

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Programming, Debugging,

Profiling and Optimizing

Transactional Memory Programs

Ferad Zyulkyarov

Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya - BarcelonaTech

A thesis submitted for the degree of

Doctor of Philosophy

June 1, 2011

Figures/upc-logo.jpg

2

I would like to dedicate this thesis to my mother who always

supported me in my studies and taught me to love the science.

Acknowledgements

I would like to thank my advisors Mateo Valero, Osman Unsal and

Adrian Cristal for their guidance and support during my studies.

Without their help I would not be able to make these research contri-

butions and at all understand what indeed research is. In equal way,

I would like to acknowledge and thank Tim Harris who in fact has

been like my external advisor. During my PhD Tim was providing

me with invaluable support on Bartok, helping me in writing papers,

and above all he was a constant source of inspiration.

I would like to thank Eduard Ayguadé for his advice on transactifying

the Quake game. Transactification of the Quake game server consti-

tutes large part of my thesis and also it has motivated the other ideas

in my PhD work.

I would like to specially thank Mateo Valero for his involvement in

the procedures that have allowed this thesis become a reality. Also,

I would like to acknowledge his dedication and continuous effort for

making BSC a platform of research excellence from which I was ben-

efiting in various ways.

Of course, many thanks go to my friends Srdjan Stipic, Sasa Tomic,

Valdimir Gajinov, Vesna Smiljkovic, Javier Arias, Nehir Sonmez, Otto

Pflucker, Adria Armejach, Oriol Prat, Oriol Arcas, Neboyjsa Miletic,

Gokcen Kestor, Gulay Yalcin, Vasilis Karakostas, Milovan Djuric, Mi-

lan Stanic, Tim Hayes, Ivan Radkovic, Nikola Bezanic, Vladimir Mar-

janovic, Nikola Markovic. Surely without them this dissertation would

not be complete and the time during my PhD would not be that great

fun.

Last but not least I would like to acknowledge the institutions which

has been directly or indirectly supporting my PhD work. For the com-

pletion of this work I have used resources provided to me by my em-

ployer, the Barcelona Supercomputing Center (BSC-CNS), and by the

Department of Computer Architecture at the Universitat Politécnica

de Catalunya-BarcelonaTech, where I have pursued my PhD.

Several institutions have provided additional funding for this project.

I was supported by the FI scholarship from the Catalan Government.

This work was supported by the cooperation agreement between the

Barcelona Supercomputing Center – National Supercomputer Facility

and Microsoft Research, by the Ministry of Science and Technology

of Spain and the European Union (FEDER funds) under contract

TIN2007-60625, by the European Network of Excellence on High-

Performance Embedded Architecture and Compilation (HiPEAC) and

by the European Commission FP7 project VELOX (216852).

Abstract

The shift from developing powerful monolithic CPUs to a less pow-

erful but multi-core CPUs made developers to rethink their approach

of writing programs. Programmers cannot anymore expect that their

programs will execute faster on the next generation CPUs unless their

programs are parallel. For many years, researchers have been seeking

for various solutions to make parallel programming for shared memory

architectures easier and also efficient. Transactional Memory (TM) is

one such potential solution. In TM synchronizing access to shared

data is simpler than locks. The programmer defines the critical sec-

tions using atomic blocks and the underlying TM implementation

automatically executes the enclosed instructions atomically and in

isolation. In contrast, when using locks, the programmer manually

implements the atomicity and isolation for the shared data. In ad-

dition, when conflicts are rare, the speculative execution of atomic

blocks promises to deliver performance which is comparable to effi-

cient lock-based implementations. To answer the questions ”Is pro-

gramming applications using atomic blocks easier than locks?” and

”Is the performance of TM competitive with locks?” we have devel-

oped a real TM application - AtomicQuake. To implement Atomic-

Quake, as a base we used a parallel lock-based Quake game server and

replaced all lock-based critical sections with atomic blocks. We have

found out that developing applications with atomic blocks would be

easier than locks but the performance of STMs should be improved.

In addition, the experience of developing AtomicQuake revealed un-

sought problems which showed that TM is not yet ready for use in

production quality software. Some of these problems were related to

the language level integration of TM and other problems related to

the lack of TM support in the software development tools such as

debuggers and profilers. While developing AtomicQuake it was ex-

tremely difficult to debug errors and almost impossible to profile the

TM relevant bottlenecks. This last problem motivated us to investi-

gate how to extend current debuggers to debug TM applications and

appropriate profiling techniques that would reveal the bottlenecks in

the TM applications. We have introduced three new approaches to

debug TM applications. First, the user can debug at the level of

atomic blocks. In this approach, an atomic block is treated as a sin-

gle instruction and the implementation details of the atomic blocks,

weather TM or lock inference, are hidden to the user. Second, the

user can debug at the level of transactions. In this approach, the

implementation of atomic blocks is assumed to be TM and the user

can step inside atomic blocks and examine the TM state. Third, the

user can manage the TM state at debug time which is analogues to

the mechanisms how one can change the CPU state. Also, we have

introduced new abstractions such as debug time atomic blocks and

TM watch points. Debug time atomic blocks let the user create and

remove atomic blocks at debug time. We have implemented our ideas

in an extension for WinDbg debugger and the ahead-of-time C# to

x86 Bartok compiler.

To profile TM applications we have introduced new techniques that

provide in-depth and comprehensive information about the wasted

work caused by aborting transactions. We have explored three di-

rections: (i) techniques to identify multiple conflicts from a single

program run, (ii) techniques to describe the data structures involved

in conflicts by using a symbolic path through the heap, rather than

a machine address, and (iii) visualization techniques to summarize

which transactions conflict most. To demonstrate the effectiveness

of these techniques we have built a standalone profiling tool and a

lightweight profiling framework for the Bartok compiler. The profil-

ing framework processes the data offline or during garbage collection

thus having minimal probe effect (less than 1%) and overhead (less

than 14%).

Using the profiling tool we have analyzed and optimized several appli-

cations from the STAMP benchmark suite. The profiling techniques

effectively revealed TM-specific bottlenecks such as false conflicts and

contentions accesses to data structures. The discovered bottlenecks

were subsequently eliminated with TM-specific optimizations which

target is to reduce the number of aborts and wasted work incurred by

these aborts. Among the optimization highlights are the transaction

checkpoints which reduced the wasted work in Intruder with 40%, de-

composing objects to eliminate false conflicts in Bayes, early release

in Labyrinth which decreased wasted work from 98% to 1%, using less

contentions data structures such as chained hashtable in Intruder and

Genome which have higher degree of parallelism.

Contents

1 Introduction 1

1.1 Thesis Statement . 3

1.2 Contributions . 5

1.3 Publications . 7

1.4 Research Context . 9

1.4.1 AtomicQuake . 9

1.4.2 WormBench . 12

1.4.3 Debugging . 12

1.4.4 Profiling . 14

1.5 Outline . 16

2 Background - Transactional Memory 19

2.1 Language Constructs . 20

2.2 Design and Operation . 23

2.2.1 Interface . 24

2.2.2 Data Versioning . 25

2.2.3 Conflict Detection . 26

2.2.4 Conflict Resolution . 28

2.2.5 Commit . 28

2.2.6 Abort . 28

2.3 Additional Functionality . 29

2.3.1 Nested Transactions . 29

2.3.2 Transaction Checkpointing 31

2.3.3 Abstract Nested Transactions 32

2.3.4 Transaction Scheduling . 33

vii

CONTENTS

2.3.5 Strong vs. Weak Isolation 34

2.3.6 Handling Irrevocable Actions 35

2.3.7 Early Release . 35

2.4 Implementations . 37

2.4.1 Software Transactional Memory 37

2.4.1.1 TL2 . 38

2.4.1.2 Bartok-STM . 40

2.4.2 Hardware Transactional Memory 44

2.4.3 Hybrid Transactional Memory 45

2.5 Summary . 45

3 Developing Programs with Atomic Blocks and Transactional Mem-

ory 46

3.1 Motivation . 47

3.2 Related Work . 48

3.3 Atomic Quake . 52

3.3.1 Quake Overview . 55

3.3.1.1 Parallel Quake 56

3.3.1.2 Shared Data Structures 58

3.3.2 Using Transactions . 61

3.3.2.1 Where Transactions Fit 62

3.3.2.2 Non-Block-Structured Critical Sections 65

3.3.2.3 Thread Private Storage 66

3.3.2.4 Condition Synchronization 68

3.3.2.5 IO and Irrevocability Inside Transactions 68

3.3.2.6 Error Handling Inside Transactions 69

3.3.2.7 Privatization . 72

3.3.2.8 Call Graph Structure in Atomic Blocks 73

3.3.3 Experimental Results . 75

3.3.3.1 Experimental Methodology 75

3.3.3.2 Application Characteristics 77

3.3.3.3 Per-Atomic Block Characteristics 79

3.4 WormBench . 82

viii

CONTENTS

3.4.1 Requirements for a Synthetic TM Workload 84

3.4.1.1 Synchronization Problems 84

3.4.1.2 Metrics . 85

3.4.2 Design and Implementation 86

3.4.3 Runtime Characteristics 90

3.4.4 Experimental Analysis . 94

3.4.4.1 Description of the Run Configurations 95

3.4.4.2 Results . 96

3.4.5 Modeling a TM Application 101

3.5 Porting STAMP . 102

3.6 Summary . 103

4 Debugging 105

4.1 Motivation . 107

4.2 Related Work . 108

4.3 Design and Implementation . 109

4.3.1 Design Approach . 111

4.3.2 Interaction Between TmDbgExt and TmTargetDbg 112

4.3.3 Internal Breakpoints . 112

4.3.4 Probe Effect and Overhead 114

4.4 Debugging at the Level of Atomic Blocks 116

4.4.1 Stepping Over Atomic Blocks 116

4.4.2 Stepping Inside Atomic Blocks 119

4.5 Debugging at the Level of Transactions 120

4.5.1 Transaction Events . 122

4.6 Debug-Time Transaction Management 123

4.6.1 Debug-Time Transactions 124

4.6.2 Splitting Atomic Blocks 127

4.6.3 Modifying Transactional State 128

4.7 Summary . 128

ix

CONTENTS

5 Profiling 130

5.1 Motivation . 132

5.2 Related Work . 132

5.3 Profiling Techniques . 134

5.3.1 Basic Conflict Point Discovery 135

5.3.2 Advanced Conflict Point Discovery 139

5.3.3 Quantifying the Importance of Aborts 142

5.3.4 Identifying Conflicting Data Structures 143

5.3.5 Visualizing Transaction Execution 147

5.4 Profiling Framework . 149

5.5 Summary . 151

6 Optimizations 152

6.1 Motivation . 154

6.2 Related Work . 155

6.3 Optimization Techniques . 157

6.3.1 Moving Statements . 157

6.3.2 Atomic Block Scheduling 159

6.3.3 Checkpoints . 159

6.3.4 Pessimistic Reads . 160

6.3.5 Early Release . 162

6.4 Feedback Directed Compilation 164

6.4.1 Moving Statements . 164

6.4.2 Atomic Block Scheduling 165

6.4.3 Checkpoints . 165

6.4.4 Pessimistic Reads . 165

6.4.5 Early Release . 166

6.5 Case Studies . 166

6.5.1 Bayes . 167

6.5.2 Genome . 169

6.5.3 Intruder . 175

6.5.4 Labyrinth . 183

6.5.5 Vacation and WormBench 184

x

CONTENTS

6.6 Summary . 185

7 Conclusion 187

7.1 Future Work . 191

References 212

xi

List of Figures

1.1 Time line TM workloads. 9

1.2 Time line debugging support for TM. 12

1.3 Time line profiling techniques. 14

2.1 Example atomic block. 21

2.2 Using the abort keyword. 21

2.3 Using the retry keyword. 22

2.4 Using the tm callable function attribute. 23

2.5 A simple TM interface. 24

2.6 Example of using the explicit TM interface. 25

2.7 In-place updates vs buffered updates. 26

2.8 Nested transactions. 30

2.9 Checkpointing transactions. 32

2.10 Comparison between checkpoints and ANTs. 33

2.11 Strong isolation. 34

2.12 Using early release in a sorted linked list. 36

2.13 Transactional metadata. 38

2.14 Versioned lock. 39

2.15 Managing the transactional metadata in TL2 40

2.16 The TM metadata in Bartok-STM. 42

2.17 The programmer’s interface of Bartok STM. 42

2.18 Example of using the interface of Bartok-STM. 43

3.1 The client-server model in a multi-player Quake game session. . . 55

3.2 The game cycle in the parallel Quake game server. 57

xii

LIST OF FIGURES

3.3 Areanode tree. 59

3.4 Per-object locking. 63

3.5 Solution to the per-object locking with TM. 64

3.6 Fine grain locking of areanode tree’s leafs. 64

3.7 Unstructured use of locks. 66

3.8 Unstructured use of locks - TM equivalent. 67

3.9 Thread ID problem. 68

3.10 Implementing conditional synchronization with retry. 69

3.11 Error handling - lock based code. 70

3.12 Error handling - in a transaction. 71

3.13 Using failure atomicity to recover from critical error. 72

3.14 Example privatization. 73

3.15 Example static call graph inside atomic block. 74

3.16 Enforcing Quake threads execute concurrently. 76

3.17 AtomicQuake speedup. Results are normalized to the single threaded

execution. 78

3.18 AtomicQuake scalability. Every plotted result is normalized to

itself. This figures shows better how AtomicQuake scales. 78

3.19 Screenshot from WormBench . 83

3.20 The main components in WormBench. 86

3.21 Initializing worms for a larger BenchWorld. 96

3.22 WormBench – lock-based vs TM comparison. 97

3.23 WormBench – Relationship between throughput BenchWorld size

and the worm’s body length and head size. 99

3.24 WormBench – the number of unfiltered reads and writes. 100

3.25 WormBench – commit rate of the transactions. 100

3.26 WormBench – how initialization affects commit rate. 101

4.1 Debugger extension design. 110

4.2 Distinguishing TM breakpoints. 115

4.3 Example atomic block from quake. 117

4.4 Atomicity in the debugger. 119

4.5 Filtering uninteresting events. 123

xiii

LIST OF FIGURES

4.6 Atomic block with shorter scope. 125

4.7 Example of atomicity violation. 125

4.8 Atomicity violation in Quake. 126

4.9 Splitting transactions at debug time. 127

5.1 TM implementation vs program specific overheads. 136

5.2 Example output from conflict point discovery. 136

5.3 Identifying the conflict points. 137

5.4 Contextual information about the conflicts. 138

5.5 Example of multiple conflicts. 140

5.6 Tree view of conflicts. 141

5.7 Aborts graph. 143

5.8 Per-object aborts tree. 145

5.9 Identifying conflicting objects on the heap. 146

5.10 Transaction execution visualizer. 147

6.1 Moving statements inside atomic blocks. 158

6.2 Long vs short running transactions. 161

6.3 Example of using early release in sorted linked list. 163

6.4 Example of instrumenting atomic blocks with calls to the STM

library. 164

6.5 False conflicts in Bayes. 169

6.6 Aborts graph for Bayes before schedule. 170

6.7 Aborts graph for Bayes after schedule. 170

6.8 Bayes – histogram of overlapped transactional execution. 171

6.9 Bayes – histogram of number of concurrently starting transactions. 171

6.10 The execution time of Genome, normalized to L-Opt. 173

6.11 The effect of the optimizations on the abort rate. 174

6.12 Chaining hash table. 174

6.13 Atomic block from Intruder. 177

6.14 Moving statements in eager versioning TMs. 179

6.15 Moving statements in lazy versioning TMs. 179

xiv

List of Tables

2.1 Different combinations for conflict detection. 27

3.1 Transactional characteristics. 79

3.2 [AtomicQuake – read and write set sizes.] The reported results

for the read and write sets indicate the number of bytes read or

written from the beginning to the end of the transaction including

those accumulated during transaction re-executions on abort. . . . 80

3.3 Quake – per-atomic block statistics. 81

3.4 The effect of the HeadSize on read and write. 91

3.5 The effect of the BodyLength on read and write. 92

3.6 Execution time distribution of Worm operations. 93

3.7 Modeling Genome application with WormBench. 102

4.1 The API of TmTargetDbg component. 113

4.2 The probe effect of the debugger extensions. 116

5.1 The probe effect of the profiling framework. 150

5.2 The overhead of the profiling framework. 150

6.1 The normalized execution time of Bayes, Labyrinth and Intruder

before and after optimization. 167

6.2 Validating optimizations across range of TMs. 175

6.3 Intruder – per atomic block based aborts. 176

6.4 The transactional characteristics of the atomic block which exe-

cutes function Decoder.Process 180

6.5 Intruder – summarized wasted work. 181

xv

LIST OF TABLES

6.6 Wasted work in Genome, Vacation and WormBench. 184

xvi

Chapter 1

Introduction

In the past most of the CPUs had only one core and most of the programs

developed for them were sequential. The performance of these programs directly

benefited from the improvements made in the new CPUs. For example, the same

program executed faster on the new CPU simply because the new CPU had higher

clock frequency or it had various architectural improvements. However, during

the last decade manufacturing of CPUs reached an inflection point when the

industry made a turn toward developing multi-core chips instead of developing

more powerful single core chips [44; 90]. The main reasons behind this change

stood the power wall and the level of architectural complexity which modern

CPUs reached. It was not anymore feasible to operate at higher clock frequency

and the achieved performance gains in new CPU architectures were marginal

compared to their complexity. After this shift program developers could not

expect their programs to run faster on the next generation CPUs unless they are

parallel.

One of the most popular parallel programming styles is composed of multi-

ple streams of instructions called threads. Multi-core CPUs can execute mul-

tiple threads concurrently and potentially double the program performance by

doubling the number of cores. The two most prevalent ways in which program

parallelism can be expressed are data parallelism and task parallelism. In data

parallelism threads perform the same set of operations on a large amount of data

which is exclusively partitioned between the threads [63]. Typically such applica-

tions have no inter-thread synchronization (i.e. embarrassingly parallel) or have

1

very simple barrier like synchronization. Conversely, in task parallelism each

thread executes different set of operations and coordinate their progress through

explicit synchronization. In shared memory programming model, which is is best

suited for the today’s multi-core architectures, typically the synchronization in

task parallel programs is implemented with mutual exclusion by using locks or

semaphores. Implementing coarse grain synchronization with few global locks

is easy, however such applications have poor performance and scalability. On

the other side, implementation of correct and efficient fine-grain lock-based syn-

chronization is difficult; the programmer should manually manage the locks by

associating them with the shared data structures and also take special care on

the order of acquiring and releasing the locks to avoid deadlock.

Transactional memory (TM) is an alternative mechanism for implementing

synchronization in shared memory architectures [60]. Compared to locks, TM

abstracts the complexity of implementing parallel programs. The programmer

needs only to declare the atomic regions in the code and the underlying TM sys-

tem transparently provides the atomicity whereas when using locks the user has

to manually implement the atomicity for the operations that mutate the shared

data. Typical implementations of TM execute transactions optimistically, detect-

ing conflicts which occur between concurrent transactions, and aborting one or

other of the involved transactions [56]. In applications with low contention, op-

timistic transactional execution delivers better scalability and performance com-

parable to locks. However, the ease of programming using TM is not for free as

it incurs single threaded overhead and overhead on transaction aborts.

This work studies the development of software using transactional memory

from programmers’ point of view. Unlike most of the existing research which is

focused on evaluating and improving the performance of the TM implementations

this work is focused on evaluating and improving the development process of

applications implemented with atomic blocks and TM. Its goals are to understand

the effort of developing transactional programs, to report for the issues of using

TM in real applications and to try to address these issues. More specifically it is

motivated by providing answers to the following questions:

• Is developing parallel programs with atomic blocks and TM easier than

locks?

2

1.1 Thesis Statement

• Is the performance of TM in real complex applications comparable to the

performance of fine-grain lock-based implementations?

• Are existing development tools (e.g. compilers, debuggers, profilers, etc.)

ready for developing transactional applications?

• How to extend existing development tools to support atomic blocks and

TM?

To answer these questions this work starts by investigating how to use atomic

blocks to implement the thread synchronization in a real application – Atomic-

Quake. Compared to the existing micro-benchmarks and small kernel applications

which are developed solely for evaluating TM implementations, AtomicQuake has

richer synchronization instances which exercise the corner cases for TM (e.g. er-

ror handling, I/O, failure atomicity etc.). Subsequently it continues in three main

directions. First, it investigates how to extend the existing debuggers to support

atomic blocks and TM. Second, it investigates relevant profiling techniques which

provide comprehensive and in depth information about the TM specific bottle-

necks in transactional applications. Third, it investigates how to optimize the

transactional applications based on the obtained profiling information by lever-

aging the underlying TM implementation mechanisms.

