nodes,
faces and vertices that all together form a subdomain of the mesh. These are referred
to as the owned elements of each type. Likewise, the partition of a field is derived
from the partition of the set of elements on which it is defined.

Halo elements. In the geometric and algebraic parallel operations, each parallel
process may need elements owned by others. For example, in the evaluation of the
gradient of a scalar field defined in the nodes of a mesh, for each node the position and
the field values of its neighbors are required. Thus if the node is on the boundary of
a subdomain and has neighbors belonging to other subdomains, the parallel process
associated to its subdomain needs information from other parallel processes to eval-
uate the gradient. To solve this problem, in the DistributedContainer<T> objects,
for each parallel process, apart from the owned elements, a copy of the required ele-
ments owned by other processors is attached. Following with the gradient example,
the copies of the neighbor nodes contained in other subdomains and the components
of the scalar field associated to them, would be attached to the respective distributed
containers. For each parallel process storing part of a DistributedContainer<T>,
the copies of external elements attached to it are referred to as its halo. The number
of halo elements attached to the distributed containers depends on the requirements
imposed by the algorithms. To this regard, when the order of the numerical schemes
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used in a parallel discretization is increased, the halos of the involved geometrical
and algebraic containers increase as well.

Its important to remark that any element of a halo is a copy. This means that the
original element is owned by another parallel process. Thus, if the original element
changes in the owner parallel process, the copy stored in the halo must be updated
before using it. Otherwise, the results of the sequential and parallel executions would
differ. Therefore, if the elements of a distributed container vary during a simulation
halo updates may be required. In contrast, if the distributed container elements do
not vary, communications are not necessary although elements are distributed. For
example, if the mesh does not change, all the halos of all the geometric containers
do not require to be updated.

The distinction between owned and halo elements of a distributed container
requires the definition of the corresponding iterators:

DistributedContainer<T>::owned_iterator

DistributedContainer<T>::halo_iterator

And from the combination of these iterators with the ones defined in the previous
subsections, we have iterators like:

Mesh::const_owned_node_iterator

Mesh::inner_halo_cell_iterator

Mesh::boundary_owned_face_iterator

...

The qualifier “owned / halo” is added just before the type specifier (“cell”, “node”
etc). If it is omitted, then the iterator covers all the elements, including both owned
and halo ones.

Local and global identification of elements. In a sequential Container<T> each el-
ement is uniquely determined by its local identifier, lid, which, recalling that the
container is derived from the class vector<T>, refers to its position in the vector.
However, in a DistributedContainer<T> the lid only identifies the element locally,
i.e. different elements owned by different parallel processes may have the same lid.
In order to uniquely determine each element, global identifiers, gids, are also used.

For each parallel process, while the lids are consecutive the gids may be not.
As a consequence, the correspondence between the gids and lids needs to be stored
in a map<int,int> referred to as g2l (lid=∗g2l.find(gid)), while the correspon-
dence between lids and gids can be stored in a vector<int> referred to as l2g

(l2g[lid]=gid).
Any distributed container iterator has the member function Iterator::gid()

that returns the gid of the element being pointed by it. The DistributedContainer<T>
class has also the member functions DistributedContainer<T>::getG(gid) and
DistributedContainer<T>::setG(gid,T), to read and write elements of the con-
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tainer using the global identifier, respectively. In these functions, the map g2l

is used to obtain the lid of the required element, and then it is extracted from
the storage vector. Therefore, is preferable to use the functions “getL(...)” and
“setL(...)”, and avoid the search operation (map<T,T>::find(key)) necessary to
obtain the lid.

Communication scheme. Once the halos of a distributed container are fixed, it is
necessary to determine the communication scheme. This means, knowing which
processes need to communicate with which others and what information they must
exchange. This scheme is calculated on a pre-processing stage prior to carrying out
any halos update.

The update of halos can be performed by all parallel processes simultaneously,
at a certain point of the code, or separately, with processes sending or receiving in-
formation at different moments of the execution. In the second chapter of this thesis
(pag. 53), there is a description of a Poisson solver in which all communications are
carried out simultaneously, basically before the matrix vector products. The reason
is that all processes involved in the parallel execution work almost synchronously,
doing the same operations in different parts of the domain. As a consequence, the
halo requirements arrive at the same time for all of them, so they can all update halos
in only one communication episode. On the other hand, in the Boltzmann transport
equation solver explained in the third chapter (pag. 93), several triangular systems
are solved simultaneously, one for each angular ordinate of the discretization. In
this case, since different processes can work with different angular directions at the
same time, there is no synchronization and, as a consequence, the communications
are carried out in an asynchronous mode at any time when the data required is
available.

The information to be communicated in a halo update is managed by means of
the class CommBuffer<T>. If the elements to be sent/received are all of the same
type, this is used to parameterize the buffer. Otherwise, the char type is adopted
and binary copies of elements from/to the buffer are carried out. For this purpose,
the function memcpy of the C standard library is used.

Simultaneous halo updates are carried out by means of the member function
DistributedContainer<T>::update(): each parallel process calls the non-blocking
MPI routines MPI Isend and MPI Irecv, to initialize all required send and receive
operations, and then the function MPI Wait to halt the process until all operations
are completed. In some situations (for example when the messages are too large)
initialization of all the send and receive operations at once overflows the network. A
better alternative, in these cases, is the function DistributedContainer<T>::updateVizing(),
in which the communications are arranged by pairs of processes, with the routine
MPI Sendrecv. In order to maximize the number of simultaneous bilateral communi-
cations, an analogy with the edge coloring problem of the graph theory is used: two
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adjacent edges (bilateral communications involving a same parallel process) must
have different colors (must not be performed at the same time). A constructive
proof of the Vizing’s4 theorem [33] is used to obtain the optimal solution.

For a given DistributedContainer<T>, the owned elements of each parallel
process, the halo requirements, the correspondence between global and local iden-
tifications and the communication scheme, are managed by means of the class
ParallelTopology. Each distributed container has a pointer to a ParallelTopology
object, which can be used to define the parallelism of several DistributedContainer<T>.
This way, halo updates of multiple containers can be performed simultaneously re-
ducing the latency costs. An example of the parallel topologies usage is shown
below:

Mesh mesh("meshfile");

mesh.close():

const ParallelTopology nodtop=mesh.getNodeTopo();

DistributedContainer<double> temp(nodtop);

DistributedContainer<D3> vel(nodtop);

In the function Mesh::close() the parallel topology associated to the nodes parti-
tion is generated, for each parallel process the halo of the node’s container are the
boundary nodes owned by others. In this example, this topology is used to define
the parallel structure of the temperature and velocity fields, respectively.

In general, halo updates are the most expensive communication episodes in a
simulation, although, other types of communications are also needed . For example,
a global variable such as the time-step is fixed as the minimum between all the local
time-steps. In these cases the MPI functions that fit with our needs are directly
used.

1.4 Linear Solvers Library

The linear solvers library (LSL), programmed on the top of the BOL, is an
algebraic library composed of different general purpose and application-specific al-
gorithms to solve linear systems of equations. It is mainly used to deal with the
linear systems derived from the discretization of the partial differential equations
(PDEs) that model the physical phenomena being simulated.

Initially, only the Navier-Stokes equations for incompressible flows were solved

4Vizing’s theorem states that an undirected graph can be edge-colored in either ∆ or ∆ + 1
colors, where ∆ is the maximum degree of the graph (i.e. the maximum number of edges incident
to a vertex).
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with TermoFluids code. The fractional-step method [34,35] adopted for its numeri-
cal resolution, requires the solution of a Poisson system at each time step to meet the
incompressibility constraint. As a consequence, the LSL was initially conceived for
the solution of this ill-conditioned elliptic system in simulations of different charac-
teristics: general 3D, 2D, 3D but with one homogeneous periodic direction, executed
sequentially, executed in parallel with few number of CPU, executed in parallel with
large number of CPU, etc. For each kind of simulation there is a better option in
the code. Actually, with the evolution of TF to a multi-physics code, new systems
of equations with different characteristics need to be solved. In almost all cases, the
solution of them is one of the most time consuming and computationally intensive
parts of the execution.

The solution of regular linear systems is a problem with a unique solution for
which are known, since hundreds of years ago, solution methods such as the classical
Gaussian elimination algorithm. Therefore, if we had computers infinitely fast and
with infinite memory capacity, this would not be a problem. However, resources
are limited and classical algorithms can only deal with relatively small systems,
far from the requirements of problems with industrial interest. Therefore, this is
a practical problem in which the goal is, given a computer system, to obtain a
sufficiently accurate solution in the fastest possible way. Once we have an enough
accurate and fast algorithm for our needs, the problem is finished. In the literature
there are many methods, some for general applications, such as the Multigrid or
Krylov solvers [29, 36, 37], and others more specific, like the two methods shown in
the following chapters of this thesis. The constant evolution of parallel computing
systems, doubling their capacity approximately every thirteen months [3], makes
this a very dynamic field because, although qualitative changes in the algorithmic
are not so common, at least it is necessary to adjust the strategies to the available
computational resources.

In the second chapter of this thesis, there is a description of a Poisson solver
for the solution of discretizations in which one of the directions of the domain is
uniformly meshed and has periodic boundary conditions. These hypothesis fit with
the isotropic nature of some flows, such as the flow around a cylinder [38], the flow
around a sphere [20] or the flow around an airfoil [39]. Under these conditions, the
system can be decomposed into a set of 2D subsystems by means of a Fourier diag-
onalization. As a consequence, the memory requirements for the direct solution of
these subsystems becomes affordable and a direct Schur complement based method
is applied to them. This methodology has been tested on large systems of equations
with up to 109 unknowns using up to 8192 CPUs [10].

In the third chapter of this thesis, a solver for the solution of the Boltzmann
transport equation, discretized with a first order upwind-like numerical scheme, is
presented. Upwind-like schemes result in a triangular subsystem for each angular
ordinate, which can be solved very efficiently by means of a forward substitution,
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sweeping the nodes from the upstream to the downstream zones of the domain.
In this case, the most challenging aspect is the parallelization because the forward
substitution process is sequential in nature. This goal can be achieved by solving all
directions at the same time: each angular ordinate has a different sweeping order
and the inactivity for some ordinates is compensated with the solution of others.
This method has been tested for discretizations with up to 240 × 106 unknowns on
up to 2560 CPUs [11].

Apart from these two specific contributions, the rest of solvers that compose
the LSL library are standard general purpose methods. In particular Krylov sub-
space methods with different preconditioners such as the Jacobi diagonal scaling,
incomplete factorizations or inverse preconditioners. Their proper implementation
in general purpose GPUs is now being investigated [31]. In some cases we also
use direct solvers such as the sparse LU and Cholesky factorizations, or the Schur
complement based decompositions for parallel executions. The choice of the ap-
propriate method depends on the characteristics of the problem. These are some
considerations arising from our experience:

• Preprocessing cost. We define the preprocessing stage of a solver as the oper-
ations that are carried out with the system matrix before touching the r.h.s.
term. For example, in a LU decomposition the preprocessing stage is the eval-
uation of the L and U factors. The total cost of the solver in a simulation is
the cost of the pre-processing plus the solve phases. If the system matrix does
not vary during the simulation, then the preprocessing stage is carried out
only once. In these cases, if the number of calls of the solve phase is high, then
a pre-processing stage with large costs can be accepted because the real cost
per iteration becomes small. This is the situation that occurs with the Poisson
system in time-accurate simulations with a constant mesh. In this situation,
any pre-process that accelerates the solution phase is profitable. On the con-
trary, when the system matrix varies, the pre-processing stage is repeated each
time step so its cost can not be neglected.

• Direct vs iterative methods. This is not a real controversy because in general
3D cases the use of direct solvers is limited to small meshes, due to the large
pre-processing costs and memory requirements. The limit depends on the
hardware and software being used but, in our case, 3D systems with no more
than one million of unknowns could be afforded. As a general rule, direct
solvers can only be used in special cases in which the system has a favorable
structure, like the two methods shown in the following chapters of this thesis.

When applicable, direct solvers are usually faster and obviously more robust.
However they do not benefit from good initial approximations, which can
reduce the number of required iterations of the iterative methods. For example,
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in time-accurate DNS or LES simulations, in which the time-step is usually
really small (to capture all the significant temporal scales), good initial guesses
for the Poisson system can be obtained from solutions of previous time steps,
and few iterations are necessary to reach convergence. In fact, in these kind of
simulations, rather than the solution of the linear system, the most important
limiting factor, in terms of computational requirements, are the tiny time steps
that result in large number of time-iterations. In RANS simulations, this
situation changes: the length of the time step grows and, as a consequence,
the cost of the iterative solution of the Poisson system.

• Parallelism. Parallel computation consists in using multiple parallel processes
to solve the same computational problem. Given a linear system of equations,
a parallel solver is expected to reduce its execution time when the number
of processes involved in the execution grows, i.e. that it has a good strong

speedup or acceleration. Moreover, it is also expected that, if the size of the
linear system and the number of parallel processes involved in the execution
grow proportionally, the execution time keeps constant (or grow slowly), i.e.
that the algorithm has a good weak speedup. The difficulty to achieve the first
objective is that, when the number of parallel processes increases, the com-
munications between them become more costly respect to the computations
(that get reduced). At the end, it comes a stagnation or even a slowdown. On
the other hand, the major difficulty in getting a good week speed up is that,
normally, the asymptotic complexity of the algorithms is greater than O(N)
and, therefore, the operations to perform per parallel process grows with the
size of the problem. Anyways, with any number of processors the optimal
method will be the one that goes faster, not the one that has better speedup
respect to one processor. When a particular problem has to be solved, the
choice of a solver is a matter of speed not of acceleration. For instance, a
method that has already stalled its acceleration could be better than one that
is accelerating superlinearly. However, generally, when increasing the number
of parallel processes involved in the execution, the most suitable methods be-
come simpler, as more often than not complexity (direct solvers, incomplete
factorizations, sparse inverse preconditioners with complex sparsity patterns,
multilevel methods. . . ) slows down acceleration and at a certain point becomes
less efficient.

All the solvers of the LSL library are derived from the abstract class5 Solver,
with virtual member functions Solver::solve(...) and Solver::setUp(). There-
fore, any solver needs to have defined these two member functions. The class Solver

5An abstract class is, conceptually, a class that can not be instantiated. Is, therefore, a class
without objects. It has one or more pure virtual member functions (without definition) that must
be defined by any derived class.
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has, as private elements, a pointer to an object of the class SparseMatrix (the sys-
tem matrix) and to an object of the class Parameters. The class Parameters is a
container of parameters of different type, used to avoid filling the member functions
of the solvers with parametric arguments. In fact, each solver has associated a par-
ticular class of parameters derived from the base class Parameters, in which default
values are fixed by construction.

Conceptually, each solver, as a class of the code, incorporates as private elements
the most important data generated during the solution process, which is carried
out by the member functions. The SparseLU class, for instance, incorporates as
private elements the distributed sparse matrices L and U and the member functions
LU::reordering() and LU::factorization(), to carry out a fill-reducing ordering
of the unknowns and the factorization, respectively .

1.5 Example

The discretization and solution of the Poisson equation with Neumann boundary
conditions is shown below, as an example of how is it to program with the BOL and
LSL libraries. The derived linear system of equations is solved using a conjugate
gradient (CG) Krylov subspace method with a sparse approximate inverse (SAI)
preconditioner.

1 #include "mpi.h"

2 #include <bol/BOL.h>

3 #include <lsl/LSL.h>

4
5 using namespace bol;

6 using namespace lsl;

7
8 int main(int argc, char **argv) {

9
10 mpi_init(argc,argv,true);

11 if(argc-1 != 1) {crash<<"a.out <Mesh_file> "<<endLine; return 0;}

12
13 Mesh mesh(argv[1]);

14 mesh.close();

15
16 ParallelTopology& topo= mesh.getInnerNodeTopo(); //boundary nodes discarted

17 SparseMatrix A(topo);

18 DistributedContainer<double> b(topo),x(topo);

19
20 //Definition of the system matrix

21 for(Mesh::const_inner_owned_node_iterator i=mesh.ionBegin(); i!=mesh.ionEnd(); ++i){

22
23 double sum=0;

24
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25 for(Node::const_neighbor_node_iterator j=i->nnBegin(); j!=i->nnEnd(); ++j)

26 if(!j->isBoundary()){

27 double coef = j->getFaceSurface()/(*j-*i)*j.getFaceNormVect());

28 A.insertL(i.lid(),j.lid(),-coef);

29 sum+=coef;

30 }

31
32 A.insertL(i.lid(),i.lid(), sum);

33 }

34
35 SAI_param param_prec; //Default parameters are used

36 SAI prec(A, param_prec);

37 prec.setUp();

38
39 CG_param param_cg;

40 param_cg.setDouble("tol", 1.e-08); //The tolerance is fixed

41
42 CG solver(A, prec, param_cg);

43 solver.setUp();

44
45 b=1;

46 solver.solve(b,x);

47
48 x.update();

49 double residual= (b-A*x).norm2();

50
51 cout<<"The residual obtained is:"<< residual<<endl;

52 cout<<"The number of iterations:"<< param_cg.getInt("niter")<< endl;

53
54 mpi_end();

55 return(0);

56 }

1.6 Industrial projects

In the context of collaboration between the CTTC and Termo Fluids SL, many
industrial and research projects have been developed. The numerical simulation of
fluids is an important tool to better understand the problems under study as well as
to improve the industrial designs. In this thesis I have not directly worked in these
projects, however, the two basic libraries described above are an important part of
the basis on which they stand. Furthermore, the interaction with the scientists who
develop these projects and its almost impossible to fulfill requirements, are one of
the key aspects that drive us to further improve the code and the numerical methods
used in it. In what follows, two examples of industrial applications are summarized.

Numerical simulation of wind turbine dedicated airfoils. The flow around aerody-
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namic profiles in pre- or full-stall state at high Reynolds numbers is a problem of
increasing interest since it is a normal operation state for wind turbine blades. In the
past years, it has been subject of many experimental and numerical investigations.
Most of the numerical studies performed up to now have been carried out using
RANS modeling, but it is well-known that such models fail in predicting the flow
at angles of attack (AoA) near or after the stall, mainly due to the highly unsteady
nature of the flow. In these situations, large-eddy simulations (LES) can be a good
alternative for simulating such complex flows.

Figure 1.2: Illustrative results for the FX77-W-500 airfoil: mesh design, instan-
taneous snapshots and Cd and Cl distributions.

This R&D project between the CTTC-TF and other European research centers
and universities aims at modeling wind turbine airfoils at high Reynolds numbers
and high AoA. Initially three profiles have been selected (DU-93-W-210, DU-91-
W2-250 and FX77-W-500) for Reynolds numbers up to 3 · 106 and AoA up to
16◦. Numerical results have been compared with experimental ones showing a good
agreement [40].

Domestic refrigerator analysis. This R&D project between Fagor and the CTTC-TF
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was focused on the study of the temperature and air distribution inside household
frost-free refrigerators. It is well known that the correct air and temperature dis-
tribution inside the refrigerated chamber is the most important factor that affects
refrigerator efficiency. In frost-free refrigerators, the cooled air is supplied directly
inside the fresh food and vegetable cabinets. Therefore, several studies were per-
formed to establish the air flow and temperature distributions inside these cabinets,
in order to improve temperature homogeneity and to reduce energy consumption.

Unsteady three-dimensional numerical studies were carried out, simulating the
cooling process starting from a uniform warm temperature inside the refrigera-
tor. Furthermore, the influence of inlet and outlet ports location was also inves-
tigated [23].

Figure 1.3: Schematics of the household frost-free refrigerator modeled, mesh
details and instantaneous snapshot.

1.7 Concluding remarks

Numerical methods and models developed in the framework of the computational
fluid dynamics field, are intended to be finally implemented in CFD codes. Proper
implementation of these methods and models, to take advantage of the existing su-
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percomputing facilities, is not a minor issue and requires research efforts to progress.
Otherwise, we could not benefit from the exponential growth of computing resources
to achieve the numerical solution of increasingly complex fluid flows.

