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Abstract

Two-phase flows are encountered in a wide range of applications both on-ground
and in space. The dynamics of such flows in the absence of gravity is completely dif-
ferent from that in normal gravity due to the absence of buoyancy forces. A deeper
understanding of the behavior of multiphase flows is essential in order to improve
the operation of devices which require the use of two-phase systems. Analytical and
experimental work is still needed for enhancing the control of two-phase flows, due
to the theoretical complexity and the lack of experimental data for certain configu-
rations.

In this work, the behavior of two-phase flows has been studied experimentally in
normal gravity and in microgravity conditions. In particular, the single-jet configu-
ration has been investigated for bubbly jets and droplet jets. Dynamics of individual
bubbles and droplets as well as the global structure of the jets has been considered.
The opposed-jet configuration has been investigated for bubbly flows. Different sep-
aration between jets and orientation angles have been studied in normal gravity,
and the obtained results have been compared to the microgravity case. A numerical
model has been implemented to study single-phase jet impingement and opposed
bubbly jets at different gravity levels. Good qualitative agreement between the simu-
lations and the experiments has been obtained. The bubble bouncing process, prior
to coalescence, after collision with a flat free surface has been also studied experi-
mentally in normal gravity conditions.

The results presented in this work will help to improve the general understanding
of two-phase flows in normal gravity and in microgravity conditions, with general
applications on mixing devices, environmental and propulsion systems.
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CHAPTER1
Introduction

Jets are collimated streams of matter adopting approximately a conical shape. Jets
occur in an extremely large variety of situations, spanning a broad range of physical
length scales, from the microscale up to the large-scale structure of the universe.

The term “two-phase flow” is used to refer to any fluid flow consisting of two
phases or components. In this work, the term two-phase flow refers to gas-liquid
flows solely, covering the topics addressed in this thesis such as slug flow (Chapter
2), droplet flow (Chapter 3) or bubbly flow (Chapters 3 and 4). A slug flow is an
intermittent flow of gas bubbles which occupy most of the pipe cross-sectional area,
separated by slugs of continuous liquid-phase. Bubbly flows refer to the situation
in which the gas-phase is somewhat uniformly distributed in the form of bubbles in
a carrier liquid-phase. In a complementary fashion, a droplet flow corresponds to
uniformly distributed liquid droplets in a continuous gas-phase.

Two-phase flows can be divided into two general categories, determined by their
topology [Bre05, bCTC05]: “Dispersed flows” and “Separated flows”. Dispersed
flows consist of a number of finite-sized drops or bubbles distributed in a connected
volume of continuous phase (bubbly flows, droplet flows). Separated flows are iden-
tified by two or more continuous streams of different fluids separated by interfaces
(slug flows).

Numerous industrial and energy conversion processes rely on the flow of two-
phase mixtures. For this reason, the number of technological applications using
two-phase flows is extremely large. In the next sections, only a few of them will be
pointed out.
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1.1 Motivation

1.1.1 Two-phase flows

Two-phase flows are encountered in numerous situations. They are present in our
everyday environment (cosmetics, food, medical diagnosis, etc.) and they also occur
in various exciting natural phenomena (rainstorms, volcano lava, cavitation, etc.).
Numerous applications make the use of gas-liquid systems a crucial point for their
proper operation. For example, some industries that currently require the use of two-
phase flows are: the aerospace industry, process industry, nuclear industry, oil indus-
try, metallurgical industry, biological, pharmaceutical and medical industry. More
explicit applications are the heat-exchangers, cleaning devices, propulsion systems,
energy transport and conversion systems, oxygenation, diesel engines, refrigeration,
mixing devices and environmental systems [Kle03, Bre05, bCTC05, CGW05, IH06].

In all the cited technologies, the ability to predict the fluid flow of these systems
is essential in order to improve the control and efficiency of those applications. How-
ever, the complete understanding of the two-phase flow phenomena is still far from
complete. On one hand, this is due to the lack of valuable experimental data that
needs to be collected for different flow orientations and geometries. Much experi-
mental data has been collected on-ground, but in the absence of gravity, only certain
specific problems have been addressed. One other hand, from an analytical perspec-
tive, several theories and correlations were developed to predict the engineering
parameters of two-phase systems for certain flow geometries, phase transitions, etc.
[Gab07, SB05]. Nevertheless, due to the complexity of two-phase flows, such predic-
tions were largely in terms of empirical correlations, which were for the most part
based on specific test conditions. Extrapolation of these correlations to other condi-
tions may not be valid, particularly when gravity is significantly reduced [Gab07].

1.1.2 Two-phase flows in microgravity

Under normal gravity conditions, when there is a big density difference between
the two phases, the buoyancy force usually governs the dynamics and the behavior
of the two-phase system. Secondary forces which can be usually very small in ter-
restrial conditions, are expected to play an important role in microgravity. Thus, a
reduced gravity environment provides excellent conditions to study the behavior of
two-phase flows without the masking effects of gravity.

Most of the research on gas-liquid flows in microgravity have been focused on the
study of flow patterns inside pipes and the transition between those patterns [CF95,
LS99]. When gas and liquid are flowing through a pipe in reduced gravity conditions,
three main patterns are observed [MCF98]: bubbly flow, slug flow and annular
flow. The transition between the bubbly and the slug flow appears to result from a
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progressive increase in the bubble size leading to bubble coalescences, identified as
the mechanism responsible for the transition. A mechanistic model for turbulence-
induced coalescence of bubbles inside tubes is presented in Kamp et al. [KCCF01].
The transition between slug flow and annular flow is probably due to a liquid film
instability, a very complex phenomenon difficult to implement in the models.

In addition, numerous boiling experiments have been performed [Mar03, ZMH05],
and the subsequent bubble dynamics have been investigated [Str01]. Moreover,
many attempts to study the complex process of bubble formation in microgravity
conditions have been carried out [KKO94, MGM+03, CPG06].

A reduced gravity environment can only be achieved in orbiting spacecrafts or
free-falling objects. In the next section, a short review of the current microgravity
platforms available is presented.

1.1.2.1 Microgravity platforms

Probably the best place to conduct microgravity research is in an orbiting spacecraft,
due to the long duration of reduced gravity (from days to months) and the quality of
the gravity level (10−2 to 10−5 g0 (g0 = 9.81 m/s2 is the acceleration due to gravity
at the Earth’s surface) for the Space Shuttle and 10−3 to 10−6 g0 for the ISS1).
Nevertheless, conducting research in space tends to be time consuming, complex,
and expensive. Whenever possible, it is desirable to use ground-based facilities,
which can provide good quality of reduced gravity during a reasonable amount of
time. The available ground-based platforms are described in the next paragraphs.

Drop towers and Drop tubes can provide 10−2 to 10−6 g0 from 2 up to 10 seconds
approximately. Those facilities consist in high towers or tubes, which either are
evacuated2 (p ≈ 10 Pa inside the tower/tube) or use some way of reducing the
drag exerted by the surrounding gas on the experimental capsule by using a double
capsule system3. In these platforms, the experimental capsule is dropped from the
top, being therefore at free-fall conditions for some seconds. When the experiment
capsule reaches the bottom of the tower/tube, the deceleration levels can reach up
to g ≈ 50 g0. Drop towers differ from drop tubes in their ability to accommodate
larger experimental setups and provide longer durations of microgravity (1.5 to 5
seconds for drop tubes, 2 to 10 seconds for drop towers).

Another alternative to obtain reduced gravity conditions is to use an aircraft
following parabolic trajectories. The typical parabolic maneuver consists in pulling
up the airplane at an angle of 45◦. At this moment, the engine slows down until the
airplane is descending at an angle of 45◦. Then, the engine pulls up the airplane with
the aim to reach a horizontal trajectory. The parabolic flights provide approximately

1International Space Station
2Solution adopted at the ZARM Drop Tower.
3Solution adopted at the INTA Drop Tower.
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10−2 g0 during 20 seconds for each parabola. However, 20 seconds of 1.8 g0 are
reached before and after each parabola. Usually, a parabolic flight consist in a series
of 30 parabolas, summing up 600 seconds of reduced gravity.

Finally, the sounding Rockets are promising alternatives to orbital flights which
provide 10−4 to 10−6 g0 for a time interval of 4 to 15 min. The payload can be
launched to altitudes ranging approximately 80 to 300 km.

Recently, numerous enterprises (Virgin Galactic, XCor, Armadillo Aerospace, Rock-
etPlane) are offering the possibility to carry out microgravity experiments in com-
mercial suborbital flights. These flights can reach altitudes of 100 km approximately
with a microgravity duration of 3-4 minutes and a microgravity level of g ≈ 10−3 g0.

The experimental results presented in this work in reduced gravity conditions,
were obtained in drop tower facilities. In particular, the droplet jets were inves-
tigated at the INTA4 Drop Tower and the bubbly jets were studied at the ZARM5

Drop Tower. The reason for choosing drop towers instead of any other ground-based
platforms are based on the necessity of a good gravity level (g < 10−3 g0) for a
reasonable amount of time, and the restrictions on the experimental setup size and
power consumption.

Previous experiments carried out by our research group in parabolic flights with
bubbly flows revealed the necessity of a higher quality of the gravity level. Since
bubbles are highly sensitive to the gravity level and a quiescent environment is re-
quired, the level of gravity should be lower than 10−3 g0. Additionally, the size of
the tank in which the bubbles are investigated should be large enough to neglect the
wall effects, and the power and data telemetry requirements offered by the sound-
ing rockets were not appropriate for our experiments. In the experiments presented
herein, the timescale needed for the jets in order to grow and collide with the op-
posed jet, is around 0.5 to 1 second depending on the flow rates used. Hence, the
drop towers were definitely chosen as the most appropriate candidates for accom-
modating our experimental setup.

1.1.2.2 Two-phase flow applications in microgravity

Two-phase flow research at reduced gravity has increased considerably in the last
decades, due to the emerging applications requiring the use of two-phase systems.
Some of the most noticeable applications concern the design of launch propulsion
systems [MFK+10], in-space propulsion technologies [MJP+10], space power and
energy storage [LGH+10], or the design and maintenance of active thermal con-
trol systems [HKM+10]. There are several characteristics that make two-phase flow
more desirable than single-phase flow for heat transfer purposes[Gab07]. First, the
heat transfer coefficient using two-phase flows with phase change can be several

4Instituto Nacional de Técnica Aeroespacial
5Zentrum für Angewandte Raumfahrttechnologie und Mikrogravitation
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orders of magnitude higher than that in single-phase flow. Secondly, a physically
smaller system with lower weight can carry as much heat as a single-phase system
with much larger size and weight. Thirdly, heat can be transferred to the fluid while
maintaining a constant surface temperature. This is a highly desirable feature for
some applications requiring the use of an isothermal environment.

Another important application of two-phase flows is in the design of Environmen-
tal Control and Life Support Systems (ECLSS) [HBC+10, KAL+10]: the environmen-
tal conditions inside a spacecraft have to be maintained at comfortable levels. The
management of two-phase systems is imperative to have a better control of humid-
ity, level of O2, etc., given that biological activity increases the water vapor content
within the atmosphere.

Cryogenic liquids are typically required for use as propellants and to cool certain
types of equipments and sensors. However, when the liquid is in contact with a warm
surface, a certain amount of vapor is generated. The prediction of vapor generation
under those conditions is crucial for the proper operation of refrigeration processes.

Numerous advances in medical, biological and chemical research have been car-
ried out in a microgravity environment using bio- and chemical reactors. In par-
ticular, cellular behavior [LMC93, FVN95, YDS+99, KEEE08], tumor interactions
[MJG93, ITS+97], bone tissues [KS93, FVN97, HCT+09] and a large variety of chem-
ical processes have been investigated.

Studies of two-phase systems in space are also of great interest to better under-
stand the behavior of terrestrial flows, due to the possibility of investigating the
dynamics of the flow with the presence of various forces, but without the masking
effects of gravity.

Designers of spacecraft gas-liquid systems attempt to address two key issues:
Will the system work? How reliable is the system? As such, they focus on theoretical
predictions. However, additional measurements are required in order to develop
fundamental models.

1.2 Background

1.2.1 Bubbly jets

The motion and interaction of gas bubbles in liquid flows have been extensively
studied over many years, due to their fundamental importance in many multiphase
systems [Moo65, PB90, Che91, Orm97, Dui98, MCF98, KCCF01, CGW05, bCTC05].
In the last decades, bubble jets have been the subject of theoretical and experimental
studies since many applications such as aeration control or mixing devices require
the use of small bubbles with high area-volume ratio. Bubble plumes are produced
by injecting gas in a liquid tank, while bubbly jets are produced by injecting gas-
liquid mixtures in liquids. This has additional advantages over the single phase
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injection, such as the production of bubbles with a controlled size without the need
of porous diffusers, low maintenance, and higher efficiency for gas transfer to the
liquid phase [NZR08b].

The studies on bubbly jets aim to answer the natural questions: Which struc-
ture will the jet adopt? How the opening angle will behave? Which bubble size
distribution will be present? Will the bubbles coalesce? If so, How frequently?

Schlichting [Sch79] studied the velocity field of single-phase laminar and tur-
bulent jets, and the results obtained from these studies can be used as a basis for
further investigations on bubbly jets, provided that the gas bubbles move passively
following the liquid flow (as confirmed by Carrera et al. [CRRP+08]). The sizes of
the bubbles present in bubbly jets depend on the fluid properties, gas and liquid flow
rates, and the geometry of the injection system. Varely [Var95] investigated the bub-
ble sizes in bubbly jets and found that bubble diameters decreases as the superficial
liquid velocity increases, and the measured bubble size distributions were compared
to normal, log-normal and gamma distributions. However, only size measurements
were provided and no additional information such as bubble velocities or a study
of the jet structure was described. An interesting investigation on the properties of
bubbly jets injected in the vertical and horizontal directions has been carried out
recently by Lima Neto et al. [NZR08a, NZR08b]. In their work, the bubble proper-
ties and the liquid flow structure have been detailed for a single bubbly jet injected
in a stagnant water tank, but the size of the bubbles is much higher than those re-
ported in the present work. Moreover, only on-ground results were presented, and
no comparison with microgravity results was pointed out.

Knowledge of jet dynamics through geometries other than cylindrical tubes [MM01]
or of the dynamics of a jet obtained after the interaction of two jets emerging from
different angles, can give insight into the behavior of two-phase flows meeting at
pipe junctions of space devices.

1.2.2 Droplet jets

Liquid jets are encountered in an extremely large variety of situations, from our
everyday environment to highly sophisticated technological applications such as
propulsion systems, manufacturing and agriculture, medical diagnosis or nuclear
fission. The motivation for studying liquid jets is not only on the technological or
industrial applications itself, but on the understanding of the complex physical prop-
erties that the jets may exhibit. For these applications or academic situations, the
recurrent questions are: will the jet break? If so, how disperse in size will the frag-
ments be? Will they collide? How frequently? Will the collision result in a bounce
or in a coalescence event?

In the last decades, the evolution of high-speed photography and various lab-
oratory techniques, as well as the evolution of computing processing power, have
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revived the subject both experimentally and theoretically.
From an experimental point of view, the recent innovations have made possible

the detailed study of the breakup process and the structure of the resulting frag-
ments. Hence, a rich source of information can be provided for comparison with
theory.

On the analytical side, studies have been conducted to describe the transitions
between the breakup mechanisms for liquid jets, dating back to the work of Lord
Rayleigh [Ray78]. The most basic tool is the linear stability analysis around the
cylindrical base state, although numerous researchers refined the linear analysis to
include the effects of viscosity, outside fluid effects, nozzle geometry, etc. [OS06,
EV08]. However, many non-linear effects are dominant in the breakup process and
are extremely difficult to implement numerically.

The reader may refer to the work by Lin and Reitz [LR98] for a discussion of the
various breakup regimes of liquid jets injected vertically on stagnant and co-flowing
gases in normal gravity conditions.

On-ground, if the jet is not injected in the direction of gravity, it becomes dis-
torted by the influence of gravity with the result being a liquid jet with a curved
centerline. Thus, the axisymmetry is broken and the problem becomes complex to
solve analytically. In this case, the interplay between the centerline of the jet and
dynamics within the jet can affect the resulting instability and droplet formation. Re-
cently, Uddin and Decent [UD10] performed a theoretical study on the instability of
liquid jets curved by gravity, but no experimental data for comparison was reported.

In microgravity, Umemura et al. [UW02] and Tsukiji et al. [TUH04] studied
the atomization regimes of a liquid jet emerging into a gas whose temperature
and pressure exceeded the critical values of the injected liquid, identifying a new
hydrodynamic-assisted capillary instability. However, the parameter range in their
investigation is much different from that in the present work.

1.2.3 Impinging jets

The opposed-jet configuration has been used extensively for studying both laminar
[VA92, AVP95, VAKF03] and turbulent properties of fluids [CL93, ECCJ00, AMS02,
CCJM04, LSL+08]. The basis of this configuration is to bring two jets flowing along
the same axis in opposite direction into a collision. As a result, a narrow zone (the
impingement zone of high turbulence intensity) in which heat- and mass-transfer
rates can be highly intensified, is created.

The enhancement of jet flow control is frequently desirable in many engineering
systems, such as cleaning, aeration, mixing devices [WHY+91, YKB04] and liquid-
liquid extraction processes [SZD06]. Many industrial applications require an im-
provement of fluid mixing efficiency, and some of them have to deal with a flexible
control, according to operational conditions. As investigated by [TSSA06], such



8 1 Introduction

flexibility in the mixing process can be achieved by changing the impact angle be-
tween jets. A frontal collision between jets results in a high mixing efficiency, while
increasing the impact angle, such efficiency becomes significantly diminished. The
opposed-jet configuration with changeable orientation, using impinging bubble jets,
becomes an attractive method for enhancing the mixing and aeration processes. An
important advantage of this configuration is the direct control of operation, which
maintains high efficiency and low cost of such systems.

The investigations on impinging jets usually aim to answer the following ques-
tions: What will the structure of the jets after collision be? What will the velocity
field be? Will the configuration be stable? Where, and how frequently will the
bubble coalescence events take place?

1.2.4 Bubble coalescence with a free surface

The collision between rising bubbles and a free surface is a common phenomenon in
bubbly flows. Due to the extensive range of technological applications involving bub-
bly flows, there is a great demand from industries regarding the modeling of bubble
physics. Bibliography on this subject has increased considerably in the last decades,
but there are still some phenomena related to bubble dynamics, coalescence and
interaction that are still poorly understood.

When a bubble rises in a liquid, the drag force compensates buoyancy resulting
in a constant rise terminal velocity. If the bubble approaches the free surface with
a velocity higher than a certain critical value, it bounces a few times before the
coalescence occurs. At every bounce, a certain amount of energy of the bubble is
lost in the interaction with the free surface, and the approach velocity of the bubble
iwith respect to the free surface decreases to a critical value, at which coalescence
occurs. In contrast, if the bubble is small enough to have a terminal velocity lower
than a certain threshold, it coalesces with the free surface as soon as it touches the
interface, and no bouncing takes place [SWF05].

Therefore, two main processes can be distinguished in the phenomenon of study.
On one hand, there is a steady rise in which the bubble shape and dynamics do not
change in time. On the other hand, there is a bouncing process in which the param-
eters characterizing the bubble dynamics change in time until the bubble coalesces
with the free interface.

Within this context, the recurrent questions are: What are the parameters that
dictate the bouncing, or direct coalescence regimes? What is the effect of bubble
radius and velocity on this process?

Concerning the steady rise in a viscous liquid, most of the studies have been
focused on the characterization of the bubble terminal rise velocity [Moo65, BD01,
Rod01, dVBvW02, dVLL02, Tal07, SSSW08, Lot08] and the shape deformation caused
by the motion of the bubbles [Lot08, WG02].
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Regarding the dynamics of the bouncing process, the collision of bubbles and
drops with solid walls has been extensively studied [TK97, KCM+01, KKM03, MKK05,
LDG05, LZDG06, ZL09]. However, the collision of a bubble with a free surface is
significantly different from that with a solid wall. The bouncing and coalescence
processes of a bubble interacting with a free surface have also been studied by many
authors [MKK05, KLM03, Gho04, ZKDM07]; however, no evidence of a bouncing
threshold was reported. Recently, Sanada et al. [SWF05] studied the effects of vis-
cosity on the coalescence of a bubble upon impact with a free surface, reporting that
a critical threshold exists which separates the bouncing and non-bouncing processes
of the interaction.

The coalescence of a bubble with a free surface is closely related to the coales-
cence of two bubbles or drops (for example, assuming that one of the bubbles/drops
has an infinite radius), which has been studied by many authors over the years
[KK93, Dui98, TETO05, RJM06, YBCL07, DL08]. However, this is a very complex
phenomenon which has not yet been fully explained.

Motivated by the interesting phenomena which may occur when a bubble collides
with a free surface, an on-ground experimental study has been carried out. Moreover,
additional experiments are planned to be carried out in the near future at different
gravity levels (hypergravity range, from 1 g0 up to 20 g0, where g0 = 9.81 m/s2) at
the LDC6 in ESTEC7.

1.3 Objectives

The main general objective of this work is to gain more fundamental knowledge on
two-phase flow dynamics, by obtaining experimental and numerical data in normal
gravity and in microgravity conditions. In particular, this thesis aims to:

• Obtain experimental measurements on the structure of a bubbly jet in normal
gravity and in microgravity conditions.

• Measure experimentally the global structure of a droplet jet, identify the tran-
sition between the dripping regime and the jetting regime, and analyze the
size distribution and behavior of the individual droplets.

• Get experimental data on bubbly jet impingement on-ground and in reduced
gravity conditions, studying the global structure of the jet and the properties
of individual bubbles.

• Obtain numerical results on impinging jets and compare it qualitatively to the
experimental results.

6Large Diameter Centrifuge
7European Space Research and Technology Center
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• Get experimental measurements on-ground on the behavior of a bubble bounc-
ing with a free surface, prior to coalescence.

1.4 Outline-organization

This thesis is organized in the following way:
The designs of the setups used in the ZARM’s and INTA’s drop towers, as well

as the design for studying bubble coalescences with a free surface on-ground are
described in Chapter 2.

In Chapter 3, the experimental results on single two-phase jets are presented.
The results obtained in normal gravity and in microgravity conditions for bubbly jets
and droplet jets are presented in Sections 3.1 and 3.2 respectively.

Chapter 4 concerns the impinging jets problem. It is divided in two main parts:
The experimental results on bubbly jets on-ground and in reduced gravity conditions
are presented in Section 4.1. Section 4.2 presents the numerical model used to study
single-phase jet impingment, and the numerical results on bubbly jet impingement
are presented in Section 4.3.

The experimental results on bubble coalescence upon impact with a free surface
are presented in Chapter 5.

Finally, in Chapter 6, a summary of the main conclusions of this work is pre-
sented, the future work is explained and a number of recommendations are given.

In Appendix A, the analytical solutions for single-phase incompressible jet flows
used in the present work are detailed.

In Appendix B, the governing equations and algorithms used for the numerical
simulations are presented.



CHAPTER2
Experimental setup

With the exception of the setup to study the bubble coalescence with a free surface1,
the rest of the experimental setups (both for droplets and bubbly jets) have been de-
signed to be used in a drop tower, with the mass, power consumptions and volume
restrictions that this implies. The main differences between the setups in normal
gravity and in microgravity are the acquisition and control systems, which are op-
erated by a wired computer in the first case, and a National Instruments’ PXI via
wireless in the second case. Additionally, the high-speed camera trigger is controlled
manually in the first case, and is fully automatized in the second case. Moreover,
different types of test tanks and injectors have been used in normal gravity and in
microgravity. Each setup have been designed in a way that all of its components
must resist high gravity levels, up to 50 g0 (where g0 = 9.81 m/s2), which could be
reached when the drop tower capsule is decelerating.

When designing the experimental setup for the study of two-phase flows in mi-
crogravity, numerous problems have been encountered. In particular, the bubble
generation system and the method to avoid any overpressure without the use of any
phase separator were challenging tasks. Although most of the problems have been
solved, there are still some unexpected effects which should be improved in future
experiments. For example, the presence of big bubbles in the collision zone of im-
pinging bubbly jets in microgravity, or the division of a main liquid line into two
sub-lines with equal flow rate are problems that still need improvement.

In this Chapter, a description of the used experimental setups is given and the
solutions taken to avoid the possible problems are presented.