1.1 Thesis Statement

In this thesis I make the following assertions regarding TM:

1. Parallel programming using atomic blocks is easier than fine-grain locking

schemes. Programming with atomic blocks resembles coarse-grain locking

approach. When there are many shared objects, the individual synchro-

nization of each object or the implementation of a region based synchro-

nization is straightforward using atomic block and TM. On the other side,

similar fine-grain synchronization with locks require careful use of locks to

avoid data races and deadlocks. Also, maintenance of code with atomic

blocks seems to be easier than lock-based code because the concurrency is

expressed through the programming language;

3

1.1 Thesis Statement

2. TM is not a bottleneck for the scalability of the parallel applications.

However, unlike the performance results obtained with micro-benchmarks

and small kernel applications, TM is not as efficient as locks in large real

world applications. In a real transactional application TM has high single

threaded overhead and unanticipated abort overheads at the presence of

contention;

3. Current TM technology is not mature enough to be used for developing

production software because of the following reasons:

(a) Language extensions and semantics are not expressive enough to im-

plement I/O, errors and recover from errors inside transactions. For

example, locks cannot be replaced directly because their use do not

match the block based structure of atomic blocks;

(b) Existing application development tools such as compilers, debuggers

and profilers have minimal or no support for TM. For example, debug-

gers are not aware of atomic blocks and they cannot execute atomic

blocks atomically. Also, existing profiling tools do not provide relevant

information to discover and understand the TM overheads;

4. In large parallel applications replacing the lock-based synchronization with

atomic blocks is not straightforward. It requires careful examination of

the code to understand the locking policy (i.e. which lock protects which

shared data);

5. It is difficult to find synchronization errors in TM applications and debug

wrong code inside atomic blocks because conventional debuggers are not

aware of atomic blocks and TM. To find the synchronization errors between

atomic blocks such as atomicity violations and asymmetric data races de-

buggers need to be extended with the atomicity semantics of transactions.

To debug wrong code inside atomic blocks without observing speculative

updates from other transactions, debuggers need to be extended with the

isolation semantics of transactions;

4

1.2 Contributions

6. TM applications have different types of bottlenecks which are specific to

the TM programming model. These bottlenecks are caused by the aborting

transactions and are difficult to anticipate and understand. To find and un-

derstand these bottlenecks properly requires new profiling techniques which

report results in an from independent of the underlying TM implementa-

tion;

7. The performance of TM applications can be improved with TM-specific

optimizations which leverage the specific mechanisms provided by the un-

derlying TM implementation. For example, the same program can execute

faster if the programmer uses transaction checkpoints, nested atomic blocks

or early release.

These assertions will be demonstrated by:

1. Developing a real parallel application, called AtomicQuake, from an exist-

ing parallel lock-based version of the Quake game server by replacing all

lock-based synchronization with atomic blocks and porting transactional

applications from the STAMP TM benchmark suite from C to C#;

2. Developing a debugger extension to support debugging applications that

use atomic blocks and TM;

3. Building a lightweight profiling framework for Bartok-STM and a profiling

tool to profile TM applications.

4. Optimizing applications from the STAMP TM benchmark suite based on

the obtained profiling information by leveraging the available TM-specific

mechanisms.

1.2 Contributions

This work contributes to the research in TM in a number of ways:

1. Investigation of the use of atomic blocks and in real complex parallel pro-

gram - Quake game server (research contribution);

5

1.2 Contributions

2. Demonstration that developing complex parallel programs with TM is easier

than locks (research contribution);

3. Demonstration that TM is not yet a mature technology for developing pro-

duction software: more research is required in language integration, com-

piler implementation, integration into development tools such as debuggers

and profilers (research contribution);

4. Evaluation of a TM system and its language integration using a real appli-

cation (research contribution);

5. Development of A real transactional application, AtomicQuke, to drive the

research in TM (development contribution);

6. Design and development of a highly configurable synthetic TM workload,

WormBench, used for TM stress test and modeling the transactional behav-

ior of real applications and also rarely occurring pathological cases (research

and development contribution);

7. Development of C# versions of the applications from the STAMP TM

benchmark suite (development contribution);

8. Investigation of new debugging principles and abstractions for transactional

applications(research contribution);

9. Development of debugger extensions for transactional application forWinDbg

and Bartok-STM (development contribution);

10. Investigation of new profiling techniques for transactional applications (re-

search contribution);

11. Investigation of techniques to relate conflicting instructions to source code

(research contribution);

12. Investigation of techniques to related conflicting memory addresses to vari-

able and object names from the source code (research contribution);

6

1.3 Publications

13. Development of a stand alone profiling tool for TM applications which pro-

cesses and visualizes raw profiling data (development contribution);

14. Development of a lightweight profiling framework for Bartok-STM that logs

runtime information about the transactions’ progress and data contention

(development contribution);

15. Investigation of techniques for methodological optimization of transactional

applications by leveraging the mechanisms available in underlying TM sys-

tem (research contribution);

16. Optimizing applications from the STAMP TM benchmark suite (develop-

ment contribution).

1.3 Publications

The work reported in this dissertation led to the following publications:

• F. Zyulkyarov, S. Stipic, T. Harris, O. Unsal, A. Cristal, I. Hur, M. Valero,

Profiling and Optimizing Transactional Memory Applications, to appear In

Proceedings of 19th International Journal of Parallel Programming (IJPP’2011) [138]

(see Chapter 6.

• F. Zyulkyarov, S. Stipic, T. Harris, O. Unsal, A. Cristal, I. Hur, M. Valero,

Discovering and Understanding Performance Bottlenecks in Transactional

Applications, In Proceedings of 19th International Conference on Parallel

Architectures and Compilation Techniques (PACT’2010) [137] (see Chap-

ter 5.

• F. Zyulkyarov, T. Harris, O. Unsal, A. Cristal, M. Valero, Debugging Pro-

grams that use Atomic Blocks and Transactional Memory, In Proceedings

of 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’2010) [136] (see Chapter 4).

7

1.3 Publications

• F. Zyulkyarov, V. Gajinov, O. Unsal, A. Cristal, E. Ayguade, T. Harris, M.

Valero, Atomic Quake: Using Transactional Memory in an Interactive Mul-

tiplayer Game Server, In Proceedings of 14th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP’2009) [135]

(see Section 3.3).

• F. Zyulkyarov, S. Cvijic, O. Unsal, A. Cristal, E. Ayguade, T. Harris,

M. Valero, WormBench - A Configurable Workload for Evaluating Trans-

actional Memory Systems, Workshop on Memory Performance: Dealing

with Applications, Systems and Architecture (MEDEA’2008) [134] (see Sec-

tion 3.4).

• F. Zyulkyarov, O. Unsal, A. Cristal, M. Valero, Synthetic Workloads for

Transactional Memory (Poster), Advanced Computer Architecture and Com-

pilation for Embedded Systems (ACASES’2007) [133].

During the work on this dissertation, the following papers were also published

by the author on closely related topics:

• V. Gajinov, F. Zyulkyarov, O. Unsal, A. Cristal, E. Ayguade, T. Har-

ris, M. Valero, QuakeTM: Parallelizing a Complex Serial Application Using

Transactional Memory In Proceedings of 23rd International Conference on

Supercomputing (ICS’2009) [42].

• F. Zyulkyarov, M. Milanovic, O. Unsal, A. Cristal, E. Ayguade, T. Harris,

M. Valero, Memory Management for Transaction Processing Core in Het-

erogeneous Chip-Multiprocessors, Workshop on Operating System Support

for Heterogeneous Multicore Architectures (OSHMA’2007) [132].

• M. Milovanovic, O. Unsal, A. Cristal, S. Stipic, F. Zyulkyarov, M. Valero,

Compiler Support for Using Transactional Memory in C/C++ Applications,

Workshop on Interaction between Compilers and Computer Architecture

(INTERACT’2007) [85].

Except QuakeTM as presented in [42], the work reported in the remaining

related papers is not directly discussed in this dissertation.

8

1.4 Research Context

Micro-Benchmarks
Red black tree
Skip list
Hashtable

1995

STAMP v.1
ISCA'07

STAMP v.2
IISWC'08

WormBench
MEDEA'08

STMBench7
EuroSys'07

AtomicQuake
PPoPP'09

QuakeTM
ICS'09

2007 2008 2009

RMS-TM v.1
TRANSACT'09

SynQuake
EuroSys'10

2010 2011

RMS-TM v.1
ICPP'11

...

EigenBench
IISWC'10

Figure 1.1: Time line of TM workloads. Only the TM workloads closest to this

research are shown. My publications are surrounded with a box.

1.4 Research Context

This section makes a short overview on the closest related work to mine and

sets a research context in which my research was carried. Later on, each chapter

includes a more detailed related work section for its topic.

1.4.1 AtomicQuake

My research started in 2006 and spanned in a time frame of 4,5 years. During this

time TM was an active research topic (and I think it is still quite active) because

it was seen as a remedy for the problems around locks and promised to make

synchronization implementation in parallel programming easier and yet efficient.

There were proposed various TM implementations and the research was mainly

focused on evaluating their performance. Until 2007 when the first version of

STAMP [86] TM implementations were evaluated with micro benchmarks such

as red black tree, hashtable and skip list (see Figure 1.1). Microbenchmarks are

good for evaluating the TM system’s implementation details such as the size of

the internal data structures or cashes. However, they are not representative for

evaluating the overall TM system in a setting of a real application which does

real work while operating on the basic structures.

STAMP is a suite of kernel applications each implementing an algorithm with

different characteristics in terms of how long they spend running inside transac-

tions, how large those transactions are, and how likely concurrent transactions

are to conflict with one another. Unlike microbenchmarks, STAMP applications

9

Chapter1/Figures/EPS/research_timeline_benchmark.eps

1.4 Research Context

were more representative and could evaluate wider spectrum of TM implementa-

tions. STAMP applications were closer to real applications because transactions

in these applications did not simply access data structures but also performed

useful work. Nevertheless, the goal of STAMP was to benchmark TMs but not

to evaluate how easy is to program real-world complex parallel programs using

TM. Also, it was not clear how things would look like if all these algorithms

implemented by individual STAMP applications are in one large application.

To study the programability aspects of TM I chose to work on the parallel

version of the Quake game server [2] and this study was the first of its kind.

The Quake game server was interesting for my research because it was using

complicated fine grain synchronization for the irregular data structures and this

synchronization resulted in 22% of the total execution when the server was fully

loaded. The desired results from this work were to show that programming with

TM is easier than locks and TM outperforms the lock-based implementation (i.e.

to reduce the time spent for synchronization). In the published paper about

AtomicQuake in 2009 [135] (see Figure 1.1), I demonstrated that programming

with TM is indeed easier than locks but the performance of TM is not in par

with the lock-based implementation.

While working on AtomicQuake I have encountered various problems relevant

to different aspects of TM such as language primitives, semantics, I/O, library

calls, error handling, development tools like compilers, debuggers and profilers.

For example, I was able to compile and run AtomicQuake almost half a year

after I finished it. The reason for this lag was the fact that AtomicQuake there

was not a robust compiler to compile it and a TM to run it. Many times I

had to re-implement basic library calls such as sprintf. Also, it was practically

impossible to profile AtomicQuake and understand the reason for the poor perfor-

mance – the TM implementation was closed source and did not provide detailed

runtime information. Nevertheless, the study on AtomicQuake gave important

feedback to the TM research community and opened new problems which were

subsequently addressed by different researchers and also myself. This work also

delivered to the research community a complex real-world TM application which

could evaluate TM across the complete software stack. Even today (at the time

10

1.4 Research Context

of writing this thesis), because of its complexity, there are few compilers and TM

implementations which are robust enough to compile and run AtomicQuake.

Close works to AtomicQuake were done by Gajinov et al. [42] (QuakeTM)

which was published the same year 2009, and Lupei et al. [77] (SynQuake) pub-

lished 2010 (see Figure 1.1). QuakeTM was done concurrently with AtomicQuake

by my colleague. The motivation of developing both AtomicQuake and QuakeTM

independently was to see respectively how migrating legacy lock-based applica-

tions to TM would look like and how developing TM applications from the scratch

would look like. Because QuakeTM was developed with TM in mind, there were

fewer problems relevant to the TM language level primitives such as acquiring and

releasing locks in non-block structured way. But still, there were common prob-

lems such as library calls, error handling and I/O. Like AtomicQuake, the study

on QuakeTM confirmed that developing parallel programs with TM is easier than

locks and that the performance of STM is low.

SynQuake is a stripped version of the Quake game server which includes only

the main data structures and the essential features of Quake and excludes other

secondary elements such as 3D space, network communication, etc. Opposite to

the findings in AtomicQuake and QuakeTM (high abort rate and STM overhead)

SynQuake showed performance which is competitive to a lock-based version of

the same game engine. The performance improvement is achieved through an

important TM and game specific optimization and also STM extensions which

are tailored to the game’s logic. To reduce the conflicts SynQuake implements

dynamic locality-aware assignment of tasks to threads. Because of the lower con-

flict rate SynQuake shows better scalability and performance over AtomicQuake

and QuakeTM. Also, another reason for the better performance is of SynQuake

could be due to the manual instrumentation of the STM library calls in the code.

AtomicQuake and QuakeTM these STM instrumentations were automatically

performed by the compiler. The compiler may not be able to always determine

when it is safe to skip instrumenting certain memory operations.

11

1.4 Research Context

1995

tm_db
PACT'09

2007 2008 2009

TM Debugging
PPoPP'10

2010 2011...

TM debugging ideas
TRANSACT'07

Figure 1.2: Time line of research in debugging support for TM applications. My

publications are surrounded with a box.

1.4.2 WormBench

WormBench is a parameterized synthetic TM workload which I developed during

the same time when I was working on AtomicQuake [134]. WormBench was

designed with the goal to be easily configurable, so that it can have different TM

characteristics such as abort rate, read/write set size, transaction length, etc. In

this way with special configurations, WormBench can be used in stress tests such

as stressing read/write set buffers or conflict detection and resolution system.

Also, it is possible to prepare a configuration in which WormBench models a real

TM application by having similar transactional characteristics.

Most similar TM workloads to WormBench are STMBench7 [46] published

before WormBench andand EigenBench [64] published after WormBench (see

Figure 1.1). Both STMBench7 and EigenBench are configurable but do not per-

form dummy operations inside transactions. Also, unlike WormBench, STM-

Bench7 and EigenBench do not implement different synchronization scenarios

such as producer consumer and barrier synchronization. STMBench7 has very

large transactions with large read/write sets. This makes it difficult to pre-

pare configurations which have wide range of transactional characteristics. Like

WormBench, EigenBench can be configured to model a real transactional applica-

tion. To some extend, configuring EigenBench is easier than WormBench because

EigenBench does not perform any dummy operations but simply accesses a set

of shared objects.

1.4.3 Debugging

After the work on AtomicQuake, I was highly motivated to study how to extend

existing debuggers with support for debugging applications which use atomic

12

Chapter1/Figures/EPS/research_timeline_debugging.eps

1.4 Research Context

blocks and TM. While me working on AtomicQuake me and also my colleague

Gejinov et al. working on QuakeTM had very bad experience in finding synchro-

nization errors and debug wrong code inside atomic blocks. In this work I have

introduced new debugging principles and abstractions which would help debug-

ging transactional applications. According to the new debugging principles the

user is provided with higher level and lower level view on the application. In

the first approach the debugger is extended with the atomicity and the isolation

properties of transactions and the underlying implementation of atomic blocks is

abstracted – whether implemented with TM or lock-inference. In the lower level

view, the underlying implementation of TM is exposed and the user has complete

view on the internals. The new debug-time transactions are handy abstractions

demonstrated to be useful in identifying synchronization errors. Other abstrac-

tions such as TM watch points allow the user to monitor the changes in the TM

state.

In a parallel work with mine, Herlihy and Lev have developed an infrastruc-

ture for debugging transactional applications–tm db [59] which was published

just before my work(see Figure 1.2). From a user’s perspective, compared to

our work, when debugging a transactional application with the abstractions that

Herlihy and Lev introduce, it will look like debugging at the level of transactions

(discussed in Section 4.5). The primary focus of tm db is to consistently expose

the TM state through the debugger without changing the existing debugging con-

ventions. In tm db Herlihy and Lev introduce important concepts such as logical

value, scopes, distinction between transactional reads, writes and their respec-

tive conflict coverages. These new concepts abstract the internal organization of

different STM systems. Logical values are necessary for preserving the isolation

property of transactions when debugging at the level of transactions. Abstracting

the reads and writes with their respective coverages hides the internal mechanism

to manage the read and write sets and also help in identifying false conflicts. In-

corporating these new abstractions into our extension would provide users an

uniform view to the TM state when debugging at the level of transactions.

In earlier work, before tm db, Lev and Moir discussed how the debugger and

the TM implantation should by integrated [73]. They surveyed features that a de-

bugger could provide by leveraging the underlying TM system. From their work,

13

1.4 Research Context

1995

DCG
PPoPP'10

2005 2009 2010

Profiling Techniques
PACT'10

...

TAPE
ICS'07

CPD
PPoPP'10

Lourenco et al.
PADTAD'09

2011...

Figure 1.3: Time line of research in profiling support for TM applications. My

publications are surrounded with a box.

we were inspired that seeing the read set and write set of transactions can help

to understand the reason for aborts. However, a practical application of this fea-

ture showed to not be effective because conflicts happen in high amount at many

different places. The lesson learnt was that we need appropriately summarized

results in order to effectively reason about conflicts. After realizing this fact, I

continued with the investigation of such appropriate summaries which lead to the

discovery of mechanism called conflict point discovery. Conflict point discovery

is summarized in the next section.

1.4.4 Profiling

AtomicQuake had poor performance but it was practically impossible to under-

stand why. To compile and run AtomicQuake a closed source compiler and an

STM implementations were used. The tool chain did not report any detailed

runtime information, except the total number of aborts and read/write set size

report per atomic block and complete program execution. It was not clear, where

transactions abort, why they abort, which transactions are involved in conflicts,

which shared objects are involved in conflicts, and whether conflicts are true or

false. In QuakeTM, Gajinov et al. [42] used an adhoc approach to exploit and

get very limited information about the internals of the TM. The information he

could get was vague approximation about the places where transactions might

conflict and respectively abort. Also, Gajinov et al. reported for several cases of

false conflicts.

14

Chapter1/Figures/EPS/research_timeline_profiling.eps

1.4 Research Context

The overall experience of understanding the performance of AtomicQuake was

the main motivation for investigating new profiling techniques that would pro-

vide comprehensive information about the conflicts, aborts and wasted work in

a format which is independent from the underlying TM implementation. The

first part of this investigation introduced basic conflict point discovery which was

published at PPoPP in 2010 [136] (see Figure 1.3). Basic conflict point discovery

introduced a technique to efficiently find where transactions conflict and map

these places to the source code. This idea was subsequently explored much rigor-

ously and introduced three profiling techniques in a paper which was published in

2010 [137]. The first technique identifies multiple conflicts from a single program

run and associates each conflict with contextual information. The contextual in-

formation is necessary to relate the wasted work to parts of the program as well

as constructing the winner and victim relationship between the transactions. The

second technique identifies the data structures involved in conflicts, and it asso-

ciates the contended objects with the different places where conflicting accesses

occur. The third technique visualizes the progress of transactions and summa-

rizes which transactions conflict most. This is particularly useful when first trying

to understand a transactional workload and to identify the bottlenecks that are

present. The discovered ideas were implemented in two program components –

a profiling framework for Bartok-STM and a standalone program which process

and reports the profiling data. The key achievement in the implementation is

that the profiling framework has very low probe effect (i.e. does not interfere

the actual execution) and marginal overhead. The low probe effect and overhead

were result of successfully combining data collection with garbage collection and

subsequently processing this offline.

A close work to mine was published by Chakrabarti in a poster at PPoPP in

2010 [25]. In this paper Chakrabarti introduced dynamic conflict graphs (DCG).

A coarse grain DCG represents the abort relationship between the atomic blocks

similar to aborts graph in [137]. A fine grain DCG represents the conflict rela-

tionship between the conflicting memory references. The fine grain DCG could

be a nice extension to my work combined with the contextual information for the

conflicts. Such information would be found useful in linking the symptoms of lost

performance to the reasons at finer statement granularity.

15

1.5 Outline

Another similar work was done by Lourenço et al. published in 2009 [76].

Lourenço et al. have developed a tool for visualizing transactions similar to

mine. They also summarize the common transactional characteristics that are

reported in the existing literature such as abort rate, read and write set, etc. over

the whole program execution. My work complements theirs by reporting results

in source language such as variable names instead of machine addresses. Also, we

provide local summary which is helpful for examining the performance of specific

part of the program execution.

Neither Chakrabarti nor Lourenço et al. do not discuss how to identify mul-

tiple conflicts from a single profiling, how to identify conflicting objects and how

to report results in source language code.