In the context of this thesis, there has been a contribution to the development of
a general purpose multi-physics parallel CFD software, referred to as TermoFluids,
composed of several libraries arranged in a hierarchical scheme. The functionalities
and the parallel efficiency of the code are dynamic characteristics, because it is
constantly being enhanced by an increasing number of developers in interaction with
users. Particularly, in this thesis the work has been focused on the development of
two of the most basic libraries that compose TF code, which have been described
in this chapter. These are the Basic Object Library, which is an unstructured CFD
application programming interface on the top of which are written the rest of TF
libraries; and the Linear Solvers Library, which has several general purpose and
application specific methods, for the solution of the linear systems that result from
discretizations.

These libraries have been designed following the intuitive object oriented paradigm
of the C++ language, that allows to expand the code in an orderly and compact
form. The classes representing the main concepts treated by the libraries have
also been introduced. An implementation for the solution of a Poisson equation on
the top of the BOL and the LSL, has also been presented as an example of their
user-friendly intuitive design. A proof of it is also the rapid expansion of TF to a
multi-physics CFD code, which involves several developers working simultaneously.

Parallelism is another basic design feature of the code. TF is mainly programmed
following the distributed memory paradigm. Basic concepts such as the domain
decomposition, the definition of halo elements, the local and global identifiers or
the communication schemes, have been described in detail. The implications of the
parallelism in the design and applicability of a linear solver have also been briefly
discussed.

Finally some industrial problems, in which TF code has been an important tool
to better understand the physics under study and improve the industrial designs,
have been presented.
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[6] O. Lehmkuhl, R. Borrell, C.D. Pérez-Segarra, A. Oliva, and R.W.C.P. Ver-
stappen. LES modeling of the turbulent flow over an Ahmed car. In DLES8,

workshop on Direct and Large-Eddy Simulation, Eindhoven (The Netherlands),
July 2010. Springer.

[7] O. Lehmkuhl, R. Borrell, F. X. Trias, and C.D. Pérez-Segarra. Assessment of
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sessment of the symmetry-preserving regularization model on complex flows
using unstructured grids. Computers and Fluids, 60:108–116, 2012.

[9] O. Lehmkuhl, F. X. Trias, R. Borrell, and C.D. Pérez-Segarra. Symmetry-
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2

Parallel direct Poisson solver for
discretizations with one Fourier
diagonalizable direction

Main contents of this chapter have been published in:
R. Borrell, O. Lehmkuhl, F. X. Trias and A. Oliva, Parallel direct Poisson solver for discretisations with
one Fourier diagonalisable direction, Journal of Computational Physics, 230 (12), pp. 4723-4741, 2011.

Abstract. In the context of time-accurate numerical simulation of incompressible flows, a Poisson equation
needs to be solved at least once per time-step to project the velocity field onto a divergence-free space.
Due to the non-local nature of its solution, this elliptic system is one of the most time consuming and
difficult to parallelise parts of the code.

In this chapter, a parallel direct Poisson solver restricted to problems with one uniform periodic
direction is presented. It is a combination of a direct Schur-complement based decomposition (DSD) and
a Fourier diagonalization. The latter decomposes the original system into a set of mutually independent
2D subsystems, which are solved by means of the DSD algorithm. Since no restrictions are imposed in the
non-periodic directions, the overall algorithm is well-suited for solving problems discretized on extruded
2D unstructured meshes. The load balancing between parallel processes and the parallelization strategy
are also presented and discussed. The scalability of the solver is successfully tested using up to 8192 CPU
cores, for meshes with up to 109 grid points. Moreover, the performance of the DSD algorithm as 2D
solver, is analyzed by direct comparison with two preconditioned conjugate gradient methods. For this
purpose, the turbulent flow around a circular cylinder at Reynolds numbers 3900 and 10000 is used as
problem model. Finally some illustrative applications of the solver are outlined.
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2.1 Introduction

Direct numerical simulation (DNS) and large-eddy simulation (LES) of incom-
pressible turbulent flows demand huge computing power and require parallel com-
puters to be feasible. The Poisson equation, which arises from the incompressibility
constraint and has to be solved at least once per time step, is usually the most
time-consuming and difficult to parallelise part of the algorithm. Therefore, in this
context the development of efficient and scalable Poisson solvers is of great interest.

Time-accurate DNS/LES simulations generally demand large amount of time-
steps (for DNS applications it can reach ∼ 106). If the mesh does not change during
the simulation, the Poisson equation is solved repeatedly with different right-hand-
side terms, while the system matrix remains constant. In these cases, a solver with
large computing pre-processing demands can be accepted. Another usual feature
in DNS/LES applications, is to have at least one periodic homogeneous direction
in the flow. This property makes the Fourier diagonalization [1, 2] in the periodic
direction(s) the best choice. The uniformity of the grid in such directions, imposed
by the method, is suitable with the isotropic nature of the flow on them. This work
is restricted to problems with only one periodic homogeneous direction, examples
of this kind of configuration can be found in [3–6]. No restrictions are imposed for
the non-periodic spatial directions, therefore, the method here proposed is suitable
for discretizations on extruded 2D unstructured meshes.

Different strategies can be used to solve the set of 2D subsystems resulting from
the diagonalization. The most widespread iterative options are the conjugate gradi-
ent (CG) [7,8], and the multigrid [9,10] methods. The former is easy to implement
and shows good scalability. However, its performance is strongly dependent on the
spectral condition number of the system and usually requires an application-specific
preconditioner [11]. On the other hand, the convergence rate of multigrid methods
does not depend on the problem size, and they work very well for certain problems.
However, they also require a careful application-specific tuning. Alternatively, direct
Schur-complement based methods [12–15], perform irrespectively of the condition
number or the specific application and depend only on the sparsity pattern of the
system matrix. As a main drawback, they require a computationally demanding pre-
processing phase and large memory resources. Nevertheless, as mentioned above,
this additional pre-processing cost becomes almost negligible for the time-accurate
numerical simulations here considered. And, since the subsystems in which it is
applied have a two-dimensional sparcity patten, the memory requirements remain
still feasible for the range of mesh sizes required for DNS/LES applications.

2.1.1 Motivation and summary of the present work

In this chapter, a direct Schur complement based decomposition (DSD) method
is proposed, for the set of mutually independent 2D subsystems resulting from the
Fourier diagonalization. For a given a domain decomposition, this method is based
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in dividing the initial system into a set of inner subsystems, coupled by the interface
or Schur-complement subsystem. The unknowns of each subdomain are partitioned
into the inner and interface subsets in such a way that two inner unknowns of differ-
ent subdomains are not coupled by the system matrix. On the solution phase, the
inner subsystems are solved independently by each parallel process, while the inter-
face subsystem is solved by all of them with a parallel method. Essentially, Schur
complement based algorithms may differ in three aspects: (i) the determination of
the interface that separates the inner unknowns of each subdomain, (ii) the solver
used for the Schur complement (or interface) subsystem, and (iii) the solver used
for the inner subsystems. The prevailing option is to solve the interface subsystem
by means of a preconditioned Krylov projection method [8,16,17]. In this case, it is
common to use a double-sided interface, composed of the nodes of each subdomain
which are linearly coupled with nodes of other subdomains. With this strategy, there
are at least two interface mesh-lines between each pair of inner subdomains. This
approach is convenient because the interface can be set locally, and the resulting
block structure of the Schur complement matrix is well determined a priori [16]. On
the other hand, in some situations, usually with relatively low numbers of CPUs,
it might be more convenient to use a direct solver for the interface subsystem. To
do so, in some works [13, 18, 19], it is solved by means of a parallel factorization or
gathered into a master process to solve it sequentially. Another possible approach is
to explicitly compute the inverse of the Schur complement matrix and distribute it
among the processing elements [12,20]. In these situations, due to the high memory
requirements of direct solvers, a one-sided interface strategy (a single mesh-line sep-
arating the inner subdomains) is more convenient, because the resulting interface
size is approximately halved.

In our previous works [12,14], a DSD algorithm in conjunction with a fast Fourier
transform (FFT) was successfully used to perform DNS/LES simulations on struc-
tured Cartesian grids [3,21]. The interface was naturally built in a balanced manner,
a band LU [22] was used as local solver and the inverse of the Schur complement
matrix was calculated and stored in parallel. The distribution of data between the
parallel processes was carried out in such a way that only a collective communica-
tion was needed in the solution phase. Although the latter implied some additional
duplication of data, this approach was very suitable for parallel systems with a high
latency network. In this chapter, the extension of the DSD algorithm to general un-
structured grids and modern supercomputers is presented. To do so, modifications
of the three above-mentioned characteristic issues have been introduced. Namely,
(i) a new algorithm to balance the one-sided interface is described, (ii) the local
solver has been replaced by a sparse Cholesky factorization [22], and finally, (iii)
the Schur complement matrix is now treated sparsely instead of as a dense matrix.
Besides, the distribution of data between the parallel processes has been modified
in order to decrease the memory costs. This new strategy requires two additional
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point-to-point communications the cost of which is almost negligible on modern su-
percomputers. All these changes have significantly accelerated the set-up and solve
phases of the algorithm.

With regard to the overall parallelization strategy, some important improvements
are introduced. In our previous works [11, 14], the same partition was used for
both physical and spectral spaces. This was a convenient approach for relatively
low numbers of CPUs. However, this approach eventually limits the number of
parallel processes in the periodic direction. In the present version of the algorithm,
in order to overcome this drawback, the physical and spectral partitions can be
chosen independently. With this new strategy, the range of efficient scalability in the
periodic direction has been significantly increased: maximal tests with 128 parallel
processes in the periodic direction show that the scalability is still not exhausted.

All the numerical tests have been carried out on the IBM MareNostrum super-
computer at the Barcelona Supercomputing Center. Computing times and speed-up
tests, obtained for meshes with up to 109 nodes using 8192 CPUs, illustrate the ro-
bustness and scalability of the method. Moreover, a direct comparison of the DSD,
as 2D solver, with two preconditioned conjugate gradient (PCG) [8] methods is also
presented and discussed.

The rest of the chapter is arranged as follows. In Section 2.2, the numerical
methods for the time-accurate solution of Navier-Stokes equations are briefly de-
scribed. The Poisson solver is presented in Section 2.3. The parallelization strategy
is discussed in Section 2.4. In Section 2.5, numerical experiments are carried out
to test the performance of the proposed parallel solver on the MareNostrum super-
computer. In Section 2.6, the DSD is successfully compared with the PCG in the
context of DNS simulations of the flow around a circular cylinder at Re = 3900
and Re = 10000. Some illustrative applications of the method are outlined in Sec-
tion 2.7 and, finally, relevant results are summarized and conclusions are given in
Section 2.8.

2.2 Numerical methods for DNS

2.2.1 Geometry discretization

In this work, geometric discretizations obtained by the uniform extrusion of
generic 2D meshes are considered. Periodic boundary conditions are imposed in
the extrusion direction, thus the linear couplings of the Poisson equation in such
direction result into circulant submatrices. Since the proposed algorithm does not
impose any restriction for the initial 2D mesh, it is suitable for unstructured meshes.
Nevertheless, this lack of structure leads to a more complex data management. An
illustrative example of such a geometric discretization is displayed in Figure 2.1.

The following notation is used. The initial 2D mesh and the 1D uniform dis-
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cretization of the periodic direction are referred as M2d and Mper, respectively. The
total number of nodes is N := N2dNper, where N2d and Nper are the number of nodes
in M2d and Mper, respectively. For simplicity, Nper is taken as an even number.
The constant mesh step in Mper is ∆per.

Figure 2.1: 3D mesh around a cylinder generated by the uniform extrusion of
a 2D unstructured mesh.

Two indexes define the position of a node on the resultant 3D mesh M, namely
the projections in M2d and Mper. Hence, two different node orderings are used:
the 2D-block-order and the 1D-block-order. They are lexicographical orders of the
Cartesian products Mper ×M2d and M2d×Mper, respectively. Using the 2D-block-

order, a scalar field v ∈ R
N reads

v ≡
[
v2d

0 , ..., v
2d
(Nper−1)

]
, (2.1)

whereas using the 1D-block-order it becomes

v ≡
[
vper

0 , ..., vper
(N2d−1)

]
, (2.2)

where v2d
k ∈ R

N2d and vper
k ∈ R

Nper are the kth plane of the extrusion and the kth
span-wise subvector, respectively.

2.2.2 Governing equations and spatial discretization

The simulation of turbulent incompressible flows of Newtonian fluids is consid-
ered. Under these assumptions the velocity field, u, is governed by the Navier-Stokes
(NS) and continuity equations
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∂tu+ u · ∇u− 1

Re
∆u+ ∇p = 0, (2.3)

∇ · u = 0, (2.4)

where Re is the dimensionless Reynolds number. In an operator-based formulation,
the finite volume spatial discretization of these equations reads

Ω
duh

dt
+ C (uh) uh +Duh + ΩGph = 0h, (2.5)

Muh = 0h, (2.6)

where uh and ph are the discrete velocity and pressure fields, Ω is a diagonal matrix
with the size of the control volumes, C(uh) and D are the convective and diffusive
operators and, finally, M and G are the divergence and gradient operators, respec-
tively. In this chapter, a “symmetry-preserving”/“energy conserving” discretization
is adopted: the convective operator is skew symmetric (C(uh) + C(uh)

∗ = 0), the
diffusive operator is symmetric positive-definite and the integral of the gradient
operator is minus the adjoint of the divergence operator (ΩG = −M∗). This last re-
quirement is not exactly satisfied due to the cell-to-face interpolation needed when
defining the divergence operator in a collocated arrangement (for further details
see [23]). Therefore, in practice, it is ΩG ≈ −M∗. Preserving the (skew-)symmetries
of the continuous differential operators when discretizing them has been shown to
be a very suitable approach for DNS [3,24,25].

2.2.3 Time-integration method

For the temporal discretization, a second-order explicit one-leg scheme is used.
Thus, assuming ΩG = −M∗, the resulting fully-discretized problem reads

Ω
un+1

h − un
h

δt
= R

(
3

2
un

h − 1

2
un−1

h

)
+M∗pn+1

h , (2.7)

Mun+1
h = 0h, (2.8)

where R(uh) = −C(uh)uh − Duh. The pressure-velocity coupling is solved by
means of a classical fractional step projection method [26, 27]. In short, reordering
the equation (2.7), an expression for un+1

h is obtained,

un+1
h = un

h + δtΩ−1

(
R

(
3

2
un

h − 1

2
un−1

h

)
+M∗pn+1

h

)
. (2.9)

Then, substituting this into (2.8), leads to a Poisson equation for pn+1
h ,
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−MΩ−1M∗pn+1
h = M

(
un

h

δt
+ Ω−1R

(
3

2
un

h − 1

2
un−1

h

))
, (2.10)

which must be solved once at each time-step.

2.2.4 Poisson equation

The Laplacian operator of equation (2.10),

L = −MΩ−1M∗, (2.11)

is by construction symmetric and negative-definite. Its action on ph is given by

[Lph]k =
∑

j∈Nb(k)

Akj
ph(j) − ph(k)

δnkj

, (2.12)

where Nb(k) is the set of neighbors of the kth node. Akj is the area of fkj, the
face between the nodes k and j, and δnkj = |nkj · vkj|, where vkj and nkj are the
vector between the nodes and the unitary vector normal to fkj, respectively (see
Figure 2.2).

The set Nb(k) can be split into two subsets: Nb(k) = Nbper(k)∪Nb2d(k), where
Nbper(k) and Nb2d(k) refer to the neighbor nodes along the periodic direction and
in the same plane of the extrusion, respectively. In this way, the expression (2.12)
becomes

[Lph]k =
∑

i∈Nbper(k)

Aki
ph(i) − ph(k)

∆per

+ ∆per

∑

j∈Nb2d(k)

akj
ph(j) − ph(k)

δnkj

, (2.13)

where akj is the length of the edges of fkj contained in M2d (see Figure 2.2). This can
be written in a more compact form by means of the Kronecker product of matrices.
Using the 1D-block-order, the Laplacian operator of the equation (2.13) reads

L = (Ω2d ⊗ Lper) + ∆per(L2d ⊗ INper
), (2.14)

where L2d ∈ R
N2d×N2d and Lper ∈ R

Nper×Nper are the Laplacian operators discretized
on the meshes M2d and Mper, respectively; Ω2d ∈ R

N2d×N2d is the diagonal matrix
representing the areas of the control volumes of M2d, and INper

is the identity ma-
trix of size Nper. With the above-mentioned conditions (uniformly meshed periodic
direction), Lper results into a symmetric circulant matrix of the form

Lper =
1

∆per

circ(−2, 1, 0, · · · , 0, 1). (2.15)

This characteristic of Lper allows to use a Fourier diagonalization algorithm in the
periodic direction.
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p(k)

p(i) p(j)

n

∆per

δ kj

akj

Figure 2.2: Elements of the geometric discretization.

2.3 Direct Poisson solver

In this section, the algorithm to solve the Poisson equation is described. As
mentioned above, the problem under consideration reads

Lxi = bi i = 1, ...., Nt, (2.16)

where the Laplacian operator, L, remains constant during all the simulation and Nt

is the total number of time-steps. Under these conditions, the computational cost
(per time-step) of any preprocessing phase is reduced by Nt times. Typically, for
DNS applications Nt = 105 ∼ 106. Therefore, in general, the pre-processing costs
become negligible.

As the couplings in the periodic direction are circulant matrices, the initial
system (2.16) can be diagonalized by means of a Fourier transform. As a result,
it is decomposed into a set of Nper mutually independent 2D subsystems, drasti-
cally reducing the arithmetical complexity and the RAM memory requirements (see
next subsection). Finally, the 2D problems are solved by means of a Direct Schur-
complement based Decomposition (DSD) method, described in Subsection 2.3.2.

2.3.1 Fourier diagonalization overview

Any circulant matrix is diagonalizable by means of the discrete Fourier transform
(DFT) of the same dimension (see Appendix A). Thus, the circulant matrix, Lper,
defined in equation (2.15) verifies

F∗
Nper

LperFNper
= Λ, (2.17)
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where FNper
and F∗

Nper
are the Nper-dimensional Fourier transform and its inverse/ad-

joint, respectively; and Λ = diag(λ0, λ1, ..., λNper−1) is the resultant diagonal matrix.
A general expression for the eigenvectors can be found in Appendix A. In this
particular case

λk = − 2

∆per

(
1 − cos

(
2πk

Nper

))
k = 0, ..., Nper − 1. (2.18)

If the unknowns of any field, v, defined in M are labelled adopting the 1D-

block-order, the operator (IN2d
⊗ F∗

Nper
) transforms all the span-wise subvectors,

vper
k , from the physical to the Fourier spectral space; (IN2d

⊗ FNper
) carries out

the inverse transformation. Applying the same change-of-basis to L, the Laplacian
operator in the spectral space, L̂, is obtained: 1

L̂ = (IN2d
⊗ F∗

Nper
)L(IN2d

⊗ FNper
) =

= (IN2d
⊗ F∗

Nper
)((Ω2d ⊗ Lper) + ∆per(L2d ⊗ INper

))(IN2d
⊗ FNper

) =

= (IN2d
Ω2dIN2d

⊗ F∗
Nper

LperFNper
) + ∆per(IN2d

L2dIN2d
⊗ F∗

Nper
INper

FNper
) =

= (Ω2d ⊗ Λ) + ∆per(L2d ⊗ INper
). (2.19)

Comparing the last expression term-by-term with equation (2.14), it is observed
that the change-of-basis only affects the couplings in the periodic direction, whereas
the couplings in the non-periodic directions are not modified. This is a consequence
of the mesh uniformity in the periodic direction. Switching to the 2D-block-order, L̂
reads

L̂ = (Λ ⊗ Ω2d) + ∆per(INper
⊗ L2d)) =

Nper−1⊕

k=0

L̂k, (2.20)

where
L̂k = λkΩ2d + ∆perL2d k = 0, ..., Nper − 1. (2.21)

Note that the matrices L̂k only differ in the eigenvalue, λk, multiplying the diagonal
contribution Ω2d.