1The setup for study the bubble bouncing and coalescence with a free surface is designed to be used
uniquely in normal gravity conditions, and is presented in Section 2.3.
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Experiment Bo Fr Oh

Bubbly jets 1g 4.4 ·10−3 – 1.4 · 10−2 3.2 – 10.0 3.7 · 10−3

Bubbly jets 0g 4.4 ·10−3 – 4.1 · 10−2 – 3.7 · 10−3

Droplet jets 1g 1.5 ·10−3 – 4.4 · 10−3 2.6 – 7.8 4.4 · 10−3

Droplet jets 0g 1.5 ·10−3 – 4.4 · 10−3 – 4.4 · 10−3

Impinging jets 1g 2.1 · 10−3 – 1.3 · 10−2 3.6 – 24.1 4.4 · 10−3

Impinging jets 0g 4.4 · 10−3 – 4.1 · 10−2 – 3.7 · 10−3

Bubble coalescence 4.5 · 10−5 – 2.7 · 10−2 0.7 – 1.8 6.7 ·10−3 – 2.0 ·10−2

Experiment Re We Ca

Bubbly jets 1g 320 – 1000 1.4 – 13.7 1.4 · 10−3 – 4.3 ·10−2

Bubbly jets 0g 320 – 3000 1.4 – 123.4 4.7 · 10−4 – 3.9 ·10−1

Droplet jets 1g 154 – 455 0.46 – 4.05 1.0 · 10−3 – 2.6 ·10−2

Droplet jets 0g 154 – 455 0.46 – 4.05 1.0 · 10−3 – 2.6 ·10−2

Impinging jets 1g 210 – 1400 0.9 – 38.4 6.4 · 10−4 – 1.8 ·10−1

Impinging jets 0g 320 – 3000 1.4 – 123.4 4.7 · 10−4 – 3.9 ·10−1

Bubble coalescence 5 – 300 0.01 – 4 3.3 · 10−5 – 0.8

Table 2.1: Ranges of dimensionless numbers studied in the different experi-
ments.
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Liquid ρ (kg/m3) ν (m2/s) γ (N/m)

Distilled water 998 1 ·10−6 7.28 · 10−2

Ethanol 789 1.52 ·10−6 2.24 · 10−2

Table 2.2: Physical properties of the liquids used, at 20◦ C and at ambient
pressure. ρ is the density, ν is the kinematic viscosity and γ is the surface
tension with respect to air.

Gas ρ (kg/m3) ν (m2/s)

Filtered air 1.21 15.11 ·10−6

Carbon dioxide 1.87 13.70 ·10−6

Table 2.3: Physical properties of the gases used, at 20◦ C and at ambient
pressure. ρ is the density and ν is the kinematic viscosity.

The ranges of dimensionless numbers studied in the different experiments are
presented in Table 2.1. Definitions of dimensionless numbers (Bond, Froude, Ohne-
sorge, Reynolds and Weber) are presented in the List of Symbols.

The physical properties of the materials used are presented in Tables 2.2 and 2.3
for liquids and gases respectively.

2.1 Bubbly jets

2.1.1 Bubble generation method

The generation of bubbles of controlled size in a low gravity environment is not
trivial: if air is injected through a capillary tube into a tank full of liquid, a bubble is
created, increasing its size while the gas flow rate is different from zero. However,
this increasing bubble can be detached from the nozzle in a highly uncontrollable
way, as can be seen in Figure 2.1(a). Consecutive detachments result in the creation
of numerous bubbles with uncontrolled sizes. Thus, at any perturbation of the fluid
motion, a bubble can be detached from the nozzle, allowing another bubble to be
created and subsequently detached, and so forth.

In order to generate numerous millimetric bubbles in a microgravity environment
(see Figure 2.1(b)), the solution that we have adopted is to use the “bubble injectors”
method2, which create the bubbles at the desired size, prior to injection into the tank
full of liquid. To achieve this, a crossflow configuration is created inside a 0.7 mm (in
normal gravity) or 1 mm (in microgravity) capillary T-junction. From one branch of
the T-junction (the so-called “straight branch”), a constant liquid flow is introduced,

2Proposed in Carrera et al. [CRRP+08]
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(a) (b)

Figure 2.1: Snapshots of bubbles generated in microgravity. (a) Generation
by air injection through a capillary tube (From Carrera et al. [CPG06]). (b)
Generation by bubble injectors (From Carrera et al. [CRRP+08]).

while a constant gas flow is injected from the other branch (the “crossed branch”)3.
This method can generate a regular slug flow, in which the final bubble size and
generation frequency is governed by the gas and liquid flow rates. A capillary tube
with the same diameter of each injector branches and length larger than 70 mm
carries the bubbles from the injector outlet to the test tank, ensuring stationary slug
flow conditions.

In Figure 2.2, a snapshot of the bubble generation method and the created slug
flow is presented.

This method is insensitive to gravity force and is mainly dominated by capillary
forces, since Bond number is very low,

Bo=
∆ρgd2

C

γ
< 1, (2.1)

where ∆ρ is the density difference between the two phases, g is the acceleration of
gravity, dC is the capillary diameter and γ is the surface tension. Hence, the behavior
of the injection device in low gravity is the same as on-ground and we can fully
characterize the operation of the injectors in normal gravity. An extensive range
of bubble generation frequencies (up to 1000 bubbles per second in the present
study) can be achieved. Bubble sizes and velocities at the outlet of the injector

3Additional experiments have been carried out injecting the liquid through the crossed branch and
the gas through the straight branch, but the injector operation is not so effective creating a regular slug
flow, with uniform bubble diameters and a constant generation frequency.
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dC
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Figure 2.2: Illustration of the bubble generation method.

are controlled by gas and liquid flow rates. The reader may refer to Carrera et al.
[CRRP+08] and Arias et al. [ARC+09] for a detailed study of this bubble generation
method.

2.1.2 Normal gravity setup

On-ground tests were conducted in a stainless steel rectangular tank with a length of
160 mm, width of 200 mm, and height of 250 mm, equipped with two methacrylate
windows which allow the visualization of the bubble jets. The size of the test tank is
large enough (compared to bubble diameter which is of order of 1 mm) to minimize
any possible wall effects on the motion of the bubbles and the resulting jet structure.
The test tank is initially filled with distilled and filtered water4 (or ethanol5) by a
high-accuracy pump (Ismatec MCP-Z Standard) which takes the liquid from the
liquid tank. A T-junction bifurcation is used to divide the liquid flow in two sub-lines
that transfer the liquid to the bubble injectors, ensuring an equal and constant flow
rate for each sub-line. Liquid flow rates QL range from 15 ml/min to 30 ml/min
for each injector, and are measured by a liquid flow meter (Bronkhorst L30). Gas
(CO2) is injected from a pressure bottle through a pressure controller (Bronkhorst
P-702CV) and a choked orifice, setting the air flow rate QG from 1 ml/min to 20
ml/min for each injector. Gas flow rate is measured by an air flow meter (Bronkhorst
F-201CV). Another T-junction bifurcation is used in the gas line to provide the air
to each bubble injector. A residual tank is used to empty the excess of gas and liquid
from the test tank, avoiding any risk of overpressure. The liquid and residual tanks
are flexible high-resistance bags EVA6 Nutribag (500 ml), protected by rigid plastic
boxes. Initially, the bag corresponding to the liquid tank is completely filled with
distilled water while the bag corresponding to the residual tank is in vacuum.

In Figure 2.3, a sketch of the experimental apparatus is presented.
The experiments were conducted at 20◦ C and at ambient pressure. A high-

speed video camera (RedLake MotionXtra HG-SE) is necessary to catch all bubble
coalescence events and the individual bubble motions. Lighting was provided by a

4Results using ethanol with a single jet and impinging jets are presented in Section 3.1.1 and 4.1.1
respectively.

5Results using distilled water are presented in Section 4.1.1.4.
6Ethilen-Vinil Acetate
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Figure 2.3: Experimental setup. Solid lines: electric connections, dotted lines:
Gas tubes, dashed lines: liquid tubes, dash-dotted lines: gas-liquid tubes. 1:
Liquid tank, 2: Filter, 3: Pump, 4: Flow meter, 5: Power supply, 6: HS Camera,
7: Test tank, 8: LEDs, 9: Injectors, 10: Residual tank, 11: Gas bottle, 12:
Pressure controller and flow meter, 13: Choked orifice, 14: PC.

matrix of 280 ultra-bright LEDs and homogenized by a diffuser sheet. All the movies
were recorded at 1000 fps with a resolution of 640x512 pixels (7 pixels correspond
to 1 millimeter approximately), and post-processed by an image processing software.
The basic experiment operations (full control of the gas and liquid lines, lighting and
camera) can be controlled from a wired computer, but the change of the impact angle
and separation distances between injectors has to be manipulated manually between
two consecutive experiments.

2.1.3 Microgravity setup

The experimental setup has been designed to study the structure of bubbly jet im-
pingement7 in the ZARM Drop Tower facility (Bremen, Germany), which allows 4.7
seconds of 10−5-10−6 g0.

This setup is very similar to that presented in Section 2.1.2, with some differences
as the integration within the drop capsule (arrangement of the setup is divided in 5
platforms), the size of the test tank, control of the setup via wireless and automatized
camera trigger.

The experimental setup has been embedded in a rack to be used inside the cap-
sule of a drop tower. A simplified sketch of the experimental setup and rack is shown

7Results are presented in Section 4.1.2.
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Figure 2.4: Sketch of the rack and the main setup (not to scale). 1: HS
Camera control station, 2: Illumination system, 3: Diffuser sheet, 4: Pressure
controller, 5: Test tank and injectors, 6: HS Camera, 7: Mirror, 8: Residual
tank, 9: Liquid tank, 10: DC/AC Inverter, 11: Gas flow meter, 12: Liquid
pump, 13: Choked orifice, 14: Gas tank and filter, 15: NI’s PXI, 16: Acquisition
connection device, 17: Batteries.

in Figure 2.4.

The main body of the setup is the test section, which consists of a 160×100×100
mm3 stainless steel tank initially filled of liquid. The size of the tank is large enough
(compared to the bubble mean diameter which is of order of 1 mm) to avoid any
possible wall effects. The tank is provided with two methacrylate windows, which
allow the illumination of its interior (using a matrix of 140 ultra-bright LEDs and a
diffuser sheet) when the recording by the high-speed camera takes place. A high-
speed camera (Photron Fastcam MC2) is used to capture the motion of individual
bubbles and the whole jet structure. The high-speed camera is operated at 1000
frames per second and a resolution of 512× 512 pixels in order to catch the coales-
cence phenomena between bubbles. The trigger is automatized to catch 0.5 s before
the drop and 2.8 s after the drop, with a total time of 8 s for each movie.
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Figure 2.5: Pictures of the rack and the capsule used at ZARM Drop Tower.

Two bubble injectors, whose operation is described in Section 2.1.1, are placed
inside the test tank one in front of each other. The impact angle between bubble
injectors can be changed from 0◦, which corresponds to a frontal collision between
jets, up to 90◦, corresponding to a perpendicular collision8. The distance between
injectors can also be changed from 0 mm up to 100 mm. Bubble sizes and velocities
can be controlled by changing the gas and liquid flow rates, QG and QL respectively.

Gas used is filtered air. Gas reservoir consists of a Festo’s 2 L alluminum tank
with a pressure of 6 bars. Gas flow meter and pressure controller, as well as the
whole liquid line are the same as in Section 2.1.2. Experiments were carried out at
ambient pressure and at 20◦ C.

The basic experimental operations, such as full control of the gas and liquid flow
rates, lighting and camera, are governed remotely from a computer via wireless
using LabView software. The change of the distance and the impact angle between
jets are the only operations to be performed manually between two consecutive
drops.

8Only 5 drops have been carried out at the moment of writing this thesis. Distance between injectors
and flow rates have been changed in those drops, but the injection angle have been kept constant at 0◦
(frontal collision).
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Figure 2.6: Sketch of the experimental setup for the study of droplet jets.
1: Acquisition connection device, 2: LEDs, 3: Diffuser sheet, 4: Test tank,
5: Injectors, 6: HS Camera, 7: Residual tank, 8: Liquid reservoir, 9: DC/AC
Inverter, 10: Liquid flow meter, 11: Liquid pump, 12: Filter, 13: NI’s PXI, 14:
Batteries.

In Figure 2.5, pictures of the rack and the capsule are presented.

2.2 Droplet jets

Unlike with bubbly jets, the experimental results on liquid jets in normal gravity
and in microgravity were obtained using exactly the same setup9. In order to study
the breakup of a liquid jet and droplet dynamics in a microgravity environment, the
setup was designed to be used in the INTA’s Drop Tower (Torrejón de Ardoz, Spain),
which allows of 2.1 s of 10−4-10−5 g0.

Liquid jets are injected into a stainless steel rectangular tank (with a length of
160 mm, width of 200 mm and height of 250 mm) provided with two methacrylate
windows which allow the visualization of the interior of the tank.

The liquid used is distilled water, which is directed to the test tank from a flexi-
ble bag (EVA Nutribag 500 ml, initially filled with distilled water) through a liquid
pump (Ismatec MCP-Z Standard), and the liquid flow rate QL is measured using a
liquid flow meter (Bronkhosrt L30). Liquid flow rates are increased from 5 ml/min

9Results in normal gravity and in microgravity are presented in Section 3.2.1 and 3.2.2 respectively.
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Figure 2.7: Pictures of the rack and the capsule used at INTA’s Drop Tower.

up to 15 ml/min. The nozzle internal diameter is dC = 0.7 mm and the external
diameter is dex t = 1.8 mm. The experiments were conducted at room temperature
(around 20◦ C) and at ambient pressure. An initially empty flexible bag (EVA Nu-
tribag 500 ml) is connected to the test tank, avoiding any risk of overpressure. A
high-speed camera (RedLake MotionXtra HG-SE) records the jets at framerates be-
tween 500 and 1000 frames per second (recording images at 640×512 and 640×256
pixels respectively), depending on the experiment run. The high-speed camera has
a builtin battery and internal memory, and is activated when a trigger signal is re-
ceived. The spatial resolution of the aquired images is 0.15 mm per pixel.

The illumination system consists of a matrix of 280 ultrabright LEDs which light-
ing is homogenized by a diffuser sheet. The flow rate of the liquid pump as well as
the aqcuisition system are controlled via wireless by LabView software. In Figures
2.6 and 2.7, a sketch and pictures of the experimental setup are presented respec-
tively.

2.3 Bubble bouncing and coalescence

The experimental setup for the observation of bubbles impacting at a free surface10

is illustrated in Fig. 2.8.
A cubic methacrylate tank of 250 × 250 × 250 mm3 is filled with ethanol at a

height of 20 cm. The upper part of the cubic tank is opened, keeping the pressure
at atmospheric pressure. Air bubbles with equivalent radius between 0.1 and 2 mm

10Results are presented in Chapter 5.
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Figure 2.8: Experimental setup for the observation of bubbles impacting at a
free surface.

approximately are released from a syringe placed at the bottom of the tank, and rise
to the free surface under the action of the buoyancy force. Bubbles with diameters
higher than 2 mm rise following an helical path, not an straight line, hence the
collision with the free surface is no longer axisymmetric. For this reason, the results
presented herein have a diameter range between 0.2 mm and 2 mm.

The model of the syringes used is Icopiuma Self 0.5 ml, which has a stainless steel
tip of 0.3 mm external diameter and 0.1 mm internal diameter. Another syringe
tip of 0.3 mm external diameter is placed crossing vertically the free surface, at
approximately 1 cm from the impact point in order to give a reference length for the
measurement of the bubble size. The distance between the reference syringe tip and
the impact point is large enough to ensure no considerable perturbations at the free
surface.

The motion of the bubbles is recorded by means of a high-speed camera RedLake
MotionXtra HG-SE with a framing rate of 2000 s−1, and an image resolution of
640x512 pixels each frame. The camera is placed slightly below the free surface
level with an inclination angle of 5◦. This is necessary to avoid blurred captures
of the free surface due to the depth of field effect, and leads to the recording of
both real and mirror images of the bubble. Backlight is provided by a matrix of
15×10 ultrabright LEDs (10000 mcd each), placed at 15 cm from the test tank, and
homogenized by a diffuser sheet. The LEDs are chosen as lighting candidates with
the aim to avoid temperature changes between series of experiments, which were
all conducted at 20◦ C and at ambient pressure.





CHAPTER3
Two-phase jets

The structure of single jets (no impingement nor any other opposed-jet configuration
considered, just one jet) is studied in this chapter. The jets analyzed in this chapter
are two-phase (gas-liquid) jets. In particular, bubbly jets and droplet jets will be
studied. In Section 3.1.1, the behavior of bubbly jets in normal gravity is considered.
The results of bubbly jets obtained in microgravity are presented in Section 3.1.2.
Regarding droplet jets, they are studied in Section 3.2.1 and 3.2.2 for the normal
gravity and microgravity conditions, respectively.

3.1 Bubbly jets

3.1.1 Bubbly jets in normal gravity

With the aim of carrying out a fundamental analysis of the behavior of bubbles and
jets after injection in normal gravity, we have used the described experimental setup
with one injector. Different gas and liquid flow rates, and variations of the orienta-
tion angles of the injector with respect to the gravity field have been considered.

According to Schlichting [Sch79], the momentum flux J can be considered as
the main parameter that characterizes the structure of a single-phase jet,

J = 2πρ

∫ ∞

0

rv2
` dr (3.1)

where ρ is the density of the fluid, v` is the velocity in the direction of injection, and
cylindrical coordinates (r,θ ,`) are used. Taking into account the effect of both gas
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Figure 3.1: Schematic definition of the delimitation angle ϑ and the injection
angle ϕ.

and liquid phases, the momentum flux can be computed as

J = JL + JG = 2πρL

∫ ∞
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dr + 2πρG
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dr, (3.2)

where the liquid velocity is approximated by v(L)
`
≈ QL/A, and the gas velocity is

approximated by v(G)
`
≈QG/A, being A= πd2

C/4 the area of the capillary. QL and QG

correspond to the liquid and gas flow rates, respectively. Hence,

J =
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πd2
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ρLQ2

L +ρGQ2
G

�
. (3.3)

The momentum flux J is indicative of the jet strength, and most of the results pre-
sented in this section are based on this parameter. It is important to note that high
values of J are necessarily due to high values of the liquid flow rate QL: increas-
ing the gas flow rate QG results in a very small change in J since the parameter
ρG is multiplying the gas flow rate, and ρG � ρL . This leads to the physical result
that smaller bubbles are created at higher momentum fluxes, while at lower values
of J both the gas and liquid flow rates can contribute substantially to modify the
momentum flux, and small and large bubbles can still be found.

In Figure 3.1, a schematic definition of the delimitation angles and the axis used
is presented. The angle between the direction of injection and the horizontal is
denoted by ϕ, while ϑ represents the delimitation angle between the inertial zone
and the bubbly plume zone.

3.1.1.1 Individual trajectories and maximum distance

In order to study the dynamics of bubbles after injection, the trajectories of individ-
ual bubbles have been tracked. The time evolution of both x (horizontal direction)
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Figure 3.2: Time evolution of bubble center positions for several bubbles. (a)
x coordinate (injection direction) as a function of time. (b) y coordinate (di-
rection of gravity) as a function of time.

and y (direction of gravity) coordinates of the center position of several injected
bubbles is shown in Figure 3.2(a) and 3.2(b) respectively. These data have been
obtained with QG = 1 ml/min and QL = 16.7 ml/min, and the injector oriented per-
pendicular to the gravity direction (ϕ = 0), thus in this particular case, the injection
direction ` coincides with the horizontal direction x .

In Figure 3.2(a), it can be observed that at the exit of the injector, bubbles follow
a rectilinear trajectory at uniform velocity until a position at approximately 8 mm
away from the injector. At this position, velocity suddenly decreases and bubbles
suffer a backward movement that varies their x coordinate between 0.5 and 2.5 mm
approximately. Taking the slope of the linear region in x(t), the speed of bubbles at
the exit of the injector is obtained, vx = 0.171±0.002 m/s. It can also be observed in
Figure 3.2(a) that bubble generation frequency is very uniform. At these low values
of the flow rates, the generation frequency is very low1, fg ≈ 26 bubbles/s.

In Figure 3.2(b), the plot of y(t) for different bubbles shows a common tendency
to a linear behavior just 70 ms after bubbles leave the injector, which gives a rise
velocity of vR = 0.1740±0,0002 m/s. This value is the same for each bubble, which
demonstrates that all the injected bubbles have approximately the same size.

The maximum distance reached by bubbles in the direction of injection gives
information about the jet geometry since is an indication of the resulting force acting
on bubbles. Figure 3.4 shows the dependence of xmax on the momentum flux J
for different gas flow rates. xmax is defined as the maximum distance reached by
bubbles in the direction of injection in a range ∆y = 1dC , dC being the capillary
tube diameter.

A schematic definition of xmax is presented in Figure 3.3.

1The generation frequency is low compared with generation frequencies of the order of 1000 bubbles
per second which are obtained in other tests using the same injector.
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Figure 3.3: Schematic definition of the maximum distance reached xmax . (a)
and (b) correspond to the dripping and jetting regimes respectively.

The behavior of xmax as a function of the momentum flux J is observed to be
approximately linear in a wide region of the considered parameter ranges, with
higher slopes when lower gas flow rates are injected. For any studied values of QG

and J < 10 g cm/s2, bubbles are injected with a low speed and quickly start to rise at
only 2 mm away from the injector (region (a) in Figures 3.4 and 3.3). However, for
10 < J < 15 g cm/s2, there is a sudden increase in the maximum distance reached,
especially the cases with QG = 0.5 ml/min and QG = 1 ml/min. This is due to a
nozzle effect, which is also present in the case of water droplets in air2. This sudden
increase in the maximum distance reached determines two kind of regimes when
using water droplets in air: the dripping regime, and the jetting regime. Increasing
the liquid flow rate gradually, droplets are created at the nozzle tip, dripping for low
flow rates. Increasing a little bit more the liquid flow rate, a sudden transition to the
jetting regime is observed: suddenly, a jet is created and the droplets detach from
the nozzle. A similar effect occurs with air bubbles in water. As soon as the bubble
comes out from the nozzle, there is an adhesion force between the bubble and the
nozzle. When the inertia forces are greater than the surface forces, the behavior
undergoes a jetting regime (J > 15 g cm/s2, region (b) in Figures 3.4 and 3.3). It
can also be observed that for a fixed value of J , the maximum distance is higher for
low values of gas flow rate, although the exit speed is lower at small QG . In this case,
bubbles are smaller and they are carried by the liquid jet for a longer distance in x
since the buoyancy force is weaker.

3.1.1.2 Turbulence and buoyancy regions

Since the velocity of the bubbles inside the jets is very high (unless very low values
of the flow rates are used), the human eye is not able to see the individual motion
of those bubbles. Visually, two distinct regions are clearly observed (also observed
by Lima Neto et al. [NZR08b] in their work of horizontal injection of gas-liquid
mixtures in water): a bubbly cone emerging from the outlet of the capillary tube in

2The case of water droplets in air is discussed in Section 3.2.1.
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Figure 3.4: Maximum distance reached xmax as a function of the momentum
flux J for different gas flow rates QG . (a) dripping regime, (b) jetting regime.

the direction of injection, and a vertical bubbly plume in which the bubbles follow an
approximately rectilinear path (see Figure 3.1). In the first region, the jet strength
is very high and is characterized by violent motion. Bubble dynamics are mainly
dominated by inertial forces. Recorded movies show the paths of individual bubbles
presenting some random oscillations typical of turbulent flows, and the shape of this
zone is very similar to the conical shape of the single phase jet, but slightly deviated
upwards in the vertical direction. On the contrary, the second region is formed by
bubbles rising vertically at a constant and much slower velocity, the buoyancy is
compensated by the drag force and no significant occurrence of coalescence events
is observed. This bubbly plume is formed by bubbles that escaped from the bubbly
jet zone, either by turbulent diffusion or by previously coalesced bubbles submitted
to a strong buoyant force due to their larger size.

In order to delimit the two regions described, we averaged all the frames in a
movie, and it was observed that the transition zone could be approximated by a
straight line3 tilted an angle4 ϑ with respect to the injection direction `.

The dependence of ϑ with respect to the momentum flux J is shown in Figure
3.5. This plot was obtained with a fixed injection angle ϕ = 0◦, corresponding to
horizontal injection. The delimitation angle ϑ decreases as the momentum flux J
is increased, due to the fact that, larger momentum fluxes correspond to smaller
bubbles, which have a relatively large velocity at the nozzle, and are carried away

3The delimitation between the bubbly plume zone and the turbulent region can be approximated by
a straight line when using one single injector. However, when using multiple jets interacting with each
other (as we shall see with impinging jets in Chapter 4), this approximation is not valid anymore.

4In Figure 3.1, a schematic definition of ϑ is shown.
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Figure 3.5: Angle ϑ as a function of momentum flux J .

from the nozzle exit by the liquid jet. On the contrary, at low values of J , bubble
diameters are higher, and the buoyancy force is much stronger, hence the bubble tra-
jectory is deviated upwards as soon as the gravity force becomes predominant over
the inertia forces. In addition, at a fixed J value, ϑ is higher at larger values of the
gas flow rate QG which is related to the fact that, being buoyancy force proportional
to bubble size, larger bubbles begin to ascend at smaller distances with respect to
the exit of the injector.

3.1.1.3 Variation of injection angle with respect to gravity

The dependence of the maximum distance reached xmax and the delimitation angle
ϑ on the momentum flux has also been studied for different values of the orientation
angle ϕ.

It can be observed in Figure 3.6(a) that for a fixed value of the momentum flux
J , xmax is higher at higher values of ϕ. The plot have been obtained by maintaining
a fixed gas flow rate QG = 30 ml/min, with different values of liquid flow rate
QL to obtain the present range of the momentum flux J . Injection angles have
been increased from ϕ = 0◦ to ϕ = 30◦. The component of the buoyancy force in
the direction of injection increases at larger ϕ, being therefore a greater maximum
distance reached.