1.5 Outline

Chapter 2 provides background on transactional memory and introduces the

basic concepts used throughout the text. First, it introduces the trans-

actions as an alternative method for synchronization and explains their

advantages over locks. Then it describes the typical API and the language

extensions that the programmer can use to develop transactional programs.

At the end follows a discussion about the design decisions involved in build-

ing a TM and various implementations in software and hardware.

Chapter 3 describes an experience of developing a real application, Atomic-

Quake, by replacing all lock-based synchronization in an existing parallel

Quake game server with atomic blocks. This chapter first surveys the

related work about transactional workloads and motivates the reason for

using real applications for the end-to-end evaluation of TM. Then it re-

ports for the effort of porting legacy lock-based code to TM by discussing

when synchronization with TM is easier than locks and the challenges of

replacing locks with atomic blocks. At the end follows the runtime analysis

of AtomicQuake which suggest that AtomicQuake has rich transactional

characteristics making it a good workload for evaluating TMs.

16

1.5 Outline

Chapter 4 presents new principles and approaches for debugging transactional

applications. It describes how to extend the existing debuggers with the

atomicity and isolation semantics of atomic blocks. This approach hides

the underlying implementation details of the TM system. On the other

side, the debugger can expose the speculative state which is maintained by

the TM system. There are introduced new debugging abstractions which

let the programmer change the scope of atomic blocks and manage the

transactions at debug-time. The chapter also discusses the implementation

of these features in a WinDbg debugger extension for applications compiled

with Bartok compiler.

Chapter 5 presents new profiling techniques for transactional applications. Trans-

actional applications have different types of bottlenecks which are specific

to the TM programming model. The profiling techniques described in this

chapter are developed to help the programmer to discover and understand

these bottlenecks. These techniques can visualize the progress of the trans-

actions and clearly show the parts of the program execution when transac-

tions abort. Other techniques help in discovering the statements and the

objects involved in conflicts. The chapter also describes the implementation

of lightweight profiling framework to collect runtime data and a stand alone

profiling tool which process and visualizes the runtime data.

Chapter 6 explores new techniques and approaches for optimizing transactional

applications based on available profiling information. The goal of optimiz-

ing a transactional application is to reduce the contention. The contention

can be reduced by decreasing the scope of atomic blocks, using different

data structures which cause less conflicts, and reducing the shared state.

Also, this chapter describes how to optimize applications by using mecha-

nisms such as transaction checkpointing, nested transactions, early release,

transaction scheduling etc. which might be available at the underlying TM

system. The effectiveness of these techniques is demonstrated by first pro-

filing and then optimizing applications from the STAMP TM benchmark

suite.

17

1.5 Outline

Chapter 7 concludes and discusses future work that can extend the work de-

scribed in this dissertation.

18

Chapter 2

Background - Transactional

Memory

Transactional memory is an optimistic concurrency control mechanism for syn-

chronizing access to shared data in multi-threaded programs. Analogues to the

database transactions TM allows multiple threads to perform series of memory op-

erations atomically. As an alternative to locks, TM attempts to simplify parallel

programming by requiring to only identify the atomicity for the shared variables

in the program. On the other side, when using locks the programmer should first

identify the shared shared variables and manually implement atomicity for the

operations which mutate them. Other important problems of locks are deadlocks

and composability. For example, to avoid deadlocks, developers should either

use special policies to acquire or release lock (i.e. two-phase locking) or detect

and resolve deadlocks before each lock acquisition. Building and maintaining

such lock-based programs is extremely difficult because the association between

the shared variables and locks is not defined by the programming language but

the programmer itself. Moreover, building complex programs from composable

black-box-like components is practically impossible. To highlight the advantages

of TM over locks Grossman makes an analogy between TM and garbage col-

lection [43]. According to this analogy TM would make the implementation

synchronization easier as garbage collection made memory management easier.

Besides the simpler programming interface, TM can extract more parallelism by

19

2.1 Language Constructs

executing transactions optimistically thus achieving better performance so long

as transactions do not perform conflicting accesses.

This chapter gives background on transactional memory and introduces the

basic concepts which are used later in the text. Section 2.1 presents TM from

the programmers perspective and describes the language constructs for writing

transactional programs. Section 2.2 discusses lower-level interfaces and the dif-

ferent designs choices for implementing the higher lever language abstractions.

Because the focus of this dissertation is TM, the emphasis is more on optimistic

and less on pessimistic design approaches. Section 2.4 describes the techniques

for implementing TM in software and hardware. Again, because the work de-

scribed in this dissertation is done using software transactional memory (STM)

more emphasis is given to STMs. Section 2.5 summarizes this chapter.

2.1 Language Constructs

There are proposed several language extensions to support TM. Most of these

extensions were proposed and refined in a set of specifications [4] after different

feedbacks about using TM in real applications were provided by the research

community as well as this work [42; 92; 100; 135]. This section describes a subset

of the language extensions which were used in this work, mainly those proposed

before or at the time when this work started. These language extensions are the

atomic block, the abort and retry keywords, and the tm pure and tm callable

function attributes. These

atomic blocks are used to denote a sequence of operations that should execute

atomically. All operations which are inside atomic block are executed as a single

atomic operation. For example, in Figure 2.1 both operations statement1 and

statement2 will execute as one indivisible operation.

abort statement rolls back the execution of an atomic block back to the point

before starting its execution and then resumes the program execution from the

statement which follows immediately after the atomic block. For example, the

abort in Figure 2.2 will roll-back the execution of the atomic (i.e. memory

20

2.1 Language Constructs

atomic

{

statement1;

statement2;

}

Figure 2.1: Example atomic block.

statement1;

atomic

{

statement2;

statement3;

abort;

}

statement4;

Figure 2.2: Using the abort keyword.

changes made by statement2 and statement3 and continue execution from stat-

ment4. Some implementations require that abort is within the static scope of

an atomic block and others are more permissive and require that it is called in

the dynamic scope of an atomic block. Such functionality is particularly useful

for implementing failure atomicity. For instance, when an error happens, abort

provides means to automatically restore the program execution to a safe point.

retry is used to coordinate the execution of atomic blocks [54; 97]. retry

keyword is used to indicate a situation when the execution of an atomic block

cannot proceed due to an unmet condition. In such a case, retry blocks the

atomic block execution until an alternative execution path becomes possible.

For example, in Figure 2.3 retry indicates that the execution of the atomic

block cannot continue if the buffer is empty. In this case, the execution of the

atomic block will block until a producer thread inserts an element into the buffer.

21

2.1 Language Constructs

public Object Consume()

{

Object x = null;

atomic

{

if (buffer.IsEmpty) retry;

x = buffer.GetElement();

}

return x;

}

Figure 2.3: Using the retry keyword.

retry can appear anywhere within the scope of atomic blocks. Unlike using

explicit conditional variables in combination with signal and wait operations,

retry does not require specifying the atomic block and the shared variables

which are involved in the synchronization.

tm callable is a function attribute which indicates that a function is called

directly or indirectly from within an atomic block. This attribute is an explicit

way to tell the compiler to generate a special transactional version for the func-

tions declared as tm callable and also to call the transactional versions of these

functions from within the atomic block. Although, in most cases the compiler

can statically deduce whether a function is tm callable, static analysis is not

sufficient for function pointers or virtual functions. If a function is not annotated

properly the execution may have unexpected result. For example, in Figure 2.4

the tm callable attribute is used to indicate that function foo is called inside

an atomic block.

tm pure is a function attribute which indicates that the function does not have

any side effects. Example, tm pure functions are the mathematical functions

such as sin, cos, etc. which make a specific computation without modifying a

shared state. This attribute can be used to give hints to the compiler to generate

22

2.2 Design and Operation

tm_callable void foo();

...

atomic

{

foo();

}

Figure 2.4: Using the tm callable function attribute.

more optimized code for such functions. Also, this attribute can be used as a

work around to obtain internal information about the TM state such as how

many times an atomic block aborted. However, if it is used incorrectly, the TM

system may not be able to properly roll back the aborted transactions and lead

to unexpected program behavior.

2.2 Design and Operation

Atomic blocks are high-level language abstractions which the programmer can

use for implementing concurrency relying on their well defined semantics. While

the semantics of atomic blocks are expected to be precisely defined their low-level

implementation is not so. Concrete implementations may follow different design

approaches which depends on the taken assumptions and the runtime overheads.

This section describes the operation and typical designs of transactional memory

systems.

Atomic blocks can be implemented using other techniques such as lock infer-

ence. Therefore it is important to distinguish between atomic blocks as a lan-

guage construct and their implementation whether TM or lock inference. With

this abstraction the underlying implementation of atomic blocks can be changed

with a more optimized one without affecting the programmers experience.

The operation of TM and lock inference is fundamentally different. TM fol-

lows an optimistic approach. It executes the atomic blocks speculatively and

detects conflicts during their execution aborting one of the involved transactions.

Conversely, lock inference follows a pessimistic approach. It acquires a set of

23

2.2 Design and Operation

// Transaction Management

void StartTx();

void AbortTx();

bool CommitTx();

// Data access management

T ReadTx(T *addr);

void WriteTx(T *addr, T v);

Figure 2.5: A simple TM interface.

locks before executing a atomic block and releases these locks after executing the

atomic block. The focus of this dissertation is TM and discussing more details

about lock inference (which can be found at [27; 31; 48; 62; 80]) is beyond its

scope.

2.2.1 Interface

A typical TM provides an interface for managing transactions and data accesses

inside the transactions. Figure 2.5 shows a simple TM interface which can be

supported both by STM and HTM. In this particular case, the TM interface is

very much similar to the word based TL2 [33] STM library or the original HTM

proposed by Herlihy and Moss [60].

The first set of operations in Figure 2.5 deals with managing transactions and

the second set deals with managing the data accesses inside the transaction.

• StartTx is used to create a new transaction.

• AbortTx aborts the execution of the current transaction.

• CommitTx attempts to commit the current transaction. If the commit is

successful, it returns true and if the commit is not successful it aborts the

transaction and returns false.

• ReadTx is used inside a transaction and it returns the value at the address

which is specified as a parameter.

24

2.2 Design and Operation

// x = y = z = 0;

// Implicit // Explicit - using TM interface

atomic do

{ {

x = 1; StartTx();

y = 2; WriteTx(&x, 1);

z = x + y; WriteTx(&y, 2);

} int x_v = ReadTx(&x);

int y_v = ReadTx(&y);

WriteTx(&z, x_v + y_v);

} while (!CommitTx());

Figure 2.6: Example of using the explicit TM interface to implement an atomic

block.

• WriteTx is again used inside a transaction and is used to update the value

of an address which both are specified as parameters.

Figure 2.6 demonstrates with a simple example of manually implementing

an atomic block with explicit calls to the TM interface, or how for example

a compiler could automatically transform the atomic block into a lower level

representation with explicit calls to the TM.

2.2.2 Data Versioning

To determine whether a transaction is valid TM systems track the memory ref-

erences that are accessed inside an atomic through the ReadTx and WriteTx

functions from the TM interface (see Figure 2.5 and Figure 2.6). Memory reads

compose the read set and memory writes compose the write set. Typically there

are two approaches how memory reads and writes are versioned. Read operations

can be either optimistic or pessimistic. In optimistic reads, the TM system logs

a version number associated with the referenced memory and validates the read

set when the transaction attempts to commit. In pessimistic reads, the TM sys-

tem locks the memory reference and detects conflicts when another transaction

25

2.2 Design and Operation

Lazy Versioning Eager Versioning

Memory Updates Buffer Memory Log Buffer

0
0
0

0
0
0

1
2
3

1
2
3

x1
x2
x3

x1
x2
x3

Figure 2.7: The state of the memory when using buffered updates and in-place

updates just before committing the transactions from the example in Figure 2.6.

attempts to update the same memory location. Write operations can be buffered

(i.e. lazy versioning) or in-place (i.e. eager versioning). With buffered writes the

speculative values of the memory references are stored in a thread local buffer and

when the transaction commits they are written back in their original locations to

become visible to the other threads. With in-place writes, the TM system logs the

original value for roll back in case an abort happens and writes the speculative

value at its original place. Usually, in buffered update TMs, commits are more

expensive whereas in in-place update TMs aborts are more expensive. Figure 2.7

shows how the memory would look depending on the type of the versioning just

before committing the transactions from Figure 2.6.

2.2.3 Conflict Detection

In transactional applications a conflict occurs when two transactions access the

same memory location concurrently and one of the accesses is write. TM may

detect conflicts either eagerly (i.e. pessimistic) or lazily (i.e. optimistic). In eager

approach conflicts are detected immediately when they happen whereas in lazy

approach conflicts are detected at some later time of a transaction execution (e.g.

commit).

Conflict detection can be different for the different conflict types – write-after-

write (WaW), write-after-read (WaR) and read-after-write (RaW). For example,

WaW conflicts can be detected eagerly and the WaR and RaW conflicts can be

detected lazily. Table 2.1 illustrates the possible combinations.

Furthermore, TM implementation may differ based on the granularity at

which conflicts are detected. Typically TM implementations detect conflicts at

26

Chapter2/Figures/EPS/tm_versioning_example.eps

2.2 Design and Operation

WaW WaR RaW Example

Lazy Lazy Lazy TL2

Eager Lazy Lazy TinySTM

Eager Eager Lazy McRT

Eager Lazy Eager n/a

Eager Eager Eager LogTM

Table 2.1: Conflict detection can be different for the different conflict types. This

table shows the possible combinations.

either word, cache line or object granularity. The choice of the granularity in-

volves design and performance tradeoffs. Word and cache line granularity is more

suitable for HTMs and non-garbage-collected lower level programming languages

such as C whereas object conflict detection is more suitable for STMs managed

object oriented programming languages such as Java and C#.

Detecting conflicts at machine word granularity requires more space for record-

ing per-word metadata and also validation by iterating through the read and write

set can be slower. On the other side, detecting conflicts at cache line granularity

has lower space requirements and validation by iterating through the read and

write set can be faster (because two or more words can map at the same cache

line). However, TMs that operate at cache line may detect false conflicts when

two transactions access different words of the same cache line. To mitigate the

limitations of word based conflict detection, Riegel et al. [96] proposed a dynamic

approach and Mannarswamy et al. [79] proposed a static approach for modifying

the granularity of conflict detection for certain memory locations.

In TMs with object conflict detection a conflict occurs when two transactions

access the fields of the same object and one of the accesses is write. Just like cache

line granularity, this approach may signal false conflicts when different fields of

the same object are accessed. In such case conflict detection at finer per-object

field granularity is possible at the cost of managing more transactional metadata.

27

2.2 Design and Operation

2.2.4 Conflict Resolution

Conflict resolution is a policy which determines how the TM system reacts when

a conflict occurs. With respect to conflict resolution TMs may differ in two

aspects – based on the time when a conflict is resolved and based on the way

how the conflict is resolved. In time conflict resolution may follow immediately

after a conflict is detected (i.e. eager conflict resolution) [87; 128] or it can

be postponed to a later moment of the transaction execution (i.e. lazy conflict

resolution) [24; 49; 119], for instance commit time. Once it is time to resolve the

conflict the TM system may continue in one of the following ways:

• Blocks the transaction execution until the other conflicting transaction re-

spectively commits or aborts. In case of a cycle with two or more waiting

transactions the TM system aborts all of them to avoid deadlock [87; 128].

• Chooses one of the conflicting transactions as a victim transaction and

aborts it. Scherer et al. [104] and Guerraoui et al. [104] studied different

criteria of how to choose the victim transaction (i.e. the transaction to be

aborted) and also the effect of delaying and assigning back-off time for the

abort.

2.2.5 Commit

Commit happens at the end of the transaction after validation passes successfully

(i.e. the transaction does not have any conflicts). The commit process makes the

memory changes done during the transaction execution visible to the world (i.e.

other threads). In eager versioning (i.e. in-pace update) TM systems commit has

very low overhead, but in lazy versioning (i.e. buffered update) TM systems it

might be expensive because the buffered updates should be written back to their

original places in memory. For transactions with large write set lazy versioning

approach may hurt the performance noticeably.

2.2.6 Abort

When a TM system detects a conflict it aborts the transaction by restarting its

execution from the beginning. But before restart the TM system may perform

28

2.3 Additional Functionality

rollback to restore the program state to the point when it was before starting

the transaction. In lazy versioning TM systems (i.e. buffered update) rollback

is cheap but in eager versioning TM systems (i.e. in-place update) it may be

expensive. When abort happens, lazy versioning systems only need to discard or

clear the write set whereas eager versioning systems need to restore the original

value for all speculatively updated memory locations.

2.3 Additional Functionality

This section describes functionality which can be provided by the underlying TM

system to be used in different situations.

2.3.1 Nested Transactions

A nested transaction is one which execution is contained within the dynamic scope

of another transaction. Depending on the implementation, nested transactions

can be flattened or closed. These two types of nested transaction have the same

semantics for commit. When a nested transaction commits successfully its read

and write sets are merged respectively to the read and write sets of the outer

transaction – in this case the changes made by the inner transaction become

visible only to the outer transaction. However, the behavior of flattened and

closed nested transactions is different when the nested transaction aborts. When

a flattened nested transaction aborts it also aborts the outer transaction even if

the outer transaction is valid. For example, in Figure 2.8 if Tx2 aborts, Tx1 will

abort, too. On the other side, when a closed nested transaction aborts it does not

abort the execution of the outer transaction. The changes made by the nested

transactions become globally visible only if the most outer transaction commits

successfully and otherwise they are discarded (see Figure 2.8).

Besides flattened and closed nested transactions there is also a third type

of nested transactions – open nested transactions [6; 7; 88]. Unlike flattening

and closed nesting, open nesting does not preserve the isolation semantics of

transactions.

29

2.3 Additional Functionality

// x = y = 0;

atomic // Tx1

{

x = 1;

atomic // Tx2

{

y = 2;

}

}

Figure 2.8: Nested transactions. Flattening : if Tx2 commits changes on y will

be visible after Tx1 commits; if Tx2 aborts will cause Tx1 to abort as well; if

Tx2 commits but Tx1 aborts changes made on both x and y will be discarded.

Closed : if Tx2 commits changes on y will become visible after Tx1 commits (same

as flattening); is Tx2 aborts will not cause Tx1 to abort (opposite to flattening);

if Tx2 commits but Tx1 aborts the changes on both x and y will be discarded.

Open: if Tx2 commits the value of y will be become globally visible even if Tx1

aborts (opposite to flattening and closed); is Tx2 aborts will not cause Tx1 to

abort (same as closed).

30

2.3 Additional Functionality

The memory changes made by an open nested transaction become visible to

the other threads immediately after it commits and they are not rolled back

if the outer transaction aborts. For example, if Tx2 in Figure 2.8 is an open

nested transaction and it commits successfully, the value of y will be 2 and it

immediately will become visible to the other threads. Once Tx2 commits, the

value of y will not be restored to 0 if Tx1 aborts. On abort, the behavior of open

nested transactions is the same as closed nested transaction – only the nested

transaction aborts without causing the outer transaction to abort. Although open

nesting transactions are not compatible with the isolation semantics of atomic

blocks they were proposed because of several practical reasons some of which are:

• To develop interactive transactional applications with user provided input;

• To optimize the performance of the application when the program algorithm

allows to be relaxed; and

• To communicate transactional data which otherwise cannot be obtained,

for instance, how many times a given atomic block has re-executed due to

aborts.

2.3.2 Transaction Checkpointing

Transaction checkpoints are used delimit the transaction into rollback sections [123].

When conflict is detected, the transaction is rolled back until the point where the

code before it is valid. The rationale of using checkpoints is to avoid rolling back

and re-executing the valid part of the transaction. For example, if Figure 2.9

is shown a transaction which is checkpointed at two places – B and C. In this

case, if a conflict is detected between B and C, the TM system will roll back and

re-execute the B-D part of this transaction. On the other side, if no checkpoints

are used, the complete transaction will be rolled back and re-executed.

A better technique that mitigates this limitation are abstract nested transac-

tions (ANT) which are described in the next section.

31

2.3 Additional Functionality

A

B

C

D

TxStart

Checkpoint 1

Checkpoint 2

TxCommit

Figure 2.9: The transaction is checkpointed at points B and C. If a conflict is

detected between points B and C, the TM system will roll back and re-execute

only the B-D part of the transaction. If no checkpoints are used the TM system

will roll back and re-execute the whole transaction causing more wasted work.