Therefore, the original system (2.16) is diagonalized into a set of Nper mutually
independent 2D subsystems

L̂kx̂
2d
k = b̂2d

k k = 0, ..., Nper − 1, (2.22)

where each subsystem, hereafter denoted as frequency system, corresponds to a fre-
quency in the Fourier space. In summary, the global algorithm is:

1Given matrices A, B, C and D, with appropriate size, (A ⊗ B) · (C ⊗ D) = AC ⊗ BD
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Algorithm 1:

1. Transform the right-hand-side b, b̂ = (IN2d
⊗ F∗

Nper
)b

2. Solve the the frequency systems, L̂kx̂
2d
k = b̂2d

k

3. Restore the solution vector: x = (IN2d
⊗ FNper

)x̂

At this point, some issues must be addressed:

1. Fourier decomposition of real-valued, problems. Since the subvectors bper
k are

real-valued, as described in Appendix A, the corresponding discrete Fourier
coefficients are paired as follows

[
b̂per
k

]

i
=
[
b̂per
k

]∗
Nper−i

i = 1, ..., Nper − 1. (2.23)

Thus, the 2D subvectors b̂2d
k meet

b̂2d
k = (b̂2d

Nper−k)
∗ k = 1, ..., Nper − 1. (2.24)

On the other hand, the eigenvalues of the real-valued sparse matrix Lper, de-
fined in equation (2.18), fulfil the following property

λ0 = 0,

λk = λNper−k k = 1, ..., Nper − 1. (2.25)

Hence, plugging the two previous identities into equation (2.21) leads to

L̂0 = ∆perL2d,

L̂k = L̂Nper−k k = 1, ..., Nper − 1. (2.26)

Finally, the last equation together with equation (2.24) imply that the solution
of the frequency systems are paired as follows

x̂2d
k = (x̂2d

Nper−k)
∗ k = 1, ..., Nper − 1. (2.27)

Therefore, recalling that Nper is an even number, the solution of Nper/2− 1 of
the frequency systems is directly obtained by taking the complex conjugate of
its respective pairs.
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2. Complex systems. The subvectors b̂2d
0 and b̂2d

Nper/2 are real-valued whereas the

rest of subvectors b̂2d
k have non-null imaginary components [1,2]. This implies

that the Nper/2− 1 paired systems have a complex-valued solution. Neverthe-

less, since the coefficients of the matrices L̂k are real, they can be solved as
follows:

L̂k

[
Re(x̂2d

k ) | Im(x̂2d
k )
]

= [ Re(b̂2d
k ) | Im(b̂2d

k ) ] k = 1, ...,
Nper

2
− 1. (2.28)

Therefore, summing up, Nper real-valued 2D subsystems need to be solved in
total.

3. Fast Fourier transform. The inverse and forward Fourier transformations can
be carried out by means of a FFT algorithm. This reduces the complexity of
steps 1 and 3 of Algorithm 1 from O((Nper)

2N2d) to O(Nper log(Nper)N2d).

4. Diagonal dominance of the frequency systems. Each frequency system is de-
fined as the sum of two components ∆perL2d and λkΩ2d, see equation (2.21).
The first component, is a symmetric definite-negative matrix with negative
values in its diagonal. The second is a diagonal contribution which varies with
the eigenvalue. Since the eigenvalues defined in (2.18) fullfill the next property:

0 ≤ i < j ≤ Nper/2 ⇒ 0 ≥ λi > λj, (2.29)

the negative contribution λkΩ2d decreases when k → Nper/2, and the associ-

ated system L̂k becomes more diagonal dominant.

2.3.2 Direct Schur-complement based decomposition method (DSD) for the
frequency systems

The Schur-complement based algorithms are non-overlapping decomposition meth-
ods [8,11,13,16,20], which can be employed for the parallel solution of linear systems.
In the present work, this methodology is used to solve the frequency systems . How-
ever, for the sake of simplicity, a general notation is adopted:

Ax = b, (2.30)

where A = (aij) is a n×n sparse, symmetric and positive-definite matrix. The set of
unknowns coupled by (2.30) is named Y . In the parallelization this set is partitioned
into P2d subsets, {Y0,...,YP2d−1}, where Yk are referred to as the local unknowns of
process k. In order to decouple the system, it is needed an interface subset, S ⊂ Y ,
fulfilling the following property:

{i ∈ Yk ∩ Sc, j ∈ Yl ∩ Sc and k 6= l} =⇒ {aij = aji = 0}, (2.31)
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where Sc is the complement of S in Y . That is, two local non-interface variables of
different processes cannot be directly coupled by the system. An example of interface

is illustrated in Figure 2.3. The subsets Sk := Yk ∩ S, and Uk := Yk ∩ Sc, are here
named the local interface and local inner unknowns of process k, respectively.

Figure 2.3: Representation of a ’double sided’ interface. The interface nodes
are the nodes located in the filled cells S = S0 ∪ S1 ∪ S2, the remaining nodes
form the local inner subsets U0,U1 and U2.

Then, labelling the unknowns in the order U0, ...UP2d−1,S, the linear system (2.30)
has the following block structure:

(
B E
F C

)(
x
y

)
=

(
f
g

)
, (2.32)

where

B =

P2d−1⊕

i=0

Bi, (2.33)

is a block diagonal matrix, its subblocks Bi ∈ R
Ui×Ui are the couplings between

the ith local inner unknowns, E are the couplings between the inner and interface

unknowns, F = ET are the coupling between the interface and the inner unknowns
and C are the linear couplings between the interface variables. Applying a block
Gaussian elimination to (2.32), leads to

(
B E

0 C̃

)(
x
y

)
=

(
f
g̃

)
, (2.34)
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where C̃ = C − FB−1E is the Schur complement matrix, and g̃ = g − FB−1f the
new r.h.s term for the interface system. Therefore, the whole algorithm is:

Algorithm 2:

1. Evaluate the new r.h.s for the interface system g̃ = g − FB−1f .

2. Solve the distributed interface system C̃y = g̃.

3. Solve the local inner systems, Bixi = fi − Eiy, where Ei and fi are sub-
matrices of E and f , formed by the rows corresponding to nodes in Ui.

Note that, although the inner systems with matrices Bi are solved twice (steps 1
and 3), they are mutually independent and can be solved simultaneously. This is
the main concept of the Schur complement techniques: to separate, by means of a
common distributed interface, a subset of the local unknowns of each process and
solve them independently.

This constitutes a general framework for these type of algorithms. At this point,
three critical issues need to be addressed: (i) the determination of the interface

subset, (ii) the local solver for the inner systems and (iii) the solver for the interface

system.

Figure 2.4: Representation of the ’one-sided interface’. Left: One-sided inter-

face before balancing. Right: One-sided interface after balancing.

Interface subset
There are different options to determine the interface subset. One option used
in [16, 17] , herewith denoted double sided interface, is to define the local interface

of each parallel process, Sk, as the local unknowns coupled with unknowns of other
processes, i.e.
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Sk = {i ∈ Yk : St(i) ∩ Yk
c 6= ∅}, (2.35)

where St(i) := {j ∈ Y : aij 6= 0} is the stencil of i. This alternative may be
convenient because Sk can be fixed independently by each process (see Figure 2.3)
and, therefore, the structure of the Schur complement matrix is known a priori [16].
However, the size of the resulting interface S is not minimal.

In this chapter, in order to reduce the size of the interface system, a one-sided

interface strategy is adopted (see Figure 2.4). To carry this out, firstly the local

interface subsets S ′
k are defined as

S ′
k = {i ∈ Yk : ∃l > k with St(i) ∩ Yl 6= ∅}. (2.36)

That is, given two coupled unknowns of two different processes, only the one which
belongs to the process with lower rank is included in the interface (see Figure 2.4,
left). In this way, the interface size is approximately halved. However, it gener-
ally results on an unbalanced interface. To circumvent this problem, a balancing
algorithm is proposed in the next paragraphs.

Figure 2.5: Illustration of the balancing process. Node k is moved from the
interface to the inner set and, subsequently, its neighbor node i, which belongs
to another processor, is moved to the interface.

Lets consider two non-intersecting subsets J1, J2 ⊂ Y , the halo of J1 in J2 is
defined as

H(J1,J2) := {k ∈ J2 : ∃s ∈ J1 with k ∈ St(s)}. (2.37)

That is, H(J1,J2) is the subset of elements of J2 which are coupled with elements
of J1. The interface imbalance, Imb(S), is defined as:

Imb(S) = {max(|Si| − |Sj|), ∀ i, j ∈ [0, ..P − 1]}, (2.38)

where |Sk| is the number of elements of the set Sk. With this nomenclature, the
proposed balancing algorithm reads:
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Algorithm 3:

1. while( Imb(S) > tol · |S| )
2. for all( i, j ∈ [0, ..P − 1])

3. if(|Si| > |Sj|)
4. cont := min( (|Si| − |Sj|)/2 , |H(Yj,Si)| )
5. J := ∅
6. while( cont > 0 )

7. take s from H(Yj,Si)

8. Si = Si − {s}
9. J = J ∪ {s}

10. cont = cont − 1

11. endwhile

12. for all(l 6= i)

13. Sl = Sl ∪H(J ,Yl)

14. endfor

15. endif

16. endfor

17. endwhile

The basic step of the balance algorithm consists on moving a subset of unknowns
J from Si to Ui and, subsequently, all the inner unknowns of neighbor subdomains
coupled with elements of J are moved to their local interfaces. This process is illus-
trated in Figure 2.5 and the resulting interface in Figure 2.4 (right). This algorithm
is an optimization of the previous version presented in [15], where the balancing
process was carried out element by element (i.e. considering subsets J of only one
element). The previous approach needed much more steps and communications to
converge to a balanced interface. Figure 2.6 shows the imbalance reduction achieved
with the new version of the algorithm for different 2D meshes partitioned into 20
subdomains. In these tests, the algorithm has been runned until the imbalance
could no longer be reduced. For all the meshes the final imbalance is lower than
0.1% except for the mesh m250m which finishes with a 0.7% of imbalance.

Solution of inner and interface systems
The set of inner systems are solved by means of a sparse Cholesky factorization [22].
The interface system, which couples unknowns of different processes, requires a
parallel algorithm. To solve it, an explicit evaluation of C̃−1, where the kth process
evaluates C̃−1

k (the rows in Sk), is performed. Each process calculates the sparse
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Figure 2.6: Imbalance reduction on each iteration of the main loop of the
Algorithm 3, for the different unstructured 2D meshes listed in Table 1 partitioned
into 20 subdomains.

Cholesky factorization of C̃ and evaluates the rows of C̃−1 corresponding to its local
interface. The reasons to use C̃−1 are twofold: (i) a direct solution of the interface

system is obtained, and (ii) since the solution phase is a matrix-vector product its
parallelization is straightforward. However, this methodology is only feasible when
(like in 2D problems) the size of the interface is much smaller than the total size of
the system. Note that since both methods are direct solvers, the global algorithm is
a direct solver as well. The preprocessing phase of the chosen algorithms can have
a significant computational cost. However, since the applications here considered
demand a huge number of time-steps, and the system matrix is constant during all
the simulation, this additional cost becomes, in general, negligible.

Therefore, the detailed algorithm of the DSD solution phase is:
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Algorithm 4: .

1. Evaluate the local r.h.s for the interface system g̃i:

(a) Solve Biti = fi.

(b) Get necessary components of t before product by Fi (point-to-point
comm.).

(c) g̃i = gi − Fit.

2. Solve local interface unknowns yi.

(a) Obtain all components of g̃ (collective comm.).

(b) yi = C̃−1
i g̃.

3. Evaluate r.h.s for the local inner systems.

(a) Get necessary components of y before product by Ei (point-to-point
comm.).

(b) hi = fi − Eiy.

4. Solve the inner systems Bixi = hi.

Note that the vectors t and h are temporary storage data. Fi, Ci, yi and g̃i are the
submatrices of F , C, y and g̃ corresponding to the nodes in Si. Three communication
episodes, performed by means of the MPI standard, are needed: two point-to-point
communications before sparse matrix-vector products in steps 1.b and 3.a, and a
collective communication, performed by means of the MPI Allgather function, before
the product by the dense matrix C̃−1

i in step 2.a. These communications, together
with the solution of the interface system (step 2.b), are the parts of the algorithm
whose cost increases with the number of CPUs. Therefore, these steps, further
referred to as interface computations, eventually degrade the speed-up of the global
algorithm. The rest of the steps, referred to as inner computations, tend to accelerate
with the number of CPUs.

2.4 Distribution of parallel processes

The parallelization of the solver is based on a geometric domain decomposition
into P subdomains, one for each parallel process. The partition of M is carried out
by dividing M2d and Mper into P2d and Pper parts respectively, being P = P2dPper.
This is referred as a P2d × Pper-partition. To exemplify it, a 2 × 2- and a 4 × 1-
partitions of a mesh are displayed in Figure 2.7.

The parallelization of Algorithm 1 can be divided into two parts: (i) the paral-
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lelization of steps 1 and 3, which are the change-of-basis from the physical to the
spectral space and vice versa; and (ii) the parallelization of step 2, which is the
solution of the frequency systems.

Looking at step 1, the r.h.s of the frequency systems, b̂, is given by

b̂ = (IN2d
⊗ F∗

Nper
)b. (2.39)

Actually, these are N2d mutually independent Fourier transformations, one for each
span-wise subvector of b. Since a distributed memory parallelization for the FFT is
out of consideration, the span-wise component of the mesh is not partitioned. Thus,
M2d is divided into P subdomains and a P × 1-partition of M follows. In this way
a sequential FFT algorithm can be directly applied to each span-wise subvector,
bper
k , respectively. An identical reasoning is applied to the change-of-basis from the

spectral to the physical space, and the same P × 1-partition is chosen.
On the other hand, in step 2 of the Algorithm 1, the solution of the frequency

systems (2.28) is obtained as follows

L̂kx̂
2d
k = b̂2d

k k = 0, ...,
Nper

2
, (2.40)

where the DSD algorithm is adopted to solve each system. In this case, for large
values of P , the P×1-partition chosen for the steps 1 and 3 can be sub-optimal as the
strong speed-up of the DSD algorithm is limited (see Section 2.5.1). Thus, partitions
with Pper > 1 may be necessary to keep P2d in the region of linear scalability of the
DSD algorithm. In this case, the Nper frequencies to be solved are divided into Pper

subsets, and groups of P/Pper processes are used to solve the frequencies of each
subset. When partitioning Mper, it should be taken into account that the frequency

systems are paired (see Section 2.3.1), keeping the paired subsystems in the same
subdomain.

Therefore, in order to achieve the maximum parallel performance for each part
of the algorithm, two different partitions are used: one for the change-of-basis (steps
1 and 3) and another for the solution of the frequency systems (step 2). With this
new strategy, two additional redistributions of data between those partitions are
needed. The following algorithm replaces Algorithm 1:
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Algorithm 5:

1. Evaluate b̂ = (IN2d
⊗ F∗

Nper
)b on the P × 1-partition.

2. Redistribute b̂ from the P × 1-to the P2d × Pper-partition.

3. Solve the the frequency systems, L̂kx̂
2d
k = b̂2d

k , on the P2d × Pper-partition.

4. Redistribute x̂ from the P2d × Pper-to the P × 1-partition.

5. Evaluate x = (IN2d
⊗ FNper

)x̂ on the P × 1-partition.

(a) (b)

Figure 2.7: Illustration of a 2×2 (right) and a 4×1 (left) partitions of a mesh.

In order to simplify the redistributions of data (steps 2 and 4), a multilevel par-
tition strategy is used. The P -partition of M2d, used in steps 1 and 5, is obtained
from the P2d-partition used in the step 3 by dividing each of its subdomains in Pper

parts. An example is shown in Figure 2.7: the 2D subdomains in the right part,
are directly obtained by splitting the 2D subdomains in the left. As a result, in this
example, when redistributing the data between these two partitions, two indepen-
dent transmissions are done involving the subdomains M00,M01 and M00′ ,M10′

on the one hand, and the subdomains M10,M11 and M20′ ,M30′ on the other. In
the general case, on each redistribution of data, each parallel process is involved in
a collective communication with Pper processors. These collective communications
are performed by means of the MPI Alltoall routine.

In Algorithm 5, increasing Pper has two counteracting effects: it tends to in-
crease the computational cost of steps 2 and 4, as each MPI Alltoall communication
would involve more parallel processes, whereas it benefits the speed-up of the step 3.
Therefore, for each problem and computational architectute an optimal Pper needs
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to be found.

2.5 Numerical experiments

All the numerical tests presented in this chapter have been carried out on the
MareNostrum supercomputer of the Barcelona supercomputing center (BSC). This
is an IBM BladeCenter JS21 Cluster with 10240 PowerPC 970MP processors at
2.3 GHz. Quad-core nodes with 8 Gb are coupled by mean of a high-performance
Myrinet network.

The code has been compiled in a Linux SuSe distribution using the IBM XL
C/C++ enterprise edition compiler version 10.1. Four external libraries are linked:
(i) the automatically tuned linear algebra software (ATLAS) [28] version 3.5.1,
to perform the product by the inverse of the Schur complement matrix; (ii) the
FFTW [29] version 3.1.1, to perform the Fourier-based change of basis between the
physical and spectral spaces; (iii) the METIS [30] software to compute fill-reducing
orderings for the Sparse Cholesky factorizations; and (iv) the MPICH implementa-
tion of MPI, the standard message-passing interface library, version mx.

Results have been obtained after averaging over several time-steps, to avoid
dispersion. To test the performance of the solver, four different unstructured 2D
meshes have been generated with the ANSYS ICEM CFD package [31] (see Table 2.1
for details). They cover a square domain with side length 1 using triangular elements.
Their partition is carried out by means of the graph partitioning tool METIS [30].

In a multi-core architecture, the performance of the CPU cores can be affected
by the shared memory bandwidth resulting in lower performance of each core when
all CPU cores are engaged [32]. To circumvent this variable, all the tests have been
performed by using all the cores within each quad-core processor. Consequently, the
number of MPI processes is restricted to multiples of 4.

Name size
m250m 255,468

m500m 500,590

m1M 1,028,350

m2M 2,094,974

Table 2.1: Name and size of the 2D unstructured meshes used on the numerical
experiments. The size refers to the number of nodes of the mesh.

2.5.1 Strong speed-up of DSD algorithm

The strong speed-up measures the acceleration of the algorithm with the number
of CPUs. As the DSD is a direct solver, and the frequency systems are defined by
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symmetric negative definite and diagonal dominant matrices, its performance only
depends on their sparsity pattern. Thus, recalling that the family of frequency

systems to be solved (2.22) only differ on the diagonal elements, the analysis can be

restricted to the first frequency system L̂0 = L2d.
Speed-up results starting from 4 and up to 100 CPUs are displayed in Figure 2.8.

All the meshes show the same qualitative behavior. Nevertheless, as expected, the
speed-up improves with the size of the problem. Such effect is due to the growth of
the percentage of time spent in the inner computations (see Section 2.3.2) with the
problem size (see Figure 2.8, bottom).
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Figure 2.8: Top: Strong speed-up of DSD solution phase measured in meshes
of different sizes. Bottom: Percentage of time spent in inner computations for
the different meshes and numbers of CPU.