Figure 3.6(b) shows the dependence of ϑ with the momentum flux J for three
injection angles. It can be observed that for a fixed J value, ϑ diminishes as ϕ is
increased. This can be explained in the same way as done for Figure 3.6(a), since if
increasing ϕ the maximum distance increases, it is natural to deduce that the angle
ϑ diminish in a similar fashion.
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Figure 3.6: (a) Maximum distance reached xmax as a function of momentum
flux J for different injection angles ϕ. (b) Delimitation angle ϑ as a function
of the momentum flux J , for different injection angles ϕ.

3.1.2 Bubbly jets in microgravity

In order to study the behavior of bubbly jets in microgravity, the experimental setup
described in Section 2.1.3 have been used at the ZARM Drop Tower in Bremen.

The procedure to study the bubbly jets is the following: when the capsule is in
the top of the Drop Tower, ready to be dropped, the liquid pump is activated and
after 10 seconds the air valve is opened. After a few seconds5, the air enters the
test tank forming the bubbly jet. Once the bubbly jet is stabilized6, the capsule is
dropped.

In the initial instants of the zero gravity phase, the fluid flow field is still per-
turbed by the bubbles which rose to the top of the test tank when the gravity force
was non-zero. This perturbation is the responsible of some presence of small bub-
bles in the upper part of the jet, which is not perfectly axisymmetric in the first few
milliseconds of zero gravity.

A possible way to avoid this fluid flow field perturbation, would be to generate
the bubbly jets once in microgravity, but the time interval between the aperture of the
air valve and the instant at which the air enters the test tank is highly unpredictable
and can reach up to 5 s. Since the available microgravity time in the ZARM Drop
Tower is 4.74 seconds, there is the risk of opening the gas valve with no air entering
the test tank in the whole drop, which would be a too risky procedure.

In Figure 3.7(a), the normalized gravity level as a function of time for a whole
drop is presented. After the capsule is dropped, the gravity level undergoes high-
frequency damped oscillations, reaching negative values of g up to g = −0.7g0.
After 0.7 s approximately, these oscillations can be neglected and the gravity level

5Depending on the gas and liquid flow rates used, the time interval between the aperture of the air
valve and the entrance of the air into the test tank varies from 1 to 5 seconds.

6The stabilization time varies from 20 to 40 seconds approximately.
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Figure 3.7: Normalized gravity level as a function of time. (a) Oscillation of
gravity level (with negative values of gravity) after capsule release. (b) Up to
g/g0 ≈ 40 when the capsule is decelerating.

stabilizes with some significant g-jitter.
Figure 3.7(b), is the same as Figure 3.7(a) with a different scaling factor. The

reason for including Figure 3.7(b) is the fact that during the capsule deceleration,
high gravity levels are reached, up to g = 40g0 approximately, and using this scale
factor the decelerating gravity level can be appreciated in more detail.

In Figure 3.8, snapshots of growing bubbly jets are presented for different values
of the momentum flux J . For a given gas flow rate, using high values of the liquid
flow rate results in high values of J . In this case, small bubbles are generated, as can
be seen in Figure 3.8(a). On the other hand, using low values of the liquid flow rate,
bigger bubbles are generated as can be seen in Figure 3.8(c). The effects of the flow
field perturbation by the residual fluid flow can be appreciated in Figures 3.8(b) and
3.8(c), since some bubbles are in the upper part of the jet breaking the axisymmetry.
This effect is higher for larger bubbles due to the fact that the buoyancy force is
proportional to the bubble volume.

3.1.2.1 Individual trajectories

Individual trajectories of 10 bubbles have been obtained in the earlier times of a
growing jet, with J = 16 gcm/s2.

In Figure 3.9(a), the x-coordinate of the center of the bubbles is plotted as a
function of time. The bubble center average velocity in the injection direction just
after detachment is approximately vx = 1 m/s, being slightly reduced as the jet
grows. The slopes of the lines decrease as the bubble reach higher distances from
the jet nozzle.

The y-coordinate of the center of the bubbles is plotted as a function of time in
Figure 3.9(b). The bubble vertical positions follow a random diffusive movement
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Figure 3.8: Snapshots of single bubbly jets in microgravity, for (a) J = 176
g cm/s2, (b) J = 64 g cm/s2 and (c) J = 1.8 g cm/s2.
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Figure 3.9: Time evolution of bubble center positions for several bubbles in
microgravity. (a) x-coordinate (injection direction) as a function of time. (b)
y-coordinate (perpendicular direction to injection direction) as a function of
time.
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Figure 3.10: Averages of 200 frames of single bubbly jets in microgravity, for
different values of the momentum flux J .

which is the responsible of the conical shape of the jet. It can be noted that one
bubble is at y ≈ 1 mm at t = 0. This is due to the fact that this bubble was already
inside the test tank when the bubble tracking started.

Comparing the microgravity case with the normal gravity case (Figures 3.9 and
3.2 respectively), one notes that in microgravity the bubble velocity in the injec-
tion direction is approximately constant (although a slight decrease in velocity is
observed far from the nozzle), while in the normal gravity case (Figure 3.2(a)), the
bubbles suffer a high deceleration after 50 ms, in some cases resulting in a negative
velocity in the injection direction. The y−coordinate, reaches a steady state (con-
stant slope) in the normal gravity case, while in microgravity, a diffusive movement
is the predominant behavior.

3.1.2.2 Opening angle

The global structure of the bubbly jets in microgravity can be approximated by a
conical shape. The parameter that characterizes this conical shape is the opening
angle of the cone, Ψ. In Figure 3.10, the definition of the conical opening angle Ψ is
presented. The images are obtained by averaging 200 frames of the movies obtained
at a) J = 176 g cm/s2, b) J = 64 g cm/s2 and c) J = 1.8 g cm/s2.

A plot of the opening angle Ψ as a function of the momentum flux J is presented
in Figure 3.11. Only 5 values of J are presented due to the fact that only 5 drops
with bubbly jets were carried out. The opening angle decreases as the momentum
flux in increased, due to the fact that larger momentum fluxes correspond to smaller
bubbles, which are dragged out of the nozzle by the liquid jet. The smaller a bubble
is, its movement can be considered passive, following the liquid flow field. However,
larger bubbles are much more sensitive to the g-jitter and they become dispersed
closer to the nozzle. For this reason, smaller bubbles are more collimated in the
direction of injection.

Although the natural definition of the angles ϑ (normal gravity case) and Ψ (mi-
crogravity case) is different, both angles describe the visual opening of the jet, and
is reasonable to make a qualitative comparison between them. Figures 3.5 and 3.11
present the variation of ϑ and Ψ as a function of the momentum flux J , respectively.
Both angles decrease smoothly, in a similar fashion, as the momentum flux J is in-
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Figure 3.11: Conical opening angle Ψ for different values of the momentum
flux J .

creased. This similar behavior reports that the inertial forces inside the turbulent
zone are higher than the gravity forces, being the behavior of bubbles inside the
turbulent zone very similar in both normal gravity case and microgravity case.

3.2 Droplet jets

Unlike with bubbly jets, concerning droplet jets the aerodynamic drag does not play
any fundamental role in the dynamics of the droplets. Hence, the droplets do not
follow the carrier fluid flow passively, as in the case of bubbly jets.

3.2.1 Droplet jets in normal gravity

3.2.1.1 Jet breakup

In the present study, a liquid jet is created by injecting a fixed liquid flow rate QL

through a capillary tube (inner diameter dC = 0.7 mm) oriented perpendicularly
to the gravity direction. With this arrangement, two different regimes have been
observed, by variating the liquid flow rate.

On one hand, when inertial forces are negligible compared to surface forces, a
drop is formed at the nozzle outlet, growing with time without detaching from the
nozzle. In this situation, the nozzle is leaking continuously: the dripping regime
(see Figures 3.12(a) and 3.12(b)).

On the other hand, when inertial forces are predominant in front of surface
forces, a jet is formed and the atomization occurs: the jetting regime. In this case,
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Figure 3.12: Snapshots of droplet jets at different flow rates. (a) Q L = 5
ml/min. (b) Q L = 10 ml/min. (c) Q L = 13.5 ml/min. (d) Q L = 15 ml/min.

the jet emerges from the nozzle and becomes curved downwards due to the action
of the gravity force (as shown in Figures 3.12(c) and 3.12(d)). It is appropriate to
introduce the Weber dimensionless number, which is a direct measure of the relative
importance between the fluid’s inertia compared to its surface tension

We=
ρv2dC

γ
(3.4)

where v = 4QL/πd2
C is the fluid velocity and dC is the capillary diameter.

In order to know in which position the jet breaks, forming droplets, the average
breakup length 〈Lb〉 have been measured for different values of the liquid flow rate.
The breakup length have been measured over an average of 500 frames, and the
value have been obtained by measuring the length of a circular arc from the center
of the nozzle to the average breakup position.

The obtained experimental results of the average breakup length are presented in
Figure 3.13, as a function of the square root of the Weber number7. However, since
the liquid properties remain constant and the nozzle do not change its diameter with
time, the square root of the Weber number is proportional to the liquid flow rate

p
We≈

r
ρ

γd3
C

QL . (3.5)

7The reason for choosing
p

We as the abscissa axis is for comparison with the microgravity case
(Section 3.2.2). In zero gravity, the problem is axisymmetric and there is an analytical relation between
〈Lb〉 and

p
We.
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Figure 3.13: Average breakup length as a function of the square root of the
Weber number.

Starting from low Weber numbers, as the liquid flow rate is increased, the breakup
length increases until at

p
We ≈ 1.5 an abrupt reduction of the breakup length is

found. The region
p

We ≈ 1.5 is the transition zone between the dripping regime
and the jetting regime. Once in the jetting regime, the average breakup length also
increases with the liquid flow rate, at the range studied.

Before reaching the breakup point, the liquid is contained in a curved cylinder
with growing amplitude perturbations at its surface. Once the amplitude of these per-
turbations are equal to the cylinder radius, the liquid bulk breaks forming droplets of
certain sizes. After the breakup point, intermittent droplets are generated. The sizes
and trajectories of the generated droplets are examined in the following paragraphs.

3.2.1.2 Droplet sizes

Teng et al. [TKM95] studied the sizes of droplets after jet breakup for Newtonian
and non-Newtonian fluids, obtaining the following equation for the droplet mean
diameter

de

dC
=
�

3πp
2

� 1
3

(1+ 3Oh)
1
6 , (3.6)

where Oh = µp
ργdC

is the Ohnesorge number. At the studied range of parameters,

Oh� 1 and de ≈ 1.88dC .
Equation 3.6 can be modified in order to take into account the orifice effects,

de

dC
= 1.88α (1+ 3Oh)

1
6 , (3.7)
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Figure 3.14: Droplet size distributions in normal gravity for different liquid
flow rates Q L .

where α in an empirical orifice parameter which has to be determined experimen-
tally. Teng et al. [TKM95] obtained an empirical expression for the parameter α,
which can be written as

α= 1.13+ 0.02 ln(3Oh), (3.8)

which leads to a droplet mean diameter of de = 2.12dC .

The sizes of the droplets created by jet atomization have been measured from the
images recorded. Since the droplets are oscillating after jet breakup, an equivalent
diameter de is defined as the diameter of the droplet containing the same volume
of fluid as the oscillating drops. The measurements are taken from two-dimensional
images, so the actual equivalent diameter de is such that

de = 2

Ç
Am

π
(3.9)

where Am is the measured area of the oscillating drops.

In Figure 3.14, the droplet size distribution is presented for three values of the
liquid flow rate. The case QL = 10 ml/min, correspond to the dripping regime. In
this situation, big droplets are leaking from the nozzle in a regular way. The mean
equivalent diameter of these dripping droplets is de ≈ 4.5 mm, and this size should
be independent of the nozzle diameter dC . The size distribution for the dripping
droplets is narrow, indicating that all the droplets have approximately the same size.

As the liquid flow rate QL is increased, there is an abrupt reduction in the droplet
mean size, corresponding to the transition into the jetting regime. In this regime, the
generated droplets are much smaller (de ≈ 2 mm) and the diameter distribution is
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Figure 3.15: (a) x-coordinate (injection direction) of droplet centers as a
function of time. (b) y-coordinate (gravity direction) of droplet centers as a
function of time.

much wider, reflecting that the droplets are much more dispersed in size. This is
mainly due to the droplet formation process itself, but also to some coalescence be-
tween droplets after generation. In fact, in the jetting regime, the collision between
droplets after generation (resulting in bouncing or coalescence) is a phenomenon
that occurs frequently. In this regime, within the range of flow rates studied, the
droplet mean diameter decreases gradually as the liquid flow rate is increased. In
all the cases, the droplet mean diameter obtained experimentally is higher than the
theoretical prediction of Equations 3.6, 3.7 and 3.8. This is due to the coalescence
between droplets after the droplet generation process, in the jetting regime. From
the movies, numerous collisions between droplets are observed near the jet breakup
zone, resulting in coalescence or bouncing. The bouncing does not change the size
distribution. However, the coalescence events wider the tail in the droplet size dis-
tribution, and increase the droplet mean diameter.

3.2.1.3 Droplet trajectories

After atomization, the generated droplets follow a parabolic trajectory due to the
action of the gravity force. An automatized method for tracking the droplet centers
have been used for QL = 15 ml/min, which correspond to the jetting regime. In
Figures 3.15(a) and 3.15(b), the x-coordinate and y-coordinate (gravity direction)
of droplet centers are plotted as a function of time.

A region (between 5 and 10 mm in the x-coordiante, and −1 and −2 mm in the
y-coordinate) in which the automatized tracking method crashes can be observed.
This region corresponds to the breakup point. After this point, the droplets follow
a parabolic trajectory: linear path in the x-coordinate and quadratic path in the
y-coordinate.
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Figure 3.16: Map of droplet trajectories for Q L = 15 ml/min.

In Figure 3.16, a map of the droplet trajectories is presented. From this map, a
singular path that reaches x positions up to 28 mm (which corresponds to a satellite
droplet), can be observed. The origin of this path does not correspond to the breakup
point, indicating that the satellite droplet have been generated by the breakup mech-
anism of a larger droplet, or by an irregular breakup of the liquid jet, colliding and
bouncing with other droplets. After examination of the recorded movies, we have
seen that the satellite droplet is a small droplet generated by some irregularity in the
jet breakup mechanism. After generation, the droplet collides with another bigger
droplet and bounces, reaching larger distances in the injection direction than the
average trajectories. Errors in the tracking process can be observed, both near the
breakup point and also in the parabolic trajectories after atomization.

3.2.2 Droplet jets in microgravity

3.2.2.1 Jet breakup

When a liquid jet emerges from a nozzle in microgravity conditions, it quickly loses
is cylindrical shape due to the action of inertial forces and surface tension forces.
The cylindrical jet is perturbed by the competition between cohesive and disruptive
forces giving rise to oscillations and perturbations. Under certain conditions, the
oscillations can be amplified and the liquid body disintegrates into drops (primary
atomization) at a distance Lb from the nozzle outlet. This jet breakup mechanism
is the Rayleigh-Plateau instability, name due to the experimental work by Plateau
[Pla73] and the theoretical analysis by Rayleigh [Ray78].

As in normal gravity, two different cases are examined. On one hand, when
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Figure 3.17: Snapshots of droplet jets at different flow rates. (a) Q L = 5
ml/min. (b) Q L = 10 ml/min. (c) Q L = 13.15 ml/min. (d) Q L = 13.5 ml/min.
(e) Q L = 15 ml/min.

inertial forces are negligible compared to surface forces, a droplet is formed at the
nozzle outlet, growing with time without detaching from the nozzle. On the other
hand, when inertial forces are predominant in front of surface forces, a jet is formed
and the atomization occurs quickly. If the values of the parameters characterizing
the jet correspond to the dripping regime in normal gravity, in microgravity a big
droplet will be attached to the nozzle. In a similar way, the jetting regime in normal
gravity corresponds to the jetting regime in microgravity. The Weber number (We=
ρv2d/γ) is an appropriate dimensionless number to address this kind of problems,
since it relates the fluid’s inertia and its surface tension.

In Figure 3.17, sequences of snapshots of increasing liquid flow rate are pre-
sented. For low values of the flow rate, 0 < QL < 10 ml/min, a nearly spherical-
shaped droplet is formed and grows with time while being attached to the nozzle
(Figure 3.17(a)). At QL = 10 ml/min, the droplet remains attached to the nozzle
but loses its spherical shape due to the action of inertial forces (Figure 3.17(b)). For
higher liquid flow rates, 10 < QL ≤ 15, the primary atomization takes place with a
breakup length Lb increasing with the flow rate, while the droplet mean diameters
become decreased with increasing flow rate (Figure 3.17(c) to Figure 3.17(e)).

In order to study the effects of the Weber number on the breakup length Lb, we
follow the procedure detailed in Bush [Bus04] and Lefebvre [Lef89].
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We assume that the disturbances are axisymmetrical in the injection direction
(x-direction), so the perturbed liquid surface takes the form

r = r0 +δ0 exp
�
qt + ikx

�
(3.10)

where δ0� r0 is the initial amplitude of the perturbation, q is the growth rate of the
instability and k is the wavenumber of the perturbation in the x-direction. Denoting
by Z̃ the perturbed field of Z , being Z any quantity, the perturbed Navier-Stokes
equations to order δ0 and continuity become

∂ ṽr

∂ t
=− 1

ρ

∂ p̃

∂ r
, (3.11)

∂ ṽx

∂ t
=− 1

ρ

∂ p̃

∂ x
, (3.12)

∂ ṽr

∂ r
=− ṽr

r
− ṽx . (3.13)

Writing the perturbed velocities and pressure as

ṽr = R(r)exp
�
qt + ikx

�
, (3.14)

ṽx = X (r)exp
�
qt + ikx

�
, (3.15)

p̃ = P(r)exp
�
qt + ikx

�
, (3.16)

and substituting into Equation (3.11) through Equation (3.13), yields

qR=− 1

ρ

dP

dr
, (3.17)

qX =− ik

ρ

dP

dr
, (3.18)

dX

dr
=−X

r
− ikx . (3.19)

If one eliminates X (r) and P(r), a modified Bessel equation of order 1 is obtained
for R(r),

r2 d2R

dr
+ r

dR

dr
−
�

1+ k2r2
�

R= 0. (3.20)

Hence, the solutions must take the form

R(r) = C I1(kr), (3.21)

where I1(kr) is the modified Bessel function of the first kind and C is a constant
to be determined by boundary conditions. Imposing that ∂ R/∂ t = ṽr , one obtains
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C = δ0q
�

I1(kr0)
�−1.

The normal stress balance on the free surface can be written as

p0 + p̃ = γ∇ · n, (3.22)

where ∇ · n =
�
1/r1 + 1/r2

�
, with r1 and r2 the principal radii of curvature of the

fluid surface,

1

r1
=
�

r0 +δ0 exp
�
qt + ikx

��−1 ≈ 1

r0
− δ0

r2
0

exp
�
qt + ikx

�
, (3.23)

1

r2
= δ0k2 exp

�
qt + ikx

�
. (3.24)

Substituting and using that p0 = γ/r0, an equation for p̃ can be written

p̃ =−δ0γ

r2
0

�
1− k2r2

0

�
exp
�
qt + ikx

�
. (3.25)

On one hand, integrating Equation (3.17) and using Equation (3.21) and the
identity I1(ξ) = I ′0(ξ), one obtains

P(r) =− ρq2δ0

kI1(kr0)
I0(kr). (3.26)

From Equation (3.16), Equation (3.25) and Equation (3.26), the dispersion rela-
tion can be finally obtained,

q =

�
γ

ρr3
0

kr0
I1(kr0)
I0(kr0)

�
1− �kr0

�2�
� 1

2

. (3.27)

with a maximum growth rate of qmax = 0.34
p
γ/ρr3

0 at kr0 = 0.697. We will use
this data later on.

On the other hand, at the precise moment when the perturbation has grown an
amplitude equal to r0,

r0 = δ0 exp(qmax tb), (3.28)

hence

tb =
ln(r0/δ0)

qmax
. (3.29)

As tb = Lb/v, where v is the jet velocity,

Lb =
v

qmax
ln
�

r0

δ0

�
. (3.30)
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We have seen that the exponential growth rate of the fastest-growing disturbance
is given by

qmax = 0.34

r
γ

ρr3
0

= 0.97

r
γ

ρd3 , (3.31)

where d = 2r0. Substitution of Equation (3.31) into Equation (3.30), gives

Lb

d
= 1.03v

�
ln

d

2δ0

�r
ρd

γ
. (3.32)

Now we can rewrite Equation (3.32) in terms of the Weber number,

Lb

d
= 1.03

p
We ln(d/2δ0). (3.33)

Equation (3.33) is a prediction of the breakup length of a liquid jet subjected
only to inertial and surface tension forces. Taking into account the effects of viscosity,
Weber’s analysis yields an expression of the form

Lb

d
= v
�

ln
d

2δ0

�

r
ρd

γ
+

3µ

γ


 (3.34)

which may be rewritten as

Lb

d
=
p

We (1+ 3Oh) ln
�

d

2δ0

�
, (3.35)

where
Oh=

µp
ργd

(3.36)

is the Ohnesorge number. It is important to note that the breakup length Lb is
proportional to d3/2 for non-viscous fluids and proportional to d for viscous liquids.

However, the initial disturbance δ0 cannot be determined a priori. Its value will
depend on the particular experimental conditions of nozzle geometry and liquid flow
rate. An empirical correlation of data for the laminar region is the following, due to
Grant and Middleman [GM66]

Lb

d
= 19.5

p
We (1+ 3Oh)0.85 . (3.37)

In Figure 3.18, the average breakup length 〈Lb〉 is plotted as a function of the
Weber number. The average have been made over 500 frames, and the points with
〈Lb〉 = 0 correspond to the non-detachment of the drop from the nozzle. An ad-
ditional independent term have been added to Equation (3.37), which value have
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Figure 3.18: Average breakup length as a function of the square root of the
Weber number. The linear fit correspond to the cases with 〈Lb〉 6= 0.

been obtained by fitting the linear relation to the experimental data points for which
Lb 6= 0.

Comparison between the experimental data and the linear slope relation pre-
dicted by Grant and Middleman [GM66] are in acceptable agreement, despite the
few experimental data points available.

In order to have an idea of the effects of gravity level on the jet breakup length,
a comparison between the normal gravity case (Figure 3.13) and the microgravity
case (Figure 3.18) have been carried out. In the dripping regime, the breakup length
increase smoothly with the square root of the Weber number in normal gravity, while
in zero gravity there is no breakup, but a single bubble growing with time. In the
jetting regime, the behavior is similar in both cases (although the breakup length in
zero gravity is slightly higher than in normal gravity), which reflects that in the stud-
ied range of parameters, the contribution of gravity to the inertial forces is much
lower than the contribution of the liquid flow rate (jet breakup is governed by a
competition between inertial forces and surface forces). From the data obtained,
we conclude that a dripping regime in normal gravity leads to a growing droplet,
attached to the nozzle, in microgravity, and jetting regime in normal gravity corre-
sponds to jetting regime in microgravity.

3.2.2.2 Droplet sizes

The sizes of the droplets created by jet atomization have been measured in microgra-
vity conditions. As in normal gravity, most of the generated droplets are oscillating,
thus the introduction of the equivalent diameter de becomes necessary.
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Figure 3.19: Droplet size distribution in 1g and 0g for: (a) Q L = 13.5 ml/min;
(b) Q L = 15 ml/min.

In Figure 3.19, the droplet size distributions for QL = 13.5 ml/min (Figure
3.19(a)) and QL = 15 ml/min (Figure 3.19(b)) are presented in normal gravity
and in microgravity. No significant differences are appreciated between the normal
gravity and microgravity cases. This could be expected since the Bond number is
low, Bo∼ 10−3.

In addition, in the jetting regime, an increase in the liquid flow rate QL results
in a decrease of the drop main diameter both in normal gravity and in microgravity
conditions. In Figure 3.20, the droplet size distribution for different values of the
liquid flow rate is presented. For QL = 13.15 ml/min, the dispersion in size of
the droplets is wider than in the cases corresponding to QL = 13.5 ml/min and
QL = 15 ml/min. This is due to the fact that the case of QL = 13.15 ml/min is near
the transition between the jetting regime and the non-detachment regime, so the
generation of droplets becomes much more unpredictable and uncontrollable.

We have seen that the maximum growth rate (Equation (3.31)) corresponds to
kr0 = 0.697, so the wavelength of the fastest growing disturbance is

λ= 4.51dC . (3.38)

After breakup, a cylinder of length 4.51d becomes a spherical drop, thus

πd2

4
4.51dC =

π

6
d3

e , (3.39)

then, de = 1.89d. However, the experimental data reveals that 2d ¯ de ¯ 3d. In
all cases, the values of the droplet sizes obtained experimentally are higher than the
theoretical prediction (as in the normal gravity case). The disagreement between
the theoretical prediction and the experimental data, is mainly due to droplet co-
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Figure 3.20: Droplet size distributions in microgravity for different liquid flow
rates Q L .

alescence events. By analyzing the videos, a large number of coalescences were
observed. We also noted that the velocity of the center of a droplet after detaching
from the jet was low enough to let the preceding drop collide with it. However, we
must emphasize that this collision takes place due to droplet oscillations: after jet
breakup, the droplets oscillate with a high amplitude. The distance between the
centers of two consecutive drops may be constant, but if the droplets are oscillating
in phase, this consecutive droplets may touch each other due to the high values of
oscillation amplitude, giving rise to coalescence or bouncing. For this reason, the
presence of the tails in the droplet size distributions in Figure 3.19 and Figure 3.20
is due to coalescence events.