2.3.3 Abstract Nested Transactions

Harris and Stipic [53] have proposed abstract nested transactions (ANT) as a

technique for optimizing the execution of atomic blocks which have benign con-

flicts. For example, if two transactions insert different items which keys map into

the same bucket, the TM system will detect a conflict because both transactions

update the same memory locations. However, in this case, the insert operation

for is commutative and its concurrent execution is not a conflict at higher level

of abstraction. ANTs are transparent to the enclosing atomic block and their

semantics but they have different behavior. When ANT is not valid but the

remaining part of the transaction is valid, only the ANT is re-executed. Opera-

tionally ANTs are similar to checkpoints except the extend of the code which is

re-executed. To demonstrate the difference between checkpoints and ANTs let’s

assume that the B-C part of the transaction from Figure 2.9 is ANT. If at point

D (i.e. when the transaction commits) the TM system detects that the ANT is

not valid because of a conflicting memory access in B-C part, then then the TM

system will roll back and re-execute only the B-C part. In contrast, when using

checkpoints, in addition to the B-C part the TM system will also re-execute C-D

part. This example show that ANTs can be more efficient than checkpoints be-

cause they would cause less code to be re-executed. Figure 2.10 shows what part

32

Chapter2/Figures/EPS/transaction_checkpoint.eps

2.3 Additional Functionality

A B C D

Checkpoint

Transaction

Commit failed

Checkpoint

A B C D

Conflicting memory
access

A B C D
ANT

A B C D

Commit
success

A

B C D

ANT
B C

re-execution

re-execution

re-execution

(a)

(b)

(c)

Figure 2.10: This figure shows the part of the transaction which will be re-

executed when (a) a pure transaction is used, (b) the transaction is checkpointed

at B and C, (c) the code between B and C is wrapped in ANT. It is assumed

that the conflicting memory access is performed between the points B and C and

the conflict is detected at point D when the transaction attempts to commit.

of the transactions will be re-executed when checkpoints and ANTs are used.

2.3.4 Transaction Scheduling

A TM system may support static or runtime transaction scheduling [35; 37; 78;

129]. Using this feature one can schedule two transactions to not execute at the

same time. The rationale behind transaction scheduling is to reduce the abort

rate of transactions by serializing their execution.

Typically in automatic transaction scheduling transactions are continuously

monitored how frequently they abort. Whenever the abort rate exceeds a certain

threshold transactions are serialized to reduce contention. Other approaches go

step further by keeping history of the read and write sets of the transactions and

try to predict weather two atomic blocks will conflict if they are executed con-

currently. When possible the TM system may schedule two atomic blocks that

are likely to conflict to execute on the same core. Unlike, dynamic scheduling,

static scheduling cannot be flexible and adapt to the changing behavior of trans-

actions. However, static scheduling does not have runtime overheads and might

33

Chapter2/Figures/EPS/tx_ant_checkpointing.eps

2.3 Additional Functionality

// Initially x = 0;

// Thread 1 // Thread 2

atomic

{

x = 1; x = 2;

}

Figure 2.11: A TM with strong isolation will detect conflict between the trans-

actional and non-transactional code. A TM with weak isolation will not detect

conflict between the transactional and non-transactional code and will silently

continue execution.

perform better in cases when the transactional characteristics of atomic blocks

are constant. In addition, these two approaches can be combined to complement

each others deficiencies – static scheduling can be used for the atomic blocks

with predictive behavior and dynamic scheduling for those with non-predictive

behavior.

2.3.5 Strong vs. Weak Isolation

Isolation is a property of transactions which ensures that the intermediate changes

made during transaction execution are not visible until the transaction commits

successfully. TMs with strong isolation guarantee isolation between transactional

and non-transactional code and a TM with weak isolation guarantees isolation

only between transactions [15]. Figure 2.11 shows an example of asymmetric

race where variable x is assigned a value in a transactional code and also in a

non-transactional code. A TM with strong isolation would detect such conflicts

and a TM with weak isolation will these conflicts will pass undetected resulting

in undetermined program execution.

Strong isolation eliminates a difficult to find set of race errors in multi-

threaded programs thus making the semantics of transactions more intuitive.

Then one would ask ”Then why does the notion of weak isolation exists and not

all TMs support strong isolation?”. While strong isolation has no additional costs

34

2.3 Additional Functionality

in HTMs, it is not the case with STMs. Early, STMs with strong isolation in-

curred very high overheads because of instrumenting the non-transactional code

with special calls to the STM in similar way how atomic blocks are instrumented

(see Figure 2.6) [105]. Later on Harris et al. [1] have proposed more efficient

implementation which uses the memory protection unit to detect asymmetric

conflicts.

2.3.6 Handling Irrevocable Actions

Irrevocable operations such as I/O, system calls, etc. pose a challenge for trans-

actions because it is not possible to roll back these operations when transac-

tions aborts. There were proposed various techniques such as compensating ac-

tions [22; 51; 81; 131] or delayed output [72; 121] which try to address this prob-

lem. However, a general-purpose technique for handling irrevocable operations

are irrevocable transactions [75; 116; 126]. Irrevocable execution is a fall-back

technique in which a transaction is guaranteed to commit by not being involved

in any conflict or winning all conflicts. Typically, when a transaction performs

an irrevocable operation, it automatically switches to irrevocable mode.

2.3.7 Early Release

Early release is a mechanism to exclude entries in the transaction’s read set from

conflict detection [41; 61; 109; 110]. In certain applications it is possible that the

final result of an atomic block is still correct although it’s read set is not valid.

For example, consider an atomic block which inserts entries in a sorted linked

list (Figure 2.12). Thread T1 wants to insert value 2 and thread T2 wants to

insert value 6. To find the right place to insert the new values the two threads

iterate over the the list nodes and consequently add them to the transaction’s

read set. T2 aborts because T1 finished faster and after inserting the new node

it invalidates T2’s read set. However, T2 could still correctly insert it’s node

although some entries in it’s read set were invalid. In this case we can exclude

all nodes except 5 from conflict detection.

Although early release can improve application’s performance significantly it

is not a safe operation (i.e. early release can break program correctness). The

35

2.3 Additional Functionality

431 5

2 6

T1 T2

431 5

2 6 Without Early Release With Early Release
Read Set Write Set Read Set Write Set

T1
T2

T1 T2

1
1

1
1

431 5

2 6 Without Early Release With Early Release
Read Set Write Set Read Set Write Set

T1
T2

T1 T2

1, 3
1, 3

1, 3
1, 3

431 5

2 6 Without Early Release With Early Release
Read Set Write Set Read Set Write Set

T1
T2

T2

1, 3
1, 3, 4

1, 3
1, 3, 4

1 1

COMMIT 1 1COMMIT

431 5

2 6 Without Early Release With Early Release
Read Set Write Set Read Set Write Set

T1
T2

T2

1, 3
1, 3, 4

1, 3
1, 3, 4

COMMIT 1 1COMMIT
5 5

431 5

2 6 Without Early Release With Early Release
Read Set Write Set Read Set Write Set

T1
T2

1, 3
1, 3, 4

1, 3
1, 3, 4

COMMIT 1 1COMMIT
5 5COMMITABORT

Figure 2.12: Transactions T1 inserts number 2 and transaction T2 inserts number

6 in sorted linked list. Without using early release T2 will abort and when using

early release T2 will commit successfully.

36

Chapter2/Figures/EPS/early_release_linked_list.eps

2.4 Implementations

programmer should precisely know the shared data structures and the operations

applied on them. The available profiling tools can help in identifying the shared

objects that are involved in conflicts and point which are the most critical ones.

Provided with this information, the programmer can focus on the specific objects

and try to use early release when possible or use different implementations for

the data structures.

An alternative technique for early release are elastic transactions [40]. Unlike

regular transactions which must execute to completion, an elastic transaction

can make an intermediate commits when a conflict is detected. The intermediate

commits are possible only before the transaction makes its first write. In effect,

the intermediate commit is equivalent to releasing the read set of the transaction

if the transaction is valid and its write set is empty. Compared to early release,

elastic transactions provide cleaner support for composability.

2.4 Implementations

This section describes software transactional memory (STM) implementations

and hardware transactional memory implementations (HTM). Typical STMs

are implemented entirely in software as a runtime library. STMs are flexible,

unbounded and does not require any change at the underlying computer ar-

chitecture. Typical HTMs are implemented entirely in hardware as a micro-

architectural extension of the CPU. HTMs have lower overheads than STMs but

they are bounded both in space and time and also HTMs are not flexible.

2.4.1 Software Transactional Memory

A typical software transactional memory (STM) is implemented entirely in soft-

ware as a runtime library. STMs provide a public API similar to the API in

Figure 2.5. A compiler with STM support would automatically generate the

code for the atomic blocks by calling the proper STM library functions as shown

in Figure 2.6. In the absence of such compiler, the programmer should manu-

ally instrument the calls to the STM library. Manually instrumented code can

be faster than the compiler generated code because the programmer may choose

37

2.4 Implementations

TX Metadata

Object Header

Field 1

Field 2

Field 3

Field N

(b) Object-based Metadata(a) Word-based Metadata

Address 1

Address 2

...

Address 3

Address 4

Address 5

Address N

Metadata

Metadata

Metadata

Figure 2.13: Transactional metadata: (a) word-based metadata, (b) object-based

metadata.

to not instrument some of safe memory accesses such as thread local variables.

However, a manual implementation can be very difficult and error prone because

the programmer has to find all functions which are called inside transactions and

also create transactional versions of these functions.

STMs represent the memory locations which are accessed transactionally

through special transactional metadata. The STM metadata is either word-

based or object-based. In word-based STMs [33; 96; 101] a memory location is

mapped through address hashing to a transaction record in a fixed size metadata

table (see Figure 2.13 (a)). In object-based STMs [5; 55] the transactional meta-

data is embedded in the object’s header (see Figure 2.13 (b)). The information

which is stored in the transactional metadata tells whether a memory location is

read/written, its version number, state - locked/unlocked, the owner transaction,

the original/speculative value, etc. Because of various trade-offs STMs organize

and maintain the transactional metadata differently. This thesis includes descrip-

tion of only two STMs – TL2 as an example of word-based STM and Bartok-STM

as an example of object-based STM. A more detailed description is beyond the

scope this thesis and can be found at [56].

2.4.1.1 TL2

TL2 [33] is an example for a word-based, lazy versioning, lazy conflict detection

STM. It is implemented in C and its programmer’s interface is similar to the

basic TM interface shown in Figure 2.5. A special object which represents a

transaction maintains two lists of address – the read set and the write set (see

38

Chapter2/Figures/EPS/tx_metadata.eps

2.4 Implementations

...

Lock Bit
0 - Unlocked
1 - Locked

Versioned Lock = 32 bit (or 64 bit)

Version number

Figure 2.14: Versioned lock. The less significant bit indicates whether it is locked

(if 1) or unlocked (if 0). The remaining part of the lock is a version number.

Figure 2.15). The entries of the read set are the memory addresses which are

read by the transaction and their version numbers. The entries in the write set

are the memory addresses updated by the transaction and also their speculative

values. The records stored in the metadata table are versioned locks. Typically

a versioned lock is word sized, its less significant bit indicates whether the lock is

locked and the remaining part is a version number (see Figure 2.14).

The basic TL2 algorithm performs the following operations while it executes

a transaction:

1. TxStart - samples the value of a global version clock into a read version

variable (rv).

2. TxRead - checks whether the address is in the write set (i.e. it has been

already updated by the transaction). If the address is in the write set, the

speculative value is returned. If the value is not in the write set, the original

value in the memory is read and the addresses together with its version

number from the metadata is added to the read set. If the metadata entry

is locked by another transaction or is greater than sampled version number

during TxStart (rv) the transaction is aborted.

3. TxWrite - checks whether the address is already in the write set (i.e. it has

been already updated by the transaction). If the address is in the write set,

its speculative value is updated. If the address is not in the write set a new

entry is created and added to the write set.

39

Chapter2/Figures/EPS/versioned_lock.eps

2.4 Implementations

Read Set

Write Set

Status

Value

Addr 4

Version

Addr 1

Version

Addr 2

Version

Addr 3

Value

Addr 5

Version

Version

Version

Lock

Version

Lock

MetadataTransaction Object

Figure 2.15: Managing the transactional metadata in TL2

4. TxCommit - the commit operation proceeds in three phases. During the

first phase (lock write set) the write set is locked using two-phase locking;

the metadata entry associated with every write set entry is locked. If the

locking does not succeed the transaction aborts. If the locking succeeds the

global version clock is sampled into a write version variable (wv) and the

execution proceeds to the second phase. During the second phase (read set

validation) TL2 validates the read set of the transaction. For successful

validation is necessary that the version of every entry in the read set is

less than or equal to the version number sampled at TxStart (version ≤
rv). If the version of any read set entry is greater than the version at

TxStart (version ¿ rv) the transaction is not valid and it is aborted. If the

validation succeeds the execution proceeds to the third phase. During the

third phase (write back and release) the speculative value of every write set

entry is written to the memory and the metadata associated with this entry

is unlocked by writing the write version (wv) to its place.

More efficient versions of TL2 use thread local version clocks to reduce the

contention on the global version clock.

2.4.1.2 Bartok-STM

Bartok-STM [55] is an example for an object-based, eager versioning, lazy conflict

detection STM and most of the work described in this thesis was build on top

of Bartok-STM. Bartok-STM is implemented in C# and is part of the Bartok

40

Chapter2/Figures/EPS/tl2_metadata.eps

2.4 Implementations

compiler. Bartok compiler is an ahead of time C# to x86 compiler with language

level support of atomic blocks and transactional memory.

In Bartok-STM the TM metadata is embedded into the object header. The

object header is word sized and it might be used for several different purposes.

The type of the use is determined by the value of the first two bits (see Fig-

ure 2.16). Initially all the bits in the object header are zero indicating that the

it has not been used. If the value of the first two bits is:

1. 00 – the remaining part of the word encode a version number;

2. 01 – the object is locked for write by a transaction and the remaining bits

(including the second bit) hold a pointer to the owning transaction;

3. 10 – the header is used for different purpose other than transaction manage-

ment and the remaining part of the bits hold the hash code of the object.

4. 11 – the object’s header is used for more than one of the above purposes

and the object header is inflated and stored in an external structure. The

remaining bits of the object header are a pointer to the inflated structure,

which holds the object’s version number, owning transaction and hashcode.

Each thread which is executing a transaction is represented with through a

special object – transaction manager (see Figure 2.16). Unlike TL2, the transac-

tion manager maintains three lists – read set, write set and undo log. Each entry

in the read set has two fields – reference to the object opened for read and the

version number of the object at the moment when it is accessed. Each entry in

the write set stores a reference to the object opened for write. Each entry in the

undo log has three fields – reference to the object opened for write, the offset of

the modified field and the original value of the field.

The programmer’s interface of Bartok-STM is slightly different than the basic

TM interface from Figure 2.5 and is shown in Figure 2.17 (McRT-STM [101] has

similar interface).

Essentially StartTx, AbortTx, and CommitTx are the same as in the simple TM

interface from Figure 2.5 (see Section 2.2.1). StartTx starts a new transaction,

AbortTx aborts a transaction, and CommitTx attempts to commit a transaction.

41

2.4 Implementations

Version number 00

00 00

Owner Tx 01 Hashcode 10

11Inflated structure

Hashcode
Owner Tx

Version number

Read Set

Write Set

Status

Undo Log

Per-object Metadata
(embedded in object's header)

Obj ref 1

Version

Obj ref 2

Version

Transaction Manager

Obj ref 4

Obj ref 3

Version

Obj ref 5

Obj ref 4

Offset 1

Value

Obj ref 4

Offset 2

Value

Obj ref 5

Offset 0

Value

1. Initially the header
word is zero

2. First kind of use is
held in the header word

3. Second kind of use
triggers inflation

Figure 2.16: Bartok-STM stores the TM metadata in the object’s header. It

organizes the metadata using three lists – read set, write set and undo log.

// Bartok Interface

void StartTx();

void AbortTx();

bool CommitTx();

// Data access management

void OpenObjectForRead(Object obj); void OpenObjectForWrite(Object obj);

void LogObjectFieldForUndo(Object obj, int fieldOffest);

Figure 2.17: The programmer’s interface of Bartok STM.

42

Chapter2/Figures/EPS/bartok_metadata.eps

2.4 Implementations

// Non-instrumented // Instrumented code

1: atomic { atomic {

2: local.field1 = x.field1; OpenObjectForRead(x);

3: y.field2 = 5; local.field1 = x.field1;

4: } OpenObjectForWrite(y);

5: LogObjectFieldForUndo(y, 2);

5: y.field2 = 5;

6: }

(a) (b)

Figure 2.18: Using the interface of Bartok-STM. (a) non-instrumented atomic

block, (b) atomic block instrumented with calls to OpenObjectForRead before the

actual read operation, and OpenObjectForWrite and LogObjectFieldForUndo

before the actual write operation.

In Bartok-STM ReadTx can be expressed through OpenObjectForRead. OpenObjectForRead

must be called for every object before the actual reading operation (see Fig-

ure 2.18). OpenObjectForRead logs the address and the version number associ-

ated with the object into a read set entry.

In Bartok-STM WriteTx operation is split into two operations OpenObjectForWrtie

and LogObjectFieldForUndo. Both methods, OpenObjectForWrtie and LogObjectFieldForUnd

must be called before the actual write operation (see Figure 2.18). If the object

is not opened for write by another transaction OpenObjectForWrite locks the

object by writing a pointer to the thread’s transaction manager and adds an en-

try to the write set. However, if the object is opened for write by another thread

(i.e. the object is locked and the value at the metadata is a pointer to another

transaction manager) the transaction aborts. LogObjectFieldForUndo logs the

original value of the object’s field into an undo log. In case transaction aborts,

the original values of the object’s fields are resorted from the undo log.

Transaction’s read set is validated before committing the transaction. During

the validation, Bartok-STM checks whether the version number of the read set

entries has changed by comparing it with the version number stored at the actual

object. If the version number is different or the object is opened for write by

another thread (transaction manager) validation fails and the transaction aborts.

If the validation is successful, Bartok-STM unlocks the objects in the transaction’s

write set by incrementing their version numbers and writing them to the objects

43

2.4 Implementations

metadata. When transaction aborts, Bartok-STM walks through the undo log

and restores the original value of speculatively updated objects.

2.4.2 Hardware Transactional Memory

Transactional memory systems can be implemented entirely in hardware – hard-

ware transactional memory (HTM). Like STMs, HTMs perform the same set of

transactional operations. However their programmer interface may differ as ex-

plicit or implicit. An explicit interface extends the ISA with additional memory

instruction for transactional load and store, similar to the STM’s interface in

Figure 2.17. An implicit HTM interface has instructions indicating the start and

the end of the transaction. Such TMs implicitly treat all memory operations as

transactional.

As with STMs, when a transaction starts the HTM saves the CPU registers

to be able to restore the state in case a conflict happens. Unlike STMs, HTMs

track the transactional memory accesses into the CPU caches by extending their

cache tags. Lazy versioning HTMs [24; 49] buffer memory updates in the local

caches and broadcast to the other CPUs on successful commit. Eager versioning

HTMs [87] log the original value of the memory for roll-back in case the trans-

action aborts and broadcast the memory update. To prevent other CPUs from

consuming speculative updates, the HTM blocks every CPUs which attempts

to access a speculative memory by not-acknowledging its request. Because of

possibility of deadlock, HTMs use mechanisms to detect cycles when CPUs are

blocked.

HTMs detect conflicts automatically by leveraging the underlying cache coher-

ence protocol or using supporting structures such as bloom filters [128]. Aborts

in lazy versioning HTMs are trivial and require only local updates on the CPU

cache tags to restore the CPU state to the point before starting the transaction.

Aborts in eager versioning broadcast the transaction’s write set to acknowledge

the CPUs which might be waiting for accessing a memory on its read set.

More detailed discussion about different HTMs can be found at the following

references [24; 49; 60; 87; 107; 119; 128].

44

2.5 Summary

2.4.3 Hybrid Transactional Memory

Hybrid transactional memory system have both software and hardware com-

ponent. The goal of proposed hybrid TMs is to mitigate the limitations of

both STMs and HTMs. Typically, STMs are accelerated by adding a hard-

ware support [57; 86; 102; 106] and HTMs are virtualized by adding software

support [8; 28; 32; 68; 94]. Like STMs and HTMs, hybrid TMs perform the same

set of transactional operations described earlier in Section 2.2. There are many

hybrid TM proposal which differ in their implementation. Detailed discussion for

each implementation is outside the scope of this dissertation but can be found at

the following references [8; 28; 32; 57; 68; 86; 94; 102; 106].

2.5 Summary

This chapter have introduced atomic blocks and how they are implemented with

transactional memory. atomic blocks are language level constructs. A code

wrapped inside an atomic block executes atomically as if it is a single opera-

tions. Transactional memory is an optimistic concurrency control which executes

atomic blocks atomically and in isolation. A typical TM provides an interface

for managing transactions and data versioning. A compiler with TM support

uses this interface to instrument the body of atomic blocks or alternatively this

can be manually done by the programmer. The design of TM systems involve

various performance and implementation trade-offs. TMs can be implemented

either in software or in hardware. STMs are flexible but slow. HTMs are fast

but are not flexible. There are hybrid approaches which try to either accelerate

STM with hardware support or make HTMs unbounded and more flexible with

software support.