For each problem, the scalability of the DSD algorithm is eventually limited
by the decrease of the percentage of time spent in inner computations and, con-
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sequently, the growth of the interface computations. Recalling Algorithm 4, the
interface computations are: (i) the point-to-point communications in the steps 1.b
and 3.a, (ii) the collective communication in step 2.a, performed by means of the
MPI Allgather function, and (iii) the product by the inverse of the Schur complement
matrix in step 2.b. The relative contribution of each of these parts within the total
interface computations is shown in Figure 2.9. For the sake of simplicity, only the
results corresponding to the two limiting meshes, i.e. m250m and m2M, are ana-
lyzed. The product by the inverse of the Schur complement system and the collective
communication are by far the most time consuming parts, however, their tendencies
are opposite. On the one hand, the size of the interface is O(

√
P2dN2d). Thus the

operation count of the dense product is O(P2dN2d) and the operations per CPU are
O(N2d). Therefore, the cost per CPU remains constant when increasing the number
of CPUs. In contrast, under certain approximations, the collective communication
cost per CPU is O(log2(P )

√
P2dN2d) (for details see [11]). This explains the opposite

tendencies of these two parts of the algorithm when increasing the number of CPU,
and why the percentage of time spent in the dense product grows with the size of the
mesh. Finally, the percentage of the point-to-point communications remains almost
negligible in both cases.

2.5.2 Weak speed-up test in the periodic direction

The weak speed-up shows the scalability of the algorithm when the ratio between
the mesh size and the number of CPUs remains constant. Ideally the solution time
should also remain constant, however, the local cost of the communications and the
algorithm tend to grow with the number of processors resulting in a slow down.

In Figure 2.10, the weak scalability when the mesh grows in the periodic direc-
tion is displayed. The discretizations are generated by extrusion of the 2D meshes
m250m, m500m, m1M and m2M, respectively. The initial tests have been performed
using 40 CPUs and setting Nper = 8, for the meshes m250m, m500m and m1M;
and Nper = 4 for the mesh m2M. Thus, the loads per CPU are: 50000, 100000,
200000 and 200000 nodes, respectively. P2d is kept constant equal to 40, which is
inside the DSD linear scalability region for all cases (see Figure 2.8). Therefore, the
parallel efficiency of the DSD component will always be close to one. Then, Pper is
successively increased from 1 (P = 40) to 24 (P = 960) keeping the ratio Nper/Pper

constant.
The results show that, despite the size of the mesh and the number of CPUs

increase 24 times, the solution time grows a factor between 1.41 and 1.53, depending
on the 2D mesh size. In all cases, when Pper = 1, approximately 80% of the time is
spent in solving the frequency systems, while the rest of time is spent in the changes
of basis from the physical to the spectral space and vice versa. The cost of the first
part remains constant, while keeping P2d and the ratio Nper/Pper constant. However,
when increasing Pper and Nper, the cost due to the MPI Alltoall communications
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Figure 2.9: Percentage of time spent in the different parts of the interface

computations for the meshes m250m (left) and m2M (right).

(steps 2 and 4 of Algorithm 5) and the Fourier transforms (steps 1 and 5) also
increases. As a consequence, for Pper = 24, the maximal value tested, the cost of
performing the two changes-of-basis already represents approximately 45% of the
total solution time. In Table 2.2, the wall clock times for the solution and the setup
phases, together with the size of the problems, are shown. It can be seen that the
setup time is almost constant.

Finally, a large-scale study with up to 8192 CPU is shown in Figure 2.11. The
meshes for this test have been generated using m2M as 2D component. For the
biggest one, the total number of grid points is 1024 million. P2d is fixed equal to
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Figure 2.10: Weak speed-up in the periodic direction for different extruded
2D unstructured meshes. The loads per CPU are: 50000, 100000, 200000 and
200000 nodes for each of the tests, respectively. P2d is kept constant equal to 40
and Pper is successively increased from 1 (P = 40) to 24 (P = 960).

CPUs 40 80 160 320 480 640 800 960
Pz 1 2 4 8 12 16 20 24

solve 0.071 0.077 0.084 0.093 0.100 0.098 0.102 0.104
m250m setup 89 94 87 87 87 90 91 91

size 2 4 8 16 24 32 40 48
solve 0.145 0.156 0.166 0.184 0.195 0.201 0.213 0.222

m500m setup 194 193 193 188 188 199 191 203
size 4 8 16 32 48 64 80 96

solve 0.308 0.320 0.340 0.377 0.399 0.413 0.420 0.437
m1M setup 558 559 557 552 561 546 553 574

size 8 16 32 64 96 128 160 192
solve 0.363 0.395 0.419 0.457 0.472 0.482 0.498 0.506

m2M setup 1094 1073 1063 1069 1062 1065 1078 1089
size 8 16 32 64 96 128 160 192

Table 2.2: Solution and setup times, in seconds, and size of the mesh, in million
of nodes, for the points in Figure 2.10.

64, which is in the limit of the linear speedup region of the DSD algorithm for this
mesh (see Figure 2.8). Therefore, the parallel efficiency of the DSD component will
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be close to one. Initially Nper and Pper are 8 and 1, respectively. Thus the load
per CPU is approximately 125000 nodes. As shown in the figure, Pper and Nper are
increased 128 times, while the solution time only grows 1.5 times. The size of the
problem varies from 8 to 1024 million nodes, and the wall clock time spent in the
solution from 0.27 to 0.42 s. The setup time is less than 30 min in all cases. In
practice, for time-accurate simulations on such meshes, this time is almost negligible
compared with the expected accumulated solution time.
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Figure 2.11: Weak speed-up in the periodic direction for meshes generated by
the extrusion of the mesh m2M, the load per CPU is kept around 125000 nodes.
The size of the problem (and the wall-clock time) varies from 8 million (0.27s) to
1024 million (0.42s), respectively.

2.5.3 Strong speed-up tests for the overall algorithm: a demonstrative ex-
ample

In the previous sub-sections, the two components of the solver have been studied
separately, and for the DSD, on an isolated frequency system. The acceleration pro-
duced by the combination of both components within the overall algorithm is now
considered. The acceleration of the overall algorithm is produced by the accelera-
tion of the DSD and by the reduction of frequency systems to be solved per parallel
process (Nper/Pper), when P2d and Pper are increased, respectively. Figure 2.12 shows
these two acceleration factors. The discretization meshes are generated from the 2D
meshes of Table 3.1, and setting Nper equal to 128 in all cases, except for m2M for
which Nper is set equal to 64 due to the memory constraints. Initially, P2d and Pper

are 20 and 12, respectively. In the first step, P2d is doubled (P2d = 40, Pper = 12)
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and, in accordance with subsection 2.5.1, the speed up is better when larger the 2D
component of the mesh. The parallel efficiency of this step ranges between 0.79 and
0.86 for the different cases. In the second step Pper is doubled (P2d = 40, Pper = 24),
and the acceleration no longer depends on the 2D component size. For this step the
parallel efficiency ranges between 0.73 and 0.88. The overall parallel efficiency is the
product of the two previous ones.
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Figure 2.12: Strong speedup of the overall algorithm for different meshes. On
the first step P2d is doubled from 20 to 40 and on the second Pper is doubled from
12 to 24.

Finally, the same study was carried out for a mesh of 512 million nodes generated
from the extrusion of m2M (Nper = 256), see Figure 2.13. Initially P = 2048
(P2d = 32, Pper = 64), when doubling P2d and Pper (up to 8192 CPUs) the parallel
efficiencies obtained are 0.84 and 0.87, respectively. The walk clock time spent in
the solution varies from 0.69 to 0.24 s.

2.6 Challenging DSD. Flow around a circular cylinder

In this section, the performance of the DSD as frequency solver is analyzed
by direct comparison with the standard preconditioned conjugate gradient (PCG)
method [7, 8] with two different preconditioners. To carry out this analysis, direct
numerical simulations of the flow around a circular cylinder at Reynolds numbers
3900 and 10000 (based on the cylinder diameter, D, and the free-stream velocity),
are used as problem models.
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Figure 2.13: Strong speedup of the overall algorithm for a 512 million nodes
mesh generated from the extrusion of m2M. On the first step P2d is doubled from
32 to 64 and on the second Pper is doubled from 64 to 128.

2.6.1 Flow around a circular cylinder

The dimensions of the computational domain are [−4D, 20D] (stream-wise),
[−8D, 8D] (cross-stream) and [0, πD] (span-wise), respectively. The axis of the
cylinder is located at x = y = 0. Periodic boundary conditions are assumed in the
span-wise direction; symmetry boundary conditions in the cross-stream; at the in-
flow a constant velocity profile, u = 1, v = w = 0, is prescribed; and pressure-based
boundary conditions are used at the outflow. Finally, non-slip boundary conditions
are imposed at the surface of the cylinder. Moreover, a buffer zone with a higher
artificial viscosity is prescribed at the exit in order to prevent instabilities.

To cover each stream-wise/cross-stream plane an unstructured grid composed of
triangular elements is used. The number of control volumes of the 2D meshes are
43, 445 (Re = 3900) and 154, 070 (Re = 10000), respectively. Both 2D meshes are
solved with two different values of Nper, 64 and 128, in order to study the influence of
the span-wise direction. The results of the simulations have shown good agreement
with previous studies available in the literature [33–35]. An illustrative snapshot
showing the near wake vortex structures at Re = 3900 is displayed in Figure 2.14.

2.6.2 DSD vs (block) Jacobi PCG

Comparison of solvers is always a difficult task. Since multiple factors may
influence their performance, they must be tested in the context of one specific ap-
plication. This point becomes even more important when comparing direct and
iterative solvers. In general, the latter class is strongly dependant on the condition
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Figure 2.14: Near wake vortex structures of the flow around a circular cylinder
at Re = 3900.

number of the system, the initial guess and the residual criterion, whereas the direct
methods performance is irrespective of these factors.

Here, the standard iterative solvers chosen to compare with are the Jacobi and a
block-Jacobi Preconditioned CG (JPCG and bJPCG) [8]. Although Jacobi-type are
not the best preconditioning methods available, they have been chosen because their
simplicity makes the performance of the whole algorithm dependant only on basic
optimized sub-routines, such as matrix-vector products and global norm evaluations,
which are the same as those used for the DSD algorithm. To this end, for the
bJPCG the size of the blocks correspond to the 2D subdomains and the same sparse
Cholesky factorization is used. The comparison with other iterative solvers could
be performed using the standard JPCG as a reference.

The comparison of the Poisson solvers in the different above-mentioned situations
was carried out on a statistically stationary regime of the flow, and the measurements
were averaged over 1000 time-steps. The residual criterion for the iterative solvers
was fixed to 10−5 and the solution of the previous time-step was used as initial guess.
As the time-integration scheme is fully explicit (see Section 2.2.3) a CFL criterion
was used to determine the time-step, ∆t, keeping the simulation stable.

The number of iterations necessary to reach the prescribed level of accuracy by
the JPCG solver as a function of the relative number of frequency, defined as

ξ(i, Nper) =
2i

Nper

i = 0, ...,
Nper

2
, (2.41)

is displayed in Figure 2.15. It must be recalled that the number of iterations plotted
are the average between the iterations necessary to solve the real and complex parts
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Figure 2.15: Number of iterations needed by JPCG depending on the relative
number of frequency for the different situations under study.

of each frequency system (2.28). As expected, all the cases show the same qualitative
behavior: since the conditioning of the systems improves with ξi (see Section 2.3.1),
the number of iterations does the same.

The computing times as a function of the number of CPUs, are depicted in Fig-
ure 2.16. For the iterative solvers, the two limiting situations, i.e., ξ = 0 (maximum
number of iterations) and ξ = 1 (minimum) are plotted. Additionally, for the JPCG
the average time of all the Nper/2 + 1 frequency systems is also shown. Notice that
the performance of the DSD is the same for all the frequencies and therefore, only
one line is depicted. For the sake of simplicity, this study is carried out only for
the most favorable situation for the iterative methods, i.e., the discretizations with
Nper = 128 (see Figure 2.15). At first sight, it can be seen that despite the accelera-
tion of the JPCG and the bJPCG extends to higher numbers of CPUs, they do not
reach, by far, the computing times obtained with the DSD solver. Actually, even
for the highest frequency system (ξ = 1), the DSD algorithm clearly outperforms
the rest. The minimum time obtained with each method, together with the number
of CPUs and the number of iterations, are shown in Table 2.3. For the lowest fre-
quency (ξ = 0), increasing the complexity of the preconditioner (i.e., solving local
blocks instead of just the diagonal) the solution time reduces by 53% and 37%, for
Reynolds numbers 3900 and 10000, respectively. On the other hand, the highest
frequency (ξ = 1) has a much more diagonal dominant system, what benefits the
convergence of the JPCG. In particular, in our test cases, with Nper = 128, the
value of the diagonal is on average 6 times greater than the sum of the remaining
entries in each row for the Re = 3900, and 4 times greater for the Re = 10000.
In this context, the JPCG becomes a much more competitive option and therefore,
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M = 128 × 154070 nodes.

the margin for improvement reduces. Notice that, although the bJPCG reduces the
number of iterations, it does not outperform the JPCG.

On the other hand, recalling that the number of iterations required by the JPCG
method does not change with the number of CPUs, it can be stated that for the
JPCG the maximum iteration speed is obtainend with 96 and 128 CPUs, for the
Re 3900 and 10000, respectively. Using this minimal iteration time as a reference,
the DSD solve time is equivalent to 4.3 and 9.5 JPCG iterations, for the 2D meshes
used on the Re 3900 and 10000, respectively. Note that, the DSD cost (in fastest
JPCG iterations) increases with the size of the mesh, but also the complexity of the
system to be solved iteratively. Normally reducing the number of CG iterations by
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Re = 3900 Re = 10000
time CPUs iters time CPUs iters

JPCG ξ = 0 6.6 × 10−2 96 207 1.0 × 10−1 128 217
JPCG ξ = 1 6.8 × 10−3 96 21 1.4 × 10−2 128 30

bJPCG ξ = 0 3.1 × 10−2 96 74 6.4 × 10−2 192 82
bJPCG ξ = 1 6.2 × 10−3 128 15 1.7 × 10−2 192 15

DSD 1.4 × 10−3 32 1 4.4 × 10−3 64 1

Table 2.3: Minimal solution time, together with the number of CPUs and
iterations required, for the different methods under study, at the Re = 3900 and
Re = 10000.

means of a more complex preconditioner makes the cost per iteration higher. Thus,
to outperform the DSD, these limits of 4.5 and 9.5 iterations should be reduced, but
keeping the cost per iteration low enough so that the total solve time is also reduced
.

2.7 Illustrative applications

The parallel algorithm developed has been successfully used for solving different
turbulent flows which involve one periodic homogeneous direction. Hereafter, some
of these cases will be briefly commented. Note that this is not an exhaustive com-
pendium of all the cases solved since now with this methodology, but a selection of
cases which have in common that all of them are direct numerical simulations of
flows around bluff bodies. Flows of this kind are of great interest for a large num-
ber of engineering applications such as vehicle aerodynamics, wings at high angle of
attack, interaction of the wind with buildings or cooling devices using forced convec-
tion. Prediction of flows which exhibit massive separation, such as those mentioned
before, remains nowadays one of the principal challenges to the computational fluids
dynamics.

The cases here summarized are: i) the flow past a sphere at sub-critical Reynolds
numbers, ii) the flow past a circular cylinder at Reynolds number 3900 and iii) the
flow past a NACA 0012 at Reynolds number 50000 with different angles of attack
(including the full stall state).

2.7.1 Flow past a sphere at subcritical Reynolds numbers

The unsteady flow around a sphere at sub-critical Reynolds numbers (Re < 3×
105) has a complex nature characterized by the transition from laminar to turbulent
flow in the detached shear layer, the existence of a turbulent wake behind the sphere
and the unsteady shedding of vortices in the wake. In this case, the direct numerical
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(a) (b)

Figure 2.17: Visualization of instantaneous vortical structures in the wake of
the sphere by means of Q-iso-surfaces. a) Re=3700. b) Re=10000

simulations (DNS) of the flow at Re = 3700 and Re = 10000 was carried out. It was
the aim of this work to investigate the characteristics of the wake of the sphere at
these two Reynolds numbers, in order to provide an insight of the instantaneous and
time-average near-wake flow, as well as an spectral analsys of it. The computational
domain simulated was a cylindrical domain and the meshes used were generated by
the constant-step revolution, in the azimuthal direction, of two-dimensional (2D)
unstructured grids.Meshes computed were of 9.48 MCV (million control volumes)
and 18.2 MCV, for Re = 3700 and Re = 10000, respectively. For solving both
cases, the JFF cluster and the MareNostrum Supercomputer were used, requiring
up to 240 CPUs. In figure 2.17, instantaneous plots of the turbulent wake at both
Reynolds numbers are depicted. More details can be found in [36,37].

2.7.2 Flow past a circular cylinder at Reynolds number of 3900

Similar to the flow past a sphere, the flow around a circular cylinder exhibits
different behaviors depending on the Reynolds number. At Re = 3900, the flow
is subcritical, i.e. it separates laminarly from the cylinder surface and turbulence
transition occurs in the separated shear layers. Although there have been numer-
ous investigations about this flow, there are many unanswered questions about the
unsteady behavior of the vortex formation region and how this affects the average
turbulent statistics in the near wake. Indeed, there is a large scattering in the mean
flow solutions in the near wake reported in the literature, which seems to converge
into the same solution as the flow moves downstream. The main focus of this work
is on the vortex formation region modulation, to examine its possible influence on
the wake configuration, as well as, to derive more time-accurate flow parameters
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and first and second-order statistics. Similar to the mesh generation process for the
sphere domain. the meshes computed were obtained by the constant step extrusion
in the homogeneous direction of a 2D unstructured grid. Grids with up to 20 MCV
were solved using up to 128 CPUs. In figure 2.18, some illustrative streamlines and
spanwise vorticity contours are represented. More details about this case can be
found in [38–40].

2.7.3 Flow past a NACA 0012 at Reynolds number of 50000 and different
angles of attack

In the case of flow around airfoils, transition to turbulence undergoes in the
initially laminar shear layer. After separation, at low angles-of-attack (AoA), the
flow reattaches to the airfoil surface forming a bubble (known as laminar separation
bubble, LSB), which directly affects the airfoil efficiency. At a certain AoA, the
flow fails to reattach yielding to a complete separation (stall condition). Thus, the
study of the separation mechanism and the correct prediction of boundary layer
transition are both key aspects for improving engineering designs. In the case of
NACA 0012 airfoil, it exhibits combined leading-edge/trailing-edge stall at moderate
Reynolds numbers showing the presence of a turbulent boundary layer separation
moving forward from the trailing-edge and a small laminar bubble in the leading-
edge region failing to reattach which complete the flow breakdown. In order to gain
insight in the stall mechanism, DNS of a NACA 0012 profile at Reynolds number of
Re = 5 × 104 and at AoA=5, 8, 9.25, 12 were performed. It should be noted that
the last two angles corresponded with full stall situations. This study aimed at: i)
advancing in the understanding of the physics of turbulent flows and in particular
to gain insight in the mechanism of the shear-layer transition, the dynamics of the
laminar separation bubble and in the behavior of airfoils in full-stall conditions and
ii) developing a detailed database with a complete set of turbulence statistics to be
used for the study of flows with massive separation and transitional flows. Meshes
required for solving these complex phenomena ranged between 26 and 50 MCV and
up to 256 CPUs were used. For solving these cases MareNostrum Supercomputer
at Barcelona Supercomputing Center, Magerit CesVima at Universidad Politécnica
de Madrid and JFF cluster at CTTC were used (see Appendix B). Instantaneous
illustrative results of the flow in the separated region for the AoAs under study are
depicted in figure 2.19. For more details, see [41,42].

2.8 Concluding remarks

A parallel direct algorithm for the solution of the Poisson equation arising in
incompressible flows with one periodic direction has been presented. It is a com-
bination of a direct Schur-complement based decomposition (DSD) and a Fourier
diagonalization. The latter decomposes the original system into a set of mutually
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Figure 2.18: Flow around circular cylinder, streamlines (left) and Span-wise
(right) vorticity contours.
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Figure 2.19: Instantaneous flow at different AoA

independent 2D subsystems which are solved by means of the DSD algorithm. Since
no restrictions are imposed in the non-periodic directions, the overall algorithm is
well suited for solving problems discretized on extruded 2D unstructured meshes.