3.2.2.3 Droplet trajectories

An automatized method for tracking the droplet centers evolving in time have been
used. In Figure 3.21, the results of this method are presented: the x-coordinate
(being x the direction of injection) of the droplet centers are plotted as a function
of time, for QL = 15 ml/min. A first look at the figure shows that many of the
data points are not clear or even may be wrong. This is due to the automated
tracking process, in which sometimes is difficult to distinguish between surfaces
when topological changes (due to ruptures and coalescences) take place. However,
some important information can be extracted from this plot. On one hand, one
can observe that the points are aligned in lines with a certain slope. This gives
us directly a measure of the droplet velocities. On the other hand, by examining
the time interval between two consecutive lines of aligned points, one can have an
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Figure 3.21: x-coordinate of the droplet centers as a function of time, for
Q L = 15 ml/min.

idea of the droplet generation frequency fg , which is fg ≈ 80 drops/s. The white
band without data points between x = 5 mm and x = 10 mm correspond to the jet
breakup zone.

In Figure 3.22, an x-y map (being x the direction of injection) of the droplet
trajectories for the case of QL = 15 ml/min is presented. It is important to note
that the lines with highest slope do not cross the origin. This is a clear indicator
that the droplets with more deflected trajectories have suffered a collision in some
point after the detachment, instead of having a rectilinear trajectory coming from
the nozzle. By analyzing the videos, one notes that all the droplets created after
jet breakup, maintain an horizontal trajectory, following the direction of injection.
The fact that the outline of all the trajectories is cone-shaped, is due to droplet
collisions, most of them occurring near the jet breakup point. The droplet collision
process occurs in the following way: a drop is moving horizontally, and is preceded
by a slightly fastest drop with a low impact parameter different from zero. After the
collision, the trajectories of these drops become deviated from the injection direction.
This process is illustrated in Figure 3.23, where two droplets with impact parameter
b 6= 0 are approaching each other since |~v1|> |~v2|. Although the initial velocities are
horizontal (time t1 in Figure 3.23), after the collision the velocities have a non-zero
component perpendicular to the direction of injection (time t3 in Figure 3.23).

After a collision, droplets can bounce or coalescence. Taking into account the
relative velocity vrel = vi − v j between droplets i and j prior to collision, a modified
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Figure 3.22: Map of droplet trajectories for Q L = 15 ml/min.
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Figure 3.23: Sketch of the collision process between two droplets.

Weber number We∗ is introduced,

We∗ =
ρv2

reld
∗

γ
, (3.40)

where d∗ =
p

did j , being di the equivalent diameter of droplet i.
In Figure 3.24, a map of the normalized impact parameter and modified Weber

number is presented. Only four values of b/d could be taken (which correspond to 0,
1, 2 and 3 pixels), due to the actual spatial resolution of the images. Despite the few
data points available, one can observe a tendency of coalescences occurring at low
modified Weber numbers (We∗ < 2), while the bouncing occurring more frequently
at high values of We∗ (We∗ > 2). This may seem to be in contrast with the results ob-
tained by Gao [GCPL05] and Ko [KR05] using ethanol and water droplet collisions,
or the results from Chen [CC06] using diesel oil and water droplet collisions. In
their work, increasing the Weber number, bouncing occurred at lower We∗ and coa-
lescences at higher values (the transition between bouncing and coalescence can be
found at We∗ ≈ 20). However, the values of We∗ that they studied (7 <We∗ < 100)
were larger than in the present study, and no values below We∗ < 7 were investi-
gated. Furthermore, in Orme, Willis and Passandideh [Orm97, WO03, PFR06], an
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Figure 3.24: Normalized impact parameter b/d as a function of the modified
Weber number.

additional regime of coalescences at low values of the modified Weber numbers is
presented. For modified Weber numbers We∗ < 2.9, a regime of coalescences was
also observed. From these facts, increasing the Weber number three regions can be
observed: a coalescence region for We∗ < 2.9, a bouncing region for 2.9<We∗ < 20,
and a coalescence region for We∗ > 20. An important point to be stated concerning
Figure 3.24, is that the droplets were oscillating before the collision8, fact that cannot
be neglected since it can influence significantly the coalescence/bouncing behavior
of the droplets.

3.2.2.4 Drop oscillations

Droplets oscillate with a certain frequency after jet breakup, after coalescence, or
even after droplet bouncing. In the latter case, however, the amplitude of the oscil-
lations is lower. Hence, after the creation or collision of droplets, there always exist
an oscillation pattern, which in turn can lead to further collision between droplets.

The gravity force does not play any role in the droplet oscillations, the governing
parameters are the surface tension, the density and the droplet diameter uniquely.

In order to analyze the oscillations of the droplets, the amplitude and frequency
have been measured. In addition, the angle φ between the major axis of a drop and
the y direction have been also measured. This angle gives information about which
is the dominant mode of vibration, and the rotation of the droplets respect to its
geometrical center.

8All the droplets were oscillating, however, for some droplets the oscillation amplitude was too low
to be measured, due to the spatial resolution of the images.
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Figure 3.26: Angle between the drop major axis
and the y direction as a function of time. a) de =
2.47 mm, b) de = 2.16 mm.

In Figure 3.25, a schematic definition of the angle φ and the diameter dx in the
direction of injection are presented.

The variation of φ as a function of time is shown in Figure 3.26. It can be ob-
served that the “jumps” in the angle φ are of 90◦, which indicates that the dominant
mode of oscillation is the second mode, n= 2. The first mode correspond to volume
oscillations, while the third and fourth modes would lead to “jumps” in φ of 60◦

and 45◦ respectively. In addition, there is an offset in the average angle (tendency
to increase in Figure 3.26(a), and tendency to decrease in Figure 3.26(b), which
indicates that the droplets are rotating with respect to their centers.

The amplitude of the oscillations have been measured in order to obtain the
vibration frequency and the damping time of the droplets. The obtained results are
presented in Figure 3.27(a) and Figure 3.27(b) for droplet equivalent diameters of
de = 2.01 mm and de = 2.16 mm respectively. One can observe that the behavior
can be approximated as a damped oscillator model, i.e.

dx(t) = de + A2e
−t
τ cos

�
ω2 t +ϕ

�
, (3.41)

where τ is the damping time, A2 is the amplitude of vibration of the second mode
ω2 = 2π f2 is the vibration frequency of the second mode. The experimental data
points have been fitted by Equation 3.41, in order to obtain the vibration frequency
f2.
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Figure 3.27: Amplitude of droplet oscillations as a function of time. Smooth
lines are fits using the damped oscillator model. (a) de = 2.01 mm. (b) de =
2.16 mm.

The oscillation frequency is related to the properties of the drop by [Lam32,
Lef89]

f 2
n =

2γn (n+ 1) (n− 1) (n+ 2)
π2d3

e

�
ρ (n+ 1) +ρan

� (3.42)

where n is the vibration mode and ρa is the density of the surrounding fluid, with
ρa � ρ. Hence, the frequency of the second mode of oscillation is given by

f2 =

È
48γ

π2d3
e

�
ρ (n+ 1) +ρan

� (3.43)

Neglecting the air density, the frequency of the second mode of oscillation can be
approximated as

f2 ≈
4

πde

r
γ

ρde
(3.44)

In order to obtain the oscillation frequency f2 experimentally, which is plotted
in Figure 3.28, ten oscillation periods were measured for consecutive frames, for
different droplet equivalent diameters, in order to minimize the error. Excellent
agreement between the theoretical prediction and the experimental values indicates
that the damped oscillator model is a good approximation under the present circum-
stances.

3.3 Conclusions

The structure of two-phase (bubbly- and droplet-) single jets have been studied in
this chapter.
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Figure 3.28: Oscillation frequency (second mode, n = 2) of the droplets as a
function of their equivalent diameter.

For bubbly jets, the main conclusions can be summarized in the following points:

• The maximum distance reached by the bubbles from a single bubbly jet in nor-
mal gravity increases as the momentum flux is increased. A sudden increase
is observed at J ≈ 10 gcm/s2, which reflects the transition from the dripping
regime to the jetting regime.

• The bubble trajectories in normal gravity suffer a high deceleration near the
nozzles, while in microgravity, the deceleration is much smoother.

• In normal gravity, the delimitation between the bubbly jet zone and the bubbly
plume zone can be approximated by a straight line. The slope of this line
decreases as the momentum flux increases. In microgravity, no delimitation
angle can be measured since there is no bubbly plume zone, but the conical
opening angle of a bubbly jet decreases as the momentum flux is increased, in
a similar way as the delimitation angle does in normal gravity.

For droplet jets, the most relevant results are pointed out:

• Two different regimes have been observed within the droplet jets: the dripping
regime and the jetting regime. The sizes of droplets at the dripping regime is
higher than those in the jetting regime.

• The droplet mean size decreases as the liquid flow rate is increased, both in
normal gravity and in microgravity.
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• In zero gravity conditions, the jet breakup length increases linearly with the
square root of the Weber number.

• No significant differences in droplet sizes have been observed between the
normal gravity and the microgravity cases.

• The amplitude of droplet oscillations after colliding with other droplets, can
be approximated by a damped oscillator model.



CHAPTER4
Impinging jets

The structure of impinging jets is studied in this chapter. Single-phase and two-phase
impinging jets are considered, and the results are presented according to the follow-
ing organization: in Section 4.1.1, experimental results of impinging bubbly jets in
normal gravity are presented. Section 4.1.2 deals with the experimental results of
impinging bubbly jets in microgravity. Numerical results of the behavior of single-
phase jets (since the jets are one-phase, the gravity level is irrelevant) are presented
in Section 4.2. Finally, the numerical results of impinging bubbly jets in normal
gravity and in microgravity are presented in Section 4.3.

4.1 Impinging bubbly jets

4.1.1 Impinging bubbly jets in normal gravity

4.1.1.1 Jet structure

As described in Section 3.1.1, the horizontal injection of a bubble jet in a stagnant
liquid in normal gravity is characterized by the distinction between two main zones
(as observed also by Lima Neto et al. [NZR08b] and Suñol et al. [SnMPGC09]).
On one hand, a nearly conical jet near the injector nozzle is distinguished, in which
inertial forces are predominant and bubble motion is irregular and unpredictable.
On the other hand, a bubbly plume zone is obtained, in which bubbles rise steadily
and the bubble paths are straight lines where buoyancy is compensated by the drag
force. In this second region, inertial effects are no longer significant and bubble
motion becomes predictable.
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Figure 4.1: Average of 500 frames with schematic definitions of ζ and `.

As a first approximation, the separation between the inertial zone and the bub-
bly plume zone can be considered a straight line that coincides with the aperture of
the conical jet. This approximation can be applied for a single bubbly jet, as done
previously by Suñol et al. [SnMPGC09]. However, when using the opposed-jet con-
figuration, the interaction between jets modifies the global jet structure and the ap-
proximation is not applicable anymore [SnGC10a]. In this perspective, a parameter
ζ is defined as the distance between the injection axis and the point where bubbles
start a vertical rise. This parameter gives information about the regions where the
inertial force becomes negligible. If a bubble is located above ζ, its motion is deter-
ministic since it is rising steadily. On the contrary, if a bubble is located below ζ, the
flow field is turbulent and bubble motion is mainly dominated by inertial forces. The
parameter ζ is measured along the distance from the injection axis `. In Figure 4.1,
a graphic definition of ζ is shown.

The variation of ζ along the injection axis distance `, for different values of
the impact angle ϕ and the separation s between injectors, is presented in Figure
4.2. The behavior is almost linear in all cases, which reflects that the straight line
approximation can be still considered a valid approach, specially if the interaction
between the opposed jets is negligible (i.e., the cases of high separation between
jets, s = 45 mm, and low values of the momentum flux, J = 22 g cm/s2).

However, there can be observed a slight increase of the slope at high values
of ` in the case s = 25 mm. This is due to the interaction with the incoming jet:
since the distance between jets is small, the flow field generated by one of them
is significantly disturbed by the other. A certain amount of bubbles coming from
the opposed jet entrains to the zone of the outgoing jet, resulting in an increase of
the number of bubble collisions and coalescence events in the central zone. This
interaction between jets increases as the distance between them decreases, and in
the case of s = 45 mm no considerable increase in the slope can be observed at the
studied range of the momentum flux J , although is expected to occur when using
higher values of J . Data corresponding to s = 45 mm can be measured at higher
values of ` than data corresponding to s = 25 mm, because when the injectors are
far from each other, the interaction zone between the two colliding jets is located far
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Figure 4.2: Variation of ζ with ` for different values of J and s. (a) ϕ = 0◦;
(b) ϕ = 30◦.

from the outlet of the injector. It is also important to note that as J increases (with
fixed values of ϕ and s), ζ decreases, which is related to the fact that bubbles are
smaller and they leave the injector outlet at high velocities, so they can reach higher
distances from the nozzle before entering the bubbly plume zone.

For some industrial applications, it can be important to know the bubble spatial
distribution in the bubbly plume zone, and how it changes when the jet strength,
impact angles or separation are modified. In order to determine the bubble distribu-
tion, it is appropriate to measure the horizontal position (from now on, we will call
x and y coordinates the horizontal and vertical position of a certain bubble, with
respect to the left injector nozzle) of the bubbles when they are rising vertically. This
measurements are related to the bubble motions inside the jets, and they can reflect
which is the optimal jet configuration to achieve the most uniform bubble spatial
distribution.

The method used to measure the probability for a bubble to rise in a determined
x coordinate, consists of performing a line profile measure of a time averaged se-
ries of consecutive frames (see Figure 4.3). The line profile measurements have
been done at a height where almost all the bubbles rise vertically, and no more co-
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Line profile

Figure 4.3: Picture illustrating the line profile measurement method.

alescences are expected to occur, so the distribution will not present considerable
changes above this height. Following this procedure, a line profile measure has been
carried out at a height of h = 3 cm from the injector outlets for a series of 1000
consecutive frames (corresponding to ∆t = 1 s). Two different values of the impact
angle (ϕ = 0◦ and ϕ = 30◦) have been considered in order to see the influence of the
opposed jets orientation in the bubble spatial distribution. The data have been nor-
malized to the number of bubbles that crossed that line to obtain the probability Px

that a bubble rise vertically in the coordinate x . The line profile measure has been
done for two different values of the momentum flux (J = 22 gcm/s2 and J = 54
gcm/s2) and two values of the separation between injectors (s = 25 mm and s = 45
mm).

In Figures 4.4(a) and 4.4(b) the probability Px versus the normalized distance
x/s, at ϕ = 0◦ and ϕ = 30◦, respectively, are presented.

It can be observed that when using high values of the momentum flux J (this
is, small bubbles), the probability for a bubble to rise in the central zone (x/s ≈
0.5) increases. In the case s = 25 mm and J = 54 g cm/s2 the bubbles are widely
dispersed in the range x ∈ (0, s), in both orientation angles ϕ = 0◦ and ϕ = 30◦.
At fixed values of the momentum flux J , we observe that the bubbles are more
uniformly distributed at ϕ = 0◦ than in the case ϕ = 30◦ in both situations s = 25
mm and s = 45 mm. This fact can be explained since there is a vertical component of
the mean flow field when the orientation angle is different from zero. This upwards
velocity, with the help of the flow field of the opposed jet, causes the bubbles to
rebound and rise in a more enclosed region. This is in agreement with the results
of Tsujimoto et al. [TSSA06], who showed that the mixing efficiency of opposed
jets increases at low impact angles. If the injectors are separated by s = 45 mm, the
probability to rise in the central zone is nearly zero, especially in the case of J = 22
gcm/s2, since in this case the jet strength is still not high enough to push the bubbles
towards x ≈ s/2. This is an indication that at low values of J , if the maximum
distance that individual bubbles can reach along the jet axis is smaller than s/2,
then the collisions of bubbles from different jets its not expected to occur, and no
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Figure 4.4: Px versus x/s, for J = 22 gcm/s2 (dark gray), and J = 54 gcm/s2

(light gray). (a) ϕ = 0◦; (b) ϕ = 30◦.

coalescences events will be encountered in the central zone. On the other hand,
when the bubbles can reach distances of the order of s/2 or higher, the interaction
between jets becomes important and the coalescences of bubbles from different jets
can take place. In this situation, the interaction between jets becomes important and
the behavior of bubbles differs from that of an individual jet.

4.1.1.2 Bubble velocities

Concerning the velocity field of the bubbly jet, it is necessary to take into account
the bubble velocities and the liquid flow structure. As reported by Lima Neto et al.
[NZR08b], the liquid velocity field differs from the motion of bubbles at a certain
distance from the nozzle. In their work, both liquid velocity field and bubble prop-
erties were examined separately. It was observed that the trajectories of the bubbles
follow approximately the water jet flow in the bubbly jet region, as inertial forces
are much higher than buoyancy, and after some distance from the outlet the water
jet partially separates from the bubble core. This leads to the assumption that, near
the outlet of the nozzle, one can consider that bubbles are moving passively through
the jet without perturbing significantly the flow field, where gravity forces can be
neglected. Carrera et al. [CRRP+08] investigated the bubble velocities of bubbly
jets in microgravity, and found that the motion of bubbles could be considered as
passive tracers with respect to the carrier mean flow. To reinforce the basis of this
approximation, the velocities of the bubbles at jet centerline have been measured at
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ϕ = 0◦, with two different values of the momentum flux J and different separations
between injectors s. Averaging the velocities of 5 sample bubbles in each case, the
variation of the velocity with the distance to the injector outlet has been obtained
for J = 22 gcm/s2 and J = 54 gcm/s2, and is presented in Figures 4.5(a) and 4.5(b)
respectively.

Following the procedure used by Carrera et al. [CRRP+08] to study the velocity
of a bubbly jet in microgravity, we consider the Schlichting solution1 [Sch79] for a
single phase turbulent jet, where the x component2 of the velocity reads

vx =
3

8πνT

J

ρL

1
�
1+ ξ2/4

�2

1

x
, (4.1)

where νT is the turbulent kinematic viscosity, and

ξ=
1

4νT

r
3J

πρL

y

x
. (4.2)

Although some of the Reynolds numbers used in the experiments (the range
of Reynolds numbers is 300 < Re < 3000) may correspond to the laminar case,
the mathematical expression of the laminar and turbulent solutions for circular jets
is identical, provided that the laminar kinematic viscosity νL is substituted by the
turbulent kinematic viscosity νT .

To avoid the divergence at x = 0, a parameter x0 is introduced in order to take
into account the finite size of the nozzle. In the jet centerline, y = 0, the modified
equation becomes:

vx =
3

8πνT

J

ρL

�
1

x + x0

�
≡ θ(J) 1

x + x0
. (4.3)

The solid lines of Figures 4.5(a) and 4.5(b) correspond to a fit of the measured
velocities using Equation 4.3. The values of the fitting parameters are shown in
Table 4.1.

It can be observed in Figure 4.5(a), 4.5(b) that velocities corresponding to a
separation between jets of s = 25 mm are lower than those corresponding to s = 45
mm. This fact can be due to the interaction with the opposing jet: when s is small
the jets are closer to each other and the flow field generated by the opposed jet can
decrease the mean velocity in the jet centerline. This decrease in velocity should be
larger at higher values of x . In fact we can observe that when x > 0.3s (x > 14
mm for s = 45 mm, and x > 8 mm for s = 25 mm), the measured velocity values
are lower with respect to the fitting curves. We conclude that the presence of the

1See Appendix A.1 for a detailed analysis of the Schlichting solution for a circular turbulent jet.
2In this particular case, the x coordinate (horizontal direction) coincides with ` (injection direction).
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J (g cm/s2) s (mm) θ (cm2/s) x0 (cm)

22 45 332± 33 3.1± 0.4
22 25 194± 14 1.9± 0.2
54 45 494± 29 3.3± 2.5
54 25 306± 22 1.8± 0.2

Table 4.1: Values of the fitting parameters θ and x0 for opposed bubbly jets in
normal gravity.
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Figure 4.5: Average bubble velocity at visual jet centerline. (a) J = 22 gcm/s2;
(b) J = 54 gcm/s2. Fitted solid lines correspond to Equation 4.3.

opposed jet decreases the average jet velocity as bubbles reach the central zone
where the two jets are colliding. The interaction between jets is thus not negligible
and the velocity field can only be compared with that of a single injector at low
values of x .

Except for a velocity scale, the structure of the turbulent liquid jet solution is
independent of J . Consequently, all the velocity measurements of Figures 4.5(a) and
4.5(b) should collapse on a single curve. In Figure 4.6, we show a good fit of the
measurements to the Schlichting solution, which confirms the validity of considering
bubbles as passive tracers near the nozzles.

4.1.1.3 Bubble sizes and coalescence events

In order to predict the bubble size distribution, one could consider the population
balance method [Ram00], which writes

∂

∂ t
n+ ~∇ ·

�
~vBn
�
+
∂

∂ dB

�
n
∂ dB

∂ t

�
= S, (4.4)
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Figure 4.6: Collapse of bubble velocity measurements. Circles and squares
correspond to J = 54 g cm/s2 and J = 22 gcm/s2, respectively. Solid line
correspond to a fit by Equation 4.3.

where n(~x , dB, t) is the local number density, dB is the bubble diameter, ~vB(~x , dB, t)
is the bubble velocity and S is the source term, due to coalescence or breakup events.

It is convenient to divide the bubble sizes into N classes, so the population bal-
ance equation for the ith bubble class becomes

∂

∂ t
ni + ~∇ ·

�
~vBni

�
= Si , (4.5)

where the growth term have been neglected. In the above equation, ni is the ith
bubble class local number density and Si is the source term for the ith bubble class.
No bubble breakup has been observed in the recorded videos. Thus, if we only take
into account the coalescence events, the source term for the ith bubble class writes
[PMBZ01]:

Si =
1

2

N∑
k=1

N∑
`=1

Ci,k` −
N∑

j=1

Ci j , (4.6)

where Ci,k` is the creation of a ith class bubble from coalescence between smaller
bubbles from classes k and `,

Ci,k` =

(
Ckl if Vk + V` = Vi ,

0 if Vk + V` 6= Vi .
(4.7)

Here, Vi is the volume of a ith class bubble, and Ci j is the coalescence rate, which
is usually defined as the product between the collision frequency θi j and the coales-
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cence efficiency Pi j ,
Ci j = θi j Pi j . (4.8)

Modelling of θi j and Pi j gives the evolution of the bubble size distribution in terms
of the fluid properties, and solving Equation 4.5 one obtains the evolution of the
bubble size distribution (see [LEG87, PB90, Che91, LS96, KCCF01, LMM02] for a
detailed description of the available models).

When a steady-state region is attained, Equation 4.5 becomes

~∇ ·
�
~vBni

�
= Si = 0. (4.9)

In these conditions, a log-normal distribution can describe the considered bubble
size distribution [Var95, KCCF01, PMBZ01, CRF08]

P(dB;µ,σ) =
1

dBσ
p

2π
exp

 
−
�
ln(dB/dC)−µ

�2

2σ2

!
, (4.10)

where µ and σ are fitting parameters.
With the aim to know what is the order of magnitude of the bubble sizes we are

dealing with, the diameters dB of approximately 1000 bubbles have been obtained
for two values of the momentum flux J . These diameters have been measured from
10 sample frames, with an automatic count of around 100 bubbles in each frame.
Figure 4.7 presents an histogram with the obtained results, where it can be seen that
the sizes of the bubbles are in the same order of magnitude as the capillary diameter.

The fitting values for J = 22 g cm/s2 are µ = 0.03± 0.04 and σ = 0.57± 0.03
and for J = 64 g cm/s2 are µ=−0.28± 0.05 and σ = 0.56± 0.04.

The dispersion in size of the bubbles is due to two facts: first, and most impor-
tant, are the coalescence events. With the flow rates that have been used, multiple
coalescences were observed in some bubbles, and this is the reason for the presence
of this long tail in the diameter distribution. Second, is the fact that the injector has
a little dispersion in the sizes of the bubbles generated, and this dispersion increases
when high values of J are studied. This phenomenon is the reason why there are
bubble diameters smaller than the capillary diameter, since no bubble breakups have
been observed. It can be seen in Figure 4.7 that the bubble diameters are smaller
when J = 64 g cm/s2, which is due to the higher amount of liquid flow rate used.
In the studied range of injector operation, for any value of the liquid flow rate QL

using low values of the gas flow rate QG , an increase of the gas flow rate results in
an increase of the bubble generation frequency, and not on the bubble sizes. When
the gas flow rate is higher than a certain critical value3, the generation frequency
saturates and increasing QG leads to higher bubble diameters, as reported in Arias

3About 10 ml/min for an injector of 1 mm diameter and QL = 20 ml/min.
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Figure 4.7: Distribution of bubble diameters at J = 22 gcm/s2 and J = 64
g cm/s2. Dashed and solid lines correspond to a fit by a log-normal distribution
(Equation 4.10) to the J = 22 gcm/s2 and J = 64 gcm/s2 cases respectively.

et al., [ARC+09]. The measured bubble size distribution is very similar to that ob-
tained photographically by Varely [Var95], although the sizes of the bubbles studied
in his work ranged from 0.2 mm to 1 mm. Bubbly jets with mean bubble diameters
between 1 mm and 5 mm were studied by Lima Neto et al. [NZR08a, NZR08b] and
they also obtained a similar shape of the size distribution. Kamp et al. [KCCF01]
investigated the size of bubbles in bubbly flows through pipes (with bubble mean di-
ameters ranging from 2 mm to 20 mm) and found distributions close to the present
one, but with no such long tails due to the coalescence events, which occur very
frequently after the bubbles have left the pipes creating therefore the bubbly jet.