45

Chapter 3

Developing Programs with

Atomic Blocks and Transactional

Memory

Transactional memory (TM) as a promising alternative to locks is actively be-

ing studied by the research community. Much of the initial work on TM used

microbenchmarks and application kernels to evaluate the performance of TM im-

plementations. These workloads are small and usually stress specific aspects of

the TM implementation such as the commit or abort operation. While they are

useful in evaluating and tuning the performance of internal TM structures it is

not clear whether conclusions drawn from these workloads will apply to large real

applications. Also, these applications are often developed by TM researchers and

they do not necessarily reflect how TM would be used by programmers who are

not aware of how TM is implemented.

This chapter describes the TM applications which were developed as a part

of this dissertation. Section 3.1 follows with the motivation of developing these

applications. Section 3.2 surveys the existing TM applications and relates them

with our work. Section 3.3 describes an experience of using atomic blocks and TM

in a real world parallel application – Quake game server. Section 3.4 describes

a synthetic transactional memory workload which can be configured to stress

specific internal TM structures or model the transactional behavior of a real TM

46

3.1 Motivation

application. Section 3.5 describes the implications of porting applications from

the STAMP benchmark suite from C to C# programming language.

3.1 Motivation

Several transactional memory applications were developed as a part of this dis-

sertation. Each of these applications was motivated because of different reasons.

AtomicQuake AtomicQuake [135] is a large real-world application derived

from a parallel version of the Quake game server [2]. The motivation of de-

veloping AtomicQuake was to:

1. see hot TM is used in a setting of a large real application and to verify

whether indeed developing parallel programs by TM is easier than locks;

2. see whether the performance of TM is comparable to the performance of

locks;

3. see whether TM is mature to develop production software (i.e. well defined

semantics, language and tool integration, interoperability with locks, etc.);

4. deliver the research community a new real workload to test and benchmark

the complete TM implementation and integration.

WormBench WormBench [134] is a configurable synthetic workload for TM.

The motivation of developing WormBench was to have a workload that can be

easily configured to:

1. reproduce specific pathological executions which stress specific weak or

strong designs and implementations of TM; and

2. model the transactional characteristics of existing workloads.

47

3.2 Related Work

STAMP Several applications from the STAMP benchmark suite were ported

from C to C#. These applications were used for evaluation and analysis of

Bartok-STM extensions. Our choice of using STAMP but not other application,

for example AtomicQuake, is that

1. STAMP applications have small code base (about 1000 LOC) which made

it easier and faster to port; and

2. each STAMP application is a representative of a real applications because

it implements an algorithm which is used in large applications.

On the other side, considering that development of AtomicQuake took more

than 12 months porting it from C to C# would take quite significant time.

3.2 Related Work

Early work used simple data-structure microbenchmarks such as linked-lists, red-

black trees, and skip-lists to evaluate TM implementation [29; 60]. These applica-

tions perform simple lookup, insertion and deletion operations without doing real

work. These applications are good for evaluating the TM system’s implementa-

tion details such as the size of the internal data structures or cashes. However,

they are not representative for evaluating the overall TM system in a setting of a

real application which does real work with while operating on the basic structures.

STMBench7 [46] is derived from the OO7 benchmark [21] for object-oriented

databases. STMBench7 performs long-running operations which update and tra-

verse a complex graph-based data structure. Because there is no real purpose of

performing these operations it can be classified as a synthetic workload. There

exists Java and C++ implementations of STMBench7 with medium-grained and

coarse-grained synchronization. The Java implementation uses annotations to

identify transactions. The C++ version uses explicit function calls to access an

STM library. Transactions in STMBench7 contain recursive calls. Transactions

in STMBench7 do not have I/O operations, system calls, exception handling

or privatization patterns. Compared to the other workloads even the shortest

48

3.2 Related Work

transactions are of 100x magnitude larger than the transactions in other appli-

cations. This makes it suitable for evaluating STMs limits [36] and also HTM-

virtualization techniques.

TMunit [50] is an extensive framework for testing and evaluating STM li-

braries. It provides a domain specific language for writing unit tests. These tests

can specify particular interleavings of threads in order to recreate problematic sce-

narios – e.g. when there is a non-transactional access to a memory location that

occurs concurrently with a transactional access to the same location. TMunit can

also generate test workloads by analyzing traces from the lock-based execution

of a parallel program. Transactional workloads generated by TMunit run on top

of an interpreter that makes direct calls to an STM library.

EigenBench [64] is a small synthetic microbenchmak which is similar to Worm-

Bench but implemented in C. Just like WormBench, EigenBench can be config-

ured to have different transactional characteristics such as read/write set size,

abort rate etc. In this way, one can recreate pathological execution which in

normal situations happen rarely or also model the transactional characteristics of

real applications. Unlike WormBench, EigenBench does not perform interleaving

dummy computations.

Kang and Baded [66] developed a parallel algorithm using STM which finds

a minimum spanning tree in a graph. They report that using TM is easy to

implement fine-grained synchronization for a complex data structures. However,

in their experiments the overall performance is not satisfiable due to the STM

overheads. In a later paper Dice et al. [34] demonstrated how using the HTM

extensions of the Rock processor can deliver better results than locks on the same

minimum spanning tree algorithm. They improved the base minimum spanning

algorithm by privatizing large structures inside a transaction and then operating

on the object non-transactionally.

LeeTM [125] is a parallel version of the Lee’s path routing algorithm. LeeTM

uses TM to implement the synchronized access to the underlying matrix which

represents the circuit. Later on, STAMP TM benchmark applications suite has

included a similar program with the name Labyrinth.

STAMP [20] is a suite of applications written to benchmark different TM im-

plementations. The independent applications in the suite are algorithm kernels

49

3.2 Related Work

with different characteristics in terms of how long they spend running inside trans-

actions, how large those transactions are, and how likely concurrent transactions

are to conflict with one another. The STAMP applications can be configured for

use with HTM (in which only the start and end of each transaction is identi-

fied in the source code), or for use with STM (in which case the shared memory

accesses are also made explicit). The STM configuration therefore models the

behavior of a compiler that can avoid the use of STM on memory accesses to

thread-local locations. The structure of the atomic sections is simple – without

nested transactions, privatization patterns, system calls, I/O, and error handling.

STAMP does not have lock-based implementations of the applications, although

the behavior of variants using a single global lock, in place of transactions, has

sometimes been studied [1].

Haskell STM Benchmark suite [93] is a collection of programs, ranging from

small synthetic workloads (e.g. contended access to a shared counter), to appli-

cations written by programmers who were not STM researchers (e.g. a parallel

solver for Su Doku puzzles). Although the Haskell STM API is similar to library-

based STM APIs in imperative languages, the core functional parts of these

benchmarks are very different from current mainstream languages. It would be

difficult to rewrite them in a language like C# or Java.

SPLASH-2 [127] is a benchmark suite of highly parallel applications which

have subsequently been adapted to use TM for synchronization [89]. In general,

the SPLASH-2 applications involve short, infrequent, critical sections. These

make up a small proportion of the overall execution time and preferred for HTM

evaluation.

RMS-TM [67] consists of several applications derived from existing recog-

nition, mining and synthesis workloads and are implemented in C and C++.

Execution of RMS-TM applications exhibit high degree of parallelism and spend

very little time in transactions. Typically they have few short critical sections

which access few shared variables. Because of its transactional characteristics,

this benchmark is an example showing when TM performs as good or even better

than locks.

QuakeTM [42] is a transactional memory version the Quake game server [65].

Both QuakeTM and AtomicQuake were developed concurrently as part of the

50

3.2 Related Work

same project but had different goals. The approach in QuakeTM was to study how

TM applications can be developed from the scratch and the goal of AtomicQuake

was to study how existing lock-based applications can be adapted to use TM as

a basic synchronization (see Section 3.1). Because QuakeTM was developed from

the scratch and with knowledge about atomic blocks and TM, it reported about

fewer problems which were relevant to the use of atomic blocks. For example, in

QuakeTM there were no instances of restructured the code with the sole purpose

to match the block structure of atomic blocks. However, other problems such as

library calls (e.g. sprintf) were common for both AtomicQuake and QuakeTM.

Also both, QuakeTM and AtomicQuake made similar conclusions with respect

to STM’s performance that STM’s overhead is high and should be reduced.

SynQuake [77] is another transactional version of the Quake game server. Un-

like AtomicQuake and QuakeTM, SynQuake is a stripped version which includes

only the main data structures and the essential features of Quake and excludes

other secondary elements such as 3D space, network communication, etc. Oppo-

site to the findings in AtomicQuake and QuakeTM (high abort rate and STM

overhead) SynQuake showed performance which is competitive to a lock-based

version of the same game engine. The performance improvement is achieved

through an important TM and game specific optimization and also STM exten-

sions which are tailored to the game’s logic. To reduce the conflicts SynQuake

implements dynamic locality-aware assignment of tasks to threads. Because of

the lower conflict rate SynQuake shows better scalability and performance over

AtomicQuake and QuakeTM.

Transactional Space Wars 3D [11] uses TM to implement the synchronization

in a parallel version of the game. The findings of this work are aligned with the

conclusions made in AtomicQuake and QuakeTM: STM is easy to use but has

high overhead. To improve the performance of the game, authors use privatization

to access the local copies of the shared data outside transactions. However, this

approach complicates the clean basic implementation because additional merge

functions are introduced between the states of objects that have experienced a

conflict

TxLinux [95; 98; 99] is a variant of Linux operating system that uses hardware

transactional memory (HTM) as a synchronization primitive. TxLinux imple-

51

3.3 Atomic Quake

ments a special-purpose co-operative transactional spinlock (cxspinlock) which

allows mixing locks and transactions. cxspinlock allow locks and transactions

to protect the same data while maintaining the advantages of both synchroniza-

tion primitives. Initially the system attempts the execution of the critical section

using a transaction. If the execution encounters a non-revocable operations such

as an IO operation it falls back to lock. Transactional use of the cxspinlock

is prevented while any thread holds it as an actual lock; this prevents problems

with mixed transactional and non-transactional accesses.

3.3 Atomic Quake

This section discusses an experience of building AtomicQuake. AtomicQuake

is a multi-player game server derived from a parallel lock-based version [2] by

replacing all the lock-based syncretization with TM. There are several reasons

which motivated the development of AtomicQuake and these are:

1. understand the TM programming idioms in the setting of a large applica-

tion and verify whether TM is indeed easier to use than locks. The aim

of studying a large, real, application was to gain insights about many of

the choices that researchers are considering when designing programming

abstractions based on TM. For example, whether or not strong atomicity is

required [1; 12; 14; 82; 105], whether TM is useful for failure atomicity as

well as synchronization, how frequently open nesting [88] or transactional

boosting [58] are useful, which kinds of library calls, system calls, or IO are

used in transactions [16].

2. compare the performance of TM and locks in the setting of a large and

real application which exercises not only the lower level structures used in

the TM implementation but also the complete TM implementation such as

compiler integration and optimizations. For example, in most TM work-

loads, atomic blocks are manually instrumented with calls to the TM API.

This is an idealistic approach which assumes the availability of a perfect

compiler which can distinguish all the safe memory operations from the

non-safe ones.

52

3.3 Atomic Quake

3. see whether TM is a mature technology which can be used to develop pro-

duction stable software. For example, are semantics of TM are well defined

for the corner case (i.e. how exceptions are handled inside transactions),

are language level extensions for TM are expressive, do existing software

development tools such as compilers, debuggers and profilers support TM

and how they can be extended to become TM aware.

4. deliver the research community a new tougher workload to test and bench-

mark the complete TM implementation together with its system integration.

The atomic blocks in most TM workloads are manually instrumented with

calls to the STM library or HTM API. Their transactions has regular are

simple (e.g. without nesting, library calls, IO etc.) and has regular runtime

characteristics. Therefore such applications cannot exercise the complete

TM implementation and intergradation.

The experience of using TM in AtomicQuake showed that indeed parallel pro-

gramming with TM is easier than locks. TM makes fine-grained synchronization

of many object and also complex data-structures such as tree trivial (Section.

However, in AtomicQuake it was not easy to replace all lock-based synchroniza-

tion with atomic blocks. The main difficulty stemmed from the different approach

of using locks and atomic blocks: locks are lower-level synchronization abstrac-

tion used to manually implement atomicity on the shared data structures whereas

atomic blocks provide atomicity transparently. Therefore it was necessary to re-

verse engineer the association between locks and the data data structures which

they protect. An additional challenge was understanding the locking protocols

used to acquire locks in specific order to avoid deadlock.

When compared with locks, the STM version of AtomicQuake scaled well

but STM had prohibitively high overhead – about x5 times on a single threaded

execution and more on multi-threaded execution (see Figure 3.17). Obtained re-

sults were contradictory with many other existing evaluations which used smaller

workloads and also a later research which developed and evaluated a different

version of Quake – SynQuake [77]. As discussed earlier in the text, one reason

which explains the mismatch in the results is that most of the workloads used to

53

3.3 Atomic Quake

evaluate TMs are small and their atomic blocks are manually instrumented, in-

cluding SynQuake. This implicitly assumes the perfect compiler that can exactly

tell the memory accesses to shared data and instrument only these. For example,

Yoo et al. [130] showed that the performance of the STAMP applications is lower

when the atomic blocks in these applications are automatically compiled with a

prototype STM enabled C.

During the AtomicQuake development there were encountered many problems

it was either partially supported or even not supported by the available software

development tools. One part of the problems were related to the semantics of

TM. For example, it was not clear how errors are handled and recovered inside

transactions. Other part of the problems were related to the TM language exten-

sions. For example, many times the use of lock and unlock operations did not

match the block structure (i.e. how atomic blocks are used) and it was necessary

to restructure the code. At the beginning, the compiler failed to to compile the

code and it was necessary to find ad hoc foregrounds. It was extremely difficult

to debug and profile the code because existing debuggers and profilers were not

aware of atomic blocks and TM.

The development of AtomicQuake took about 12 man months. The resulting

implementation comprises 27 400 lines of C code in 56 files. On a fully loaded

server, about 98% of the request processing part in request processing (RP) phase

(Figure 3.2) executes in transactions, and the RP part as a whole constitutes

about 63% of the total execution time. AtomicQuaje has 61 atomic blocks.

Some of these atomic blocks are on the critical path and others not. Almost

all atomic blocks contain function calls. On average the static call graph for

a typical atomic block is 4 levels deep and contain 20-25 functions. Inside the

atomic blocks there are IO operations and system calls. There are long and short

running transactions (200–1.3M cycles) with small and large read and write sets

(a few bytes to 1.5MB). There are nested transactions reaching up to 9 levels

at runtime. There are examples where error handling and recovery occurs inside

transactions. There are also examples where data changes between being accessed

transactionally and accessed non-transactionally. Transactions in AtomicQuake

has diverse runtime characteristics some of which also change during program

execution. Compared to other existing TM workloads, AtomicQuake is a very

54

3.3 Atomic Quake

Quake
Server Player E

Player A

Player C

Player D

Player B

Internet

Figure 3.1: The client-server model in a multi-player Quake game session.

rich TM workload which exercises wide range of of the design and implementation

aspects of a complete TM system. These features make it though for many TMs

to compile and execute AtomicQuake and probably this is the reason why no

other work to date used AtomicQuake as a benchmark.

The remaining part of the section continues with a detailed description and

discussion on the experience of using atomic blocks and TM in AtomicQuake.

Section 3.3.1 makes an overview of the Quake game server and describes its paral-

lelization approach, shared data structures, and the synchronization between the

threads which operate on these shared data structures. Section 3.3.2 describes

how lock-based synchronization was replaced with atomic blocks and the expe-

rience of this process. Section 3.3.3 discusses the performance and the runtime

characteristics of AtomicQuake.

3.3.1 Quake Overview

This section discusses the existing parallel implementation [2] of the Quake game

server [65] on which AtomicQuake derives from.

Quake is an interactive first shooter game that renders the game world from

the visual perspective of the player character. The multiplayer version of Quake,

henceforth referred as Quake, is based on the client-server model (see Figure 3.1).

55

Chapter3/Figures/EPS/quake_client_server.eps

3.3 Atomic Quake

Players connect to the server and interact among each other by sending requests to

the server to convey their intended actions. The server is a hub that maintains the

game plot and drives the interactions between the players. The client component

of the game renders the graphics and sound based on the individual messages

sent by the server. The requests that clients send to the server are of two types:

game session management (e.g. connect, disconnect) and interaction with the

game world (e.g. move, shoot). For our research work, we are mainly focus

on the second type of messages since they have the most significant impact on

the runtime/execution of the server. To maintain a consistent game world for

all players, the server maps the effect of players’ actions on global state. In

the parallel version of the Quake described in Section 3.3.1.1, accesses to the

date structures storing the game state is guarded by locks to avoid races. In

Section 3.3.1.2 we describe the shared data structures such as the game state and

entities, that worker threads repeatedly update to reflect the results of processing

the client requests and how these shared data structures are synchronized with

locks.

3.3.1.1 Parallel Quake

The implementation of the parallel Quake [2] is based on the shared memory

model and done with the pthread library. The execution in the server side is

decomposed into three distinct phases that are synchronized with global barriers:

Update world physics (U), Receive and Process client requests (RP) and Send

replies to clients (S). The (RP) and (S) phases are executed in parallel by multiple

threads, whereas (U) phase is not parallel and executed by one thread.

Figure 3.2 shows the game cycle in the parallel Quake with the execution

breakdown in the following phases measured with one thread when the server is

fully loaded [3]. Every server thread spins in the main loop waiting for client

requests. Each iteration over the loop creates a new frame that can be thought

of as a discrete representation of the game state on a certain time slice. The first

thread that receives client request is identified as the master thread. The master

thread first updates the physics (U). Updating the physics takes insignificant

time with respect to the processing of the frame and is not parallel. If other

56

3.3 Atomic Quake

Figure 3.2: The game cycle in the parallel Quake server with the execution time

in the different phases (only the threads that have received a request are shown).

57

Chapter3/Figures/EPS/game_cycle.eps

3.3 Atomic Quake

threads receive a client request while the master thread is updating the physics

they wait for the master thread to finish (U) and to signal the start of the new

frame. When the start of the new frame is signaled by the master thread, all the

waiting threads wake up and enter in (RP) phase. These threads are identified as

frame threads because they participate in preparing the new frame. Preparation

of the new frame is parallel and every frame thread executes this part of the

code independently. When preparing the new frame, each thread first reads the

client requests. Clients are statically assigned to the worker threads. These

clients that send request to the server are said to participate in the frame and are

named as frame clients. Every client request is processed independently in the

SV ExecuteClientMessage function which incrementally builds the new frame

as a reply message. After a thread processes all the client requests, it waits for

the other threads’s finish and the frame completion. When all the threads are

done with the client requests they enter into send requests phase (S). Threads

send reply messages only to the frame clients (i.e. the clients that the thread

received a request from) and all the clients that did not take action in the current

frame are updated with reply messages which are sent by the master thread. At

the end of (S) phase, threads wait until all the reply messages are sent and start

again over.

Threads that receive a client request while a frame is being processed are

said not to participate in the frame. These threads wait until the current frame

completion (i.e. all the reply messages are sent) - the end of current frame is

signalled. Then the first thread that wakes up (if there are any that missed the

frame) becomes the master thread and starts doing physics (U) and everything

else continues as described above.

3.3.1.2 Shared Data Structures

The parallel Quake server utilizes three different data structures that can be

accessed concurrently. These data structures are: per-player reply message buffer,

a common global state buffer and game objects.

All pending messages that has to be sent to the client are first accumulated

in the client’s reply message buffer. The source of these reply messages are other

58

3.3 Atomic Quake

A1

A2 A3

A4 A5 A6 A7

A8 A9 A10 A11 A12 A13 A14 A15

Depth: 1

Depth: 2

Depth: 3

Depth: 4

List of
objects

Areanode Tree
Top view of the
game volume

A1

A2 A3

A4

A5

A6

A7

Figure 3.3: Mapping game volume into areanode tree. The figure has been

adapted from [2].

other clients. An example reply message is a text message between players or

a server message which informs when a player joins or leaves the game session.

Because multiple threads can write client’s message buffer, the thread access to

every message buffer is synchronized with locks, one per buffer.

The global state buffer is updated during the world physics update phase

(U) and clients’ request processing phase (RP). This buffer is used to update all

clients, regardless of whether or not the server received a request from a client

during the current frame: each thread participating in the current frame uses this

buffer to update the message buffers of its complete set of clients and the master

thread performs this operation for clients belonging to threads not participating

in the current frame. During the world update phase the global state is accessed

by one thread only and there is no necessity for concurrency control. During

request processing phase, multiple threads may attempt to update the global

state buffer at the same time. Therefore to avoid races the global state buffer is

guarded with a single lock.