The parallelization is based on a geometric domain decomposition. Different
partitions are employed for the FFT-based change-of-basis (from physical to spec-

tral space and vice versa) and for the solution of the frequency systems. The former
operation must be performed without partitioning the mesh in the periodic direc-
tion whereas, for the latter, the number of processes to solve each 2D subsystem
must be kept in the range of linear scalability of the DSD algorithm. Despite the
additional transmissions of data between these two partitions, this strategy benefits
the scalability of the overall algorithm.

The scalability and efficiency of the proposed method have been shown by per-
forming several numerical experiments on the MareNostrum Supercomputer. Scal-
ability tests using up to 8192 parallel processes with up to 109 million nodes meshes
have demonstrated the algorithm capability on solving large-scale problems with a
very short time. Finally, to benchmark it, direct numerical simulation of a turbulent
flow around a circular cylinder, at Reynolds numbers 3900 and 10000, have been
used as problem models. Measured computing times of the DSD solver have been
compared with those obtained by the standard Conjugate Gradient method with
Jacobi and block Jacobi diagonal scaling as preconditioners. It has been shown that
despite the fact that the iterative methods have better speed-up, for the range of
problems under consideration, they are clearly outperformed by the proposed DSD
algorithm. Moreover, since the JPCG is rather simple and has no parameters, these
results can be used as a reference to compare with other iterative methods.
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3

On parallel Sn transport sweep
algorithms

Main contents of this chapter have been published in:
G. Colomer, R. Borrell, F.X. Trias, and I. Rodŕıguez. Parallel algorithms for Sn transport sweeps on
unstructured meshes. Journal of Computational Physics, (in press, doi:10.1016/j.jcp.2012.07.009).

Abstract. The Boltzmann Transport Equation is solved on unstructured meshes using the Discrete
Ordinates Method. The flux for each ordinate is swept across the discretization mesh, within a source
iteration loop that accounts for the coupling between the different ordinates. In this chapter, a spatial
domain decomposition strategy is used to divide the work among the available CPUs. The sequential nature
of the sweeping process makes the parallelization of the overall algorithm the most challenging aspect.
Several parallel sweep algorithms, which represent different options of interleaving communications and
calculations in the solution process, are analyzed. The option of grouping messages by means of buffering
is also considered. One of the heuristics proposed consistently stands out as the best option in all the
situations analyzed, which include different geometries and different sizes of the ordinate set. With this
algorithm, good scalability results have been achieved regarding both in weak and strong speedup tests
with up to 2560 CPUs.
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3.1 Introduction

The availability of computational resources has been growing in the last years,
mainly in the form of multi-core supercomputers. To use them, distributed memory
(mostly based on MPI) and shared memory (mostly based on OpenMP) paralleliza-
tion models are combined. Recently, with the appearance of general purpose GPUs,
an additional shared memory parallelization model is available: one single CPU can
have access to one or several GPUs, where it is possible to launch a large number of
threads performing similar operations (vectorization). Existing algorithms need to
evolve to use this increasing availability of computational power and take advantage
of it. However, its efficient usage is not trivial and, therefore, part of the research
on the numerical simulation field has been focused on the efficient parallelization of
solution methods.

In this work we consider the numerical solution of the Boltzmann Transport
Equation (BTE). Its solution has a high cost in terms of memory requirements and
computational time. Therefore, its parallelization results in two benefits: problems
are solved faster and their size can be increased.

The parallel solution of the BTE has been studied from several perspectives:
MPI based [1,2], OpenMP based [3,4], and GPU based [5,6]. Furthermore, the two
possible ways to decompose the problem, in angular and spatial subdomains, have
been thoroughly compared (see [7, 8], for instance). Spatial domain decomposition
is the method that best suits our needs.

3.1.1 Solution methods for the BTE

Among the many numerical methods used to solve the BTE, the results of this
work are applicable to those that employ a first-order finite volume discretization
for the spatial domain, and any quadrature method to perform the angular integra-
tion. The Discrete Ordinates Method (DOM) [9] and the Finite Volume Method
(FVM) [10] are two of the most popular angular quadratures. Thus, the BTE is dis-
cretized in a number of spatial nodes and angular ordinates, where, in general, the
different ordinates are mutually coupled. In this work, we use the source iteration

method to take into account such couplings: each ordinate is solved independently,
while the couplings between different ordinates are deferred to the source term.

Different methods can be applied to solve each ordinate subsystem. Some au-
thors use general iterative solvers based on Krylov or multigrid kernels. For in-
stance, to name a few examples, Murthy and Mathur [11] applied an additive cor-
rection multigrid, Liu et al. [12, 13] used a conjugate gradient square (CGS) with
the Dupond-Kendall-Rachford preconditioner and An et al. [14] applied a CGS and
a BiCGSTAB. Nevertheless, for this specific problem, a sweeping based method,
which consists on sweeping the flux across the grid from upstream to downstream
nodes, is a more suitable choice because it mimics the way in which the informa-
tion propagates physically. Its application is possible because, using an upwind like
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interpolation scheme, the discretization matrices become lower triangular.
The inherent sequential nature of the sweep process makes the parallelization of

the overall algorithm the most challenging aspect for the sweeping based methods.
When the spatial domain decomposition strategy (SDD) is adopted, for each ordi-
nate the subdomains that are located in the downstream regions of the mesh need
to wait until the upstream nodes have been swept. This phase, in which a processor
cannot complete its tasks because it does not have all the information it requires to
proceed with the calculations, is referred to as idle time.

To cope with this limitation imposed by the SDD, some authors use a block Ja-
cobi approximation [3, 4, 15], in which the unknown values at the upstream bound-
aries of the spatial subdomains are obtained from old iterations. This method can
be tuned with different prioritization strategies but, in general, suffers from degrada-
tion in the convergence rate when the number of parallel processes is increased. This
degradation is inversely proportional to the optical thickness of the media [7]. Note
that this approach requires an iterative procedure even in the absence of ordinate
coupling.

On the other hand, the idle time that comes with the SDD can also be diminished
by overlapping the waiting for the required upstream nodes at some ordinates, with
the evaluation of the flux for the others. This is possible at some level because
each ordinate has a different sweeping order. Maximizing this overlap is a critical
point to achieve a good parallel performance. Note that in this case, contrary to
the block Jacobi strategy, full sweeps across the entire grid are performed instead
of asynchronous local sweeps. Thus, a direct solution is obtained for each ordinate.

Two relevant works, developing the strategy of full sweeps across the grid for
unstructured meshes are the papers by Pautz [2] and Plimpton et al [1]. Both works
start from a similar basic algorithm, and try to improve its performance with specific
sweeping orderings that reduce the idle time originated in the parallel executions.
Pautz poses this question in the framework of scheduling theory. However, general
scheduling problems like this one have shown to be NP-complete [16]. Therefore,
the optimal solution can only be approached by means of intuitive heuristics. Pautz
proposes several low-complexity list ordering heuristics to determine the sweep order
on any partitioned mesh. For some problems he obtains nearly linear strong speedup
with up to 126 CPUs. On the other hand, Plimpton et al. [1] base their prioritization
heuristics in simple but effective geometric criteria, obtaining good strong speedup
results on up to 2048 CPUs. They also present a grid partitioning algorithm with
the aim to generalize the effective columnar KBA style [17,18] to unstructured grids.

In addition, theoretical studies of the parallel performance of MPI-based paral-
lel sweeping based methods, have been carried out by different authors on struc-
tured [19, 20] and unstructured [21] meshes. With them it is possible to estimate
the parallel performance on large numbers of CPUs.
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3.1.2 Summary of the present work

In this chapter we are concerned with the parallel solution of the BTE on unstruc-
tured grids with an MPI-based spatial domain decomposition approach. It is worth
noting that the distributed memory parallelization can be complemented with other
parallelization strategies. However, it is an indispensable element to run the code
on most of the present day supercomputers. We prefer a sweeping based strategy
and we focus on the sweep operations, which are the heart of the algorithm.

Inspired by the good scalability results presented by Plimpton et al. [1], we devel-
oped several variants of the parallel sweep algorithm, using the works by Plimpton
et al. and by Pautz [2] as starting point. We have studied different possibilities of
alternating the communication and calculation stages and the effect of delaying the
communications by means of buffering.

In this chapter only general partitioning approaches are considered. Since our
goal is to couple the solution of the BTE with other equations in multi-physics
problems, using a specific partition strategy (e.g. those found in [1, 19, 22]) might
not be suitable in the solution of other physical phenomena.

All the numerical tests have been carried out on the IBM MareNostrum super-
computer at the Barcelona Supercomputing Center. Computing times and speedup
tests obtained using up to 2560 CPUs illustrate the efficiency and scalability of the
method. Additional tests on different geometries also show its robustness.

The rest of this chapter is organized as follows: in the next section, the math-
ematical formulation of the Boltzmann transport equation and some guidelines for
its discretization are presented. The procedure to solve the derived linear systems is
explained in Sections 3 (sequential version) and 4 (parallel version). Some heuristic
enhancements of the basic algorithm are detailed in Section 5. Relevant results are
presented in Section 6, where the performance of the different algorithms is analyzed,
and final conclusions are drawn in Section 7.

3.2 The Boltzmann Transport Equation

3.2.1 Mathematical formulation

The time independent Boltzmann Transport Equation (BTE) is a conservation
equation that accounts for the number φ of straight-propagating particles crossing
a unit area normal to a given direction per time unit, and their interaction with
the medium where they are propagating in. The flux φ will depend on the location
x ∈ R

3 and the angular direction s ∈ S2. In a general form, and omitting the spatial
dependence in all terms for clarity, the BTE can be written as

dφs

dℓ(s)
+ β1φ

s = β0 + β2

∫

S2

φs′ψs′s dΩ′. (3.1)
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This equation describes the variation of the flux of particles in a straight path in
the angular direction s, through a unit area normal to s, where the variable ℓ(s)
is the length of such path. This variation is divided into three contributions, with
different functional dependence on φ, to better capture the behavior of different
physical phenomena. The meaning of the various coefficients {βi} will depend on
the phenomena being modeled by Equation 3.1. For example, in the context of
radiative heat transfer, the coefficients β0,1,2 stand for the emission, extinction and
scattering processes, respectively. Note that in the integral term the unknown φs′ is
multiplied by the phase function ψs′s. This function represents the probability of a
particle changing its propagation direction from s′ to s. Although we are considering
the time independent form of the BTE, the parallel algorithms explained below are
not affected by the addition of a transient term.

The boundary conditions for the BTE are summarized in the following equation:

φs
bound = φs

0 − β3

∫

cos θ<0

φs′ cos θ dΩ′, (3.2)

where φs
0 is a given value at the boundary, and the integral term accounts for the

reflection of particles at the boundary, being θ the angle between the inward normal
to the surface and the propagating direction s′.

The BTE is used mainly in neutron transport models [23] and radiative heat
transfer [24]. In the former case, the unknown φ represents the neutron flux, and
Equation 3.1 is slightly modified by adding a transient term which accounts for the
fact that not all neutrons propagate at the same velocity. In the latter case, the
radiative energy is assumed to be carried by photons, and the unknown φ represents
the number of photons per unit area and time propagating in a particular direction.

3.2.2 Discretization

The discretization of the BTE is discussed in some detail for unstructured meshes,
using the Discrete Ordinates Method (DOM) to account for the angular dependence
of φ. However, the parallel algorithms presented in Sections 3.4 and 3.5 are directly
applicable for any mesh (Cartesian, body-fitted, unstructured) and for any angular
discretization (DOM, FVM).

In the DOM, the angular integrals are approximated by means of an m-point
Gaussian quadrature, where the integrand is evaluated at some prescribed directions
ŝi, weighted accordingly: ∫

S2

f(s) dΩ ≃
m∑

i=1

ωif i, (3.3)

where f i and ωi are the value of the function and the weighting coefficient for
ordinate i, respectively. Götz [25] gives an overview of different quadrature sets.
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Using the DOM, the BTE becomes a system of m differential equations coupled
together, one equation for each quadrature point:

dφi

dℓ(si)
= ŝi · ∇φi = −Biφi + S i, (3.4)

where the superindex i stands for the ordinate at which the term is evaluated, and

Bi = β1 − β2ω
iψii and S i = β0 + β2

∑

j 6=i

ωjψjiφj. (3.5)

The corresponding boundary conditions are discretized as:

φi
bound = φi

0 − β3

∑

cos θj<0

ωjφj cos θj. (3.6)

The spatial discretization on unstructured meshes is carried out by means of a
finite volume approach. Integrating the left-hand side (derivative term) of Equa-
tion 3.4 over a control volume, like the one shown in Figure 3.1, we get:

∫

V

ŝi · ∇φi dV =

∫

V

∇ · (φiŝi) dV

=

∫

∂V

(φiŝi) · n̂ dS

≃
∑

f

φi
fAf (̂s

i · n̂f ).

(3.7)

In the first step, the fact that ŝi is constant is taken into account. The divergence
theorem is applied in the second step and, finally, in the third, φi is assumed to have
a constant value φi

f on each face f , being Af the area of such a face.
Applying the divergence theorem to a constant vector field, it is easy to see

that
∑

f Af n̂f = 0. This relation allows us to introduce the nodal value, φi
P , in

Equation 3.7: ∫

V

ŝi · ∇φi dV ≃
∑

f

(φi
f − φi

P )Af (̂s
i · n̂f ). (3.8)

There exist several methods to derive φi
f from the values of φi at the neighbor

nodes [26]. In this work, we use a first order upwind-like interpolation scheme
(i.e. the value φi

f on any face is made equal to φi
P in its upstream neighbor node).

Therefore, in the last equation, the contribution from the downstream faces becomes
zero: ∫

V

ŝi · ∇φi dV ≃
∑

f

ai
f (φ

i
P − φi

f,up), (3.9)
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Figure 3.1: Typical control volume (shaded) in an unstructured grid. The values
of φi are calculated at point P and are assumed constant within the volume.

where ai
f = −Af min(0, ŝi · n̂f ), and φi

f,up is the value of φi on the upstream node of
the face f . The sign change in the term (φi

P − φi
f,up) with respect to Equation 3.8

makes the coefficients ai
f positive.

The spatial discretization of the right-hand side term of Equation 3.4 is trivial.
Thus, the fully discretized form for the BTE is:

∑

f

ai
f (φ

i
P − φi

f,up) = −Biφi
PVP + S iVP , (3.10)

where VP is the volume of the cell at node P . Rearranging the terms to clarify the
structure of the system, we get:

(
∑

f

ai
f + BiVP

)
φi

P −
∑

f

(ai
f )φ

i
f,up = S iVP . (3.11)

Using a matrix based formulation, this system can be read as Aφ = b, where A ∈
R

mN×mN , being m and N the number of quadrature points and nodes, respectively.
Notice that the dependences between different ordinates are deferred to the term
S i (i.e. to the right-hand side vector b), leading to a block diagonal form for the
matrix A, one block for each ordinate. Moreover, using an upwind-like scheme, each
block Ai ∈ R

N×N has a lower triangular sparsity pattern, thus it can be solved by
means of a forward substitution. In the next section we explain an efficient strategy
to solve all ordinate blocks simultaneously.

The introduction of the nodal value in Equation 3.8 makes the system matrix
diagonal dominant, even if Bi is zero. Care must be taken if Bi < 0, as the diagonal
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coefficient could become zero, thus invalidating the forward substitution as a solution
method. For physically relevant equations, as in the radiative and neutron transport
equations, Bi is indeed positive or zero.

3.3 Solution of the discrete equation

To solve the BTE we use the source iteration (SI) procedure outlined in Al-
gorithm 1. In short, the dependences of φi on any ordinate j 6= i are treated as
constants, and deferred to the source term, taking the values from the previous it-
eration. Then, once all the ordinates have been solved, the source term is updated
with the recently obtained values. This procedure is repeated until convergence is
achieved. Although we perform a Jacobi like update of the source term, a Gauss-
Seidel like update is also feasible. In any case, in this chapter we are concerned about
the sweeping procedure rather than the coupling between the angular ordinates. The
pseudo-code for the SI algorithm is:

Algorithm 1: source iteration algorithm

1. difference = ε+ 1
2. while (difference > ε):
3. for each ordinate i:
4. calculate the source term S i

5. parallel sweep

6. difference = 0
7. for each ordinate i:
8. difference = max(difference, ‖φi

actual − φi
previous‖)

Prior to discuss the parallel sweep algorithm, we describe the sequential proce-
dure of sweeping φ along a particular direction ŝi. As mentioned above, if the BTE
is discretized using an upwind-like interpolation scheme, the resulting discretization
matrix for each ordinate is lower triangular. Thus, these subsystems can be solved
by sweeping the nodes in a particular order, performing what is known as a forward
substitution in the linear algebra context. These ideas are developed in the next
paragraphs.

Consider the node B shown in Figure 3.2. Following the discretization method
detailed in Section 3.2.2, the value of φ at B for the ordinate i, φi

B, depends on φi
A, if

and only if the projection of ŝi on the vector normal to the common face (and directed
to B) is positive. Therefore, given an ordinate i, for each pair of adjacent nodes
only one of them can contribute to the value of φi in the other. These dependences
can be described by means of a directed graph, where the vertices represent the
mesh nodes, and the edges (or arrows) represent the faces between two adjacent
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A

B
for each ŝ

i in this hemisphere,

B depends on A

for each ŝ
i in this hemisphere,

A depends on B

Figure 3.2: Two generic control volume nodes are shown. Their coupling de-
pends on the direction, ŝi, being solved.

nodes, and point to the downstream one. This is illustrated in Figure 3.3 for a
two-dimensional unstructured mesh.

For each pair node/ordinate, the upstream and downstream neighbors of the node
respect to the ordinate, are referred as the incoming and outgoing sets, respectively.
For example, in Figure 3.3, the incoming and outgoing sets of node 4 are {1,3} and
{5,9}, respectively.
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Figure 3.3: Dependence relations, for a particular angular direction ŝi on a two
dimensional unstructured mesh, represented by means of a directed graph.

If the dependency graph does not contain cycles (see an example of cycle in Figure
3.4), then it is a directed acyclic graph (DAG). In this case, it can be organized in
a hierarchy of levels of mutually uncoupled nodes. Level 0 contains the upstream

boundary nodes, which are the nodes with empty incoming set. Level 1 contains the
nodes that depend only on the nodes of level 0 and, as a general rule, nodes on level
k + 1 are the outgoing nodes of nodes from level k that are not in the outgoing set
of nodes from levels higher than k. For example, the levels of the graph depicted in
Figure 3.3 are {1,3}, {2,4,7}, {5,8}, {6,9} and {10}.

In general, given a domain, it is possible to discretize it with a mesh formed by
convex polyhedra that has an associated DAG. However, some loops can occur in
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complex meshes. In order to overcome this problem, Plimpton et al. [1] developed a
parallel algorithm for detecting and eliminating loops in the mesh. This algorithm
may be used on a pre-processing stage to ensure the acyclicity of the associated
graphs.

1

2

3

4

5

6

Figure 3.4: Directed graph with a cycle.

From Equation 3.11, it is clear that any node for which the elements of its
incoming set are already solved, can be evaluated explicitly as

φi
P =

S iVP +
∑

f a
i
fφ

i
f,up∑

f a
i
f + BiVP

, (3.12)

where
∑

f a
i
fφ

i
f,up is the contribution of the already evaluated incoming nodes, and

S i is evaluated taking the values from the previous source iteration. Therefore, all
the nodes can be evaluated explicitly if they are swept in an order that respects the
levels defined above or, more generally, an order in which each node comes before
the nodes in its outgoing set. Such an order is referred as a topological sort of the
associated DAG [27] and there are algorithms with linear cost to do it.

For each ordinate i, its associated DAG represents also the sparsity pattern of
the submatrix Ai: the coefficient {Ai}jk is not null if and only if there is an arrow
from vertex k to vertex j in the graph. Actually, a topological sort is an ordering
of the unknowns such that Ai becomes lower triangular.