It is possible that bubbles experience an expansion upon release into the tank
due to pressure difference between capillary pressure and the tank pressure, which
were not measured. In any case, since all bubbles have similar sizes (for fixed QL

and QG), this expansion would be similar for all of them, and thus the peak in Figure
4.7 would probably be slightly shifted to the right.

The CO2 solubility in water could become an important factor in the bubble
diameter determination. However, we have neglected the effects of solubility in the
bubble size, since according to Epstein et al. [EP50] and Ljunggren et al. [LE97],
the lifetime of a CO2 bubble of 1 mm diameter in water at the present experimental
conditions is of the order of several hours. Although the experiment runs for some
minutes (between 2 and 5 minutes to ensure a steady state) before recording the
high-speed sequence, a negligible amount of CO2 is dissolved in water during this
time. Moreover, the bubble diameter does not experience any significant change
during the time interval (approximately 50 ms) in which the bubble enters the zone
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Figure 4.8: Position of coalescence events in ∆t = 0.2 s, for J = 54 g cm/s2.
Circles and crosses correspond to s = 45 mm and s = 25 mm respectively. (a)
ϕ = 0◦; (b) ϕ = 30◦.

of observation and exits it. Thus, we consider that the concentration of CO2 in water
is steady in a time interval of 50 ms, which does not affect to the bubble diameter.

In order to have an image of the regions in the bubbly jets where the coalescence
events take place, we have measured the (x , y) coordinates of such events that took
place in ∆t = 0.2 seconds. Figures 4.8(a) and 4.8(b) show the positions of the
coalescences that occurred for J = 54 gcm/s2 with two values of the separation
s and with ϕ = 0◦ and ϕ = 30◦, respectively. When ϕ = 0◦ (Figure 4.8(a)) and
s = 45 mm, the coalescence locations are more or less uniformly dispersed, while in
the case s = 25 mm the coalescence events occur more frequently and appear to be
more concentrated in the central zone. This could be expected since the jet strength
combined with the incoming flow of the opposed jet is forcing a high number of
bubbles to collide.

It is important to note that some of the coalescence events occur near the injector
outlet (see, for example, Figure 4.8(b)). This fact, also observed by Carrera et al.
[CRRP+08] using a single bubbly jet in microgravity, is due to a sudden decrease of
velocity observed in some bubbles: when they have just detached from the nozzle
they slow down drastically very quickly. This decrease in velocity facilitates the
impact of the following bubble with the slow bubble, creating a larger bubble that,
in turn, is more capable to coalesce since its size is larger and presents a higher cross
section. From the movies recorded it is easy to see that when using high values of the
gas flow rate QG and low values of the liquid flow rate QL (thus resulting a low value
of the momentum flux J), the majority of the coalescence events occur just at the
outlet of the nozzle. These coalescences are produced by bubbles from the same jet,
since for low momentum fluxes bubbles are much higher in size and consequently
slower. Only a small amount of coalescences are produced by bubbles coming from
different jets, since bubble approach relative velocity is higher, and they take place
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Figure 4.10: Sequence of snapshots showing the coalescence process of four
bubbles into a single daughter bubble.

in the central region where the opposed jets are colliding.

Finally, the coalescence probability Pcoal versus J has been studied at different
orientation angles ϕ and separations s. The measurements have been carried out
manually by following the bubbles individually frame by frame, counting the number
of bubbles generated by the injectors and the number of coalescence events in a time
interval of ∆t = 0.2 s.

It can be observed in Figure 4.9 that at low values of the momentum flux J , the
number of coalescences is really high (nearly 70% of bubbles coalesce). This can be
explained since the size of the generated bubbles is larger for low values of J , and
larger bubbles suffer a decrease in their velocity just when they are in the outlet of
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the nozzle. A large bubble moving slowly near the injector increases the probability
to collide with the following bubble, and when this collision occurs, the size of the
daughter bubble is even bigger increasing even more the coalescence probability. On
the other hand, using high values of J the bubbles are smaller and they are injected
at high velocities (around 100 cm/s), so the probability to collide with the following
bubble is reduced drastically. The probability of coalescence at high values of J is
still large, due to the fact that high speed bubbles tend to collide with the bubbles of
the incoming jet rather than with the preceding bubbles of the same jet. To clarify
the ideas considered when creating the plot in Figure 4.9, it should be noted that
the coalescence probability has been measured considering that a coalescence is the
collision of two bubbles creating a single larger daughter bubble, no matter if the
coalescing bubbles have suffered any previous coalescences before. In fact, many
bubbles can suffer coalescence more than once. An example of this is presented in
Figure 4.10, where a sequence of images with four bubbles coalescing into one large
bubble (the smallest bubble do not coalesce) is shown. Four bubbles that coalesce
into a single one, means that three coalescence events have been occurred using the
definition already explained. The time interval between consecutive snapshots pre-
sented in Figure 4.10 is 1 ms, meaning that the whole process takes place in 12 ms.
The size of each snapshot is 42x43 pixels, corresponding to 6x6 mm approximately.

4.1.1.4 Comparison between distilled water and ethanol

An additional set of experiments were carried out using ethanol as a carrier liquid
with the aim to be aware of possible substantial differences when using different
viscosity and surface tension [SnGC11].

Velocity of bubbles has been measured from the movies recorded for different val-
ues of the momentum flux and separation distance. Measurements have been done
in the jet centerline, near the injector nozzle, using a horizontal injection configura-
tion (0◦ impact angle) in distilled water and ethanol. In Figure 4.11, the obtained
results are presented. It should be emphasized that the velocity field can only be
compared to that of a single jet at low values of x , that is, near the nozzle where
the interaction with the incoming jet is still negligible, inertia is highly predominant
and bubble motion can be considered passive, so the bubbles are carried away by
the liquid. However, at high values of x , the measured velocities are slightly lower
than the theoretical prediction (Equation 4.3). Such decrease in velocity near the
central zone is observed both in distilled water and in ethanol. This can be due
to the fact that the opposed jet is perturbing the velocity field far from the injector
nozzle, changing bubble velocities to lower values near the impingement zone (high
values of x).

In order to obtain the bubble size distribution experimentally, the diameters dB of
approximately 1000 bubbles have been measured for different values of the momen-
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Figure 4.11: vx/θ as a function of x + x0 for distilled water (circles and
squares) and ethanol (triangles and diamonds). Circles, squares, triangles and
diamonds correspond to J = 54 g cm/s2, J = 22 g cm/s2, J = 60 g cm/s2 and
J = 20 g cm/s2 respectively. Solid line correspond to a fit by Equation 4.3.

tum flux J . Measurements have been carried out using an image processing software
from 10 sample frames with an automatic count of around 100 bubbles each frame.
The probability of a bubble to have a certain size has been obtained dividing the
number of bubbles in a size range, by the total number of bubbles counted. In Fig-
ure 4.12, bubble size distributions are presented for two values of the momentum
flux in distilled water and ethanol. Log-normal distributions are fitted to the data.
The fitting parameters in Figure 4.12(a) are µ = 0.18± 0.15 and σ = 0.42± 0.06
for ethanol and µ = 0.58± 0.02 and σ = 0.57± 0.03 for distilled water. In Figure
4.12(b), the fitting parameters are µ= 0.35± 0.06 and σ = 0.47± 0.04 for ethanol
and µ= 0.54± 0.04 and σ = 0.56± 0.04 for distilled water.

In all cases the majority of the bubbles have a size slightly higher than the capil-
lary diameter. Coalescence events are the main responsible of the dispersion in size,
creating a large tail in the bubble size distribution. More coalescence events have
been observed in ethanol, and the bubble size distribution is thus slightly wider than
in the case of distilled water.

It is important to remind that larger values of the momentum flux correspond to
bubbles with smaller diameters. This comes from the difference between gas and
liquid densities (Equation 3.3). Variations of QL have a much stronger effect on the
value of J than same variations of QG . Thus, large values of J corresponds to large
QL , which generate smaller bubbles for a fixed value of QG . On the contrary, for
the range of flow rates used, increasing QG gives rise to a large bubble generation
frequency, not inducing any changes in the bubble size (see the linear regime in
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Figure 4.12: (a) Histogram of bubble diameters for J = 22 gcm/s2 in distilled
water, and J = 20 g cm/s2 in ethanol. (b) Histogram of bubble diameters for
J = 64 g cm/s2 in distilled water, and J = 60 gcm/s2 in ethanol. Solid and
dashed lines correspond to a fit by a log-normal distribution for ethanol and
water, respectively.

Figure 2 of Arias et al. [ARC+09], and Figure 3 of Arias et al. [AGCR+10]).
The obtained bubble size distributions are very similar to that obtained by Varely

[Var95]. In his work, smaller bubbles (sizes ranging from 0.2 mm up to 1 mm) were
created using larger values of the liquid flow rate. Bubbly jets with mean bubble
diameters between 1 mm and 5 mm were studied by Lima Neto et al. [NZR08a,
NZR08b], obtaining similar size distributions. Kamp et al. [KCCF01] also obtained
similar distributions, investigating the size of bubbles in bubbly flows inside pipes
(with bubble mean diameter ranging from 2 mm up to 20 mm). However, they
did not observe such long tails due to the coalescence events, which occur most
frequently after the bubbles have left the pipes creating therefore the bubbly jet.

4.1.2 Impinging bubbly jets in microgravity

Snapshots of impinging bubbly jets in microgravity are presented in Figure 4.13 for
a momentum flux of J = 86 g cm/s2. Pictures were taken at t = 325 ms, t = 700 ms,
t = 1100 ms and t = 1200 ms after the release of the drop capsule. The first thing
that one can observe is the presence of three big bubbles. These bubbles are not cre-
ated by the bubble generation mechanism described in Section 2.1.1. Instead, these
bubbles were present at the capsule release instant. Due to the fact that negative
gravity values are reached when dropping the capsule (up to g =−0.7g0, see Figure
3.7(a)), some of the gas that is present in the top of the test tank4 is directed to the

4The test tank is designed with its top part forming an angle of 5◦, so the bubbles coming from the
jets in normal gravity are directed to the residual tank through a capillary tube. However, this system is
not efficient enough to remove the gas inside the test tank at the moment of capsule release, and some
big bubbles are still present in the top of the test tank.
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Figure 4.13: Snapshots of impinging bubbly jets in microgravity at different
times, for J = 86 g cm/s2. (a) t = 325 ms, (b) t = 700 ms, (c) t = 1100 ms
and (d) t = 1200 ms after capsule release.

bulk of the test tank, not staying at the top anymore. If a bubble reaches the jet zone
(as the bubble on the left), it is pushed by the liquid flow field to the central zone.
Once the bubble reaches the central zone of the test tank, it is difficult to escape
from this region due to the higher pressure generated by the opposed jets.

The presence of big bubbles coming from the top of the tank occurred in all the 5
drops we had available at the ZARM Drop Tower. These bubbles affect the flow field
significantly, and the results reported herein are taken in a way that tries to mini-
mize those perturbations: the measurement of the jet shape or bubble velocities was
carried out when the big bubbles were located far from the jet region. In addition,
in the measurements of the bubble sizes, the diameters of these big bubbles (and the
smaller bubbles surrounding the big ones in some cases) have been neglected.

4.1.2.1 Jet structure

With the absence of buoyancy force, the distinction between the inertial zone and the
bubbly plume zone is not valid anymore. However, assuming that in microgravity
the bubbles can be considered as passive tracers of the carrier jet, the position of
the bubbles inside the jet give valuable information of the global jet structure. By
examining visually the recorded movies, one observes that the paths of the bubbles
were confined at certain regions (the majority of the bubble positions lie inside a
nearly conical shape with its edge located at the nozzle exit), being the velocity of
the bubbles higher at the jet centerline. By averaging a certain number of frames
of every movie, a delimitation of the conical jet structure was pointed out. The vast
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ζ

Figure 4.14: Schematic definition of ζ.

majority of the bubble paths are confined in a region which describe the jet conical
shape. Only a small number of bubbles are located outside this shape.

With the aim to characterize this shape (which can no longer be described by a
cone opening angle –i.e. a straight line– due to the presence of the opposed jet),
a parameter ζ is defined5 as the position of the delimiting zone of the jet shape,
measured directly from the averaged images. A schematic definition of ζ is presented
in Figure 4.14.

A plot of ζ as a function of the injection axis position is presented in Figure 4.15.
In this particular case, the separation between jets is s = 10 cm, and the momentum
flux is J = 86 g cm/s2. The values of ζ have been obtained by averaging the first 400
ms (squares), 650 ms (circles) and 1760 ms (triangles) respectively6 and drawing
visually the delimitation zone. In the case of t = 400 ms, the bubbles can be located
inside two regions with a nearly conical shape emerging from the nozzles. The
bubbles coming from the opposed jets are still in its way to the central zone (which
correspond to 40 < ` < 60 in this case approximately). At t = 650 ms, the bubbles
coming from one jet are interacting with bubbles coming from the opposed jet in the
central zone, reducing its velocity in the jet centerline direction while increasing its
velocity in the direction perpendicular to the injection direction. Finally, at t = 1760
ms, the interaction between the opposed jets is highly significant in the central zone,
fact that is reflected for the bubble paths: near the central zone, the velocity of the
bubbles in the direction of injection becomes reduced. However, the velocity in the
direction perpendicular to injection increases. This results in a cross-like shape of
the interacting jets, demonstrating that the assumption of the straight conical shape
(assumption taken with a single jet) is no longer valid, being only applicable in the
region close to the nozzle.

4.1.2.2 Bubble velocities

In order to determine the bubble velocity distribution at the jet centerline, velocities
of representative bubbles have been measured at different momentum fluxes and
separation distances between opposed jets.

5The symbol ζ was used in Section 4.1.1 as the parameter which describe the delimitation zone
between inertial and buoyancy regions in normal gravity. The same symbol ζ is used foreword because
it also characterizes the delimitation of the jet, although its natural definition is different from that of
Section 4.1.1.

6Considering t = 0 ms as the time of the capsule release.
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Figure 4.15: Delimitation parameter ζ as a function of the injection axis posi-
tion, for J = 86 g cm/s2.

In Figure 4.16(a), the component of the velocity in the direction of injection is
plotted as a function of the distance from the nozzle, for a fixed separation between
nozzles of s = 10 cm. It can be observed that for x > 30 mm, the measured velocities
are lower than the Sclichting’s theoretical prediction, Equations 4.1 and 4.2 (fitted
solid lines). This prediction is for a single jet, and the presence of the opposed
clearly perturbs the velocity field at the central zone (for s = 10 cm, the central zone
can be considered 30 < x < 70 cm approximately). Contrarily to a single jet, the
velocity field of opposed jets have a cross-like shape, with a high reduction of vx in
the central zone, and with an increment of vy in the collision plane (at x = s/2). The
bubbles enter the collision zone with values of the velocity component in direction
of injection (vx) much higher than the perpendicular component (vy). After the
collision with the incoming jet, a circular “sheet” of bubbles grows radially from the
center of the collision zone, being in this region vy much higher than vx .

The velocities for different separations between jets are plotted in Figure 4.16(b).
In this figure it can be also observed the same behavior: measured velocities are
lower in the central zone than the theoretical prediction. Thus we conclude that the
prediction of Equation 4.3 can be only applied near the nozzles of the opposed jets,
due to the perturbation of the velocity field created by the incoming jet.

The values of the fitting parameters to the Schlichting solution from Figures
4.16(a) and 4.16(b) are presented in Table 4.2.

Comparing the normal gravity (Figure 4.5) with the microgravity case (Figure
4.16), a similar behavior of the bubbles velocities at the jet centerline is observed.
However, in the normal gravity case, the bubbles suffer a high deceleration just after
leaving the nozzle, while in zero gravity the deceleration is smoother. As a result, the
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Figure 4.16: Bubble velocities at visual jet centerline. (a) s = 10 cm; (b)
J = 64 gcm/s2 for s = 10 cm, J = 1.8 gcm/s2 for s = 7.5 cm and J = 16
g cm/s2 for s = 5 cm. Fitted solid lines correspond to Equation 4.3.

J (g cm/s2) s (mm) θ (cm2/s) x0 (cm)

176 10 6285± 1780 15± 5
86 10 4382± 1200 13.0± 4.7
64 10 3167± 674 11.3± 3.2
16 5 911± 203 15.6± 4.6
1.8 7.5 875± 69 6.1± 0.6

Table 4.2: Values of the fitting parameters θ and x0 for opposed bubbly jets in
microgravity.

velocities observed experimentally in microgravity are higher than the Sclichting’s
theoretical prediction in a small region near the nozzle (5< x < 15 mm), and lower
than the theoretical prediction at large distances from the nozzle (x > 25 mm) due
to the presence of the incoming jet.

As mentioned previously in Section 4.1.1, the structure of the turbulent jet solu-
tion is independent of the momentum flux J and consequently all the measurements
of Figures 4.16(a) and 4.16(b) should collapse on a single curve. In Figure 4.17, a
plot of this collapse is presented. Good fit of the Schlichting solution to the measured
velocities is obtained near the nozzle. Far from the nozzle, the measured velocities
are lower than the prediction due to the presence of the opposed jet. Hence, the
affirmation that the Schlichting solution for a single jet can be only applied near
the nozzles, where the perturbation of the incoming jet can still be neglected, is
confirmed.
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Figure 4.17: Collapse of bubble velocity measurements in microgravity, for
different momentum fluxes and separation distances.

4.1.2.3 Bubble sizes and coalescence events

Unlike with bubbly jets in normal gravity, the bubbly jets in microgravity evolve
continuously with time and no steady states are reached. In normal gravity, all the
bubbles that the injector generate are quickly directed to the top of the tank due
to buoyancy forces. However, in microgravity, an injected bubble could stay at the
same position inside the tank for an indefinite period of time, being able to collide
and coalesce with another bubble. Hence, the number of bubbles of bubbly jets in
microgravity grows with time, increasing therefore the number of coalescence events.
For this reason, the bubble size distribution of the bubbly jets in microgravity also
evolves in time, and can not be considered steady anymore.

The sizes of the bubbles for different momentum fluxes have been measured
from a snapshot of the movies at t = 300 ms after capsule release, and the obtained
bubble size distribution is presented in Figure 4.18(a). The number of measure-
ments is of the order of 100 bubbles for each snapshot. The presence of big bubbles
coming from the top of the test tank (see Figure 4.13) have been neglected in the
measurement of the bubble size distribution. Since no bubble breakup have been
observed, the presence of bubbles with diameters smaller than capillary diameter
dB < dC is due to the injector performance, and to the depth of field effect. On
the other hand, the presence of bubbles with diameters dB > dC is due to the injec-
tor performance and the coalescence events. First, it is important to point out that
the injector generates bubbles with a certain bubble size distribution, being some
bubbles slightly smaller than the capillary diameter and some bubbles slightly larger.
Secondly, by observing the recorded movies we deduce that the width of the bubble
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Figure 4.18: Distribution of bubble diameters for: (a) different momentum
fluxes at a fixed time; (b) different times at a fixed momentum flux.

size distribution from the injector is small, so the presence of bubbles with diameters
dB/dC > 1.5, is due uniquely to coalescence events. The mean diameter is higher
for the lower value of the momentum flux, due to the fact that higher values of the
momentum flux are obtained by high values of the liquid flow rate, as explained in
Section 4.1.1.

Since the bubble size distribution of bubbly jets in microgravity evolves in time,
bubble diameters have been measured for a fixed value of momentum flux and sep-
aration distance at three different times. In Figure 4.18(b), the obtained bubble
size distribution is presented. The number of measurements is approximately 100
bubbles for t = 300 ms and 200 for t = 1100 ms. It can be observed that the bub-
ble mean diameter grows in time, since a lot of coalescence events were observed
with no bubble breakups. This growth in the bubble diameter is due uniquely to the
growth of the tail of the distribution, not in an offset of the whole distribution. This
offset could be created by a change in the injector performance, which was observed
to be steady, so the evolution in bubbles sizes is due exclusively to coalescence events.
In both Figures 4.18(a) and 4.18(b), the tail of the bubble size distribution is a di-
rect measure of the coalescences, since no bubbles with dB/dC > 1.5 were observed
coming out from the nozzle.

With the aim to know in which regions of the opposed jet configuration the coa-
lescence events take place, a manual measurement of the (x , y) coordinates of the
coalescences occurring in ∆t = 200 ms have been carried out. The position of coa-
lescence events have been measured manually form the movies recorded by skipping
frame by frame and annotating the position where coalescences were observed. The
obtained results for s = 10 cm and s = 5 cm are plotted in Figures 4.19(a) and
4.19(b) respectively. From these plots, we observe that the coalescences can occur
in the whole width of the jet, but most of the coalescence events tanking place near
the nozzles or in the central zone.
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Figure 4.19: Position of coalescence events in ∆t = 200 ms for (a) s = 10 cm
and (b) s = 5 cm.
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Figure 4.20: Sequence of snapshots showing the coalescence process of three
bubbles into a single daughter bubble. The two coalescence events are marked
with double-arrows.

Comparing the normal gravity case (Figure 4.8) with the microgravity case (Fig-
ure 4.19), two main differences are pointed out: (i) in normal gravity, the coales-
cence positions are more distributed in space than in microgravity, in the latter case
the coalescences occur mainly in two regions: near the nozzles, or in the collision
zone. (ii) A higher number of coalescences are observed in microgravity than in
normal gravity, for the same amount of observation time.

It should be pointed out that the measurements of Figures 4.19(a) and 4.19(b)
have been carried out considering a coalescence a collision of two bubbles creating
a single larger daughter bubble, without taking into account the number of coa-
lescences that the colliding bubbles may have suffered before. As an illustrative
example, the coalescence of three bubbles into a larger daughter bubble is shown



4.2 Numerical simulations of single-phase opposed-jet flow 75

in Figure 4.20. In this process, we have considered two coalescence events (marked
with double-arrows) since they occur at different times. No simultaneous coales-
cence of three or more bubbles into a single daughter bubble have been observed
from the movies recorded.

4.2 Numerical simulations of single-phase opposed-
jet flow

Opposed jets may exhibit different stable configurations, depending on many pa-
rameters such as the jet velocity, inlet geometry, separation between jets and other
boundary conditions [PSSM06, LSL+08]. Pawlowski et al. [PSSM06], performed a
bifurcation and stability analysis of laminar isothermal counterflowing planar jets,
and obtained a complex behavior which was classified in four distinct flow modes:

• A symmetric single steady state.

• Two stable asymmetric states and one unstable symmetric state.

• A “deflecting jet” oscillatory flow.

• A time-dependent chaotic flow with vortex shedding.

However, the results of their study were obtained for wall-bounded opposed jets,
with Reynolds number as a continuation parameter. In their investigation, a detailed
analysis on the offset of the stagnation point, which appears as a Pitchfork bifur-
cation [PSSM06], is presented. This situation can be encountered when using two
identical opposed jets, injecting the same amount of momentum, at certain aspect
ratios and Reynolds numbers. Starting with low Reynolds numbers, there is only
one symmetric stable state. As the Reynolds number is increased, this symmetric
state becomes no longer stable, giving rise to two stable configurations in which the
stagnation point remains in the injection axis but is deviated from the middle-plane
between the two nozzles. This configuration remains symmetric with respect to the
injection axis. Another type of instability is the so-called deflecting jets instability,
which consists of the appearance of periodic oscillations presented by the deflecting
jets at a fixed frequency. This instability appears as a Hopf bifurcation [PSSM06].

Another kind of instability, found in the present study, appears with the form of
velocity waves in the outflowing jets. This instability can be inhibited by turbulent
mechanisms as we shall see in Section 4.2.2.

In Figure 4.21, schematics of different types of bifurcations that may appear in
the opposed-jet configuration are presented.

Motivated by the rich behavior of flow patterns that the opposed jets may exhibit,
a numerical study of the opposed-jet configuration at different Reynolds numbers
and aspect ratios have been performed.
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Figure 4.21: Different types of bifurcations encountered in the opposed-jet
configuration. (a) Stagnation Point Offset, Pitchfork bifurcation. (b) Deflecting
jets instability, Hopf bifurcation. (c) Outflowing waves instability.

4.2.1 Numerical procedure

The governing equations and solver algorithms used for the numerical simulations
are described in Appendix B.1.