When a player executes an action, it interacts with the other players and

entities on the game map. These game entities are referred to as game objects.

Before executing an action, the server identifies the list of the objects on the

map that the player is likely to interact with and locks them to avoid concurrent

access.

59

Chapter3/Figures/EPS/areanode_tree.eps

3.3 Atomic Quake

The server uses a fast-path for locating the objects in the map. The fast-path

is achieved through a balanced binary tree data structure with depth 5 (including

the root node). The three data structure is called areanode tree and its nodes are

called areanodes. Each areanode represents a part from the entire 3D volume of

the game. The children of an areanode represent two equally sized volumes that

are obtained by dividing the volume represented by their parent with a vertical

plane on either X or Y axis. The division of the entire game volume into more

refined smaller areanodes is done recursively. At each level the selection of the

division axis alternates between X and Y. All the areanodes in the same depth

are a refined representation of the entire game volume. Moreover, each areanode

has a list of the objects that are located in the volume that it represents. If an

object falls in two areanodes (volumes) after division, then it is not associated

with either of them but with their parent. This is better explained with an

example areanode tree shown in Figure 3.3.

In Figure 3.3, on the left is the areanode tree that abstracts the division of the

game volume which is on the right (the game volume on the right is a top-view).

The root node of the tree is labeled A1 and represents the entire 3D volume

in the game. Its children, A2 and A3, represent the two equally sized volumes

obtained after partitioning the entire game volume with a vertical division plane

on the Y axis. The triangle object is not crossing any division plane and it is in

the list of objects associated with the A14 leaf only. The circle object intersects

with the plane that divides A3 therefore it is put in the list of objects associated

with A3, but not A6 or A7.

The serialized access to the game objects is done by region-based locking

scheme [70; 118]. To ensure an exclusive access to the objects that a player

interacts with, threads lock regions of the map prior to processing a request.

This is achieved as a consequence of locking the leaves in the areanode tree that

contains an object the player would interact with (note that this results to a

locking of objects that the player does not interact). If an object is intersected

by a division plane (the circle in Figure 3.3) then the synchronization is achieved

by first locking the parent areanode that contains the object (A3 in Figure 3.3),

then locking the object, and at the end unlocking the parent areanode so that

other threads can get the objects they interact with.

60

3.3 Atomic Quake

In the parallel Quake server, execution of a game cycle is a repeated pattern of

input-compute-output operations on memory locations that are read and written.

Some of these memory locations are shared for concurrent writing or reading by

multiple threads and therefore access to these objects is serialized by combining

fine and coarse grain locking schemes. Coarse grain locks do not exploit the par-

allelism optimally whereas fine grain locks have complex implementations. Since

the goal of TM is to make writing efficient parallel applications as easy as using a

global lock, the parallel Quake server seems a good candidate workload to demon-

strate the practical use of Transactional Memory in place of coarse grain locks to

unlock parallelism and in place of fine grain lock to simplify implementation and

reduce programming effort.

3.3.2 Using Transactions

The lock-based parallel implementation of the Quake server was transactified

using a prototype version of the Intel C compiler with STM support [30; 124].

In AtomicQuake all the lock-based synchronization was replaced with atomic

blocks. Although this process seems to be straightforward it ended to be rather

complicated. Quake has many shared objects and also locks which protect them.

First it was necessary to understand the association between the locks and the

shared data structure (i.e. which locks protect which variable). Second, in some

places (i.e. region based locking) to avoid deadlock special locking protocols

were used and understanding these protocols was rather difficult. Third, in most

cases the use of lock and unlock operations did not match the block structure of

atomic blocks and it was necessary to make changes in the code without changing

the game logic. All these required a careful code analysis and deep understanding

of the code written in 27,400 lines of C code. All the effort cost 12 man months.

In Atomic Quake there are 63 atomic blocks in total. About 98.4% of the

request processing phase (RP in Figure 3.2) executes in transactions and the

request processing part of the program constitutes 63% of the total program

execution when the server is fully loaded (see Figure 3.2). Almost all atomic

blocks have function calls inside. The static call graph trees for the atomic blocks

have about 4 levels and 20-25 nodes. There are nested transactions reaching

61

3.3 Atomic Quake

up to 9 levels depth and atomic blocks with recursive function calls. In some

atomic blocks there were calls to the standard library, particularly the string

manipulation routines that were later implemented manually. Inside some atomic

blocks there were also calls to functions in the math library that were declared

to be tm pure1 (see Section 2.1).

Until now this section introduced the programming abstractions provided by

the compiler that was used. Now it continues with a discussion how transac-

tions simplify the structure of accesses to the core areanode data structure (Sec-

tion 3.3.2.1). Next are presented cases where a basic transactional model is less

effective: non-block-structured critical sections (Section 3.3.2.2), condition syn-

chronization (Section 3.3.2.4), IO operations within transactions (Section 3.3.2.5),

error handling within transactions (Section 3.3.2.6), and cases where data changes

between transactional and non-transactional accesses (Section 3.3.2.7).

3.3.2.1 Where Transactions Fit

Transactional Memory makes writing parallel code simple when there are many

shared objects that would otherwise be guarded with a separate lock - a scheme

that is referred as fine grain locking. In this case the programmer has to keep

track of 1) the objects that might be attempted concurrent access; 2) the locks as-

sociated with these objects; and 3) the order of acquiring locks to avoid deadlock.

However, when using transactions this becomes a trivial task, which requires the

programmer to identify the part of the code that has to execute atomically and

not bother with remembering the many shared variables and the locks guarding

them. Uses of this kind cannot be seen in small applications as they have few

objects but in applications like the parallel Quake server that have hundreds of

locks, transactions save. Figure 3.4 shows an example code fragment where the

object is first locked based on its type and then picked up. This code is triv-

ial to implement with transactions and the transactional equivalent is shown in

Figure 3.5.

1tm pure is used to declare a function as not having side effects such as sin, cos, and can

be called safely inside a transaction. In this case the compiler does not generate a transactional

clone of the function.

62

3.3 Atomic Quake

1: switch(object->type) { /* Lock phase */

2: KEY: lock(key_mutex); break;

3: LIFE: lock(life_mutex); break;

4: WEAPON: lock(weapon_mutex); break;

5: ARMOR: lock(armor_mutex); break

6: };

7:

8: pick_up_object(object);

9:

10: switch(object->type) { /* Unlock phase */

11: KEY: unlock(key_mutex); break;

12: LIFE: unlock(life_mutex); break;

13: WEAPON: unlock(weapon_mutex); break;

14: ARMOR: unlock(armor_mutex); break

15: };

Figure 3.4: Per-object locking.

Things turn to be more complicated when it is about to lock just a part of a

collection data structure such as a tree. Then the programmer should implement

a logic for locking and unlocking the required region by using supporting data

structures such as stacks and queues. In Quake such kind of region locking

is utilized quite a lot and consists of locking leaf nodes in areanode tree (see

Figure 3.3). When a player moves or shoots, the places in the virtual world that

the player can be or respectively the bullet can go though are first identified by

a lightweight simulation and then the areanodes that map to these locations are

locked and the operation carried out. To demonstrate the complexity of such type

of fine grain locking Figure 3.6 gives a simplified example which locks the leaf

nodes in a tree. The logic for acquiring locks uses supporting data structures such

as stack. In addition to this logic in Quake a lightweight simulation is performed

to identify the leafs to be locked. Implementing fine grain locking of this kind

by using transactions is straightforward, where the critical section should just be

put in atomic block as in Figure 3.5. Using transactions eliminates the necessity

to perform lightweight simulation because the transactional logs implicitly keep

record of accessed memory locations.

63

3.3 Atomic Quake

1: atomic

2: {

3: pick_up_object(object);

4: }

Figure 3.5: Solution to the per-object locking with TM.

1: /* Start locking leafs*/

2: lock(tree.root);

3: stack.push(tree.root);

4: while (!stack.is_empty()) {

5: parent = stack.pop();

6: if (parent.has_children()) {

7: for (child = parent.first_child();

8: child != NULL; child.next_sibling()) {

9: lock(child);

10: stack.push(child);

11: }

12: unlock(parent);

13: }

14: } /* End locking */

15:

16: <move or shoot>

17:

18: /* Start unlocking */

19: if (tree.root.has_children()) {

20: lock(tree.root);

21: stach.push(tree.lock);

22: } else {

23: unlock(tree.root);

24: }

25: while (!stack.is_empty()) {

26: parent = stack.pop();

27: for (child = parent.first_child();

28: child != NULL; child.next_sibling()) {

29: if (child.has_children()) {

30: lock(child);

31: stack.push(child);

32: }

34: else { // This is a leaf

35: unlock(child);

36: }

37: }

38: unlock(parent);

39: }

40: /* End unlocking */

Figure 3.6: Fine grain locking of areanode tree’s leafs.

64

3.3 Atomic Quake

3.3.2.2 Non-Block-Structured Critical Sections

Because of the irregular parallelism, the transactification of the parallel Quake

server was not as easy as just replacing a lock operation with ”atomic{” and

unlock with ”}”. First, it was necessary to dedicate significant effort to find

the shared objects, understand their purpose and where in the code they are

accessed concurrently. Most of the time it was necessary to change the code

guarded by unstructured locks so that the critical section can be surrounded

with an atomic block. Example source code with the described characteristics

is shown in Figure 3.7. In the given example, the use of lock and unlock op-

erations is unstructured, meaning that it does not match the structured block

syntax of the atomic blocks. Transactifying this code fragment in a way that the

atomic blocks match exactly the critical sections defined by the locks happens

to be considerably difficult task and cannot be carried without understanding

the logic in the code. The statements that make transactification difficult are

<statements4> and <statements7>. Our solution to this particular example is

shown in Figure 3.8. In the provided solution, two additional variables are in-

troduced one per each if block that has unlock and moved <statements4> and

<statements7> to the end of the for loop as their execution is guarded by the

added flag variables. These statements are executed only if the corresponding

if-flags are set to true. The provided solution also increases the complexity in the

conditional logic. This solution is not necessary applicable for all the similar cases

as the changes in the code depend on the code itself. The given example becomes

much more complicated when there are more similar if blocks or new variables de-

clared in <statements4> or <statement7>. In this case the declaration of these

variables will have to be hoisted so that they are in scope. The given example

shows a particular case where transactions with their current syntax does not fit

well. If we had a way to explicitly commit the transaction, such as a commit

keyword, then solving this problem would be as easy as just replacing unlock

operations in lines 7 and 15 in Figure 3.7 with the commit keyword. Of course, if

this application was written from scratch rather than ported then the developer

most likely wouldn’t pay much attention to the granularity and most likely would

use a single atomic block starting at line 3 and ending at line 24 in Figure 3.7.

65

3.3 Atomic Quake

1: for (i=0; i<sv_tot_num_players/sv_nproc; i++){

2: <statements1>

3: LOCK(cl_msg_lock[c - svs.clients]);

4: <statemnts2>

5: if (!c->send_message) {

6: <statements3>

7: UNLOCK(cl_msg_lock[c - svs.clients]);

8: <statements4>

9: continue;

10: }

11: <stamemnts5>

12: if (!sv.paused && !Netchan_CanPacket (&c->netchan)) {

13: <statmenets6>

14: UNLOCK(cl_msg_lock[c - svs.clients]);

15: <statements7>

16: continue;

17: }

18: <statements8>

19: if (c->state == cs_spawned) {

20: if (frame_threads_num > 1) LOCK(par_runcmd_lock);

21: <statements9>

22: if (frame_thread_num > 1) UNLOCK(par_runcmd_lock);

23: }

24: UNLOCK(cl_msg_lock[c - svs.clients]);

25: <statements10>

26: }

Figure 3.7: Unstructured use of locks.

But almost in all cases we tried to adhere to the original multithreaded implemen-

tation, since based on the existing research, long transactions have performance

impact on the overall execution [130] and coarsening the critical sections might

have negative impact on the performance.

3.3.2.3 Thread Private Storage

Another problem was relevant with the use of thread private data that is set with

pthread setspecific and retrieved with pthread getspecific APIs shown in

Figure 3.9. Here, the user defined thread id is stored in a thread private data area.

When a function called inside an atomic block makes a call to the pthread API

causes the transaction to serialize (transaction becomes irrevocable [126]). For

similar use cases, tool developers may consider implementing support for thread

private data, such as declaring a thread private variable, which would reduce the

66

3.3 Atomic Quake

1: bool first_if = false;

2: bool second_if = false;

3: for (i=0; i<sv_tot_num_players/sv_nproc; i++){

4: <statements1>

5: atomic {

6: <statemnts2>

7: if (!c->send_message) {

8: <statements3>

9: first_if = true;

10: } else {

11: <stamemnts5>

12: if (!sv.paused && !Netchan_CanPacket(&c->netchan)){

13: <statmenets6>

14: second_if = true;

15: } else {

16: <statements8>

17: if (c->state == cs_spawned) {

18: if (frame_threads_num > 1) {

19: atomic {

20: <statements9>

21: }

22: } else {

23: <statements9>;

24: }

25: }

26: }

27: }

28: }

29: if (first_if) {

30: <statements4>;

31: first_if = false;

32: continue;

33: }

34: if (second_if) {

35: <statements7>;

36: second_if = false;

37: continue;

38: }

39: <statements10>

40: }

Figure 3.8: Unstructured use of locks - TM equivalent.

67

3.3 Atomic Quake

1: void foo1() {

2: atomic {

3 foo2();

4: }

5: }

6:

7: __attribute__((tm_callable))

8: void foo2() {

9: int thread_id = pthread_getspecific(THREAD_KEY);

10: /* Continue based on the value of thread_id */

11: return;

12: }

Figure 3.9: Thread ID problem.

effort involved in porting lock based applications into transactions. It is useful

to note that an alternative work around for this problem would be to declare

function pthread getspecific as tm pure but initially with the first compiler

we used there was no support with semantics of tm pure.

3.3.2.4 Condition Synchronization

In the parallel Quake server, there is moderate use of conditional variables for

synchronization. The STM compiler which was used did not implement appropri-

ate primitives that can help replace the conditional variables and their associated

locks by making reasonable changes in the code. To implement conditional syn-

chronization in Transactional Memory, we need the retry language construct with

the semantics defined by Harris et. al. [54]. Figure 3.10 shows how the pthread

conditional synchronization would be implemented with the retry keyword.

3.3.2.5 IO and Irrevocability Inside Transactions

In almost every atomic block there is IO printing information messages on the

screen (e.g. player connected, player died). It was necessary to comment some

part of the code and in other to declare the IO functions as tm pure otherwise

many transactions were executing in irrevocable mode [75; 116; 126]. In our case

hoisting the IO out of the atomic block might be considered impossible since it

is done in functions called within the atomic block. For this particular pattern

68

3.3 Atomic Quake

------------- locks -------------

1: pthread_mutex_lock(mutex);

2: <statements1>

3: if (!condition)

4: pthread_cond_wait(cond, mutex);

5: <statements2>

6: pthreda_mutex_unlock(mutex);

.

------------ retry --------------

1: atomic {

2: <statements1>

3: if (!condition)

4: retry;

5: <statements2>

6: }

Figure 3.10: Implementing conditional synchronization with retry.

it would be useful if there was a way, for example a key word like escape tm,

that would let us declare inside the atomic block statements to be executed non

transactionally. Similar results would be achieved if we put the particular non-

transactional code in a function declared as tm pure and call this function inside

the atomic block in place of the statements. But the solution of having a keyword

like escape tm would be more constructive and serve its purpose.

3.3.2.6 Error Handling Inside Transactions

When transactifying the source code, there were many places where it was nec-

essary to handle errors inside transactions. In some cases it was considerably

easy to do so but in others the existing language extensions were not expressive

enough. Every time we tried to adhere to the approach chosen by the compiler

developers for C++ exceptions which when error occurs first try to commit the

transaction and then handle the error. For example, Figure 3.11 shows a func-

tion that has to handle a critical system error. The solution in AtomicQuakeis

is given in Figure 3.12. The calls to function Sys Error are taken outside the

atomic block. Inside the transaction the type of the value is saved in a local vari-

able error no. The transaction is forced committed when the execution reaches

the break statement. After the transaction commits, the error is examined and

the proper action is taken.

69

3.3 Atomic Quake

1 void Z_CheckHeap (void)

2 {

3 memblock_t *block;

4 LOCK;

5 for (block=mainzone->blocklist.next;;block=block->next){

6 if (block->next == &mainzone->blocklist)

7 break; // all blocks have been hit

8 if ((byte *)block + block->size != (byte *)block->next)

9 Sys_Error("Block size does not touch the next block");

10 if (block->next->prev != block)

11 Sys_Error("Next block doesn’t have proper back link");

12 if (!block->tag && !block->next->tag)

13 Sys_Error("Two consecutive free blocks");

14 }

15 UNLOCK;

16 }

Figure 3.11: Error handling - lock based code.

The given example becomes much more complicated when function Z CheckHeap

is called inside another transaction. In this case, it would be necessary to call

function Sys Error outside the outermost transaction. To be able to do this are

required mechanism such as commit handlers. Using commit handlers one would

be able to dynamically tell the compensating actions that should be taken. For

now we ignored the complicated cases like this by just letting the runtime switch

to irrevocable mode.

It is debatable whether committing a transaction on error is right choice.

What would happen if the transaction aborts instead of commits? There out-

comes might be possible: 1) the error was repaired; 2) we lost detecting a hidden

bug and; 3) worse getting the system into inconsistent state. In managed lan-

guages such as C# and Java, this kind of approach for handling errors might

compromise the memory consistency and open security wholes. This simple ex-

ample concludes that error handling in transactional code require deeper analysis

and primitives helping to detect and recover from errors.

In the Quake code there are patterns of error handling that can gently benefit

from the failure atomicity. An example code fragment part of the implementa-

tion of the request dispatcher function is given in Figure 3.13. In lines 18 and

25 is called function PR RunError that prints the stack trace and terminates the

70

3.3 Atomic Quake

1 void Z_CheckHeap (void) {

2 memblock_t *block;

3 int error_no = 0;

4 atomic{

5 for (block=mainzone->blocklist.next;;block=block->next){

6 if (block->next == &mainzone->blocklist)

7 break; // all blocks have been hit

8 if ((byte *)block + block->size !=

9 (byte *)block->next; {

10 error_no = 1;

11 break; /* makes the transactions commit */

12 }

13 if (block->next->prev != block) {

14 error_no = 2;

15 break;

16 }

17 if (!block->tag && !block->next->tag) {

18 error_no = 3;

19 break;

20 }

21 }

22 }

23 if (error_no == 1)

24 Sys_Error ("Block size does not touch the next block");

25 if (error_no == 2)

26 Sys_Error ("Next block doesn’t have proper back link");

27 if (error_no == 3)

28 Sys_Error ("Two consecutive free blocks");

29 }

Figure 3.12: Error handling - in a transaction.

71

3.3 Atomic Quake

1: void PR_ExecuteProgram (func_t fnum, int tId){

2: f = &pr_functions_array[tId][fnum];

4: pr_trace_array[tId] = false;

5: exitdepth = pr_depth_array[tId];

6: s = PR_EnterFunction (f, tId);

7: while (1){

8: s++; // next statement

9: st = &pr_statements_array[tId][s];

10: a = (eval_t *)&pr_globals_array[tId][st->a];

11: b = (eval_t *)&pr_globals_array[tId][st->b];

12: c = (eval_t *)&pr_globals_array[tId][st->c];

13: st = &pr_statements[s];

14: a = (eval_t *)&pr_globals[st->a];

15: b = (eval_t *)&pr_globals[st->b];

16: c = (eval_t *)&pr_globals[st->c];

17: if (--runaway == 0)

18: PR_RunError ("runaway loop error");

19: pr_xfunction_array[tId]->profile++;

20: pr_xstatement_array[tId] = s;

21: if (pr_trace_array[tId])

22: PR_PrintStatement (st);

23: }

24: if (ed==(edict_t*)sv.edicts && sv.state==ss_active)

25: PR_RunError("assignment to world entity");

26: }

27: }

Figure 3.13: Using failure atomicity to recover from critical error.

process. In this particular case the code from lines 2 to 26 including can be

wrapped in an atomic block and instead of calling PR RunError, abort the trans-

action. The abort would restore the original values of the global state stored in

pr global array and pr global and the execution will continue from line 27

which is the end of function PR ExecuteProgram. The effect of this usage will

be that client’s request will not be processed as if it is lost on the network and

the server will continue running. There are many similar uses like this but fail-

ure atomicity cannot be applied to all of them because it is important that the

execution of the program can proceed safely.