Therefore, an option to solve all the ordinate directions is to find a topological
sort for each ordinate and then solve one system after the other by means of forward
substitutions. However, in order to find a topological sort it is necessary to have
information from the whole mesh, and this is not convenient with the spatial domain
decomposition strategy adopted in this work (see Section 3.4). We therefore use a
more indirect algorithm without such a limitation:
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Algorithm 2: sweep algorithm (sequential version)

1. for each node k and ordinate i:
2. evaluate countk,i = # of incoming nodes for k at ordinate i
3. if (countk,i == 0): insert the pair (k, i) into solvable list l
4. while (l 6= {∅}):
5. remove pair (k, i) from l and solve it (using equation 3.12)
6. for each outgoing node k′ of k at ordinate i:
7. decrement countk′,i

8. if (countk′,i == 0): add pair (k′, i) to l

The above algorithm is based on managing a list, l, of solvable pairs node/ordi-
nate. These are the pairs for which all the incoming neighbors have already been
solved. Initially, l will contain the nodes of level 0 of each ordinate. For the rest
of pairs there is a counter of the number of their unevaluated incoming nodes. As
the pairs of the solvable list are evaluated, the counter of their outgoing elements is
decremented and some of them become solvable too. This process is continued until
all pairs node/ordinate are solved. A similar version of this algorithm, referred as
AHOT-C-UG, can be found in [28].

3.4 Strategies for parallelization

When addressing the problem of solving the BTE in parallel, two kinds of domain
decomposition are possible: either the spatial domain is divided into several parts
(SDD), each processor holding data for all ordinates; or, on the other hand, the
angular domain is divided into several parts (ADD), assigning a subset of ordinates
to each processor. A combination of both partitioning types is also possible, although
it is not considered in this chapter.

We prefer the SDD mainly to facilitate the coupling of the BTE solver with other
solvers in multi-physics problems. Moreover, memory requirements are lower in the
SDD since the mesh is divided among several processors. This is a major advantage
when unstructured meshes are used. Besides, when angular integrals are computed,
an expensive all-to-all communication is required for the ADD as the ordinates are
spread over all processors. In contrast, in the SDD, this expensive communication
is not needed because each processor holds the data for all ordinates. Finally, in
the ADD, the number of processors is limited by the number of ordinates and, to
keep the loads balanced, it is required that divides the number of ordinates. In this
regard the SDD is much more flexible and the number of processors is not limited
for all practical purposes.
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Fischer and Azmy [8] compared the two strategies under a large range of mesh
sizes and number of ordinates on a Beowulf cluster. They tested different communi-
cation models, including a new one proposed by them for the ADD. They concluded
that the ADD is only best suited for cases with a large number of ordinates and few
spatial nodes, when using a small number of processors.

Using the SDD, the parallel sweep algorithm is similar to the sequential one, but
some point-to-point communications between processors become necessary. The
parallel counterpart of Algorithm 2, based on the work by Plimpton et al. [1], is
detailed in Algorithm 3:

Algorithm 3: BASIC parallel sweep algorithm for processor p

1. for each owned node k and ordinate i:
2. evaluate countk,i = # of incoming nodes for k at ordinate i
3. if (countk,i == 0): insert pair (k, i) into the solvable list lp
4. evaluate workp = m×# of owned nodes in processor p
5. while (workp > 0):
6. while (lp 6= {∅}):
7. remove pair (k, i) from lp and solve it (using equation 3.12)
8. decrement workp

9. for each outgoing node k′ of k at ordinate i:
10. if k′ is an owned node:
11. decrement countk′,i

12. if (countk′,i == 0): add to lp
13. else:
14. SEND info. to the owner processor
15. while (messages to be read):
16. READ next pair (k, i) from message
17. for each owned outgoing node k′ of k at ordinate i:
18. decrement countk′,i

19. if (countk′,i == 0): add to lp

In the above algorithm, the main loop (lines 5–19) is repeated until all owned
nodes at each ordinate have been solved. Hereinafter we refer to an iteration of
the main loop as a stage of the sweep algorithm. In a partitioned mesh, for each
ordinate, each subdomain will have some nodes with incoming or outgoing neighbors
belonging to other subdomains. Therefore, communications between processors are
necessary to complete the sweeps. When a node with an outgoing neighbor belonging
to another subdomain is solved, its information is immediately sent to the adjacent
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subdomain (line 14). Finally, when one processor has no more tasks in its solvable

list, messages sent from other processors are read with the aim to enable new nodes
to be solved (lines 15–19).

At this point, it is worth noting the importance of solving all ordinates simul-
taneously. The solution time for a sweep along a single direction can hardly be
reduced by the SDD parallelization, because the subdomains need to be sweeped
from the upstream to the downstream zones, and the overlapping of computations
becomes difficult. On the other hand, when solving all ordinates at once there are
more chances of more processors working at the same time because, in general, the
sweeping order is different for each ordinate. The higher the number of ordinates
(i.e. non-equivalent DAGs), the higher is the chance of more processors working
simultaneously. For example, Figure 3.5 shows a mesh decomposed in two parts
and a direction ŝi to be solved. If only the direction ŝi is solved, initially only the
processor which owns the left part of the mesh (white cells) works, while the other
processor (which owns the gray cells) must wait to receive the needed incoming
elements. However, if directions ŝi and −ŝi are solved at the same time, the two
processors work simultaneously most of time.
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Figure 3.5: Left: Partitioned two-dimensional mesh. Right: Directed graph
representing the dependencies for direction ŝi. The graph for −ŝi is the same,
but with all arrows reversed.

The message passing of the BASIC algorithm (Algorithm 3), is asynchronous in
nature. When a pair node/ordinate is evaluated, if one of its outgoing nodes belongs
to another processor, a small message is sent to it, whether the other processor is
waiting for it or not. To do so, we use the standard MPI functions MPI BSend,
MPI Iprobe and MPI Recv. Note that to read all the arrived messages (lines 15–
19 of Algorithm 3), it is necessary to call the functions MPI Iprobe and MPI Recv
repeatedly, until the function MPI Iprobe indicates that there are no more messages
to be read. Only the neighbor subdomains need to be tested with MPI Iprobe.

Apart from the communication costs, the main aspect that degrades the perfor-
mance of the algorithm is the idle time that occurs when a processor has no tasks
in the solvable list, lp, but has still work to be done. In this situation, the processor
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is simply waiting to receive the information required to proceed.
The BASIC algorithm (Algorithm 3) is similar to the basic algorithm described

by Plimpton et al. [1], and to the one used by Pautz [2]. An enhancement that
is studied in these and other works, e.g. Kumar et al. [22], is the reordering/pri-
oritizing of tasks within the solvable list, lp, in order to minimize the idle time.
This could be accomplished by using a priority queue instead of the list lp. In this
work we group the tasks of the solvable list by directions, instead of using such
prioritizing techniques. We also focus our attention on the management of message
passing between processors, studying aspects such as how to alternate the solution
of the solvable tasks and the communication episodes, and the effect of reducing the
number of communications by means of buffering.

3.5 Enhancements

3.5.1 Reordering tasks by directions

The strategy used by Plimpton et al. [1] is based on the prioritization of pairs
node/ordinate that impose the most dependencies on other nodes. They sustain
this approach by stating that solving these nodes early can potentially reduce the
idle time. They use a geometric heuristic to estimate the level of dependencies and
combine this criterion with trying to group the tasks by ordinates.

On the other hand, Pautz [2] uses scheduling criteria based on the properties
of the associated DAGs. He uses static schedules, fixed a priori as a preprocessing
stage, while the algorithms of Plimpton et al. prioritize the tasks on run-time as
they appear in the solvable list. As a consequence, the option used by Plimpton et
al. is more flexible to possible delays of incoming information due to interprocessor
communications, while the reorderings archived by Pautz are more accurate.

For each of the parallel sweep (PS) algorithms that are used in this chapter, we
set as a sole criterion that the tasks are grouped by directions. The objective is
to advance as quickly as possible within each ordinate (avoiding jumps from one
ordinate to another), and send the outgoing data to the processors that are waiting
for it. For this purpose, a list of tasks for each direction is used, and in each list the
tasks are solved in the same order as they are stored (first-in first-out order). The
pseudo-code of the algorithm is:
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Algorithm 4: parallel sweep algorithm by directions (PSD) for processor p

1. for each node k and ordinate i:
2. evaluate countk,i = # of incoming nodes for k at ordinate i
3. if (countk,i == 0): insert node k into solvable list lip
4. evaluate workp = m×# of owned nodes in processor p
5. while (workp > 0):
6. for each ordinate i:
7. while (lip 6= {∅}):
8. remove node k from lip and solve it (using equation 3.12)
9. decrement workp

10. for each outgoing node k′ of k:
11. if (k′ is an owned node):
12. decrement countk′,i

13. if (countk′,i == 0): add to lip
14. else
15. SEND info to the owner processor
16. while (messages to be read):
17. READ next pair (k, i) from message
18. for each owned outgoing node k′ of k at ordinate i:
19. decrement countk′,i

20. if (countk′,i == 0): add to lip

In the algorithm described above, the solvable list is split by ordinates and the new
lists lip are solved one after the other (lines 6–15). While the tasks of lip are being
solved, if new nodes become solvable for ordinate i, they are appended to lip (line 13).
A different option could be leaving this new incoming tasks for the next stage of the
main loop. In this case, the ordinate being solved would alternate more often and
more reading episodes would be interspersed with calculations. The pseudo-code of
this new option is:
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Algorithm 5: parallel sweep algorithm alternating directions (PSAD) for
processor p

(1–12). lines 1–12 of Algorithm 4.
...
13. if (countk′,i == 0): add to ℓip
14. else
15. SEND info to the owner processor
16. lip = ℓip
...
(17–21). lines 16–20 of Algorithm 4

In Algorithm 5, an auxiliary list, ℓip, is used to store the new solvable nodes at
ordinate i (line 13). Once all the tasks of the list lip are solved, the elements of ℓip
are moved to lip in order to be solved in the next stage of the main loop (line 16).

Finally, the last option here considered consists of solving only one ordinate in
each stage of the main loop, choosing the one that accumulates more tasks in its
list. The algorithm for this option reads:

Algorithm 6: parallel sweep algorithm by single direction (PSSD) for
processor p

(1–5). lines 1–5 of Algorithm 4.
...
6. for the ordinate i with the longest lip:
...
(7–20). lines 7–20 of Algorithm 4.

Note that the only change respect to Algorithm 4 is that in line 6, rather than iterate
through all ordinates, the one that has more tasks on its list is chosen.

3.5.2 Message buffering

We also consider the option of grouping messages by means of buffering. This
option reduces the number of communications between processors and, therefore,
the costs associated with the latency of the parallel machine being used. However,
as the processors will hold information necessary to other processors to complete
their work, it may result in more idle time. In any case, we have considered two
options: the first is not to use buffers, as in algorithms 4, 5, and 6, and the second
consists in buffering all the outgoing messages to send them once the solution of
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tasks in the solvable list is finished, just before the reading process. In summary, we
consider six variants of the BASIC algorithm: the three algorithms defined above
(PSD, PSAD, PSSD), and the three algorithms derived from them by buffering the
messages that were immediately sent in non-buffered versions. These new versions
of the algorithms are referred to as PSD-b, PSAD-b and PSSD-b. For example, the
pseudo-code of the algorithm PSD-b is:

Algorithm 7: parallel sweep algorithm by directions and buffering (PSD-
b) for processor p

1. for each node k and ordinate i:
2. evaluate countk,i = # of incoming nodes for k at ordinate i
3. if (countk,i == 0): insert node k into solvable list lip
4. evaluate workp = m×# of owned nodes in processor p
5. while (workp > 0):
6. for each processor q:
7. BUFFERq = {∅}
8. for each ordinate i:
9. while (lip 6= {∅}):
10. remove node k from lip and solve it (using equation 3.12)
11. decrement workp

12. for each outgoing node k′ of k:
13. if (k′ is an owned node):
14. decrement countk′,i

15. if (countk′,i == 0): add to lip
16. else
17. q = owner of node k′

18. add info for node k′ in BUFFERq

19. for each processor q:
20. SEND BUFFERq

21. while (elements to be read):
22. READ next pair (k, i) from message
23. for each owned outgoing node k′ of k at ordinate i:
24. decrement countk′,i

25. if (countk′,i == 0): add to lip

Note that the size of the buffers depends on the algorithm chosen. In the PSD-
b algorithm, the buffer accumulates information from all ordinates. This is also
the case for the PSAD-b algorithm, but with smaller buffer sizes (because the new
incoming tasks are deferred to the next stage of the main loop). Finally, in the
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PSSD-b algorithm the buffers only accumulate information from the chosen ordi-
nate. In all three cases, the buffer sizes are variable and it is necessary to call the
function MPI Get count before reading them. The function MPI Buffer attach is used
to ensure that enough memory is available for the sending buffers.

In the buffered versions, the prioritizing techniques mentioned earlier, e.g. those
used in [1,2,22], have no effect on the parallel performance because the communica-
tions are delayed. On the other hand, if GPUs were used to vectorize the solution of
the solvable nodes, buffering would reduce the number of communications between
the GPUs and the CPU.

The variants of the BASIC algorithm introduced in this work represent different
forms of combining communications and calculations in a parallel sweep algorithm.
The numerical experiments carried out in the next section show that these variants
have a significant impact on the parallel performance. According to the results of
these experiments, the PSD-b stands out as the best algorithm in terms of solution
time and parallel performance.

3.6 Numerical experiments

Our main interest is to acquire a deep understanding of the results obtained with
the different PS algorithms. For this purpose, the different (but interrelated) parts
that compose the algorithms have been analyzed separately to better understand
the importance of each one in the global parallel performance. Transparent medium
(β1 = β2 = 0) and Dirichlet boundary conditions (β3 = 0) are considered. In this
particular situation, the source term is constant, so the use of the source iteration
algorithm (SI) is not required. Note that almost all of the computational cost of an
iteration of the SI loop corresponds to the PS algorithm. Therefore, the scalability
properties of the complete SI loop, will be similar to those obtained for the PS
algorithm.

The geometries used in the tests have been discretized on the unstructured
meshes summarized in Table 3.1. These meshes do not contain cycles, which is
an indispensable requirement for the PS algorithms described before. Although
possible, it is uncommon that cycles appear in geometric discretizations. For these
cases, Plimpton et al. [1] developed a parallel algorithm for detecting and eliminating
cycles that could be used as a pre-processing stage in the general case.

We used relatively small meshes because at most 2560 CPUs were available for
the tests. With bigger meshes, scalability would be extended to higher number
of CPUs, and the speedup degradation would start out of the range of processors
available. Unless otherwise stated, the angular domain is divided into 80 ordinates
arranged according to the S8 quadrature (satisfying the odd moment condition [29]).

All the numerical tests have been carried out on the MareNostrum supercom-
puter at the Barcelona Supercomputing Center (BSC). At the moment when these
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Name Size C.V. Domain description
mI-S 18 757 tetrahedron sphere
mI-L 151 265 tetrahedron sphere
mII 18 878 tetrahedron prism with aspect ratio 3
mIII 18 691 tetrahedron cube with an empty sphere in the center
mIV 18 762 triangles square (2D geometry)

Table 3.1: Meshes used on the numerical experiments. The size of a mesh refers
to its number of cells, and C.V. states the type of control volume.

tests have been performed, this was an IBM BladeCenter JS21 Cluster with 10 240
PowerPC 970MP processors at 2.3 GHz, with 1 MB cache per processor. Quad-core
nodes with 8 GB RAM, were coupled by means of a high-performance Myrinet
network. The code has been compiled in a Linux SuSe Distribution using the IBM
XL C/C++ enterprise edition compiler, version 10.1. Moreover, the version mx of
MPICH was used for the message-passing. Results have been obtained by averaging
over 300 runs of the same problem to reduce dispersion.

In a multi-core architecture, the performance of the CPU cores can be affected by
the shared memory bandwidth, resulting in lower performance of each core when all
cores are engaged [30]. To circumvent this variable, all the tests have been performed
by using all the cores within each quad-core processor. Consequently, the number
of MPI processes is restricted to multiples of 4.

3.6.1 Analysis of the algorithms

The execution of any of the PS algorithms can be divided into three parts:

i) Communications call : this includes the filling/emptying of the buffers and the
calls to MPI routines on the send and receive phases. As the MPI modes used
are asynchronous and non-blocking, the costs related to the bandwidth are not
considered in this part.

ii) Idle time: inactivity phase that occurs when a CPU requires information from
other CPUs to be able to proceed. This waiting time can be due to the
network bandwidth limitation (information has already been sent but has still
not arrived), or to the algorithm blocking (other processors have yet to solve
the required upstream nodes, thus the information has still not been sent).

iii) Solve: solve the tasks of the solvable list and add the new solvable tasks into
it.

Figure 3.6 shows the time spent on each part for the different PS algorithms,
when solving the mesh mI-L using 32 (top) and 1024 (bottom) CPUs, respectively.
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Note that, in the top plot, the scale of the time axis is about 40 times larger.
The values for these measurements are explicitly shown in Table 3.2, together with
the number of stages of the main loop required to complete the work. The stages
carried out during the idle time are not counted. We use the function gettimeofday to
measure the wall clock time spent in each part of the algorithm. The increase in the
execution time caused by this monitoring is less than 1% in all cases. The function
MPI Barrier is called before starting and after finishing the sweeping process, thus
the time obtained is the same for all CPUs involved in the execution. However, the
time spent in each part of the algorithm differs from one CPU to the other. The
following analysis, and the data reported in Figure 3.6 and Table 3.2, are based on
the averaged values over all the CPUs.
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Figure 3.6: Wall clock time spend in each part for the different PS algorithms.
Tests are carried on the mesh mI-L using 32 (top) and 1024 (bottom) CPUs,
respectively.

In the buffered versions of the PS algorithms, the messages are not sent imme-
diately but held back until the solution of the tasks of the solvable lists is finished.
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BASIC PSD PSD-b PSSD PSSD-b PSAD PSAD-b
32 CPU

total 4.49 4.27 2.93 3.66 3.38 3.58 3.17
comm. 0.43 0.40 0.11 0.33 0.18 0.37 0.18
idle 2.02 1.97 0.97 1.42 1.33 0.81 0.71
solve 2.04 1.90 1.85 1.91 1.87 2.39 2.28
stages 5927 5953 963 6631 2894 8711 3204

1024 CPU
total 0.091 0.098 0.035 0.096 0.069 0.081 0.049
comm. 0.033 0.033 0.016 0.035 0.030 0.034 0.024
idle 0.045 0.051 0.009 0.047 0.032 0.021 0.007
solve 0.013 0.014 0.010 0.014 0.007 0.026 0.018
stages 1040 981 515 1451 1156 1218 764

Table 3.2: Wall clock time (in seconds) spent in the different parts and number
of stages of the main loop, for each of the PS algorithms. Tests are carried out
on the mesh mI-L, using 32 and 1024 CPUs respectively.

Although it seems that a priori this strategy should increase the idle time, results
in Table 3.2 show that it actually decreases. By using buffering, the number of
communications is reduced and, therefore, also the costs of the communications call

part. In addition, the solution of tasks from the list is carried on more continuously,
with less interruptions due to the communications. This produces a drop in the
solve part costs, especially using 1024 CPUs when most of the CPU data fits in the
cache. In conclusion, by using buffering the sweep operations become faster and, as
a consequence, the algorithm blocking gets reduced.

Looking at each part separately, we see that using 32 CPUs, the percentage of
time spent on the communications call is rather small (between 4% and 10%), while
when using 1024 CPUs this percentage grows significantly (up to between 34% and
49%). The reason for this behavior is that, although the size of the subdomains is
reduced 32 times, the time spent in the communications call part is only reduced
by a factor between 7 and 13, depending on the algorithm. As a consequence, this
part ends up slowing down the global speedup. The PSD-b algorithm is the one
with less costs associated to the communications call part.