4.2.1.1 Boundary and initial conditions

The balance equations were solved in a two-dimensional square domain with dimen-
sions of h× h (in units of d), where h is the separation between nozzles. Hence, for
opposed jets separated by h = 30d, the domain was a square of 30× 30 (d units).
Cartesian coordinates (x , y) have been used, being y = 0 the direction of injection
(axial direction), and x = 0 the stagnation line. The inlets are vertically centered
and the velocity profile is uniform, acting on t > 0. Thus, for the right injector the
velocity value is v = 1 (in u units), and for the left injector the velocity value is
v = −1. A fixed constant pressure equal to the atmospheric value p0 = 105 Pa was
applied to the outlet boundaries. In Figure 4.22, the domain used for the numerical
simulations is sketched. The sides of the square (dotted lines) with dimensions h×h
are the outlet boundaries with fixed pressure, and the inlets (solid lines) have a uni-
form velocity profile and a diameter of d = 1. In all the runs we supposed that at
t = 0 the fluid was at rest. At t > 0, the inlets were activated with a uniform velocity
profile.

4.2.1.2 Computational grid and time steps

The computational grid consists in 100 × 100 non-uniform rectangular cells, with
refinement in the regions with high gradients, i.e. near the stagnation line and the
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Figure 4.22: Computational domain used for the numerical simulations.
Cartesian coordinates (x , y) are used. Dotted lines: outlets at a fixed pres-
sure. Straight solid arrows: inlets with a uniform velocity profile.

injectors. The x (axial) direction is divided in 100 cells, which are distributed as
follows:

• For −h/2 < x < 0, 50 cells following a symmetric power law with exponent
+1.4.

• For 0 < x < h/2, 50 cells following a symmetric power law with exponent
+1.4.

The y direction is divided in 100 cells, distributed in the following way:

• For −h/2< y <−d/2, 40 cells following a power law with exponent −1.4.

• For −d/2< y < d/2, 20 uniform cells.

• For d/2< y < h/2, 40 cells following a power law with exponent +1.4.

The computations were carried out using an Intel® Xeon® X5450 CPU 3.00
GHz with 32 GB RAM. The computational times ranged from 20 minutes up to 12
hours for the most refined grids.

The transient solutions of the pressure and velocity fields have been obtained
from t = 0 to t = 1000 (in time units of d/u), using 500 uniformly distributed time
steps. Hence, each time step correspond to 0.002 time units. The solver computes
50 iterations for each time step in order to achieve the convergence of the solution.

With the aim to determine the effects of grid resolution on the solution, tests
have been made with increasing number of cells. Four successively refined grids
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Grid εp (%) εvx
(%) εvy

(%) CPU Time (s)

100× 100 1.2 0.80 1.13 1214
200× 200 1.2 0.37 0.56 4260
300× 300 0.4 0 0 10380
500× 500 - - - 41220

Table 4.3: Effects of grid resolution on the errors of the solution and compu-
tational time.

have been used, with the same grid distribution that the one presented above. The
number of cells in the tests were: 100× 100, 200× 200, 300× 300 and 500× 500
in order to provide the highest resolution in regions of high velocity gradients. The
relative errors in pressure and velocity have been computed, taking as a reference
the value computed by the 500 × 500 mesh. Hence, the relative error εp of the
pressure for the 100× 100 grid has been calculated as follows

εp =
p(500× 500)− p(100× 100)

p(500× 500)
× 100. (4.11)

And the same procedure have been used for the other variables. In Table 4.3, the
relative errors and the computational time obtained by the different grid resolutions
are presented. In summary, the 100×100 grid produced profiles which agreed with
the 500× 500 grid profiles with relative errors less than 1.2%, and the convergence
was achieved in much less computational time. Therefore, the 100× 100 mesh was
used throughout the rest of the calculations in this study.

4.2.2 Results and discussion

In the present study, the Reynolds number ranges between 10 ≤ Re ≤ 2000 and the
aspect ratio 5 ≤ h/d ≤ 50. The transient solutions of unbounded opposed jets in
the studied range of parameters, can be divided in four different regimes. In Figure
4.23, these regimes are sketched in the evolution of some property φ (i.e., the pres-
sure, the x- or y- components of the velocity field, measured at a certain point inside
the domain) as a function of time. Depending on the value of Re and h/d, a single
opposed-jet configuration can pass through all the different regimes, as we shall see
later. The first regime, correspond to 0≤ t < ts, where ts is the stabilization time, is
the so-called “starting jets”. In this regime the free jets expand and develop until a
steady symmetric solution (stable or unstable, depending on Re and h/d) is reached.
This regime of starting jets will be discussed in Section 4.2.2.1. The second regime,
analyzed in Section 4.2.2.2, correspond to ts ≤ t < td , where td is the destabiliza-
tion time. Within this interval of time, the solution remains symmetric. For those
configurations in which the symmetric solution is stable (h/d < 10 for any value of
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Figure 4.23: Sketch of the time regimes.

Re), the destabilization time tends to infinity, td → ∞. Otherwise, the symmetric
solution is unstable and td has a finite value. At t = td , the solution becomes desta-
bilized and the symmetry breaks, leading to an antisymmetric solution or a chaotic
solution. The antisymmetric solution correspond to deflecting jets which oscillate
with a fixed frequency ω, and appears at a critical Reynolds number of Rec = 125
at h/d = 10. For the cases in which the aspect ratio h/d > 10, the critical Reynolds
number decreases, Rec < 125. Concerning the amplitude of the oscillations of the
deflecting jets instability, an increase of the amplitude is observed until at a time
tc (which stands for “critical time”), the oscillation pattern becomes broken and the
solution behaves chaotically. The results obtained at this time interval td ≤ t < tc
in which transition to instability occurs, will be presented in Section 4.2.2.3. For
tc ≤ t < 1, the solution is fully chaotic. For Re ≥ 1000 and h/d = 10, another type
of instability has been found. In this case, the starting jets do not reach a steady
state due to the apparition of some kind of outflowing waves in the outgoing vertical
jets. However, the solution with the outflowing waves remains symmetric respect to
x = 0 and y = 0, until at td the deflecting jets instability takes place. At this mo-
ment, a superposition of the two instabilities is observed in the flow. We have found
that turbulence has some efficacious mechanism to inhibit this outflowing waves
instability. In Section 4.2.2.4, we present results of the comparison between lami-
nar and turbulent cases, showing that in the turbulent case there is some effective
mechanism to suppress the outflowing waves instability.
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4.2.2.1 Starting jets

At t = 0 all the fluid in the domain is at rest. For t > 0, the inlets are activated creat-
ing the starting counterflowing jets. The developing jets have initially a mushroom-
like shape, until the opposing jets collide with each other. This was observed experi-
mentally by Voropayev et al. [VA92], Afanasyev et al. [AVP95] and Voropayev et al.
[VAKF03]. The evolving horizontal jets are symmetric with respect to the stagnation
line x = 0 and with respect to the injection axis, y = 0. When the two opposed jets
encounter each other at the center of the domain, the pressure increases locally in
the encounter region. After the collision of the horizontal jets, two vertical jets with
symmetry respect to the stagnation line and to the injection axis start to evolve. The
initial shape of the starting vertical jets is also mushroom-like, until the mushroom
heads pass through the outlet. After some time steps, the solution stabilizes and be-
comes steady. The stability of the solution depends on Re and h/d. For h/d < 10, the
symmetrix steady solution is stable. However, for h/d ≥ 10, the symmetric solution
is unstable for Re≥ 125.

In Figure 4.24, velocity contours of the starting counterflowing jets for Re= 100,
with an aspect ratio ranging from h/d = 5 to h/d = 50 are presented. The velocity
field is symmetric respect to axial direction y = 0 and the stagnation line x = 0 for
the starting jets. In the right part of Figure 4.24, which correspond to the longest
times, the velocity field becomes steady and has a cross-like shape. This steady
solution for h/d = 5 and Re = 100 is stable at t →∞. However the steady solution
for h/d = 50 and Re= 100 is unstable.

4.2.2.2 Steady symmetric solution

The pressure and velocity profiles of the symmetric stable solution for an aspect ratio
of h/d = 10 and Re = 50 are presented in Figure 4.25. Normalized velocities and
pressure are plotted as a function of the normalized position for different values of
x and y . In the plot vx(x) (Figure 4.25(a)), the x component of the velocity ranges
from vx = 1 (left injector) to vx = −1 (right injector) in the injection axis y = 0.
As we increase y , the value of vx near the nozzle jumps from vx ≈ 1 to vx ≈ 0.
Increasing y and looking at vx along the whole injection axis, one can note that vx

is being decreased and at y = 5.0 (and y =−5.0 by symmetry) all the fluid has only
vertical outgoing velocity.

In the plot vx(y) (Figure 4.25(b)), we can observe that at x = 5.0 the x-velocity
is not a perfect step function near the boundaries of the inlet. This can be explained
since there are no walls in the domain, and the fluid at the nozzle exit (with |vx |= 1)
drags part of the fluid near the nozzles, which was initially at rest. This introduces
an additional amount of liquid in the domain. As we approach the stagnation line
(x = 0), the x-velocity is being diffused. At the stagnation line, vx = 0 by symmetry.
In the plot vy(x) (Figure 4.25(c)), we can observe that as we increase y , the vertical
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Figure 4.24: Starting jets with Re = 100 and an aspect ratio ranging from
h/d = 5 to h/d = 50.

component of the velocity becomes negative near the edges of the domain. This
ensure mass conservation inside the domain, since there is an additional amount of
incoming fluid near the nozzles (the dragged fluid by the injected liquid). The plot
vy(y) (Figure 4.25(d)) shows that the outgoing velocity does not have a maximum
value of |vy | = 1 at x = 0, since the outgoing jets are slightly wider than the im-
pinging jets. This is reasonable since the closed line integral of the velocity profile
at the boundaries must be zero to ensure mass conservation in the domain, and if
the outgoing jets are wider than the opposed jets, the velocity must be lower. Figure
4.25(e) shows that pressure reaches a maximum value in the stagnation point, and
vanishes at the boundaries. We must note in the plot of p(y) (Figure 4.25(f)) that
some values of the pressure near the nozzles are negative. In fact, the pressure is
not negative since the pressure we are plotting is the relative dimensionless pres-



82 4 Impinging jets

(a)

x

v x

52.50-2.5-5

1.5

1

0.5

0

-0.5

-1

-1.5

(b)

y

v x

52.50-2.5-5

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-1.2

(c)

x

v y

52.50-2.5-5

1

0.8

0.6

0.4

0.2

0

-0.2

(d)

y

v y

52.50-2.5-5

1

0.5

0

-0.5

-1

y = 0.0
y = 0.5
y = 1.0
y = 2.0
y = 3.0
y = 5.0

(e)

x

p

52.50-2.5-5

0.5

0.4

0.3

0.2

0.1

0

-0.1

x = 0.0
x = 0.5
x = 1.0
x = 2.0
x = 3.0
x = 5.0

(f)

y

p

52.50-2.5-5

0.5

0.4

0.3

0.2

0.1

0

-0.1

Figure 4.25: Left: velocity profiles and pressure for different values of y .
Right: velocity profiles and pressure for different values of x . The solution is
stable, with an aspect ratio of h/d = 10 and Re= 50.
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Figure 4.26: Transition to instability with periodic oscillations (Re= 500).

sure, p′ = (p− p0)/(ρu2) (see Section B.1.1), where p0 = 105 Pa is the atmospheric
pressure applied at the outlet boundaries.

4.2.2.3 Transition to instability

Up to now we have presented the pressure and velocity profiles for the steady so-
lution. If this steady solution is unstable, the symmetry will be broken when some
perturbation is applied to the system. As a result, we shall see that at a certain
time td , the solution destabilizes becoming chaotic. In some cases, the transition
between the steady and chaotic solutions present an oscillation pattern with a fixed
frequency. Otherwise, the solution becomes chaotic without any oscillations nor
periodic patterns.

In Figure 4.26, a series of snapshots of the velocity contours for Re = 500 and
h/d = 10 at different times are shown. At t = 300, we start from the symmetrical
solution. At t > 300, the solution starts to oscillate with an increasing amplitude.
After some periods of oscillation, at t ≈ 770 the amplitude is too high and the
oscillation pattern breaks. Note that at Re = 500 and h/d = 10, the solution is
quasi-antisymmetric.

In Figure 4.27, a series of snapshots of the velocity contours for Re = 500 and
h/d = 50 are presented. At t = 220 we start with the unstable symmetric solution.
In this case, no oscillation patterns occurs. The solution is initially symmetric (t =
220) and becomes antisymmetric (t = 260 until t = 440). At t > 450, it loses its
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Figure 4.27: Transition to instability without periodic oscillations (Re= 500).

symmetry completely becoming chaotic.
In order to study this transition between steady and chaotic behavior, it is con-

venient to measure the frequency ω of the oscillation patterns with the aim to get a
guiding parameter which can describe the transition to instability. With the objective
to quantify the guiding parameter, we have measured the vertical component of the
velocity at a fixed point (x = −0.5, y = 4.85) for the case of h = 10d as a function
of time for different Reynolds numbers. In Figure 4.28 the variation of the vertical
component of the velocity vy as a function of time is presented. The plot in Figure
4.28(a) has been computed with Re = 150, while in Figure 4.28(b) with Re = 500.
In both cases the solution passes through the four different flow regimes, marked
as (i), (ii), (iii), and (iv) regions. At 0 < t ® 100 the jets evolve until at t ≈ 100
the solution becomes steady. At t = td (td ≈ 380 for Re = 150 and td ≈ 300 for
Re = 500), the solution destabilizes and the amplitude of the instability increases
until at t = tc (tc ≈ 850 for Re = 150 and tc ≈ 700 for Re = 500) the constant
frequency oscillation pattern disappears. The destabilization time td is higher in the
case of Re = 150 than in the case of Re = 500, although the oscillation frequency ω
is slightly lower.

The measurement of td have been done visually, from the plots obtained, and no
numerical criteria have been employed.

In Figure 4.29, the destabilization time td is plotted as a function of Re (Figure
4.29(a)) and h/d (Figure 4.29(b)). For nozzle separations equal to 10 diameters, the
destabilization time decreases with increasing Re until it reaches a minimum value
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Figure 4.28: Vertical velocity component as a function of time for h/d = 10,
measured at the point (x = −0.5, y = 4.85). (a) Re = 150. (b) Re=500.
(i): Starting jets. (ii): Symmetric unstable solution. (iii): Oscillation pattern.
(iv): Chaotic behavior.
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Figure 4.29: (a) Destabilization time as a function of Re, for h/d = 10. (b)
Destabilization time as a function of h/d for Re=100.

at Re ≈ 400. Increasing Re further, the destabilization time maintains constant,
between 200 < td < 300. For a fixed value of Re = 100, the destabilization time
decreases with increasing aspect ratios in a general perspective, although at low
aspect ratios there is a high scattering of the measured values.

With the aim to reproduce the bifurcation in Figure 4.21(b), we have plotted
the oscillation frequency ω as a function of the Reynolds number and the aspect
ratio. In Figure 4.30(a), we can observe that for h/d = 10 and Re< 125, the steady
solution is stable and no oscillation pattern occurs. At Re = 125, the jets suffer
deflection at large times. For Re > 125, the oscillation frequency of the deflecting
jets increases with the Reynolds number. In Figure 4.30(b), we can observe that for
nozzle separations h≤ 9d the symmetric solution is stable. At h/d = 10, the solution
destabilizes, with a fixed frequency of deflection. As we increase the aspect ratio for
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Figure 4.30: (a) Bifurcation diagram for h/d = 10 with Re as a continuation
parameter. Oscillation frequency ω is plotted as a function of Re. (b) Bifur-
cation diagram for Re=100 with h/d as a continuation parameter. Oscillation
frequency ω is plotted as a function of h/d.

a fixed Reynolds number, the frequency decreases until at h = 20d the oscillation
patterns disappears. For h/d > 20, the transition from the steady solution to the
chaotic solution has no longer periodic patterns, and behaves in a similar fashion
than that of presented in Figure 4.27.

4.2.2.4 Inhibition of outflowing waves by turbulent mechanisms

Maintaining a fixed separation between nozzles of h = 10d and increasing the
Reynolds number, a new type of instability appears at Re = 1000. This instabil-
ity has the form of outflowing waves that are formed in the outgoing jets. As a
result, the width of the outgoing (vertical) jets oscillates periodically. In the regions
where the width of the outgoing jets is lower, the velocity is higher. This ensures
the mass conservation, since the incoming mass from the nozzles (v = 1, d = 1)
has to be compensated by the amount of mass carried out by the outgoing jets. This
amount of mass can be computed as the integral of the velocity profile through the
jet width at a certain value of y , and the closed line-integral of the total velocity
profiles at the boundaries must vanish. In this situation, the time evolution of the
flow field is as follows: at earlier times, the opposed jets evolve as described in Sec-
tion 4.2.2.1. Then, the solution does not stabilize reaching steady profiles similar
to those presented in Figure 4.25, instead, the solution presents outflowing waves
but maintaining the symmetry. At t > td , the deflecting jets instability described in
Section 4.2.2.3 appears and superposes to the outflowing waves instability.

In Figure 4.31(a), velocity contours of the laminar flow field solution at Re =
2000 and h/d = 10 are presented. This case corresponds to the symmetric solution
before the deflecting jets instability occurs. It can be observed in the outgoing ver-
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Figure 4.31: Velocity contours of laminar opposed jets (Re = 2000). (a) Out-
flowing waves instability. (b) Outflowing waves instability superposed to de-
flecting jets oscillation.

tical jets, that the width of the jets slightly change in a periodic way as we increase
y . The regions in which the width is lower, the velocity is higher. In Figure 4.31(b),
a superposition of the outflowing waves instability and the deflecting jets instability
is shown. In this situation, the amplitude of the deflection increases and the verti-
cal jets turn from side to side oscillating with a fixed frequency. Additionally, the
width of the outgoing jets (and also the local velocity, by mass conservation) varies
in a periodic way. With the aim to consider the effects of turbulence on the flow,
numerical simulations using the Chen and Kim turbulence model (see Section B.1.2)
have been carried out. For a fixed nozzle separation of h= 10d, the Reynolds num-
ber have been increased from Re = 1000 to Re = 2000. In the laminar case, we
observed the outflowing waves and the deflecting jet. However, with the turbulent
model, the outflowing waves instability is not present anymore and the deflecting
jets instability is the only one which has been observed.

To illustrate the effects of the outflowing waves, the y-component of the velocity
has been measured at a fixed point (x =−0.5, y = 4.85) as a function of time. In Fig-
ures 4.32(a), 4.32(c) and 4.32(e), vy is plotted as a function of time for the laminar
case. For Re= 1000, the solution reach a quasi-steady value, with slight oscillations.
As we increase Re, the amplitude of the outflowing waves instability becomes higher.
For Re = 1500 and Re = 2000, the solution does not reach a steady value due to
the oscillations of the jet width. Between t ≈ 400 and t ≈ 600, one can observe
the effects of the deflecting jet instability with increasing amplitude. At t ≈ 600, the
symmetry becomes broken and the solution starts to behave chaotically. However,
the situation in the turbulent case is drastically different. The solution does reach a
steady state for 1000 ≤ Re ≤ 2000, as can be seen in Figures 4.32(b), 4.32(d) and



88 4 Impinging jets

4.32(f). The deflecting jets instability is still appearing at t ≈ 400, and for t ≈ 600,
the solution becomes chaotic. For 1000 ≤ Re ≤ 2000, the solution stabilizes when
the flow is turbulent, without the appearance of the outflowing waves instability.
This is in contrast to the case of laminar flow model, in which the solution does not
reach stabilization for the same values of Re and h/d. Thus, we conclude that there
are some turbulent mechanisms that inhibit the outflowing waves instability.

4.3 Numerical simulations of bubbly opposed-jet flow

The numerical simulations have been carried out at ICMCB (Bordeaux, France), us-
ing an Intel® Xeon® X5450 CPU 3.00 GHz with 32 GB RAM. The computational
times ranged from 2 hours up to 10 hours.

4.3.1 Numerical procedure

The governing equations and solver algorithms used for the numerical simulations
are described in Appendix B.2.

4.3.1.1 Boundary and initial conditions

The balance equations have been solved using cartesian coordinates (x , y), being x
the direction of injection. The computational domain consists of a two-dimensional
rectangular shape with dimensions of 2h× 9h, where h is the separation between
nozzles(in units of L0), in order to avoid the effect of the walls. However, only
the central region with dimensions h× h is interesting for us. The nozzles have a
diameter d = L0.

The bubble injection have been modeled by setting |vi | = 1 (units of v0) at the
nozzle for both phases (i = 1, 2), with the same amount of incoming liquid than gas,
corresponding to fi = 0.5 (i = 1, 2) at the nozzles. The turbulence intensity at the
inlets have been set to 5%.

Initially the domain is full of quiescent liquid, and at t = 0 the two-phase flow
enters inside the domain, creating therefore the bubbly jets.

4.3.1.2 Computational grid and time steps

The computational domain consists of a rectangular-shaped grid with 110×110 non-
uniform cells. The grid has been divided in 3 regions in the x- direction and in 5
regions in the y- direction, with the following cell distribution:

• x- direction:
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Figure 4.32: Vertical component of the velocity as a function of time, mea-
sured at the point (x = −0.5, y = 4.85). Left: Laminar model. Right: Turbu-
lent model.
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– For −h < x < −h/2, 20 cells distributed along a non-symmetric power
law with exponent -1.2.

– For −h/2 < x < h/2, 70 cells distributed along a symmetric power law
with exponent +1.2.

– For h/2 < x < h, 20 cells distributed along a non-symmetric power law
with exponent +1.2.

• y- direction:

– For −4h < y < −h, 20 cells distributed along a non-symmetric power
law with exponent -1.2.

– For −h < y < −d/2, 30 cells distributed along a non-symmetric power
law with exponent -1.2.

– For −d/2 < y < d/2, 10 cells distributed along a symmetric power law
with exponent +1.2.

– For d/2 < y < h, 30 cells distributed along a non-symmetric power law
with exponent +1.2.

– For h < y < 4h, 20 cells distributed along a non-symmetric power law
with exponent +1.2.

The time steps have been set so that each time step corresponds to 0.02 time
units. Runs have been carried out from t = 0 to t = 50 time units, corresponding to
2500 time steps. However, for the case of h/d = 50, the runs have been carried out
from t = 0 to t = 100 corresponding to 5000 time steps. The number of iterations
have been set to 30 for each time step.

4.3.2 Results and discussion

Simulations have been carried out considering the gravity effects for two values of
the Froude number:

• 1
Fr∗2 = 0, which corresponds to a zero gravity case.

• 1
Fr∗2 = 1, which corresponds to a gravity level different from 0.

From now on, we will call this cases “0g” and “1g” respectively, however one should
keep in mind that the 1g case only correspond to g = 9.81 m/s2 for certain values
of L0, g0, and ∆ρ/ρ.
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Figure 4.33: Time evolution of gas volume fraction for h/d = 40, Re = 1000,
for the zero gravity case.

4.3.2.1 Symmetric starting jets

In Figures 4.33 and 4.34, the evolution of the gas volume fraction in time is pre-
sented for the developing jets, for the zero gravity case and non-zero gravity case
respectively.

The jets develop in a symmetrical way with respect to the y-axis, for both micro-
gravity and non-zero gravity cases. The evolution of the gas volume fraction starts
with the creation of a vortex dipole (one for each jet) just at the nozzle outlet, so the
jet head adopts a mushroom-like shape.

At t ≈ 25, the developing jets collide with the opposing frontal jet. In the zero
gravity case, two outgoing vertical jets are created, and the interaction between jets
results in a flow that preserves the symmetry respect to the x-axis and y-axis. In
the non-zero gravity case, however, a bubbly plume is created after the initial jets
collision and rises in the direction of the gravity force due to buoyancy. For the range
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Figure 4.34: Time evolution of gas volume fraction for h/d = 40, Re = 1000,
for the non-zero gravity case.

of parameters considered in this plots, the bubbly plume flow in non-zero gravity still
preserves symmetry with respect to the y direction.

Figures 4.33 and 4.34 show that the initial evolution of the jets is symmetric with
respect to the y-axis in both microgravity and non-zero gravity cases. However, for
higher values of the time, the flow can become asymmetric (due to the apparition of
a deflecting jet instability) depending on the range of parameters considered.

So, the bubbly jets present a symmetric (with respect to the y direction) initial
evolution. After the collision, the flow can remain symmetric or antisymmetric de-
pending on the parameter ranges. For example, in the case of non-zero gravity and
h/d = 10, at t = tc the deflecting jets instability takes place, resulting in a non-
symmetric flow. In the case h/d = 20, this instability appears at t ≈ 2tc . However,
for the case of h/d = 50, the deflecting jets instability does not appear due to the
fact that the jets are highly separated that the interaction between them is negligi-
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Figure 4.35: Velocity profiles in the injection direction for t = 50, Re = 1000.
(a) zero gravity case. (b) non-zero gravity case.

ble. In the latter case, the bubbly plumes rise in a region near the nozzle and still far
from the central zone, so the opposing jets do not interact with each other and they
behave like single bubbly jets.

4.3.2.2 Velocity profiles

In Figure 4.35, the x-component of the velocity for phase 2 (gas phase) is plotted in
the injection direction. The x-axis is normalized to 1 for all cases from h/d = 10 to
h/d = 50.