3.3.2.7 Privatization

When transactifying the Quake source code we encountered several instances

of memory privatization [56]. An example case is shown in Figure 3.14. In the

72

3.3 Atomic Quake

1: void* buffer;

2: atomic {

3: buffer = Z_TagMalloc(size, 1);

4: }

5: if (!buffer)

6: Sys_Error("Runtime Error: Not enough memory.");

7: else

8: memset(buf, 0, size);

Figure 3.14: Example privatization.

given example, in the atomic block, the function Z TagMalloc allocates a memory

block to variable named buffer. The allocated memory block is not supposed to

be returned by a subsequent call to Z TagMalloc until it is not freed and therefore

is safely modified outside the atomic block.

3.3.2.8 Call Graph Structure in Atomic Blocks

To give an insight to the reader about the complex call graph structure within

atomic blocks we Figure 3.3.2.8 shows the call sequence in atomic block form

SV RunCmd function. The nodes drawn with clouds are calls to other functions

that has as complex call graph structure as the current one. In this call graph

the back edges from recursive calls are not shown.

73

3.3 Atomic Quake

S
V

_R
un

C
m

d
sv

_u
se

r.c

V
ec

to
rC

op
y

(d
ire

ct
iv

e)
A

dd
Li

nk
sT

oP
m

ov
e

sv
_u

se
r.c

A
dd

Li
nk

sT
oP

m
ov

e
sv

_u
se

r.c
E

D
IC

T_
FR

O
M

_A
R

E
A

P
ro

gs
.h

S
TR

U
C

T_
FR

O
M

_L
IN

K
cl

ie
nt

/c
om

m
on

.c

V
ec

to
rC

op
y

(d
ire

ct
iv

e)
N

U
M

_F
O

R
_E

D
IC

T
cl

ie
nt

/c
om

m
on

.c
.h

S
V

_E
rr

or
(I/

O
co

m
m

en
te

d
ou

t)

E
D

IC
T_

N
U

M
P

ro
gs

.h
/p

r_
ed

ic
t.c

S
V

_L
in

kE
di

ct
w

or
ld

.c

V
ec

to
rA

dd
(d

ire
ct

iv
e)

S
V

_F
in

dT
ou

ch
ed

Le
af

s
w

or
ld

.c

In
se

rtL
in

kB
ef

or
e

cl
ie

nt
/c

om
m

on
.c

B
O

X
_O

N
_P

LA
N

E
_S

ID
E

cl
ie

nt
/m

at
hl

ib
.h

S
V

_F
in

dT
ou

ch
ed

Le
af

s
w

or
ld

.c

B
ox

O
nP

la
ne

S
id

e
cl

ie
nt

/m
at

hl
ib

.h B
O

P
S

_E
rr

or
cl

ie
nt

/m
at

hl
ib

.c
S

ys
_E

rr
or

C
lie

nt
/m

at
hl

ib
.c

V
_C

al
cR

ol
l

sv
_u

se
r.c

D
ot

P
ro

du
ct

(d
ire

ct
iv

e)
A

ng
le

V
ec

to
rs

cl
ie

nt
/m

at
hl

ib
.c

.h

si
n

(tm
_p

ur
e)

co
s

(tm
_p

ur
e)

fa
bs

(tm
_p

ur
e)

E
D

IC
T_

TO
_P

R
O

G
pr

og
s.

h
(d

ire
ct

iv
e)

P
R

_E
xe

cu
te

P
ro

gr
am

S
V

_R
un

Th
in

k
S

v_
ph

ys
.c

P
R

_E
xe

cu
te

P
ro

gr
a

m
E

D
IC

T_
TO

_P
R

O
G

pr
og

s.
h

(d
ire

ct
iv

e)

P
la

ye
rM

ov
e

A
dd

Li
nk

sT
oP

m
ov

e
sv

_u
se

r.c

A
dd

Li
nk

sT
oP

m
ov

e
sv

_u
se

r.c
E

D
IC

T_
FR

O
M

_A
R

E
A

P
ro

gs
.h

S
TR

U
C

T_
FR

O
M

_L
IN

K
cl

ie
nt

/c
om

m
on

.c

V
ec

to
rC

op
y

(d
ire

ct
iv

e)
N

U
M

_F
O

R
_E

D
IC

T
cl

ie
nt

/c
om

m
on

.c
.h

S
V

_E
rr

or
(I/

O
co

m
m

en
te

d
ou

t)

F
ig
u
re

3.
15
:
A
n
ex
am

p
le

ca
ll
gr
ap

h
in

th
e
a
t
o
m
i
c
b
lo
ck

fr
om

fu
n
ct
io
n
S
V

R
u
n
C
m
d
.

74

Chapter3/Figures/EPS/complex_callgraph_in_atomic.eps

3.3 Atomic Quake

3.3.3 Experimental Results

This section discusses the performance of AtomicQuake. Section 3.3.3.1 describes

the experimental methodology. Section 3.3.3.2 presents the global application

characteristics. Section 3.3.3.3 presents per-atomic block characteristics.

3.3.3.1 Experimental Methodology

To carry out the experiments for this research work we slightly modified the syn-

chronization logic of the original version which enforces all the server threads

to start processing the received client requests simultaneously. The modification

that we added is shown on Figure 3.16. This scenario is equivalent to a fully

loaded server that continuously receives requests and has to process them. Oth-

erwise, without this change, to load the server we would have to connect about

460 clients and a game session of such scale would require a lot of configuration

and computer resources which are difficult to find in a research laboratory. With

the modified version of the Quake server we setup a game sessions with 1, 2, 4

and 8 threads and connected one client to each server thread. Each client was

running on a different commodity PC complying to the Quake client’s system

requirements. Because of the repeatability of the experiments, clients were con-

figured to run a prerecorded trace of player actions and no human player was

playing. The statistical data was collected after all the clients get connected and

continued until the server receives and process 1000 requests from each client1.

Each experiment was executed 4 times and results averaged. Every experiment

used the same virtual map. Because of runtime problems we could only use

the smallest map which consists of only one room suitable for 1-2 players. We

couldn’t use other maps because the STM version of the code was crashing at the

initialization.

The experiments were carried on Dell PE6850 workstation with 4 dual core

x64 Intel Xeon processors with 32KB IL1 and 32KB DL1 private per core, 4MB

L2 shared between the two cores on die, 8MB L3 shared between all cores, and

32GB RAM. The installed operating system was Suse 11.0. The prototype version

1Except for the results that are generated by the STM runtime itself that we don’t have

control over.

75

3.3 Atomic Quake

...

...

...

...

barrier

barrier

barrier

Other
Req

Other
Req

Other
Req

master
thread Update

World
(1: U)

Receive
and

Process
Request
(2: RP)

Reply
(3: S)

Listen

Select

Update World

Recv. Req.Recv. Req. Recv. Req.

Select Select

Proc. Req. Proc. Req. Proc. Req.

Yes Yes Yes

NoNoNo

Reply also
to non frame

cleints
Reply Reply

Listen Listen Listen

Proc. Req.
Barrier

Figure 3.16: An additional barrier to enforce all the threads start processing

client requests simultaneously.

76

Chapter3/Figures/EPS/quake_game_cycle_exexc_msg_barrier.eps

3.3 Atomic Quake

of Intel C compiler with STM support [30; 124] was used to compile the code

with compiler optimizations disabled (-O0), because the compiler was failing to

compile the source code with optimizations turned on.

3.3.3.2 Application Characteristics

Figure 3.17 shows the speedup of AtomicQuake normalized to the single threaded

execution and Figure 3.18 show how AtomicQuake scales (every execution is

normalized to itself). In this experiment LOCK is the lock-based version of

Quake, STM is the STM version and STM LOCK is the STM version of Quake

where every atomic block is protected by a global reentrant lock (i.e. the lock is

acquired before entering the atomic block the released after exiting the atomic

block. The rationale in doing this, is to have a realistic base line of a global lock

where the instrumentation overhead of transactions is counted in. Because, unlike

the recent research results obtained with µbenchmarks and kernel application that

report STM overhead less than x2.5, in our experiments the STM overhead on

single threaded runs was x4-x5, resulting in meaningless results when comparing

STM with pure-lock based implementations. In Figure 3.17 shows the speedup

computed from the throughput. Because all the threads start to process the client

requests at the same time, we can assume that measured results will match those

when the server is 100% loaded - the requests’ queue is not empty.

In Figure 3.18, all versions scale up to 4 threads and at 8 threads the STM

version is saturated. With 8 threads the server is saturated and the performance

of the STM version is worse than the single threaded base line due to the many

aborts. The results also show that the scalability of the STM version version is

limited by the aborts, whereas the scalability of STM LOCK by the serialized

execution of the critical section. The map that we used in the game session is

small and represents high-conflict scenarios where the players interact with each

other all the time. Unfortunately, because of issues in the tool set that we used,

we couldn’t run experiments with larger maps. Also, it is noteworthy to say that

the transactional Quake server may perform better if not fully loaded which may

result in less conflicts because of non-interleaved execution of the critical sections.

77

3.3 Atomic Quake

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 4 8

N
or

m
al

ize
d

th
ro

ug
hp

ut
 (r

eq
s/

se
c)

Threads #

Speedup

STM

STM_LOCK

LOCK

Figure 3.17: AtomicQuake speedup. Results are normalized to the single threaded

execution.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 4 8

Ea
ch

 n
or

m
al

ize
d

to
 it

se
lf

Scalability

STM

STM_LOCK

LOCK

Figure 3.18: AtomicQuake scalability. Every plotted result is normalized to itself.

This figures shows better how AtomicQuake scales.

78

Chapter3/Figures/EPS/quake_speedup.eps
Chapter3/Figures/EPS/quake_scalability.eps

3.3 Atomic Quake

Threads Transactions
Aborts

Serialized Tx
Num %

1 36 667 0 0.00% 17

2 75 824 241 0.42% 31

4 166 000 2 612 1.58 % 85

8 477 519 76 771 25.50% 237

Table 3.1: Transactional characteristics.

Table 3.1 summarizes the transactional characteristics of Quake. With 2

threads there are almost no aborts and the rate of aborts increases exponen-

tially with the number of threads. The high rate of aborts and consequently

wasted computation time is the reason why the Atomic Quake server (STM)

scales poorly. Since conflicts has such a big impact on the performance, this is

also a signal that more research should be done on conflict avoidance, detection

and resolution in STM libraries.

Table 3.2 shows a summary about the read and write set for all the transac-

tions in the application. The reported results for the read and write sets indicate

the number of bytes read or written from the beginning to the end of the trans-

action including those accumulated during transaction re-executions on abort. In

AtomicQuake reads dominate over writes and the average size of the read and

write set is small enough to fit in the caches of modern CPUs. This also makes the

AtomicQuake a good workload for evaluating the performance of HTMs. How-

ever, there are also transactions with large read set up to 1.5MB and write set

up to 344KB that would overflow the caches and would require mechanisms for

virtualization.

3.3.3.3 Per-Atomic Block Characteristics

Table 3.3 shows per atomic block statistics obtained from a single-threaded exe-

cution of AtomicQuake. Entries for the atomic blocks that were not executed in

our test workload (e.g. walking in water) are omitted.

These results suggest that a small number of atomic blocks make up the bulk

of the transactional workload (i.e. atomic blocks 56, 57, 58, 60, 61). These

atomic blocks are located in functions in the critical path of the RP phase. The

79

3.3 Atomic Quake

Threads
Read Set (bytes) Accumulated Write Set (bytes) Accumulated

Min Avg Max Total Reads Min Avg Max Total Writes

1 8 490 53 566 18 214 226 83% 0 98 11 161 3 639 952 17%

2 8 540 172 508 40 907 196 83% 0 115 47 784 8 737 623 18%

4 4 575 181 740 95 505 459 81% 0 131 52 032 21 737 915 19%

8 4 798 1 591 946 381 290 019 81% 0 183 352 640 87 837 969 19%

Table 3.2: [AtomicQuake – read and write set sizes.] The reported results for the

read and write sets indicate the number of bytes read or written from the begin-

ning to the end of the transaction including those accumulated during transaction

re-executions on abort.

second group of transactions execute much less frequently; e.g. they include an

example where the server sends a message to a client that has expended all their

weapons.

Also, the results in Table 3.3 suggest both that atomic blocks have different

transactional characteristics and that the different executions of the same atomic

are different. For example, there are short transaction consisting of just few

hundreds of CPU cycles and there long running transactions which span up to

1 milliseconds. In another example, the execution of the same atomic block

can read or update different set of variables. It is worth noting that the most

frequently executed atomic block is a simple read-only non-nesting example which

seems amenable to hardware implementation in a hybrid implementation.

80

3.3 Atomic Quake

ID
T
x
#

N
es
t

D
y
n
a
m
ic

L
en

g
th

(C
P
U

C
y
cl
es
)

R
ea
d
S
et

(b
y
te
s)

W
ri
te

S
et

(b
y
te
s)

T
o
ta
l

M
in

M
a
x

A
v
g

T
o
ta
l

M
in

M
a
x

A
v
g

T
o
ta
l

M
in

M
a
x

A
v
g

5
6

2
6
9
6
2

0
1
7
2
8
7
2
5
7
2

2
8
8

1
1
2
8
3
2

6
4
1
2

1
3
2
8
5
3
6

2
0

1
0
4

4
9

0
0

0
0

6
0

5
9
3
1

0
5
8
1
0
1
5
2

2
2
4

4
1
5
5
2

9
8
0

7
6
2
1
2

1
2

6
4
0

1
3

9
2
8

0
1
1
6

0
.1
6

6
1

1
0
9
5

0
2
0
5
7
3
5
4
0

4
5
6
0

4
9
9
8
4

1
9
2
0
8

7
2
3
4
7
4

8
8

7
7
6

6
6
1

9
0

8
4

8
4

8
4

5
9

1
0
4
2

0
3
1
1
7
8
4
4

1
5
2
0

3
9
3
4
4

2
9
9
9

2
9
1
7
6

5
2
8

2
8

1
6
6
7
2

1
6

1
6

1
6

5
7

1
0
3
8

5
4
0
1
5
0
2
1
5
2

2
8
8
7
0
4

5
2
2
5
2
8

3
8
7
5
5
2

1
0
9
6
3
7
1
9

7
6
1
4

1
5
4
9
0

1
0
5
6
2

2
5
9
2
3
6
7

1
6
8
0

3
6
5
6

2
4
9
7

5
8

1
0
0
2

1
1
3
4
9
4
9
3
4
4

8
7
0
5
6

1
3
4
1
5
0
4

1
3
4
9
4
9

5
0
5
4
2
8
2

3
0
2
8

5
3
5
6
6

5
0
4
4

9
3
1
4
4
5

5
4
8

1
1
1
6
1

9
3
0

1
5

3
0

6
7
6
6
0

7
2
0

4
8
1
7
6

1
7
3
5

9
6

3
2

3
2

3
2

1
8

6
6

6

5
2

0
9
9
9
8
8

5
9
2

3
6
3
8
4

1
9
2
3

6
4

3
2

3
2

3
2

1
0

5
5

5

2
2

2
1

4
3
6
3
2

1
2
1
7
6

3
5
5
0
4

2
1
8
1
6

7
2

3
6

3
6

3
6

1
2
8

6
4

6
4

6
4

3
6

2
0

4
0
4
7
6

6
8
0
0

4
4
8
8
0

2
0
2
3
8

2
4
9

1
0
8

1
4
1

1
2
5

5
5

2
2

3
3

2
8

3
8

2
0

7
1
3
6
8

2
1
4
4

3
1
5
0
4

4
4
6
1

9
0

4
4

4
6

4
5

2
6

1
2

1
4

1
3

T
ab

le
3.
3:

S
ta
ti
st
ic
s
fo
r
ea
ch

a
t
o
m
i
c
b
lo
ck

fr
om

a
si
n
gl
e-
th
re
ad

ed
ex
ec
u
ti
on

.
T
ra
n
sa
ct
io
n
s
th
at

ar
e
n
ot

ex
ec
u
te
d
ar
e

n
ot

sh
ow

n
.

81

3.4 WormBench

3.4 WormBench

WormBench is a parameterized synthetic workload for TM. Its design accounts

for the common synchronization problems that exist in multi-threaded applica-

tions. WormBench is easily configurable and can be set to have desired runtime

characteristics. This feature is found useful in reproducing pathological execution

which otherwise happen once in a while in the real workloads. Also, the same

flexibility can be used to model the runtime characteristics of a real application.

WormBench is implemented in C# and does not depend on a particular STM

or HTM interface because the critical sections in the code are expressed in terms of

the language-level atomic blocks. It assumes that the compiler or runtime system

translates these into the appropriate concurrency control operations on a TM

implementation. This way WormBench can be used also to test the effectiveness

of optimizations performed by TM-enabled compilers [10; 39; 55; 89; 124].

The idea of WormBench is inspired by the popular Snake game (see Fig-

ure 3.19). In the application several worms, each driven by a dedicated thread,

move within a shared environment - BenchWorld (abstraction of a matrix). Ev-

ery move consists of several critical operations accompanied by a computation.

Worms can be grouped so that they recreate complex synchronization scenarios.

By changing the parameters of the applications such as the type of performed

computation, the size of the BenchWorld and the Worm, one can make a different

run configuration which has the desired transactional and runtime characteristics.

The motivation of building WormBench is to help TM researchers easily cre-

ate transactional workloads that they can use to verify and evaluate the efficiency

of their TM systems and the compiler infrastructure that sits between the pro-

gramming language and the TM. Using WormBench, one can develop a set of

representative run configurations that has the transactional behavior of a typical

multi-threaded application. Then use these run configurations as a baseline to

compare different TM systems among each other and against the lock based ver-

sion. Also, as being general enough, WormBench can be configured as a workload

to stress a low level implementation detail in the TM system such as frequent

read set overflows. During this dissertation WormBench was many times used to

82

3.4 WormBench

Figure 3.19: Screenshot from WormBench

83

Chapter3/Figures/EPS/WormBench-screenshot2.eps

3.4 WormBench

stress the certain components and extensions of the Bartok-STM (i.e. profiling

framework extension, logging indirect variables etc.)

3.4.1 Requirements for a Synthetic TM Workload

Because TM is about concurrency control, the main requirements for a repre-

sentative synthetic TM workload should include the common synchronization

problems that exist in multi-threaded applications. In this way, we would be able

to see how a given synchronization problem is solved by conceptually different

techniques – locks which are blocking versus transactions which are non-blocking

and compare them against each other. And also, to be able to compare different

TM systems, it is required that a representative workload should consider the

essential features of the TM system. This section discusses the synchronization

problems and the TM relevant metrics that should be considered when building a

representative workload or a suit of workloads to evaluate Transactional Memory

systems.

3.4.1.1 Synchronization Problems

The necessity of having concurrency control is because of the common synchro-

nization problems that exist in multi threaded applications. The typical synchro-

nization problems that can be seen in these applications and that a representative

synthetic TM workload should have an instance of, are:

• Object access serializability [13] - managing a concurrent access to a shared

data. This is the typical scenario when we guard the access of a shared

variable by lock;

• Barrier synchronization - making group of threads to wait at certain point

of execution until all (or group) of them arrive there;

• Two phase locking and its derivatives [117] - a locking protocol which

attempts to provide the efficiency of fine grain locking and avoiding dead-

lock by enforcing a given pattern;

84

3.4 WormBench

• Dining philosophers [118] - is a synchronization problem that demonstrates

the deadlock problem;

• Multiple granularity locking [70; 135] - a fine grain locking technique used

to lock a region in a hierarchical data structures like trees;

3.4.1.2 Metrics

To be able to compare different TM system against each other and also TM sys-

tems against lock-based implementations, a representative workload application

should clearly identify a set of metrics that can be used to quantitatively evaluate

the performance of different TM systems. These metrics should source from the

application and not be specific to a particular design or implementation style of

any TM system (HTM or STM). Based on the metrics used in the existing TM

research, we decided to collect the following runtime metrics in an application:

• Execution time of the application;

• Number of entered critical sections (i.e. atomic blocks);

• The ratio between reads and writes (e.g. 90% reads and 10% writes);

• Size of the accessed data structures;

• The execution time spent while in a critical section (short transactions vs.

long transactions);

• Number of successfully committed transactions;

• Number of reads and writes per transaction;

• Prevalent type of operations in the application (IO, CPU, memory); and

• Locality of memory references (spatial vs. temporal).

85

3.4 WormBench

Figure 3.20: The main components in the WormBench application. (a) run

configuration; (b) the position of the worm before performing the operations in

the run configuration; (c) position of the worm after performing the operations

in (a).

3.4.2 Design and Implementation

The idea for WormBench is inspired from the Snake game (see Figure 3.4.1).

The application has two main data structures - BenchWorld and Worm. In the

application, several Worms move in the BenchWorld and execute worm operations

from an user specified stream (see Figure 3.20). Each cell in BenchWorld is a

BenchWorldNode struct which packs several data: (1) a value of the node, (2)

the reference to the worm that is on this cell, (3) a reference to the group to

which the worm on this cell belongs to, (4) and a message for the next worm that

will pass from this cell.