The solve part is the one with the highest speedup. When the number of CPUs is
increased, the amount of tasks to be done per CPU decreases in the same proportion.
The number of stages required also decreases, making the algorithm more efficient.
Both factors, together with cache effects, produce a superlinear speedup that, for
all algorithms, averages around 150 times for an increase of only 32 times in the
number of CPUs. Recalling that the number of tasks to be done is the same for all
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the algorithms, differences on the performance for this part lie on the different ways
of alternating between the solve, send and receive stages, and the effect that this
produces on the efficiency of the computations. For the best algorithm, the PSD-b,
this part has a speedup of 181 times: using 32 CPUs it represents a 63% of the total
time, while using 1024 CPUs it represents only a 28%.

Finally, the influence of the idle time on the global speedup depends on the PS
algorithm. In particular, the reduction of the algorithm blocking is strongly linked
to the acceleration of the solve part: if the sweep operations become faster, the
neighbor upstream subdomains require less time to complete their tasks. Except for
the PSD-b and the PSAD-b, the acceleration of this part is slightly lower than the
acceleration of the overall algorithm (on average 37 vs. 45 times). However, a much
higher acceleration has been observed for the PSD-b and PSAD-b algorithms: the
partial speedups are of 108 and 101 times (resulting in global speedups of 84 and 65
times), respectively.

Summarizing, three interrelated factors, listed below from the least to the most
beneficial, determine the speedup of the PS algorithms:

1. The communications call is the part of the PS algorithms with the most limited
speedup. The ratio of time spent in it increases with the number of CPUs and
ends up slowing down the global acceleration.

2. The idle time is a degradation factor for the PS algorithms. Nevertheless, in
contrast to the communications call, it contributes to the speedup as it has a
superlinear reduction (except for the PSSD). The acceleration of the algorithm

blocking component in the idle time is directly linked with the acceleration of
the solve part.

3. The solve part constitutes the most significant contribution to the speedup
of the PS algorithms. Increasing the number of CPUs, the number of un-
knowns to be solved by each one decreases proportionally and the operations
are performed more efficiently, resulting in a superlinear speedup for this part.

3.6.2 Strong speedup

The strong speedup measures the acceleration of an algorithm with the num-
ber of CPUs. Strong speedup tests for the mesh mI-S are depicted in Figure 3.7
(top). Considering that the angular domain is discretized into 80 ordinates, the total
amount of unknowns is of about 1.5M . At first sight, we observe that the PSD-b
clearly outperforms the rest of the PS algorithms. The speedup gets exhausted at
around 512 CPUs, with a parallel performance of 100%, remaining only about 37
nodes (2960 unknowns) per CPU, approximately. The walk clock time spent by this
algorithm to perform the parallel sweep with 512 CPUs is 0.009 s.
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Figure 3.7: Strong speedup tests for the different PS algorithms. The speedup
is calculated based on the time of the fastest algorithm, namely the PSD-b. Top:
mesh mI-S. Bottom: mesh mI-L.

Tests on the larger mesh, mI-L, from 128 to 1024 CPUs, are shown in Figure 3.7
(bottom). In this case, the total number of unknowns is around 12.1M , and the
PSD-b clearly outperforms the rest of algorithms too. Figure 3.8 shows the evolution
of the speedup of the PSD-b algorithm for an increased range up to 2560 CPUs (the
maximal number available for the tests). With this number of CPUs, the algorithm
has a parallel performance of 126%, remaining only about 60 nodes (4800 unknowns)
per CPU approximately. The minimal walk clock time obtained is 0.019 seconds.

In Table 3.3, the distribution of the time and the number of stages, for the
executions on the meshes mI-S and mI-L, are compared. The loads per CPU are
the same, and equal to the minimal load achieved with the largest test on the mesh
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Figure 3.8: Strong speedup for the PSD-b algorithm on the mesh mI-L.

mI-L. We see that increasing the mesh size leads to a larger number of stages of the
main loop. This mainly results in larger communication call costs, because there
are more communication episodes, and longer idle time. The cost of the solve part
stays the same.

Mesh CPUs load/CPU total time solve comm. idle stages

mI-S 320 59 0.011 0.003 0.006 0.002 174
mI-L 2560 59 0.019 0.003 0.011 0.005 572

Table 3.3: Wall clock time spent in the different parts of the algorithm, and
number of stages of the main loop, for the PSD-b algorithm. Tests are carried
out on the meshes mI-S and mI-L using 320 and 2560 CPUs, respectively.

3.6.3 Superlinearity

In general, in other more common parallel linear solvers, such as Krylov or
multigrid methods, the execution process is divided into only two parts: the inner

calculations and the communications. One compensates the other in the speedup.
For the PS algorithms, there is an extra contribution, given by the algorithm block-

ing, that favors the superlinearity of the overall algorithm. As mentioned earlier,
the algorithm blocking is one of the two components of the idle time; the other one
is caused by the network bandwidth limitations.

In order to see the effect of the algorithm blocking on the speedup, it would
be necessary to remove its contribution from the global speedup, and compare the
results. However, we couldn’t devise a way to measure the two different components
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of the idle time separately. Therefore, we can only measure the effect of the algorithm
blocking by observing the speedup when we omit the idle time as a whole.

In Figure 3.9, the speedup with the idle time removed is shown, along with the
speedup of the complete algorithm for reference. It can be seen that the superlin-
earity gets reduced, although it is still present. However, as we are omitting all the
idle time, we are not considering the time spent by the messages in the network.
Thus, we are only considering the latency of the communications but not the net-
work costs, that depend on its bandwidth. If we could discard only the algorithm
blocking the result would be closer to the linear behavior.
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Figure 3.9: Strong speedup of the PSD algorithm for the mesh mI-L both
considering and disregarding the idle time.

3.6.4 Weak speedup

The weak speedup shows the scalability of the algorithm when the ratio between
the number of unknowns and CPUs remains constant. Ideally, the solution time
remains also constant. However, both the cost of the communications call and
the idle time tend to grow with the number of processors, eventually limiting the
scalability.

A weak scalability test for the PSD-b algorithm in a spherical domain is depicted
in Figure 3.10. Several meshes have been tested, keeping the ratio nodes/CPU equal
to that obtained for the mI-L mesh using 128 CPUs (1180 mesh nodes, about 94 400
unknowns, per CPU). Although when using unstructured meshes it is difficult to
obtain a specific number of nodes, the maximal deviation obtained is around 1%.
Despite the fact that the size of the mesh and the number of CPUs are increased 160
times, the solution time grows only by a factor of 2.31. Moreover, the degradation
from 128 to 2560 CPUs is only about 38% while the size of the problem increases 20
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Figure 3.10: Weak speedup for the PSD-b algorithm in a spherical domain.
The number of nodes per CPU is kept constant at around 1180 elements (about
94 400 unknowns per CPU).

times. The largest mesh solved has 3M nodes (240M of unknowns) and the solution
time on 2560 CPUs is 0.67 s.

3.6.5 Influence of angular discretization

Up to now, all tests have been performed using the S8 angular discretization,
with a size of 80 ordinates. In this section, additional ordinate sets are tested: the
S4 (24 ordinates) and S6 (48 ordinates) quadratures, as defined in [29] (satisfying
the odd moment condition), and the S10 (120 ordinates) and S12 (168 ordinates)
quadratures, as defined in [31]. The increase of the solution time with the number
of ordinates for the mesh mI-L, using 128 CPUs, is shown in Figure 3.11. We see
that, as expected, the solution time and the number of ordinates are proportional.

Additional strong and weak speedup tests have been performed for the S4 and
S12 quadratures, using the same spatial meshes as in the previous tests. New results,
together with those obtained with the S8 quadrature, are depicted in Figure 3.12.
Increasing the size of the ordinate set improves both the strong and weak speedups.
There are two reasons for this: i) As, in general, each ordinate has a different as-
sociated DAG, by increasing the number of ordinates there are more chances that
more processors work simultaneously (this reduces the algorithm blocking effect). ii)
When increasing the number of ordinates, the percentage of time spent in the com-

munications call also decreases because, proportionally, fewer messages (buffering
information of more ordinates) are sent. As a result, the PSD-b algorithm spends a
higher percentage of time in the solve part, which is the part of the algorithm that
scales the best. This leads to an improvement of the overall speedup.
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Figure 3.11: Normalized completion time (time(Sn)/time(S4)) as a function of
the ordinate set for the mesh mI-L.

Results of the strong speedup test are shown in Figure 12 (top). With 768 CPUs
(the last point in which the speedup for the three quadratures still increases), the
percentage of time spent in the solve part is 22%, 32% and 42% for the angular
discretizations S4, S8 and S12, respectively. Furthermore, on the weak speedup test
(Figure 3.12 bottom), using 2560 CPUs the solve part represents 11%, 24% and 31%
of the total time for each of the quadratures, respectively. Note that in Figure 3.12
(top and bottom) the gap between S4 and S8 is bigger than the gap between S8 and
S12. This is because the number of ordinates is increased by a factor of 3.3 in the
first case, and by a factor of 2.1 in the last one.

3.6.6 Tests in different geometries

So far, all the calculations have been carried out in a canonical spherical do-
main. With the aim of testing the effect of the geometry on the performance of the
PS algorithms, we have done additional tests on the different geometries shown in
Figure 3.13 and described in Table 3.1. These geometries are a prism with aspect
ratio 1:1:3 and a cube with a spherical hole in the center, both discretized with
tetrahedral meshes, and a 2D square domain discretized by means of triangles. All
these new discretizations have approximately the same size as the mesh mI-S. Note
that if the number and type of the control volumes of two discretizations are equal,
the variations on the geometry of the domain only affect the structure of the DAG
associated to each ordinate.

The solution times for the different geometries and PS algorithms, using 16 and
384 CPUs, are reported in Table 3.4. It is important to remark that the PSD-b
algorithm performs the best in all geometries tested. Moreover, for the PSD-b the
solution time is similar in all the 3D geometries tested. This indicates that, in these
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Figure 3.12: Strong (top) and weak (bottom) speedups for several angular
discretizations: S4, S8, S12.

situations, the dependence of the solution time in the DAGs structure is not very
strong. More significant changes occur if 2D and 3D geometries are compared. In
this case, the stencils obtained with triangular and tetrahedral elements are not the
same. Therefore, besides the differences in the DAGs, the sparsity of the matrices
also changes.

3.7 Concluding remarks

We have presented different variants of a sweeping based algorithm for the nu-
merical solution of the Boltzmann Transport Equation on unstructured meshes. The
Discrete Ordinates Method and a first-order upwind like discretization have been
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mII mIII mIV

Figure 3.13: Meshes of the new geometries. All of them have around 18.8k

nodes. Mesh mII is a prism with aspect ratio 1:1:3, mIII is a cube with a spherical
hole in the center, and mIV is a two dimensional square domain.

Mesh used
mI-S mII mIII mIV (2D)

(16 - 384 CPU) (16 - 384 CPU) (16 - 384 CPU) (16 - 384 CPU)

BASIC 0.50 - 0.026 0.45 - 0.024 0.41 - 0.024 0.25 - 0.018
PSD 0.45 - 0.027 0.38 - 0.025 0.36 - 0.023 0.22 - 0.015
PSD-b 0.29 - 0.010 0.27 - 0.012 0.26 - 0.010 0.18 - 0.010

PSSD 0.42 - 0.032 0.37 - 0.032 0.37 - 0.027 0.23 - 0.021
PSSD-b 0.34 - 0.024 0.31 - 0.025 0.31 - 0.021 0.20 - 0.016
PSAD 0.45 - 0.027 0.42 - 0.026 0.41 - 0.024 0.25 - 0.022
PSAD-b 0.35 - 0.014 0.36 - 0.017 0.34 - 0.014 0.24 - 0.015

Table 3.4: Total time for several geometries and algorithms. The two numbers
on each entry are the total time for 16 and 384 CPUs respectively.

used for the angular and spatial subdomains, respectively. The parallelization is car-
ried out by means of a spatial domain decomposition strategy. Its main drawback
is the idle time produced when a CPU requires information from upstream nodes
belonging to other CPUs to be able to proceed with the sweeping process at any
ordinate. This handicap is overcome by overlapping the calculations of the flux at
some ordinates with the waiting for upstream values at the others.

The PSD-b algorithm (Algorithm 7 described in Section 3.5.2), which consists of
completing all the solvable tasks for all ordinates prior to performing any communi-
cation episode, stands out to be the best option in all the situations considered. This
is the algorithm that requires less communication episodes and, consequently, uses
bigger buffers to accumulate information. This means that with the PSD-b algo-
rithm there is a longer withholding of data in each CPU before any communication
occurs. Far from increasing the idle time, the results show that, with this strategy,



References 122

the solvable tasks are completed faster and, as a consequence, the algorithm blocking

(and thus the idle time) gets reduced.
The PSD-b algorithm differs from the algorithms described in [1, 2] in that it is

not based on reordering/prioritizing the tasks on the solvable list. At each stage
of the PSD-b algorithm the information to be sent is held back in order to be
accumulated in only one message. Thus, the order in which the elements are solved
and stored in the buffer is irrelevant, because they all arrive at the same time to
the receiver CPU. Therefore, in the PSD-b algorithm, the sweeping order does not
affect the idle time. Furthermore, in this case, the best option is to use an order
which contributes to the efficient solution of the tasks. In this regard, our strategy
is to group the tasks by ordinates, avoiding jumps form one ordinate to the other
that produce memory overhead.

The numerical experiments carried out on the MareNostrum supercomputer
highlight a notable parallel performance for the PSD-b algorithm. We have ob-
tained superlinear strong speedup using up to 2560 CPUs for a discretization of
151k nodes and 80 ordinates in the spatial and angular subdomains, respectively.
This corresponds to a load of about 4800 unknowns/CPU for 2560 CPUs. The
weak speedup tests show a degradation of the solution time of only 2.31 times when
the size of the problem and the number of CPUs are increased 160 times (up to
2560 CPUs), keeping the ratio unknowns/CPU at around 94k elements. We have
asserted that these results improve when the number of ordinates grows. The S4, S8

and S12 ordinate sets have been used for this purpose. Finally, we have compared
the performance of the algorithms in different geometries, asserting that the PSD-b
performs the best in all the situations tested.

A direct comparison between the results obtained by different authors is not easy
because there are some points of uncertainty, as the differences in the hardware or in
the implementation. The works by Plimpton et al. [1] and Pautz [2], which propose
reordering/prioritizing strategies in order to improve the parallel performance of a
basic sweep algorithm, have been used as a reference in this chapter. Our starting
point is a similar basic algorithm. The improvement achieved by the PSD-b repre-
sents between 50 and 100 percentage points in the parallel performance, depending
on the number of CPUs and the size of the problem, while the heuristics presented
by Pautz and Plimpton et al. represent improvements that do not exceed 30 per-
centage points. With this scenario in mind, the PSD-b algorithm is a feasible option
to be considered when solving the BTE.
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4

Conclusions and ongoing research

4.1 Concluding remarks

In the abstract of this thesis, high performance computing (HPC) is referred as
an essential tool to extend the capabilities of Computational Fluid Dynamics (CFD)
on the resolution of complex flows for “real live” applications. Regarding to such
issue some contributions have been presented.

Design and implementation of a CFD code

One of the main goals of this thesis, has been to contribute at the development of
a general purpose multi-physics parallel CFD code, referred to as TermoFluids (TF).
Particularly, the work has been focused on the development of two of the most basic
libraries that compose TF. The first one is the Basics Object Library (BOL), which
is an unstructured CFD application programming interface, that supports the basic
finite-volume geometrical and algebraic operations in parallel. On the top of the
BOL the rest of libraries that compose TF code have been developed. Afterwards,
the Linear Solvers Library (LSL) was created for the solution of the linear systems
of equations arising from the discretizations. The solution of these systems is one of
the most time-consuming parts of CFD simulations, therefore, it has an important
influence on the overall performance. Two application-specific solvers included in
this library are described in the following chapters of this thesis.

The BOL and LSL libraries have been designed following the intuitive object
oriented paradigm of the C++ language, that allows to expand the code in an
orderly and compact form. The classes representing the main concepts treated by
the libraries have also been introduced. An implementation for the solution of a
Poisson equation on the top of the BOL and the LSL, has also been presented as
an example of their user-friendly intuitive design. A proof of it is also the rapid
expansion of TF to a multi-physics CFD code, which involves several developers
working simultaneously.

Parallelism is another basic design feature of the code. TF is mainly programmed
following the distributed memory paradigm. Basic concepts such as the domain
decomposition, the definition of halo elements, the local and global identifiers or
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the communication schemes, have been described in detail. The implications of the
parallelism in the design and applicability of linear solvers have also been briefly
discussed.

Finally, some industrial problems, in which TF code has been an important tool
to better understand the physics under study and improve the industrial designs,
have been presented.

FFT-based Poisson solver

A parallel direct algorithm for the solution of the Poisson equation arising in
incompressible flows with one periodic direction has been presented in the second
chapter of this thesis. It is a combination of a direct Schur-complement based de-
composition (DSD) and a Fourier diagonalization. The latter decomposes the orig-
inal system into a set of mutually independent 2D subsystems which are solved by
means of the DSD algorithm. Since no restrictions are imposed in the non-periodic
directions, the overall algorithm is well suited for solving problems discretized on
extruded 2D unstructured meshes.

The parallelization is based on a geometric domain decomposition. Different
partitions are employed for the FFT-based change-of-basis (from physical to spec-

tral space and vice versa) and for the solution of the 2D subsystems. The former
operation must be performed without partitioning the mesh in the periodic direc-
tion whereas, for the latter, the number of processes to solve each 2D subsystem
must be kept in the range of linear scalability of the DSD algorithm. Despite the
additional transmissions of data between these two partitions, this strategy benefits
the scalability of the overall algorithm.

The scalability and efficiency of the proposed method has been shown by per-
forming several numerical experiments on the MareNostrum Supercomputer. Scal-
ability tests using up to 8192 parallel processes with up to 109 million nodes meshes
have demonstrated the algorithm capability on solving large-scale problems with a
very short time. Moreover the performance DSD algorithm as 2D solver has been
successfully compared with the preconditioned conjugate gradient method. Finally,
some illustrative applications of the solver for the direct numerical simulation of
flows around bluff bodies have been outlined.

Sn transport sweep algorithms

On the third chapter, a solver for the Boltzmann Transport Equation (BTE) has
been presented. It can be used to solve radiation phenomena interacting with flows.
The Discrete Ordinates Method and a first-order upwind like scheme are used for
the discretization of the angular and spatial subdomains, respectively. Under these
conditions, a sweeping based direct method, which consists on sweeping the flux
across the grid from upstream to downstream nodes, is a suitable choice to solve the
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spatial couplings for each ordinate, while the coupling between diferent ordinates are
accounted by means of a source iteration algorithm. The parallelization is carried
out by means of a spatial domain decomposition strategy. Its main drawback is the
idle time produced when a CPU requires information from upstream nodes belonging
to other CPUs to be able to proceed. This handicap is overcome by overlapping the
calculations of the flux at some ordinates with the waiting for upstream values at
the others.

Different variants of sweep based algorithms have been presented, among them
the PSD-b algorithm, which consists of completing all the solvable tasks for all or-
dinates prior to performing any communication episode, stands out to be the best
option in all the situations considered. The numerical experiments carried out in
the MareNostrum supercomputer highlight a notable parallel performance for the
PSD-b: i) a superlinear strong speedup using up to 2560 CPUs for a rather small
discretization of 151k nodes and 80 ordinates, and ii) a slowdown of only 2.31 times
when the size of the problem and the number of CPUs are increased 160 times (up
to 2560 CPUs), keeping the ratio unknowns/CPU at around 94k elements. These
results improve when the number of ordinates of the angular discretization grows.
Finally, the performance of the algorithms is compared in different geometries, as-
serting that the PSD-b also performs the best in all the situations tested.