In principle, one should expect the x-component of the velocity to be monoton-
ically decreasing along the x-axis. However one can observe in Figure 4.35 that in
some regions vx increases with increasing x . This is due to the creation of vortexs
in the following way (different kind of vortex are created in microgravity and in
non-zero gravity, so the explanation is divided in two different points):

• In the zero gravity case, a clear increase in vx while increasing x can be ob-
served in the central region for h/d = 20. This is due to the fact that, in this
particular case, a deflecting jet instability take place, creating a central vor-
tex (see Figure 4.36-Left). The jet coming from the left is slightly deviated
upwards while the jet coming from the right is slightly deviated downwards.
This situation results in the generation of a vortex in the central region that
rotates clockwise. The presence of this vortex is the responsible to have this
increase in vx with increasing x .

• In the non-zero gravity case, the situation is slightly different. As seen earlier,
the initial developing jets adopt a mushroom-like shape before they collide.
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Figure 4.36: Contours of the x-component of the velocity for h/d = 20, t = 50
and Re= 1000. Left: zero gravity case. Right: non-zero gravity case.

Just before the collision, the two vortex at the bottom approach each other.
Since the vortex coming from the left rotates clockwise and the one coming
from the right rotates counter-clockwise, a new jet going downwards vertically
is generated after the collision. The presence of this jet is the responsible of
the increase in vx (see Figure 4.36-Right).

Hence, the increase in vx with increasing x can be explained in two ways: in
microgravity, a central single vortex can be generated. With non-zero gravity, to in-
teracting vortex (a vortex dipole) can generate a vertically outgoing jet. This vortexs
perturb the velocity field in the way that they can produce an increase in vx .

4.3.2.3 Gas-phase volume fraction in the non-zero gravity case

In Figure 4.37, the contours of the gas phase volume fraction f2 are presented for
different aspect ratios. Each time correspond to a value of aspect ratio, so the case
t = 10 corresponds to h/d = 10, t = 20 corresponds to h/d = 20, and so on. The
time for the plots has been selected in such a way that the jets evolved twice the
collision time. To clarify, let’s see an example: In the case h/d = 10, the jets collide
at the central zone at tcol = 5, since x = vt, the initial velocity is |~v|= 1 and each jet
has to reach a distance of x = 5d (d = 1 by definition) to arrive at the central zone.
Then, the time chosen for an aspect ratio of h/d = 10 is t = 2tcol = 10. The same
with h/d = 20, the time is t = 2tcol = 20, and so on.

From Figure 4.37 one can observe that for a fixed Reynolds number, as we in-
crease the distance between jets, the interaction between them becomes negligible
as expected, and at high distances the jets behave like single jets.
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Figure 4.37: Gas phase volume fraction distribution.
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4.4 Conclusions

In this chapter, the structure of opposed bubbly jets have been studied in normal
gravity and in microgravity conditions.

Numerical simulations on single-phase impinging jets, and impinging bubbly jets
have been carried out.

On one hand, the main conclusions of the experimental results of impinging
bubbly jets are summarized in the following points:

• A substantial velocity decrease have been observed at the central zone of the
opposed-jet configuration due to the strong interaction between the two im-
pinging jets.

• In normal gravity, a large number of coalescence events occur at very short dis-
tances from the nozzle, so the vast majority of the coalescences are produced
by bubbles coming from the same jet. In microgravity, bubbles can reach the
central zone and the coalescences have been found to occur near the nozzles
and in the collision zone between the two jets. The coalescence probability is
reduced considerably when increasing the momentum flux.

• Bubble mean sizes decrease as the momentum flux is increased, with the size
distribution presenting a large tail due to coalescence events.

• No significant changes in the structure of bubbly jets have been observed using
distilled water and using ethanol as the carrier liquid.

• At the parameter range studied, bubbles size distribution is not significantly
affected by the gravity force. However, bubble velocities at jet centerline are
slightly higher near the nozzle in microgravity conditions than in normal grav-
ity. A higher number of coalescences is observed in microgravity with respect
to the normal gravity case, for the same amount of observation time.

On the other hand, the most relevant results obtained from the numerical simu-
lations are described below:

• The structure of unbounded impinging jets adopts a cross-like shape. For sep-
aration between jets of s ≥ 9d, this shape starts to oscillate with growing
amplitude, evolving to the “defleting jets” instability.

• For a fixed aspect ratio, the destabilization time decreases as the Reynolds
number is increased. In a similar fashion, for a fixed Reynolds number, the
destabilization time decreases as the aspect ratio is increased.
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• A new kind of instability have been found to appear at Re > 1000 for s = 10d
in the laminar model. This instability has the form of outflowing waves present
in the vertical outgoing jets. This instability can be inhibited by turbulent
mechanisms, as confirmed by the turbulent model.

• In microgravity, opposed bubbly jets start to develop adopting a mushroom-
like shape, until they collide at the central region, a cross-like shape is attained.
After the collision, bubbles spread vertically and two vertical outgoing jets are
created. In the non-zero gravity case, however, the bubbly jets collide and a
bubbly plume is created.

• Qualitative agreement between the numerical simulation of bubbly jets and
the experimental results have been obtained, in terms of the velocity field at
the jet centerline and the global structure of the colliding jets.





CHAPTER5
Bubble coalescence with a free surface

In the present chapter, we present experimental results on the behavior of air bubbles
rising and coalescing with a free surface [SnGC10b]. All the experimental results
presented herein, are obtained at normal gravity conditions. However, the same
experiments will be performed at higher gravity levels (between 1 g0 and 20 g0,
where g0 = 9.81 m/s2) in a near future at the LDC in ESTEC (The Netherlands).

In Section 5.1, the terminal velocity, the drag force and the deformed shape of
the bubbles are studied in the steady rise zone. In Section 5.2, the time variation of
the bubble shape due to the collision of the bubble with the free surface is described.
In addition, bubble position and velocity during the bouncing process are analyzed,
describing the behavior of the bounce height and the time between the first collision
and the final coalescence.

5.1 Bubble rising

When a bubble detaches from a nozzle, it is accelerated by the buoyancy force until
it reaches a terminal velocity when the drag and buoyancy forces compensate each
other. Afterwards, the bubble rises steadily a few centimeters until it is at a certain
distance from the free surface, which starts to deform due to the presence of the
approaching bubble. This deformation increases as the bubble gets closer to the free
surface and is caused by the amount of fluid displaced by the rising bubble. In the
short period of time between when the deformation starts and the bubble impacts
into the free surface, no significant variation in the bubble velocity is observed. If
the bubble diameter is below a critical threshold (dc = 0.47 mm in the present
case), it coalesces immediately. In contrast, if the bubble is larger than a critical size,



100 5 Bubble coalescence with a free surface

First
bounce Coalescence

Coalescence

Coalescence

First
bounce

Second
bounce

Second
bounce

Time
(ms)

Time
(ms)

Time
(ms)

0.0 5.5 11.0 16.5 22.0 27.5 33.0 38.5 44.0 49.5 55.0 60.5 61.0 61.5 62.0

0.0

0.0

3.5

3.0

7.0

6.0

10.5

9.0

14.0

12.0

17.5

15.0

21.0

18.0 21.0 24.0 27.0 30.0 33.0 36.0 36.5 37.0

24.5 28.0 31.5 35.0 38.5 42.0 45.5 46.0

Figure 5.1: Snapshots of rising bubbles and the interaction with the free sur-
face. From top to bottom: bubble equivalent diameters are de = 1.62, 1.06
and 0.43 mm.

it impacts with the free surface and bounces a few times before coalescence takes
place.

The experimental setup for the study of bubble rising, bouncing and coalescing
with a free surface is described in Section 2.3.

Two different stages are examined separately. The first one corresponds to the
steady rise of the bubbles, in which the measured parameters do not change in time.
The second stage corresponds to the time between when the bubble approaches
closely the free surface and when coalescence occurs. In this second stage param-
eters like surface area, aspect ratio or velocity do change in time, and a dynamic
analysis is needed.

In Figure 5.1, time sequences of bouncing bubbles are shown. The first, second
and third rows correspond to bubbles with equivalent diameters de = 1.62 mm, 1.06
mm and 0.43 mm, respectively. As can be observed, the smallest bubble does not
bounce but coalesces immediately just after touching the free surface. The other
two bubbles bounce twice before coalescence occurs. In order to be able to show
the bouncing process for the three bubbles in the presented sequences, the time
separation between frames is not the same for all bubbles, and indeed is not constant
for a single bubble. In the first row, consecutive frames are separated by 11/2000
s, except the four last snapshots that are separated by 1/2000 s. In the second row,
consecutive frames are separated by 7/2000 s, except the two last snapshots that are
separated by 1/2000 s. Finally, in the third row, consecutive frames are separated
by 6/2000 s, except the three last snapshots that are separated by 1/2000 s.

Bubbles with diameters higher than 2 mm rise following an helical path, not an
straight line, hence the collision with the free surface is no longer axisymmetric. For
this reason, the results presented herein have a diameter range between 0.2 mm and
2 mm.
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The position, shape and velocity of the bubbles were computed by processing the
images obtained by the video camera. The local velocity v of the bubble at a certain
position (x i , yi) was calculated as:

v =

p
(x i − x i−1)2 + (yi − yi−1)2

∆t
, (5.1)

where (x i−1, yi−1) is the position of the bubble in the previous frame, and ∆t = 0.5
ms is the time interval between consecutive frames.

The spatial resolution of the acquired images is 30 pixels per millimeter. However,
the captures of the bubble surface were not perfectly clear. The distinction between
bubble interior and the surrounding liquid can be made with a precision of 2–3
pixels, which leads to an error in the measure of the bubble diameter of ±0.03
mm. No zig-zag or helical translation of the bubbles moving through the liquid was
observed from the recorded movies in the studied range of sizes (diameters below 2
mm). This fact justifies the approximation that the whole process of bouncing and
coalescence takes place in the y coordinate, the direction of gravity. In addition, the
camera provides only a two-dimensional projection of the bubble shape. However,
the surface area of the bubble could be determined thanks to its axisymmetry.

We approximate the bubble shapes as axisymmetric oblate spheroids, with a vol-
ume V = πd2

x dy/6, where dx is the horizontal diameter and dy is the vertical diam-
eter, with dx ≥ dy in the steady rise of the bubbles. Since bubbles are not spherical,

an equivalent diameter de is defined for each bubble as de =
�

dy d2
x

�1/3
, which corre-

sponds to the diameter of a perfectly spherical bubble containing the same volume
V of gas. The aspect ratio ε is defined as ε = dx/dy , and the bubble surface area A
is given by

A=
π

2


d2

x +
d2

y

2e
ln
�

1+ e

1− e

�
 , (5.2)

which corresponds to the surface area of an axisymmetric spheroid, where e =Æ
1− d2

y/d
2
x =

p
1− ε−2. For a spherical bubble, dx = dy = de, ε = 1, e = 0

and we recover the solution of the surface area of a sphere, A= πd2
e .

5.1.1 Drag coefficient

Terminal rise velocity has been measured in bubbles with equivalent diameters rang-
ing between 0.20 and 1.82 mm. In Fig. 5.2 the variation of the terminal velocity as a
function of bubble equivalent diameter is shown. The behavior is nearly linear with
a slight decrease in the slope from equivalent diameters about de ≈ 1.4 mm due to
an increase in the drag force, caused by the high deformation of bubbles (ε > 1.5
for de > 1.4 mm) from a spherical shape.
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Figure 5.2: Bubble terminal rise velocity as a function of bubble equivalent
diameter.

If we assume that the movement remains confined in the y axis (direction of
gravity), the force balance becomes

d

d t

��
mB +madd

�
vy

�
=
π

6
d2

x dy
�
ρ−ρa

�
g − 1

2
ρv2

R CD

πd2
x

4
, (5.3)

where mB is the bubble mass, madd is the added mass, vy is the bubble vertical
velocity, ρ = 789 kg/m3 is the fluid (ethanol) density, ρa = 1.2 kg/m3 is the air
density and g = 9.81 m/s2 is the acceleration due to gravity. In the steady stage, the
drag coefficient CD can be obtained directly from the measured terminal velocities
using the balance between the drag and buoyancy forces [LDG05],

1

8
ρv2

R CDπd2
x =

π

6
d2

x dy
�
ρ−ρa

�
g, (5.4)

which leads a drag coefficient CD given by

CD =
4

3

�
ρ−ρa

�
gdy

ρv2
R

. (5.5)

In order to make a comparison of the CD obtained experimentally with the available
theoretical models, we first note that there are three limiting cases where the drag
coefficient can be theoretically obtained [Lot08]:

• Re� 1, We� 1 : linearized inertia and small deformation.

• Re� 1, We� 1 : thin boundary layer, attached wake and small deformation.
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• Re� 1, We� 1 : spherical-cap bubble with separated wake.

The Reynolds number is here defined as Re = de vR/ν , where ν = 1.52 ·10−6 m2/s
is the kinematic viscosity of ethanol at 20◦C. We define the non-dimensional Weber
number as We= ρde v2

R/γ, where γ= 0.0224 N/m is the air-ethanol surface tension.
In the present study Re ranges between 5 and 300 and We ranges between 0.01
and 4. Although some of our experimental data correspond to We > 1, we have
not observed spherical-cap bubbles in any experimental run. Thus, we consider the
second case as the closest one to our parameter range and we will focus on it.

Using potential flow theory, Batchelor [Bat67] predicted a relation between the
drag coefficient and the Reynolds number for spherical bubbles in the form:

CD =
48

Re
. (5.6)

It is assumed in this expression that the boundary layer does not separate from the
bubble surface, and the internal motion of the gas has no effect on the liquid mo-
tion. Moore [Moo65] obtained a more sophisticated relation for an oblate spheroid,
taking into account the dissipation of energy on the boundary layer and in the wake:

CD =
48

Re
G(ε)

�
1− 2.21H(ε)p

Re

�
, (5.7)

where G(ε) is given by [Moo65, dVLL02]:

G(ε) =
ε4/3

3

�
ε2 − 1

�3/2

hp
ε2 − 1−

�
2− ε2

�
sec−1 ε

i

�
ε2 sec−1 ε−

p
ε2 − 1

�2 , (5.8)

and can be approximated, for ε < 2 (which is the case in our experiments), as
[Lot08]:

G(ε)≈ 0.1287+ 0.4256ε+ 0.4466ε2. (5.9)

Although H(ε) must be obtained numerically, a convenient approximation for ε < 2
is [Lot08]:

H(ε)≈ 0.8886+ 0.5693ε− 0.4563ε2. (5.10)

For a spherical bubble, ε→ 1, G(ε)→ 1, H(ε)→ 1 and one can approximate the
drag coefficient by

CD =
48

Re

�
1− 2.21p

Re

�
. (5.11)

The values of the drag coefficient obtained from the experimental terminal veloc-
ity and Equation (5.5) are plotted in Figure 5.3 as a function of the Reynolds number.
Theoretical values are also represented in solid lines computed using Equations (5.9)
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Figure 5.3: Drag coefficient as a function of Reynolds number for different
aspect ratios. Dots correspond to experimental results. Dashed line correspond
to the prediction for a spherical-cap bubble.

and (5.10) in Equation (5.7). Good agreement between the experimental results and
the theoretical prediction is obtained at low Reynolds numbers for spherical bubbles.
However, at Re > 150 a small discrepancy can be appreciated, with the experimen-
tal values being slightly higher than the theoretical prediction for a spherical bubble.
This fact can be explained by the non-sphericity of the bubbles at Re > 150. Since
ε≥ 1 for rising bubbles, G(ε)≥ 1 and H(ε)< 1. Thus, considering the effects of sur-
face deformation, the contribution of Equations (5.9) and (5.10) in Equation (5.7)
produces an increase in the drag coefficient. The black solid curve in Figure 5.3 cor-
responds to the prediction for spherical bubbles. As the Reynolds number increases,
the aspect ratio of the bubble increases, and the solid curves corresponding to higher
aspect ratios become more appropriate to fit the experimental values. However, for
the cases ε = 1.8 and ε = 2, the drag coefficient at high Reynolds numbers is still
overestimated. This indicates that the Moore relation can no longer be used at such
high deformations of the bubble surface.

The theoretical relation for the drag coefficient in the case We� 1 and Re� 1
is given by

CD =
8

3
+

14.24

Re
(5.12)

which is plotted in Figure 5.3. A clear discrepancy with experimental data is ob-
served, which confirms that our experiments correspond to the second case (We� 1
and Re� 1).
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Figure 5.4: Aspect ratio as a function of the bubble equivalent diameter ob-
tained from experimental measurements.

5.1.2 Bubble shape deformation

The shape deformation of bubbles in their steady rise has been measured experimen-
tally. In order to obtain a quantitative measurement of the deformation, the aspect
ratio ε = dx/dy is considered. The variation of ε with the bubble equivalent diame-
ter de is shown in Figure 5.4, where it can be observed that all bubbles with de ≤ 0.70
mm can be considered spherical at the present image resolution. For de > 0.70 mm
the aspect ratio increases linearly with de at the range studied.

To characterize the effects of the aspect ratio taking into account the bubble size,
the non-dimensional Weber number (We = ρde v2

R/γ) becomes appropriate. Moore
[Moo65] employed potential flow solution over an oblate spheroid to obtain the
following implicit relation between the aspect ratio and the Weber number for clean
bubbles:

We= 4ε−4/3
�
ε3 + ε− 2

�
�p

ε2 − 1− ε2 sec−1 ε
�2

�
ε2 − 1

�3 (5.13)

For moderate deformations (ε < 2) this relationship can be approximated as
[Lot08]:

ε≈ 1+
9

64
We− 0.0089 We2 + 0.0287We3. (5.14)

For contaminated bubbles, Loth [Lot08] obtained the expression:

1

ε
= 1− 0.75 tanh (0.11We). (5.15)
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Figure 5.5: Aspect ratio as a function of the Weber number. Points correspond
to experimental measurements and lines to theoretical predictions.

In this context, clean bubbles are referred to bubbles with a slip flow along the
bubble surface, which is driven by internal circulation. In contrast, the surface of a
contaminated bubble has reduced mobility and can be considered as a surface of a
rigid body (no-slip condition).

The variation of the aspect ratio with the Weber number is shown in Figure 5.5.
Good general agreement between experimental results and the theoretical prediction
given by Equation (5.14) is obtained for We > 2. On the other hand, the prediction
of Equation (5.15) fits reasonably only for We< 2. This can be due to the fact that for
smaller bubbles the terminal velocity is lower, producing a small internal circulation
inside the bubble, which does not affect the surface mobility significantly. However,
for larger bubbles the internal circulation becomes important and the slip flow in the
bubble surface cannot be neglected, thus the deformation of large bubbles behaves
similarly to that of a clean bubble.

5.2 Bubble bouncing

5.2.1 Bubble shape dynamics

During the bouncing process, the shape of the bubbles varies in time. Consequently,
the drag force and the added mass force become different from the values obtained
in the steady rise. In order to see how bubble shape evolves in the bouncing process,
the horizontal and vertical diameters of the bubble (dx and dy , respectively) have
been measured every 1.5 ms. When the center of the bubble was at a distance from
the free surface lower than de/2, we were not able to measure dy because part of the
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Figure 5.6: Time evolution of the horizontal and vertical diameters and the
aspect ratio.

bubble remained hidden behind the free surface. In this case, we imposed a constant
volume and we obtained the vertical diameter using the relation dy = 6V/(πd2

x ).
From this measurement, the aspect ratio ε and the total surface area A (given by
Equation (5.2)) have been obtained.

The time evolution of the vertical and horizontal diameters and the aspect ratio
of a bubble with de = 1.62 mm are plotted in Figure 5.6. Cases with ε < 1 corre-
spond to bubbles with dy > dx , in which the bubble shape can be approximated to
a prolate spheroid. The aspect ratio remains nearly constant in the steady rise, with
approximately ε= 1.8, and it gets its largest value when the bubble impacts the free
surface with an approach velocity very close to the terminal velocity. At this precise
moment (t = 24 ms), the bubble is highly deformed from its spherical shape and
ε = 2.4. After the collision, the bubble becomes nearly spherical with some oscilla-
tions of the surface. At the moment where the bubble collides with the free surface in
the second bounce (t = 50 ms), the bubble is deformed and the aspect ratio reaches
a local maximum. However, the deformation of the bubble in the second bounce is
lower than that in the first bounce, and even lower than the steady deformation of
the bubble in the rise stage.

As described above, the collision between the bubble and the free surface gener-
ates oscillations on the bubble surface. The amplitude and frequency of the bubble
oscillations could be affected by the presence of the free surface, which can be re-
garded, at first approximation, as a solid moving wall. The movement can be consid-
ered similar to that of a damped oscillator. Our experimental setup was not designed
to study bubble oscillations, which deserve a more detailed study. However, we mea-
sured the frequency of bubble oscillations for large bubbles, and no influence by the
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Figure 5.7: Frequency of the second mode oscillations as a function of bubble
equivalent diameter. Dots correspond to experimental measurements and line
to theoretical prediction.

nearby presence of the free surface was observed. We were only able to measure
the frequency of oscillations for large bubbles, since smaller bubbles have larger fre-
quencies and the amplitude of the oscillations is so small that the experimental error
is large enough to mask the real values.

Since the first oscillation mode corresponds to a volume oscillation, and the ex-
perimental resolution is too low to measure it, the frequency of the second mode of
bubble shape oscillations were measured. Lamb [Lam32] gave the general relation
for the frequency of the nth mode of an oscillating bubble in an unbounded fluid:

fn =
1

π

È
2 (n+ 1) (n− 1) (n+ 2)γ

ρd3
e

. (5.16)

With this expression we can compute the relation between the frequency of the
second mode and the bubble equivalent diameter, which reads

f2 =
1

π

È
24γ

ρd3
e

=
2

π

È
6γ

ρd3
e

. (5.17)

In Figure 5.7 the variation of f2 with de is shown. The experimental results are
in excellent agreement with the theoretical prediction of Equation (5.17), which
does not consider the presence of the free surface. Thus, we can conclude that the
presence of the free surface does not affect significantly the frequency of the second
mode of bubble oscillations.
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Figure 5.8: Time variation of the normalized position y/de and velocity vy/vR

for four different bubbles.

5.2.2 Bubble center dynamics

The position of different sized bubbles has been measured every 0.5 ms. Instanta-
neous velocities are calculated using Equation (5.1). The variation of the normalized
positions and velocities with time is presented in Figure 5.8 for four sample bubbles
with de = 0.43, 0.70, 1.06 and 1.62 mm. Values of the terminal rise velocities used
in the normalization are those shown in Figure 5.2.

Bubbles with an equivalent diameter de < 0.47 mm rise steadily until they arrive
at the free surface. Once the top of the bubble touches the free surface, the bubble
coalesces rapidly. Considering that no appreciable deformation of the free surface
has been observed for this range of bubble size, it is reasonable to consider the free
surface as a flat surface. Moreover, no significant changes in velocity were observed
for bubbles with de < 0.47 mm as they approach the free surface. Thus, the impact
velocity can be approximated as the terminal velocity of the bubble. In contrast,
bubbles with de ≥ 0.47 mm rise steadily until they arrive at a certain distance (of
the same order of de) below the free surface, which starts to deform. After the
collision with the free surface, bubbles can bounce repeatedly before they coalesce.
For the studied range of bubble size, we have observed up to four bounces for larger
bubbles (de ≈ 2.00 mm). However, for de ≈ 0.70 mm one single bounce is the usual
behavior.

In Figure 5.8, one can observe the bouncing process in four bubbles with different
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Figure 5.9: (a) First bounce height as a function of bubble equivalent diameter.
Linear fit: a = 0.72±0.03; b =−0.08±0.04. (b) Bouncing time as a function
of Weber number. Linear fit: a = 20.7± 1.7; b = 2.2± 2.5.

de (time t = 0 does not particularly correspond to the time when bubble attains its
terminal velocity, but to any non-specific time when the bubble is already in this
velocity). There are two main facts to note. First is that the amplitude of the bounce
gets higher as the bubble size increases. Second concerns the number of bounces
and the bouncing time tb between the first collision (the first maximum in the bubble
position) and coalescence. It can be noted that as bubble size increases, the time tb

also increases.
Figure 5.9(a) shows the height of the first bounce h1 (first minimum of the po-

sition in Figure 5.8) as a function of the bubble equivalent diameter. The behavior
is clearly linear in the range studied, although discrepancies from this linearity at
higher equivalent diameters are expected due to the effects of gravity force. In the
case of large bubble size, gravity force is able to decrease drastically the bubble ve-
locity after the bounce in such a way that large bubbles are not expected to reach
bouncing heights larger than de. From an energetic point of view, the initial energy
of a bubble increases with its size. Assuming that some percentage of this energy is
lost in the bounce, the bubble at the lowest point of the bounce will have potential
energy and a small amount of surface energy. This potential energy is proportional
to the bounce height h1, so increasing de causes an increase in h1.

In Figure 5.9(b), the values of the bouncing time tb are plotted as a function of
the Weber number. In the studied range, tb increases linearly with We, and conse-
quently with the square root of the approach velocity. Many authors [SWF05, Dui98,
RJM06] have reported that the approach velocity plays a crucial role in the coales-
cence process. In the present case, the increase of tb with Weber may be explained
by the fact that at low Weber numbers (small approach velocity), the liquid film be-
tween the bubble and the free surface is thinnest at the bubble top and gradually
becomes thicker toward the periphery. On the other hand, if Weber is increased
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(higher approach velocity), the liquid film is thicker at the top, creating a dimple.
The formation of this dimple is responsible for preventing the bulk of the liquid
above the bubble escaping from the liquid film, and therefore inhibiting coalescence.
The approach velocity of the bubble will decrease substantially at every bounce, until
it has a certain value at which no dimple will be formed, and the bubble will finally
coalesce with the free surface.

5.3 Conclusions

The rise, bouncing and coalescence processes of millimetric gas bubbles impacting
at a free surface have been studied experimentally.

Single air bubbles were released from a syringe into a methacrylate tank filled
with ethanol. The position and shape of the bubbles were measured from the images
recorded by means of a high-speed camera.

The main conclusions of this chapter can be summarized in the following points:

• Bubbles with equivalent diameters de < 0.47 mm rise until they touch the free
surface and coalesce with it immediately. In contrast, bubbles with equivalent
diameters de > 0.47 mm bounce repeatedly before the coalescence with the
free surface occurs.

• The measured drag coefficient and shape variations of the bubbles showed a
good agreement with the available theoretical predictions.

• Time variation of the bubble position and velocity in the bouncing process
have been measured, as well as the change of the aspect ratio in the bounce.
The movement of the bubble center is found to be similar to that of a damped
oscillator.

• Obtained values of the bouncing time increase linearly with the Weber number,
and so does the height of the bounce with the bubble equivalent diameter.

• The frequency of the oscillations of the bubble surface caused by the collision
of the bubble with the free surface, is not significantly affected by the presence
of the free surface.





CHAPTER6
Conclusions and further work

A brief summary of the main results obtained in this thesis, as well as a description
of some of the problems we want to study in the future are presented in this chapter.

Section 6.1.1 gives a general overview of the main conclusions which can be
derived from this research. In Section 6.1.2, a summary of the most relevant results
for each topic is presented. In Section 6.2, the most important topics or problems we
would like to address in the near future are described. Finally, in Section 6.3, some
recommendations for further investigations are given.

6.1 Conclusions

6.1.1 General overview

The main objective of this work was to gain more fundamental knowledge on two-
phase flow dynamics, by obtaining experimental data in normal gravity and in micro-
gravity conditions. In this research, several experiments and computational simula-
tions have been carried out in an attempt to clarify some of the fundamental aspects
of the complex flow created by the two-phase jets. In particular, the study of the
structure of single two-phase jets and the behavior of bubbles in the collision region
of two impinging jets has been investigated. The interaction of a rising bubble with
a free surface has also been studied.
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6.1.2 Summary of contributions

6.1.2.1 Two-phase jets

The main contributions on two-phase single jets (air bubbly jets in liquid, and liquid
droplet jets in air) are summarized in the following points:

• In a single bubbly jet emerging horizontally from a nozzle in normal gravity
conditions, two distinct regions can be observed. A turbulent zone with a
conical shape where inertial effects are dominant, and a bubbly plume zone
where buoyancy is compensated with the drag force and no coalescences are
observed. The separation between the turbulent and bubbly plume regions can
be approximated by a straight line, an approximation which is no longer valid
in the opposed-jet configuration. The angle forming this straight line with the
injection direction decreases as the momentum flux is increased.

• The maximum distance reached by the bubbles in bubbly jets under normal
gravity conditions increases as the momentum flux is increased, with a sudden
increase at J ≈ 10 gcm/s2 which reflects the transition between the dripping
regime and the jetting regime. Concerning the bubble trajectories, a high
deceleration is observed near the nozzles for the normal gravity case, while in
microgravity, the deceleration is much smoother.

• Injection of liquid through a capillary tube with an increasing flow rate re-
vealed that the transition from dripping regime to jetting regime is indepen-
dent of the gravity level: when in normal gravity conditions an experimental
setup is operating at the dripping regime, a big growing droplet with a nearly
spherical shape would be attached to the nozzle in microgravity. On the other
hand, when on ground the jetting regime is attained, in absence of gravity the
jetting regime will be also found.

• For liquid jets, the transition between the dripping and jetting regime is mainly
dominated by the relationship between the inertial and surface forces. In the
jetting regime, at the liquid flow rate range investigated, the average breakup
length increases as the Weber number is increased. In microgravity this in-
crease can be approximated by a linear relationship.

• The mean size of the droplets resulting from the jet atomization decrease as
the liquid flow rate is increased. No significant differences in droplet sizes are
observed between the normal gravity case and the microgravity case.

6.1.2.2 Impinging jets

The most relevant contributions on impinging jets are summarized below:
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• Bubble velocity field in the opposed-jet arrangement is compared with that of
a single jet. Near the injectors, the structure of the velocity field is similar to
that of a single jet. However, in the collision zone, the velocity field is highly
perturbed by the opposing jet. Comparing to the velocity field of a single jet, a
decrease in the velocity in the direction of injection is observed in the central
zone of the opposed-jet configuration. The velocity in the vertical direction is
highly increased in the central zone, due to the formation of a growing disc
with the stagnation point in its center.

• An analysis on the bubble size distribution at different flow rates indicate that
the bubble mean size decrease as the momentum flux is increased, both in
normal gravity and in microgravity conditions.

• In zero gravity, coalescence events occur mainly near the nozzle and in the
collision zone. However, in normal gravity, the coalescences are much more
distributed in space. A higher number of coalescences have been observed in
microgravity than in the normal gravity case. A possible explanation for this is
that in microgravity the probability of collision between two (or more) bubbles
is much higher than in normal gravity, since in reduced gravity the bubbles
passively follow the liquid flow, with no effects of buoyancy forces. As a result,
the relative velocity between bubbles is lower, and numerous bubbles remain
quiescent at certain zones of the impinging jets, increasing the probability of
collision.

• Numerical simulations revealed that the structure of unbounded impinging
single-phase jets adopts the form a cross-like shape, evolving to the deflection
instability for separation between jets of s ≥ 9d, where d is the nozzle diameter.
A new kind of instability has been found to appear at Re ≥ 1000 for s = 10d
in the laminar model. This instability has the form of outflowing waves in the
outgoing vertical jets and can be inhibited by turbulent mechanisms.

• Good qualitative agreement between numerical simulations of opposed bubbly
jets and the experimental results have been obtained, in terms of the structure
of the impinging jets, both in normal gravity and in a reduced gravity environ-
ment.

6.1.2.3 Bubble coalescence with a free surface

The main conclusions on the bouncing process of a bubble upon impact with a free
surface are presented in the following points:

• There is an abrupt transition between the bouncing/non-bouncing process of
a bubble when impacting a free surface: increasing smoothly the bubble di-
ameter does not result in a continuous behavior of the bouncing, if a bubble
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is below a critical size, it will coalesce directly as soon as it touches the inter-
face. On the other hand, if the bubble size is above a critical size, a bouncing
process with non-zero bouncing amplitude will take place prior to coalescence.
The nature of this abrupt transition is still not understood (additional exper-
iments are planned to be performed in the near future, and are presented in
Section 6.2), but the transition has been found to occur at a critical equivalent
diameter of de = 0.47 mm in ethanol.

• In the bouncing regime, the bouncing time increases linearly with the Weber
number, and the height of the first bounce increases linearly with the bubble
diameter. This gives an idea of the energy lost in the first bounce for different
bubble sizes.

6.2 Future work

We will work in several interesting problems which have already been started during
the completion of this thesis. Some of them are in a rather advanced situation, and
others will still require dedicating more efforts. A summary of the main work that we
have planned to perform in the near future can be divided in the following points:

• This thesis is a compendium of experimental data for certain situations, but
sets of higher data consistency are needed: in order to study the effects of a
certain parameter, the other parameters present in the problem should be fixed.
However, due to experimental unexpected requirements or incidents, this was
not always possible. For this reason, the experiments will be carried out using
the same liquid and gas flow rates for the normal gravity and microgravity
conditions, the same separations, the same impact angle between jets, in the
same liquids.

• Concerning the bubble bouncing problem, the recurrent questions are: What
are the effects of bubble size and impact velocity on the bouncing/coalescence
process? In normal gravity, for a given bubble diameter, the value of the rise
velocity is fixed. Nevertheless, by changing the gravity level, a bubble with
a fixed size can be forced to reach the free surface at different rise velocities,
a value of a rise velocity for each gravity level. In this way, the effect of im-
pact velocity can be investigated for different bubble sizes, and consequently,
bubbles with different sizes can be forced to impact the free surface at a fixed
velocity. Thus, the effect of bubble size can be studied deeply. However, the
creation of a free flat surface in microgravity is highly difficult to achieve. In or-
der to be able to study the effects of bubbles size and velocity on the bouncing
problem in a simpler way, the experiment will be performed at the Large Diam-
eter Centrifuge in which gravity levels from 1 g0 to 20 g0 can be reached. In
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addition, experiments will be carried in fluids with different surface tensions,
viscosities and densities.

• Experiments and numerical simulations on impinging droplet jets are planned
to be performed in the near future. First of all we will use distilled water as the
liquid to study, in order to compare the obtained results with that of a single
jet. Nevertheless, experiments using different liquids with different physical
properties (surface tension, viscosity and density) will be performed.

6.3 Recommendations for further investigations

One of the major problems we had when designing the bubbly jet impingement
experiment, was to divide in equal parts the flow rate from one pipe into two pipes,
for both for the gas line, and the liquid line. Since the bubbly jets are highly sensitive
to flow rates, if the gas and liquid flow rates do not have the same exact value, the
jets are not symmetric. Moreover, the symmetric state is not “stable”: if the jets are
not symmetric due to different flow rates coming from the pipes for each injector,
this “asymmetry” tends to increase with time. The solution we adopted was to use 4
valves (2 for the liquid line, and 2 for the gas line) with variable aperture. We had to
manually adjust the aperture of each valve in order to create symmetric jets, for each
set of flow rates we used. This solution is not perfect, but worked fine in the range
of flow rates that were studied. Another solution is to use two liquid pumps and
two pressurized gas tanks, however this solution may not be possible due to power
consumption requirements, and space or weight restrictions. Thus, thinking about
various methods to equally divide the flow between two sub-lines is recommended.

When designing the impinging jets experiment, we were not aware of the neg-
ative g-levels that are reached at the first milliseconds after capsule release. We
designed a system to remove the residual bubbles from the top of the tank (by build-
ing the top with an angle that drove the bubbles into the residual tank in normal
gravity), but, the value of this angle was too low. Hence, the bubbles had some milli-
or centi-seconds of travel from when they reached the top until they were at the
outlet orifice. This little amount of time was high enough to make the bubbles go
into the region of interest, when the negative values of the g-level were reached. For
this reason, we had big bubbles that perturbed the whole flow field. Thus, thinking
about how to remove big bubbles from the top of the tank is highly recommended.

Since the most relevant data obtained in all the experiments described in this
research are the high-speed movies, I recommend using the highest homogeneous
background as possible, which can be obtained by high illumination and effective
diffusion of the light. One of the problems to keep in mind with the high-speed
camera is that in most of the experiments with bubbly jets, a region of 100×100 mm2

needed to be recorded, however the mean bubble diameter was of the order of 1 mm,
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thus a single bubble spans over 5 or 6 pixels, which is a very low resolution. This
low resolution could be improved by reducing the separation between the impinging
jets, or with the use of different lenses placed at different regions of the impinging
jets.

Finally, another difficulty we had to face was in the creation of small bubbles
in the experiment of bubble coalescence with a free surface. The difficulty was not
in how to create a bubble at a desired size, but how to detach the bubble from
the nozzle tip. As the bubble grows, it remains attached to the tip of the syringe
until a critical diameter (when the buoyancy force equals to the attachment force) is
reached. At this moment, the bubble detaches from the nozzle and rises (following a
straight path, or an helical path) to the free surface due to gravity. However, bubbles
smaller than this critical diameter were needed, so a detachment method needed
to be implemented. The solution we adopted was to create the bubble at a desired
size, and detach it from the nozzle using a co-flow of liquid, assuring that the bubble
rose in the region in which the camera was recording. This is an important point to
account for, and the reader may want to think about that if some similar experiments
have been planned.



APPENDIXA
Analytical solutions for incompressible jet

flows

A.1 Velocity field for the steady non-linear case

In order to obtain the steady velocity distribution for a non-linear single-phase jet,
we follow the procedure detailed in Schlichting [Sch79], which is based on the as-
sumption that the kinematic viscosity ν is constant over the whole of the jet. The
pressure gradient ∂ p/∂ ` in the `-direction can be neglected, because the constant
pressure in the surrounding fluid impresses itself on the jet. Owing to the assumption
of a constant pressure, the momentum flux in the `-direction is constant,

J = ρ

∫ ∞

0

v2
` rdrdφ = 2πρ

∫ ∞

0

rv2
` dr = constant. (A.1)

In the adopted system of coordinates (see Figure A.1), the equation of motion
can be written as

v`
∂ v`
∂ `
+ vr

∂ v`
∂ r
= ν

1

r

∂

∂ r

�
r
∂ v`
∂ r

�
, (A.2)

∂ v`
∂ `
+
∂ vr

∂ r
+

vr

r
= 0, (A.3)

with the following boundary conditions:

• r = 0 : vr = 0, ∂ v`/∂ r = 0,
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`

r

Figure A.1: The axisymmetric jet flow with the system of coordinates.

• r =∞ : v` = 0.

Since the problem as a whole possesses no characteristic linear dimension, we
shall assume that the velocity profiles v`(`, r) are similar. Additionally, we will also
assume that the velocity v` is a function of r/q, where q is the width of the jet.
Assuming that the width of the jet is proportional to `n, we can write the stream
function ψ in the form

ψ∼ `p F
�

r

q

�
= `p F

� r

`n

�
. (A.4)

With the aim to determine the exponents p and n, we will use two conditions:
first, the fact that the momentum flux must be independent of ` (from Equation A.1),
and secondly, the inertia and frictional terms in Equation A.2 must be of the same
order of magnitude. With this,

v` ∼ `p−2n,
∂ v`
∂ `
∼ `p−2n−1,

∂ v`
∂ r
∼ `p−3n,

1

r

∂

∂ r

�
r
∂ v`
∂ r

�
∼ `p−4n. (A.5)

Thus the equations for p and n can be written

2p− 4n+ 2n= 0, 2p− 4n− 1= p− 4n. (A.6)

From these, we obtain that p = n= 1, and we can write the stream function as

ψ= ν`F(η), with η=
r

`
, (A.7)

from which the velocity components can be obtained

v` =
ν

`

F ′

η
, vr =

ν

`

�
F ′ − F

η

�
. (A.8)

Using the above expressions into Equation A.2, we obtain the following equation for
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F
F F ′
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F ′2

η
− F F ′′

η
=

d

dη

�
F ′′ − F ′

η

�
. (A.9)

Equation A.9 can be integrated once, resulting in

F F ′ = F ′ −ηF ′′. (A.10)

For r = 0, the boundary conditions are v` = constant and vr = 0. Hence, F ′ = 0
and F = 0 for η = 0. Since v` is an even function of η, F ′/η is even, F ′ odd and F
even. Since F(0) = 0, the constant term in the expansion of F in powers of η is zero,
which determines one constant of integration. The second constant of integration
(denoted here by γ) can be evaluated as follows: If F(η) is a solution of Equation
A.10, then F(γη) = F(ξ) is also a solution. A particular solution of the differential
equation

F
dF

dξ
=

dF

dξ
− ξd2F

dξ2 (A.11)

which satisfies the boundary condition ξ= 0 : F = 0, F ′ = 0, is given by

F =
ξ2

1+ 1
4
ξ2

. (A.12)

With this, we obtain from Equation A.8
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We have ξ= γr`, and the constant of integration γ can now be determined from
the given value of momentum. From Equation A.1, we obtain

J = 2πρ

∫ ∞

0

rv2
` dr =

16

3
πργ2ν2. (A.15)

Finally, with the above results, one can obtain the velocity profiles
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The solution above is valid both for the laminar case and the turbulent case,
provided one uses the turbulent kinematic viscosity νT instead of the usual kinematic
viscosity ν .



APPENDIXB
Governing equations and algorithms used

in the numerical simulations

B.1 Single-phase opposed-jet flow

B.1.1 Laminar flows

In the case of isothermal and incompressible flows, the fluid motion is governed by
the balance of momentum and mass. For laminar flows, the balance equations can
be written as

∂ ~v

∂ t
+
�
~v · ~∇

�
~v = − 1

ρ
~∇p+µ∇2~v + ~f , (B.1)

~∇ ·~v = 0, (B.2)

where ~v is the velocity field, p is the pressure field, ~f is an external force, ρ is the
fluid density and µ is the fluid viscosity.

It is convenient to express the governing equations in dimensionless form. The
dimensionless parameters are introduced: ~x ′ = ~x/d, ~x ′ = ~v/u, t ′ = tu/d, p′ =
p/ρu2, ~f ′ = ~f d/ρu2, where d, u and ρ are the scaling parameters. Introducing the
Reynolds number, Re = ρdu/µ, the balance equations can be written in dimension-
less form as

∂ ~v′

∂ t ′
+
�
~v′ · ~∇′

�
~v′ = − ~∇′p′ + 1

Re
∇′2~v′ + ~f ′, (B.3)

~∇′ ·~v′ = 0. (B.4)
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From now on, we will assume that we work in dimensionless variables so we will
drop the primes.

In the present study, we restrict ourselves to the two-dimensional case without
external force, ~f = 0, thus the balance equations can be written as

∂ vx
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+ vx
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+
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∂ y
= 0.. (B.7)

where a cartesian coordinate system has been used.

B.1.2 Turbulent flows

The balance equations for the turbulent flows are the same as the ones for the lami-
nar flows (Equations B.1 and B.2), with an additional term proportional to the eddy
viscosity µT . Changing µ from Equation B.1 to µL + µT , one obtains the turbulent
balance equations

∂ ~v

∂ t
+
�
~v · ~∇

�
~v = − 1

ρ
~∇p+

�
µL +µT

�∇2~v+ ~f , (B.8)

~∇ ·~v = 0, (B.9)

where the subscripts L and T stand for “laminar” and “turbulent” respectively.

The eddy viscosity µT can be determined from physical and dimensional argu-
ments as

µT = Cµ
ρk2

ε
, (B.10)

where Cµ = 0.09 is a constant of the model, k is the turbulent kinetic energy and ε
is the turbulent dissipation. Now, the closure equations for k and ε are needed.

The turbulence model used in this study is a variant of the k− ε model, the so-
called “Chen and Kim model” [CK87, KW04], which becomes appropriate for this
kind of flows and in which an additional production timescale is introduced (the
last term of Equation B.13). Within the Chen and Kim model, the equation for the
turbulent kinetic energy k can be written as

∂
�
ρk
�

∂ t
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��
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where σk = 0.75 is a constant and Si j is the rate-of-strain tensor
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. (B.12)

The equation for the turbulent dissipation ε can be written as
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(B.13)

where σε = 1.15, C1ε = 1.15 and C2ε = 1.9 are constants of the model. The last term
on the right-hand side of Equation B.13 contains the production timescale and marks
the difference between the Chen and Kim model and the standard k− ε model.

B.2 Bubbly opposed-jet flow

B.2.1 General equations

The conservation equations for single-phase flows can be written in the general form

∂
�
ρφ
�

∂ t
+ ~∇ ·

�
ρ~vφ −Γφ ~∇φ

�
= Sφ , (B.14)

where φ is any variable (scalar or vector), ρ is the fluid density, ~v is the velocity, Γφ
is the diffusion coefficient of φ and Sφ is a source of φ.

Setting φ = 1, Γφ = 0 and Sφ = 0, one obtains the continuity equation,

∂ ρ

∂ t
+ ~∇ ·

�
ρ~v
�
= 0. (B.15)

Setting φ = ~v, Γφ = ρ
�
νL + νT

�
and Sφ = −~∇p, one obtains the momentum

equations,
∂
�
ρ~v
�

∂ t
+ ~∇ ·

�
ρ~v~v −ρ �νL + νT

�
~∇~v
�
=−~∇p. (B.16)

where ~x~y is the dyadic product between vectors ~x and ~y , νL and νT are are the
laminar and turbulent viscosities respectively.

Dealing with multiphase flows, one needs to compute, at least, the velocity com-
ponents and the volume fraction for each phase. In order to do this, the method
used in this study is the so-called IPSA1, which solves the equations for each phase

1Inter-Phase Slip Algorithm
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using Eulerian-Eulerian techniques in a fixed grid. The IPSA procedure is based on
an iterative method, operating on finite-difference equations connecting the values
of variables pertaining to points arrayed on a cartesian grid. The method can solve
steady and transient processes, and the fluids may be compressible or incompressible.
In addition, buoyancy, phase-change and chemical-reaction effects can be handled
using the IPSA method.

In order to take into account the multiple phases, a generalized form of Equation
B.14 can be written

∂
�

fiρiφi
�

∂ t
+ ~∇ ·

�
fiρi~viφi − fiΓφi

~∇φi −φiΓ fi
~∇ fi

�
= Si + Sip (B.17)

where i is the index of the phase (for two-phase flows, i = 1, 2), fi is the volume
fraction of phase i, Γφi

is the within-phase diffusion coefficient, Γ fi
is the phase

diffusion coefficient, Si are the within-phase volumetric sources and Sip are the inter-
phase volumetric sources. As the phases completely fill the available space, the
volume fractions must sum to unity,

∑
i fi = 1.

The algorithm solves the momentum equations for each phase independently,
and the links between phases are introduced via an inter-phase source. Pressure is
common in both phases.

Setting φi = 1 (i = 1, 2), and the diffusion and source terms equal to zero, one
obtains the continuity equation for each phase.

Setting φi = ~vi , Γφi
= ρi

�
νL + νT

�
, Si = −~∇p+∆ρ~g and Sip = δsγκ~n (where

δs is the Dirac delta function centered at the interphase, and kappa is the local
curvature), one obtains the momentum equations, where ∆ρ =

�
ρ1 −ρ2

�
, ~g is the

acceleration of gravity, and σ is the surface tension between the two phases. Hence,
for each phase the momentum equations become

ρ

�
∂ ~v

∂ t
+
�
~v · ~∇

�
~v
�
=−~∇p+µ∇2~v+∆ρ~g + γκ~nδs. (B.18)

In order to write the equations in dimensionless form, we introduce the following
non-dimensional quantities: ~x ′ ≡ ~x/L0, ~v′ ≡ ~v/v0, ρ′ ≡ ρ/ρ0, µ′ ≡ µ/µ0, γ′ ≡ γ/γ0,
~g ′ ≡ ~g/g0. Here, L0, v0, ρ0 are arbitrary values taken as reference parameters. Then,
the time can be written as t = L0/v0 t ′ and the pressure p = ρ0v2

0 p′. Substitution
of these parameters into Equation B.18, and rearranging terms, the dimensionless
momentum equations become
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�
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�
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Re
∇2~v+

1

Fr∗2
+

1

We
κ~nδs (B.19)

where the primes (′) have been dropped, and the following dimensionless numbers
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have been introduced,

Re=
ρ0v0 L0

µ0
, (B.20)

Fr∗ =
v0p
g∗L0

(with ~g∗ =
∆ρ
ρ
~g), (B.21)

We=
ρ0v2

0 L0

γ0
. (B.22)

which are the Reynolds, Froude, and Weber numbers respectively.

B.2.2 Turbulence model

The turbulence model used in this study is the same as in the single-phase case, the
Chen and Kim model, described in Section B.1.2.

B.3 Main solver algorithm

The governing equations have been discretized and solved by means of the commer-
cial software PHOENICS-2009, using the finite volume method in conjunction with
the SIMPLEST algorithm (Spalding, [Spa80]), which is a variant of the SIMPLE al-
gorithm. The main steps in both SIMPLE and SIMPLEST algorithm are:

1. Assume an initial pressure field distribution.

2. Solve the momentum equations using this pressure field, thus obtaining veloc-
ities which satisfy momentum but not necessarily continuity.

3. Construct continuity errors for each cell.

4. Solve the pressure-correction equation and adjust the pressure field corre-
spondingly.

5. Adjust the velocity field by vnew = vold+(∂ v/∂ p)δp. Hence, the new velocities
satisfy continuity but not necessarily momentum balance.

6. Go back to step 2, and repeat with the new pressure field.

7. Repeat until continuity and momentum errors are acceptably small.

The SIMPLEST algorithm differs from SIMPLE in the way that the discretized mo-
mentum equations are manipulated, so that the SIMPLEST velocity correction for-
mulas omit terms that are less significant than those omitted in SIMPLE algorithm.
As a result, it produces convergence much smoothly than SIMPLE, and with less
under-relaxation.
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B.4 Differencing Scheme

Let φA, φB and φC be the values of a certain magnitude φ measured at the center
of the cells A, B and C respectively. It is assumed that the flow is from A to C . The
value of φ at the face between the cells B and C , is computed by

φ f = φA+
1

2
B(r)

�
φB −φA

�
, (B.23)

where φ f is the value of φ at the cell face, and r is defined as r = (φC −φB)/(φB −
φA). If B(r) = 0, we recover a linear upwind differencing scheme. If B(r) = r,
we recover the linear central difference scheme. Throughout all this study, the non-
linear CHARM differencing scheme has been used, which is based on a quadratic
upwind scheme with

B(r) =





r(3r+1)
(r+1)2

for r > 0,

0 for r ≤ 0.
(B.24)

Within this non-linear differencing scheme, the numerical diffusion is reduced signif-
icantly.
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