A direct comparison between the results obtained by different authors is not
easy because there are some points of uncertainty, as the differences in the hardware
or in the implementation. The works by Plimpton et al. (Nuclear Science and
Engineering 150 (2005) 267) and Pautz (Nuclear Science and Engineering 140 (2002)
111), which propose reordering/prioritizing strategies in order to improve the parallel
performance of a basic sweep algorithm, have been used as a reference in this chapter.
Our starting point is a similar basic algorithm. The improvement achieved by the
PSD-b represents between 50 and 100 percentage points in the parallel performance,
depending on the number of CPUs and the size of the problem, while the heuristics
presented by Pautz and Plimpton et al. represent improvements that do not exceed
30 percentage points. With this scenario in mind, the PSD-b algorithm is a feasible
option to be considered when solving the BTE.

4.2 Ongoing research

Some other research topics in which I am involved along with my colleagues in
the CTTC are:

4.2.1 Sweep based preconditioners for radiation transport

We are concerned with the parallel solution of the Radiation Transport Equation
on unstructured grids with an MPI-based spatial domain decomposition approach.
For the angular coupling, an alternative strategy to the source iteration (SI) method
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is being considered. Instead of decoupling the different angular ordinates, the RTE
is discretized into one single matrix where are represented both the spatial and
angular couplings. This system is solved by means of a preconditioned Krylov
subspace method, using the sweep based algorithm described in the third chapter
of the present thesis as a block diagonal preconditioner. This methodology has
been tested on several configurations showing its benefits respect to the classical SI
strategy, specially in cases with high scattering and reflectivity coefficients. More
details of this work can be found in [1].

4.2.2 Hybrid MPI-CUDA approximate inverse preconditioners

The recent incorporation of GPU as coprocessors in supercomputer nodes has
provoked the study and the implementation of Krylov methods into the GPU paradigm,
however, due the recent character of this technology there are fields, such as GPU-
oriented Krylov preconditioning, that are not deeply studied yet. Actually, we are
exploring the aspects of the Approximate Inverse Preconditioner (AIP) on GPUs.
Specifically the development of an Hybrid MPI-CUDA krylov solver preconditioned
with an AIP. For the matrix vector products, we use the routines of the CUS-
PARSE library, and to compute other vector operations, such as dot products, vec-
tor additions or scalar multiplications, the CUBLAS library is used. These libraries,
provided by NVIDIA, have been created to take advantage of the CUDA parallel
paradigm on a single GPU, however our main objective is to be able to use multiple
GPUs connecting them throw an MPI interface.

Both CG and AIP present the sparse matrix vector multiplication as the most
time consuming part of the algorithm. The main bottle neck of the parallelization
with the hybrid MPI-CUDA approach are the MPI communications that imply three
stages: 1) download data from the GPU to the CPU, ii) communicate data between
the different CPUs by means of MPI routines, iii) upload the data back from the
CPU to the GPU.

Some strategies to minimize the degradation produced by this communication
episodes have been studied. Numerical experiments carried out in the TGCC Curie
supercomputer (see Appendix B), showed that the most successful strategy, of which
were tested, consists on splitting the system matrix in two parts in order to overlap
operations on the GPU with transmission of data between different devices. Further
details can be found in [2].

4.2.3 Parallelization of the Volume-of-Fluid method for 3D unstructured meshes

The Volume-of-Fluid (VOF) is one of the most widely used methods for interface
tracking on fixed grids. The interface between different fluids is generated from
the volume fraction scalar fields, which account for the ratio of volume of each
fluid in each control volume. In the cells where two fluids coexist, an interface
geometry is reconstructed to divide them according to the values of the volume
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fraction fields. Then, the volume fraction advection equation is solved to obtain
the new distributions of the fluids after momentum is applied. Since this is a time-
consuming process, parallelization techniques play an essential role.

All the VOF methods have in common that most of computational cost of the
algorithm is concentrated in operations with the cells that form the interface. For
this reason, if the interface is not homogeneously distributed throughout the domain,
the standard domain decomposition strategy results in an unbalanced method.

A possible strategy to overcome this problem consists in adapting the domain
partition to the interface distribution. This strategy already proposed by different
authors such as Walshaw et al. (Applied Mathematical Modelling 25 (2000) 123),
has a number of drawbacks: i) the general distribution of the interface may not be
known a priori, ii) the distribution of the interface can vary during the simulation,
requiring the readaptation of the mesh partition, iii) in multi-physics simulations,
the particular partition that is good for the VOF solver, may not be appropriate for
other parts of the algorithm such as the momentum equation [3].

The new strategy here developed consist on dividing the work of the interface cells
between all CPUs without taking into account the distribution given by the domain
partition. CPUs exchange information necessary to perform the VOF operations
in order to obtain a similar workload. Some aspects must be considered in this
process, for example, the solution of the interface elements moved between CPUs
has an additional cost, due to the communications, that must be taken into account
to balance the work properly. Results show that the new parallelization strategy has
a qualitatively better parallel performance than the standard domain decomposition
approach. More details of this VOF parallelization strategy can be found in [4].

4.2.4 Parallel radial basis function interpolation methods for unstructured
dynamic meshes

In a great amount of engineering applications it is necessary to resort to dynam-
ically updated meshes. Some of these applications are moving boundary problems,
bio-fluid mechanics problems (e.g. blood flow through veins and arteries), fluid-
structure interaction (e.g. flutter simulation of wings) and optimization search,
where the geometry of the object being studied is modified in order to find the best
design. To attempt the numerical simulation of these phenomena, we need a robust,
accurate and fast method, which redistributes the mesh in accordance with the
movement of the domain. Roughly speaking there are two categories of methods:
the methods based on mesh regeneration and on mesh deformation, respectively.
Grid regeneration is generally much more time-consuming, and does not preserve
the topological connectivity of the mesh elements. For this reason, numerous re-
searchers have been interested in developing efficient moving mesh algorithms.

This study is focused on the moving grid techniques to be applied in the field of
the computational fluid dynamics (CFD). Among all the possible strategies available
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to deform a mesh during a simulation, the method finally adopted often depends
on the mesh type and the application. Thus, the main challenge would be finding
a general technique, being suitable for all type of meshes and physical situations,
which preserves the quality of the mesh and keeps the computational resources
affordable. Furthermore, to ensure maximum efficiency this technique should be of
easy implementation in a parallel environment.

In this work a radial basis function (RBF) interpolation method has been im-
plemented to be applied in CFD problems with dynamic meshes. This method has
been tested with two challenging examples of dynamic meshing: the deformation of a
pitching airfoil and a three-dimensional movement of a sphere, both discretized over
viscous grids of around 5 M control volumes. The work also includes a qualitative
comparison of the RBF interpolation and the classical spring analogy formulations,
which asserts that the new approach is far less costly and, besides, can achieve a
good performance in preserving the mesh quality. In addition, the dynamic mesh
adaptation has been coupled with a CFD solver, what has been validated on a bench-
mark problem consisting on a duct with a moving indentation. Finally, it has been
analyzed the parallel performance of the algorithm for the case of the deformable
sphere, pointing out some key aspects that must be considered in order to improve
the parallelization. Further details can be found in [5, 6].
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Appendix A

Circulant matrices and its Fourier
diagonalization

Circulant matrices are diagonalizable in the Fourier space of the same dimension.
Therefore linear systems with circulant matrices can be solved very easily in the
corresponding Fourier space. Moreover, the change of basis necessary to transform
the right-hand-side term to the Fourier space and, after solving the diagonal system,
get the solution back to the Cartesian space, can be carried out by means of a Fast
Fourier Transformation (FFT) algorithm, which has O(N log(N)) instead of the
O(N2) of a dense product. These good properties of circulant systems are used in
this thesis, in order to accelerate the solution of the Poisson system in discretizations
with one homogeneous periodic direction, because the couplings in such directions
result in circulant matrices. In this appendix, these useful properties of circulant
matrices are explicitly demonstrated (further details can be found in [1, 2]).

A.1 Introductory Definitions and Properties

A.1.1 Circulant matrices

Definition A.1. A circulant matrix of order n, is a square matrix of the form

C =





c0 c1 c2 · · · cn−1

cn−1 c0 c1 c2
...

cn−1 c0 c1
. . .

...
. . . . . . . . . c2

c1
c1 . . . cn−1 c0





,

where each row is a cyclic shift of the row above it. Using a more compact notation,
C is referred as C = circ(c0, c1, ..., cn−1).
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Example: The one - dimensional second order discretization of the Poisson equa-
tion, in a mesh with constant step ∆x, and with periodic boundary conditions, is a
circulant matrix of the form

Lx =
1

∆x





2 −1 0 · · · −1

−1 2 −1 0
...

0 −1 2 −1
. . .

...
. . . . . . . . . 0

−1
−1 . . . 0 −1 2





.

Thus Lx = 1
∆x
circ(2,−1, 0, ...0,−1).

A.1.2 Fourier matrix

Definition A.2. Let n ≥ 1 be a fixed integer and w = exp(−2Πi

n
) the primitive

nth root of unity. The Fourier matrix of order n is the matrix Fn defined as

Fn =
1√
n

(
wij
)

i,j=0,...,n−1
=

=
1√
n





1 1 1 · · · 1
1 w w2 · · · wn−1

1 w2 w4 · · · w2(n−1)

1 w3 w6 · · · w3(n−1)

...
...

...
...

1 wn−1 w2(n−1) · · · w(n−1)(n−1)





.

Note that the matrix is normalized by 1√
n

to make it unitary. The Fourier matrix

is the matrix of the Discrete Fourier Transform (DFT).

Lemma A.1. If x = (x0, ..., xn−1) ∈ R
n and x̃ = (x̃0, ..., x̃n−1) ∈ C

n such that

x̃ = Fnx

then

x̃k = x̃∗n−k, k = 1...,

⌊
n− 1

2

⌋
,

where ⌊.⌋ is the floor function.

Proof: For any k ∈ {1, ...,
⌊

n−1
2

⌋
}, the k′th n-root of unity wk = exp(−2Πik

n
)

satisfies the nest property:
wk = (wn−k)∗
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Then,

x̃k =
n−1∑

j=0

xj(w
k)j =

n−1∑

j=0

xj((w
n−k)∗)j =

(
n−1∑

j=0

xj(w
n−k)j

)∗

= x̃∗n−k.

�

A.2 Diagonalization

Theorem A.1. The eigenvectors of a circulant matrix C = circ(c0, ..., cn−1) of
dimension n are the columns of Fn, the Fourier matrix of the same size. And the
eigenvalues are

λk = [Fn(c0, ..., cn−1)
T ]k =

n−1∑

j=0

cj(w
k)j k = 0, ..., n− 1. (A.1)

Proof: The eigenvalues λk and the eigenvectors v(k) of C = circ(c0, ..., cn−1) are the
solutions of the system

Cv = λv (A.2)

or, equivalently, of the difference equations

m−1∑

k=0

cn−m+kvk +
n−1∑

k=m

ck−mvk = λvm; m = 0, 1, ..., n− 1. (A.3)

Changing the summation dummy variable results in

n−1−m∑

k=0

ckvk+m +
n−1∑

k=n−m

ckvk−(n−m) = λvm; m = 0, 1, ..., n− 1 (A.4)

If the last expression evaluated in the vector v = (1, ρ, ρ2, ..., ρn−1), where ρ is one
of the n distinct complex nth roots of the unity, the result is

n−1−m∑

k=0

ckρ
k+m +

n−1∑

k=n−m

ckρ
k−(n−m) = λρm; m = 0, 1, ..., n− 1. (A.5)

Taking common factor ρm, results in

(
n−1−m∑

k=0

ckρ
k +

n−1∑

k=n−m

ckρ
k−n

)
ρm = λρm; m = 0, 1, ..., n− 1. (A.6)
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Thus,

λ =
n−1−m∑

k=0

ckρ
k +

n−1∑

k=n−m

ckρ
k−n = (A.7)

=
n−1−m∑

k=0

ckρ
k + ρ−n

n−1∑

k=n−m

ckρ
k = (A.8)

=
n−1∑

k=0

ckρ
k (A.9)

Therefore, the vector v = (1, ρ, ρ2, ..., ρn−1) is an eigenvector of C with eigenvalue
λ =

∑n−1
k=0 ckρ

k. Replacing ρ by the different roots of the unity the theorem is
proved. �

Corollary A.1. If C = circ(c0, ..., cn−1),

F∗
nCFn = Λ

where Λ = diag(λ0, λ1, ..., λNper−1) and λk = [Fn(c0, ..., cn−1)
T ]k. �

Corollary A.2. If C = circ(c0, ..., cn−1). The solution of the linear system of
equations

Cx = b

is

x = FnΛ−1F∗
nb

where Λ = diag(λ0, λ1, ..., λNper−1) and λk = [Fn(c0, ..., cn−1)
T ]k.

Proof:

Cx = b =⇒ F∗
nCFnF∗

nx = F∗
nb =⇒ ΛF∗

nx = F∗
nb =⇒ x = FnΛ−1F∗

nb

�

Fast Fourier Transform

Computing a DFT of dimension N in the naive way, as a matrix-vector prod-
uct, takes O(N2) arithmetical operations, however using an FFT algorithm, which
recursively decomposes the problem, the same result can be computed in only
O(Nlog(N)) operations. Several general purpose libraries, such as [3], provide op-
timized implementations of FFT algorithms. This good property of the DFT is also
of major importance to accelerate of the solution of cirtulant systems.
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Appendix B

Computing resources

This appendix lists different parallel computing systems where the codes devel-
oped in this thesis have been executed. The access to most of these equipments
is obtained gaining competitive calls, in which the evaluated criteria are both the
scientific relevance of the presented projects and the capability of the software to
obtain a good parallel performance with the offered resources.

B.1 “Old” JFF cluster, Terrassa

The first “Beowulf cluster” at CTTC was configured in 1999. It was called
JFF in memorial to Joan Francesc Fernández, a computer science professor at the
Universitat Politècnica de Catalunya. He brought the first computer to our faculty
and awake the interest for numerical simulation to many persons.

Figure B.1: Front view of the “old” JFF cluster
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The initial JFF system, in 1999, was a 16 nodes machine, with AMD K7 pro-
cessors at 600 MHz and a 100 Mbits/s switch. At that moment, it was one of the
firsts Beowulf systems in Spain. It was updated several times and it grew up to a
partition of 100 Core Duo CPUs at 2.2GHz. The nodes were interconnected via a
gigabit Ethernet network and each node had 4Gb of RAM. From 2010 this cluster
was retired, because it was replaced by the more efficient JFF supercomputer.

B.2 JFF supercomputer, Terrassa

Figure B.2: JFF supercomputer

JFF supercomputer consists in 168 computer nodes with 2304 cores and 4.6 TB of
RAM in total. There are 128 nodes with 2 AMD Opteron 2376 quad-core processors
at 2.3GHz and 16 GB of RAM linked with the infiniband DDR 4X network, and 40
nodes with 2 AMD Opteron 6272 16-core processors at 2.1 GHz and 64 GB RAM
linked with the infiniband QDR 4X network.

B.3 MareNostrum supercomputer, Barcelona

MareNostrum supercomputer, from the Barcelona Supercomputing Center (BSC),
is an IBM BladeCenter JS21 Cluster composed of 2560 nodes. Each node contains
2 dual-core PowerPC 970MP processors at 2.3 GHz with 8 GB of RAM. Nodes are
linked by means of a high-performance Myrinet network. In total, the supercom-
puter has 10240 cores and 20 TB of RAM.
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Figure B.3: MareNostrum supercomputer

B.4 Magerit supercomputer, Madrid

Figure B.4: Magerit supercomputer

Magerit supercomputer, from the Centro de Supercomputación y Visualización
de Madrid (CeSViMa), is a cluster with 4160 cores and 9.2 TB of RAM installed in
260 computer nodes. There are 245 nodes eServer BladeCenter PS702 2S with 16
Power7 processors at 3.3 GHz and 32 GB of RAM, and 15 nodes eServer BladeCenter
HS22 with 8 Intel Xeon 2.5 GHz processors and 96 GB of RAM.
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B.5 Lomonosov supercomputer, Moscow

Lomonosov supercomputer, from the Research Computing Center in the Moscow
State University, is a supercomputer with 35, 360 cores and 60 TB of RAM installed
in 5100 nodes. There are 4420 nodes with 2 quad-core Intel EM64T Xeon 5570 at
2930 MHz and and 12 GB RAM, and 680 nodes with 2 6-core Intel EM64T Xeon
5670 at 2930 MHz and 12 GB of RAM. The interconnection network is an Infiniband
QDR.

Figure B.5: Lomonosov supercomputer

B.6 K100 supercomputer, Moscow

K100 supercomputer, from the Keldysh Institute of Applied Mathematics of the
Russian Academy of Science (KIAM RAS), is composed of 64 nodes with 2 6-core
Intel Xeon X5670 at 2930 MHz, 3 NVIDIA Fermi 2050 and 96 GB of RAM each one.
Implying in total 768 CPU cores, 192 GPUs and 6 TB of RAM. The interconnection
of nodes is carried out by means of an Infiniband QDR networks and a PCI-Express.
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Figure B.6: K100 supercomputer

B.7 Curie supercomputer, Paris

Figure B.7: Curie supercomputer

The Curie supercomputer, owned by the Grand Equipement National de Calcul
Intensif (GENCI) and operated into the Très Grand Centre de Calcul (TGCC) by
the Commissariat à l’énergie atomique (CEA), is the first French Tier0 system open
to scientists through the French participation into the Partnership for Advanced
Computing in Europe (PRACE) research infrastructure.



§B.7. Curie supercomputer, Paris 146

Curie is offering 3 different partitions of x86-64 computing resources, in the
context of this thesis the “Curie fat nodes” and “Curie hybrid nodes” have been
used. The fat nodes cluster is composed of 360 S6010 bullx nodes, with 4 eight-core
Nehalem-EX X7560 CPUs at 2.26 GHz and 128 GB of RAM. The hybrid nodes
cluster is composed of 16 bullx B chassis with 9 hybrid GPUs B505 blades, in each
blade there are 2 quad-core Intel Westmere 2.66 GHz and 2 Nvidia M2090 T20A, in
total 1152 CPU cores and 288 GPUs. In both cases and InfiniBand QDR Full Fat
Tree network is used for the interconnection of nodes.
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simulation of turbulent FSI. In 7th Symposium on Turbulence, Heat and Mass

Transfer, THMT-12, Palermo (Italy), September 2012.
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rithm for the solution of the Boltzmann transport equation on unstructured
meshes. In Parallel Computational Fluid Dynamics, Barcelona (Spain), May
2011.

• Ll. Jofre, O. Lehmkuhl, R. Borrell, J. Castro, and A. Oliva. Parallelization
study of a VOF/Navier-Stokes model for 3D unstructured staggered meshes.
In Parallel Computational Fluid Dynamics, Barcelona (Spain), May 2011.

• O. Estruch, O. Lehmkuhl, R. Borrell, and C.D. Pérez-Segarra. A paral-
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frequency variations in the wake of a circular cylinder at Re = 3900. In 13th

European Turbulence Conference, Varsaw (Poland), September 2011.

• A. Gorobets, F. X. Trias, R. Borrell, M. Soria, and A. Oliva. Hybrid MPI+OpenMP
parallelization of a Navier-Stokes solver for large-scale DNS. In 7th Interna-

tional Conference on Computational Heat and Mass Transfer, Istanbul (Turkey),
July 2011.

• G. Colomer, R. Borrell, F. X. Trias, and A. Oliva. Effect of mesh partition on
the scalability of the parallel solution of the radiative transfer equation. In 7th

International Conference on Computational Heat and Mass Transfer, Istanbul
(Turkey), July 2011.

• G. Colomer, R. Borrell, O. Lehmkuhl, and A. Oliva. Parallelization of com-
bined convection-radiation numerical simulations. In 14th International Heat

Transfer Conference, Washington D.C. (USA), Agust 2010.



150

• G. Colomer, R. Borrell, and A. Oliva. Parallel solution of the radiative transfer
equation on unstructured meshes using an explicit solver. In 6th International

Symposium on Radiative Transfer, Antalya (Turkey), June 2010.
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• I. Rodŕıguez, O. Lehmkuhl, R. Borrell, and C.D. Pérez-Segarra. On DNS and
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