Worms are active objects meaning that every Worm object is associated with

one thread. A Worm object has several attributes: id, group, speed, body, and

head. Id is a unique identifier to distinguish the worm from the other worms,

group is a reference to a Group object that groups several worm objects together.

The rationale behind the notion of group is to be able to create synchronization

scenarios where several worms act together to achieve a common task. The speed

attribute is used to tell how fast the worm to advance (e.g. 1 cell per move). The

body of the worm is the set of the cells from the BenchWorld where the worm steps

on. The head of the worm represents a set of nodes from the BenchWorld that

the worm uses as input to every worm operation, and the result of the performed

86

Chapter3/Figures/EPS/worms_description.eps

3.4 WormBench

computation is stored in a private buffer for verification purposes. Worms are

initialized with a stream of worm operations (see Figure 3.20-a) that they should

perform on every move. Every move is completed in three steps: (1) read the

cells below the head, (2) perform a worm operation on the head values, (3) and

move its body forward. Each of these three steps involves a critical operation

and is either synchronized with an atomic block (TM system) or with a global

lock (preset at compile time). Reading the values below the head of the worm

involves computing the worm orientation and the head coordinates. When the

head values are read, the next worm operation from the operations stream is

applied to these head values and the produced result is stored in a private buffer

for verification purposes. When it’s time to advance forward, the worm updates

the group field of every node constituting its body. In the transactional version

of the benchmark this is a conditional atomic block which ensures that worms

belonging to other groups cannot cross through each other. Every attempt of

crossing would result in aborting the attacker transaction and blocking until the

other worm moves its body out of the occupied node. The currently implemented

worm operations that worms apply in step (2) are:

1. sum - sum all the values under the head; this operation is a basic compu-

tation and does not update the BenchWorld;

2. average - computes the average value of the cells under the worm’s head;

this operation is a basic computation and does not update the BenchWorld;

3. median - computes the median value among the cells under the worm’s head;

this is a search operation where values are first sorted and then median is

found;

4. min - finds the minimum value among the cells under the worm’s head; a

basic search operation;

5. max - finds the maximum value among the cells under the worm’s head;

basic search operation;

87

3.4 WormBench

6. replace max with avg - finds the maximum value and updates it with the

average value; this operations is a combination between max and average

operations. It involves a basic search and computation (only one node is

updated);

7. replace min with avg - finds the minimum value and updates it with the

average value; this operations is a combination between min and average

operations. It involves a basic search and computation;

8. replace median with avg - finds the median value and updates it with the

average value; this operations is a combination between median and average

operations. It involves a little bit more complex search and computation;

9. replace median with min - finds the median and the minimum value from the

worm’s head and replaces; this operation is a combination between median

and min operations and also involves a small updated to BenchWorld (two

nodes are updated);

10. replace median with max - finds the median and the maximum value from

the worm’s head and replaces; this operation is a combination between me-

dian and max operations and also involves a small updated to BenchWorld;

11. replace max with min - replace the maximum and minimum in the head

and write the changes to the BenchWorld so that they are globally visible;

12. sort - sort the values under the head and write the result to the BenchWorld;

this operations involves a significant atomic update on the BenchWorld;

13. transpose - sort the values under the head and write the result to the Bench-

World; this operations involves a significant atomic update on the Bench-

World

14. checkpoint - the worm persists its current location (coordinates) within the

BenchWorld to a file for later undo; this operation involves basic IO;

15. undo - this operation returns the body of the worm to the last checkpoint

if any; this operation involves a basic IO;

88

3.4 WormBench

16. leave message - leaves a message on a node to be read by the other worms;

the rationale behind introducing this operations is allowing complicated

interactions between the worms and this way instantiating the different

synchronization problems described in Requirements section. The currently

supported message is ”goto node” that can be valid for a specific worm, for

a group of worms or for all worms. When the ”goto node” message is read

by the intended recipient worm, it heads to the destination by following the

shortest path and continuously applying worm operations on every move.

At the end of the execution, WormBench performs automatic correctness test

(i.e. sanity check for the TM system). The correctness test is necessary to

verify whether the TM system worked properly and consists of comparing the

sum of the matrix at the end of the execution with the sum of the matrix that

was at the initialization. When computing the sum of the matrix at the end of

execution WormBench accounts for the modifications done by the replace with

average operations. These modifications are stored in worms’ private buffers.

WormBench is implemented in C# language by applying the concepts of ob-

ject oriented programming and has a compact code base which consists of 940

lines. The code is implemented with two types of synchronization - transactions

(atomic blocks) and global lock. The synchronization type can be selected at

compile time. The average sizes of the shared objects is 70 bytes and have sev-

eral fields which makes it favorable for TM systems that perform the versioning in

object granularity (mostly STM), cache line and word granularity (mostly HTM).

The primary performance evaluation metric in the BenchWorld application is the

throughput - the total number of moves per unit time.

In behavior and synchronization, WormBench resembles the typical multi-

threaded applications where independent threads perform memory reads, do com-

putation and update a given global state. An example could be a web server with

dynamic content rendering. Where the requests of the clients are served by dif-

ferent threads as the memory is searched for cached pages and updated on the

fly depending on the provided input by the client.

89

3.4 WormBench

3.4.3 Runtime Characteristics

The transactional characteristics of the WormBench operations are given in Ta-

ble 3.4 and Table 3.5. Both, Table 3.4 and Table 3.5, show respectively how the

change on the Worm’s body length and the head size affect the transactions’ read

(R) and write (W) set per each Worm operation. When the head size is constant

and only the body length changes, the read set remains constant and the write

set increases linearly 1. On the other hand, when the body length is fixed to 1

and the head size changes, both the read and write sets are affected and the read

set increases super-linearly 2. Any combination of these operations with the body

length and head size of the worms could give theoretically infinite number of TM

specific runtime configurations.

Table 3.6 summarizes the execution distribution of the Worm operations for

4 different body length and head size setups ran over 800,000 moves. The first

column is the worm operation, the second column is the execution distribution

when the body length and head sizes are 1-1 (B[1.1] means body length is 1,

H[1.1] means the head size is 1), the third column is for worms with body length

and head size of 4-4, the fourth column is when the body length and head size

is 8-8 and the fifth is when the body length and head size is randomly selected

in range [1, 8]. Also, the increase in the head size is reverse-proportional to the

WormBench throughput (execution time). Meaning that, by increasing the head

size we can obtain longer transactions suitable to test STMs and by decreasing

the head size we can obtain shorter transactions suitable to test HTMs. The

relationship between the head size and the throughput can be seen in Figure 3.22

and Figure 3.23 discussed in more details in Section 3.4.4.

When WormBench starts, it is initialized with a run configuration provided as

input by the user. The run configuration defines: (1) the size of the BenchWorld

(the size of the underlying matrix) and its initialization, (2) a common stream

of worm operations; (3) the number of worms to create; (4) and for each worm:

id, group id, body size and the location of the body on the BenchWorld, head

1The exact rate of increase depends on the underlying TM system. In our case with every

step the number of reads increases by 13.
2The super-linear increase in the read set is because the number of nodes below the head

is n2 proportional.

90

3.4 WormBench

Operation
1 2 4 8

R W R W R W R W

sum 11 3 11 4 11 6 11 10

average 11 3 11 4 11 6 11 10

median 11 3 11 4 11 6 11 10

min 11 3 11 4 11 6 11 10

max 11 3 11 4 11 6 11 10

repl(max,min) 14 5 15 5 14 7 14 11

repl(min,avg) 14 5 15 5 14 7 14 11

repl(med,avg) 14 5 15 5 14 7 14 11

repl(med,min) 14 5 15 5 14 7 14 11

repl(med,max) 14 5 15 5 14 7 14 11

repl(max,min) 14 5 15 5 14 7 14 11

sort 16 4 16 5 16 7 16 11

transpose 16 4 16 5 16 7 16 11

checkpoint 11 3 11 4 11 6 11 11

undo 11 3 11 4 11 6 11 11

Table 3.4: The effect of the HeadSize on read and write.

91

3.4 WormBench

Operation
1 2 4 8

R W R W R W R W

sum 11 3 14 3 26 3 74 13

average 11 3 14 3 26 3 74 13

median 11 3 14 3 26 3 74 13

min 11 3 14 3 26 3 74 13

max 11 3 14 3 26 3 74 13

repl(max,avg) 14 4 17 4 29 4 77 4

repl(min,avg) 14 4 17 4 29 4 77 4

repl(med,avg) 14 4 17 4 29 4 77 4

repl(med,min) 14 4 17 5 29 5 77 5

repl(med,max) 14 4 17 5 29 5 77 5

repl(max,min) 14 4 17 5 29 5 77 5

sort 16 4 19 7 31 19 79 67

transpose 16 4 19 7 31 19 79 67

checkpoint 11 3 14 3 26 3 74 13

undo 11 3 14 3 26 3 74 13

Table 3.5: The effect of the BodyLength on read and write.

92

3.4 WormBench

Operation B[1.1]H[1.1] B[4.4]H[4.4] B[8.8]H[8.8] B[1.8]H[1.8]

sum 0.42 0.43 0.19 0.31

average 0.42 0.27 0.32 0.43

median 0.84 3.65 9.35 5.14

min 0.32 0.59 0.28 0.37

max 0.42 0.59 0.33 0.54

repl(max,min) 1.36 0.71 0.43 0.74

repl(min,avg) 0.74 0.74 0.53 0.70

repl(med,avg) 2.52 4.79 11.41 6.69

repl(med,min) 2.10 0.59 0.63 0.93

repl(med,max) 2.73 5.01 11.19 7.10

repl(max,min) 2.52 5.26 11.39 7.12

sort 1.68 6.59 11.26 7.18

transpose 1.15 3.25 2.37 3.37

checkpoint 1.12 1.45 1.98 1.52

undo 1.06 1.32 1.85 1.49

TOTAL 19.39 35.24 63.52 42.60

Table 3.6: Execution time distribution of Worm operations.

93

3.4 WormBench

size, speed, and a range from a common stream of worm operations that the

worm has to perform on every move. By utilizing the summarized information in

Table 3.4, Table 3.5 and Table 3.6, it is possible to directly control the read set,

write set and the conflict rate. Also, assigning each worm a specific stream of

operations to perform, it is possible to coarsely control the conflict rate between

the transactions. For example, a stream of operations that leads all worms in a

common point within the BenchWorld would result into a large number of aborts.

Furthermore, by properly using the messaging and the groups, it is possible to

recreate instances of the synchronization problems as described in Section 3.4.1.

3.4.4 Experimental Analysis

The overall behavior of the WormBench application depends on the run configu-

ration passed as input by the user. The runtime characteristics of the application

can be altered by tuning any of the following parameters:

• Size of the BenchWorld;

• Number of worms (number of threads);

• Body length of each worm;

• Head size of each worm;

• The number and type of worm operations that each worm has to perform

while moving; and

• Synchronization type - atomic, lock.

By altering any of these configuration parameters it is possible to prepare a

run configuration which runtime characteristics represent a typical multi-threaded

application. In the same way WormBench can be configured to stress a particular

aspect of the TM system such as many aborting transactions.

This section examines several run configurations. The purpose of this ex-

periment is to study the relationship between the configuration parameters and

the behavior of WormBench. Obtained results also include comparison between

transactional memory and lock-based synchronization.

94

3.4 WormBench

Experiments were carried on Dell PE6850 workstation with 4 dual-core x64

Intel Xeon processors with 32KB IL1 and 32KB DL1 private per-core, 4MB L2

shared between the two cores on-die, 8MB L3 shared between all cores, and 32GB

RAM. During our experiments hyper-threading was enabled, thus having 16 log-

ical CPUs. The operating system is Windows Server 2003 SP2. The processor

scheduling and the memory management policies were adjusted to favor fore-

ground applications instead of background services. To compile the WormBench

source code we used Bartok compiler [55].

3.4.4.1 Description of the Run Configurations

In the WormBench experiments a single stream of 800.000 move operations was

used. Both the operation type and the direction to move to were randomly gen-

erated with uniform distribution of the described worm operations (without leave

message operation) and the three directions (ahead, left, right). To analyze the

impact of the BenchWorld size 4 different BenchWorlds with 128x128, 256x256,

512x512, and 1024x1024 sizes were used. To analyze how the worm’s body length

and head size affect the execution four different (body length, head size) config-

urations were used - all the worms have body length and head size 1 (indicated

as B[1.1]H[1.1]), all the worms have body length and head size 4 (B[4.4]H[4.4]),

all the worms have body length 8 and head size 8 (B[8.8]H[8.8]), and all the

worms have both body length and head size randomly generated in range [1, 8]

(B[1.8]H[1.8]). To see how the worms initialization affect the execution, worms in

large BenchWorld were initialized for a small BenchWorld. For example, worms

in BenchWorld with size 1024x1024 were initialized for BenchWorld with sizes

128x128. As shown on Figure 3.21, worms initialized for smaller BenchWorld

are relatively closer to each other and likely to be source of frequent conflicts.

Combinations of all configurations were executed with 1, 2, 4, 8 and 16 worms

(i.e. threads). This resulted in total of 80 combinations with 400 independent

runs.

95

3.4 WormBench

Figure 3.21: Using worms initialized for small BenchWorld in a large BenchWorld.

(a) using worms initialized for 128x128 in 1024x2024; (b) using worms initialized

for 256x256 in 1024x2024; (c) using worms initialized for 512x512 in 1024x2024;

(d) using worms initialized for 1024x2024 in 1024x2024.

3.4.4.2 Results

Figure 3.22 shows how the STM and and lock versions of WormBench scale.

According to these results the STM version of WormBench scales but it is much

slower (even with 16 threads) than the single-threaded lock based execution of

WormBench. Even with 16 threads the performance of STM is not comparable

with the single threaded STM version. The reason for this is that the STM system

incurs significant overheads when doing versioning for the accessed read and write

set, especially on the case when the worms body and head is 8 (B[8.8]H[8.8]) and

the transaction has big read and write set. Another issue that can be observed

is that the performance of lock based version degrades when ran with more than

1 thread. The reason for this is that the Bartok runtime is optimized for the

case when the ”lock” operation targets a lock that is not held. If the ”lock”

operation finds that the runtime lock has been already set by an earlier compare-

and-swap operation then an OS mutex is created and thread blocked. In our case

WormBench uses global lock which is most likely acquired and this way reflected

negatively to the total throughput.

Figure 3.23 summarizes the relationship between the through-put (total num-

ber of moves per millisecond), the body length and head size, and the BenchWorld

size. From the different charts (a), (b), (c) and (d) altogether is interesting to

note here that the increase in the body length and head size have significant im-

pact on the throughput. The obvious reason for this is that when the body length

and head size becomes larger (especially head size, which has a O(n2) impact)

96

Chapter3/Figures/EPS/worms_initialize.eps

3.4 WormBench

0
0.2
0.4
0.6
0.8

1

1 2 4 8 16Th
ro

ug
hp

ut
 (n

or
m

al
ize

d)

Atomic Lock

0
0.2
0.4
0.6
0.8

1

1 2 4 8 16Th
ro

ug
hp

ut
 (n

or
m

al
ize

d)

Atomic Lock

(a) B[1.1]H[1.1] (b) B[4.4]H[4.4]

0
0.2
0.4
0.6
0.8

1

1 2 4 8 16Th
ro

ug
hp

ut
 (n

or
m

al
ize

d)

Atomic Lock

(c) B[8.8]H[8.8]

0
0.2
0.4
0.6
0.8

1

1 2 4 8 16Th
ro

ug
hp

ut
 (n

or
m

al
ize

d)

Atomic Lock

(d) B[1.8]H[1.8]

Figure 3.22: Comparing the performance between lock based synchronization and

transactional memory synchronization (higher values are better). (a) all worms

have body length and head size 1; (b) all worms have body length and head size

4; (c) all worms have body length and head size 8; (d) both the body length and

head size of every worm is randomly selected from the range [1, 8].

97

Chapter3/Figures/EPS/stm_vs_lock.eps

3.4 WormBench

the input to the worm operations become larger and they spend more time doing

computation. For example, in the case with a head size of 1 summing has only

one node to add but in the case with head size of 8 has 64 nodes. Another reason

is that when body length and head size increase, transactions become larger and

their working set increases super linearly. The overhead for maintaining big read

and write sets along with the increased probability for aborts becomes higher.

This can be better seen in Figure 3.22-(c) with B[8.8]H[8.8], when the trans-

actional version of WormBench always performs worse because of the overhead

incurred by the versioning and frequent aborts.

Figure 3.24 shows the average number of the objects opened for read or write

per transaction. The unfiltered read set and write set (denoted as UfR and UfW)

represent all the objects to which the TM system attempted to access and the

filtered read and write set (denoted as FR and FW) represents the actual number

of objects versioned by the TM systems. For example, it may happen that one

object or memory location is once versioned and later accessed again. In this case

the TM system filters it and does not allocate an entry for the second access. In

Figure 3.24 is interesting to see that although the unfiltered read and write set

increases for the different sizes of the worms, the filtered set remains constant.

Figure 3.25 shows the rate of successful commits (opposite to aborts). The

commit rate in all the run configuration is very high. One reason for this is mainly

because of using big BenchWorlds. Based on the results in this graph, we can

conclude our previous observation: since the commit rate is high, the primary

factor affecting the performance of B[8.8]H[8.8] configuration is the versioning

overhead.

Figure 3.26 shows the commit rate results of run configuration with worms

initialized for BenchWorld with size 128x128 and used in BenchWorlds with larger

sizes (see Figure 3.21). The results in this figure are different from Figure 3.25

since its purpose is to show how the initialization of the worms affect the commit

rate. The obtained results does not significantly differ from those in Figure 3.25

because we initialized the worms with big worm operations streams. Conse-

quently, this long execution has effectively decreased the impact of the conflicts

occurred at the beginning of the execution when the worms were relatively closer

to each other. This configuration can model a TM-execution which has phases:

98

3.4 WormBench

0

200

400

600

1 2 4 8 16Th
ro

ug
hp

ut
 (m

ov
es

\m
s)

128 256 512 1024

0

20

40

60

80

1 2 4 8 16
Th

ro
ug

hp
ut

 (m
ov

es
\m

s) 128 256 512 1024

0

5

10

15

20

1 2 4 8 16

Th
ro

ug
hp

ut
 (m

ov
es

\m
s)

128 256 512 1024

0

20

40

60

80

1 2 4 8 16

Th
ro

ug
hp

ut
 (m

ov
es

\m
s)

128 256 512 1024

(a) B[1.1]H[1.1] (b) B[4.4]H[4.4]

(c) B[8.8]H[8.8] (d) B[1.8]H[1.8]

Figure 3.23: Relationship between throughput (total number moves per millisec-

ond), BenchWorld size and the worm’s body length and head size (higher values

are better). (a) all worms have body length and head size 1; (b) all worms have

body length and head size 4; (c) all worms have body length and head size 8; (d)

both the body length and head size of every worm is randomly selected from the

range [1, 8].

99

Chapter3/Figures/EPS/wormlength_impact.eps

3.4 WormBench

0

20

40

60

80

100

120

140

FR UfR FW UfW FR UfR FW UfW FR UfR FW UfW FR UfR FW UfW FR UfR FW UfW

1 2 4 8 16

Re
ad

s\
W

ri
te

s
pe

r
TX

B[1.1]H[1.1] B[1.8]H[1.8] B[4.4]H[4.4] B[8.8]H[8.8]

Figure 3.24: The number of unfiltered reads (UfR) and writes (UfW) per trans-

action and the number of filtered reads (FR) and writes (FW) per transaction.

0.96
0.965

0.97
0.975

0.98
0.985

0.99
0.995

1
1.005

12
8

25
6

51
2

10
24 12

8

25
6

51
2

10
24 12

8

25
6

51
2

10
24 12

8

25
6

51
2

10
24

2 4 8 16

Su
cc

es
sf

ul
 C

om
m

it
Ra

te

B[1.1]H[1.1] B[1.8]H[1.8] B[4.4]H[4.4] B[8.8]H[8.8]

Figure 3.25: The average commit rate for all configurations. We omit the case

for 1 worm (thread) because it is always 1.

100

Chapter3/Figures/EPS/initialization_proximity.eps
Chapter3/Figures/EPS/commit_rate.eps

3.4 WormBench

0.96
0.965

0.97
0.975

0.98
0.985

0.99
0.995

1
1.005

12
8

25
6

51
2

10
24 12

8

25
6

51
2

10
24 12

8

25
6

51
2

10
24 12

8

25
6

51
2

10
24

2 4 8 16

Co
m

m
it

Ra
te

B[1.1]H[1.1] B[1.8]H[1.8] B[4.4]H[4.4] B[8.8]H[8.8]

Figure 3.26: The commit rate when worms are initialized for BenchWorld with

size 128x128 and then used in larger BenchWorlds - 128x128, 256x256, 512x512

and 1024x1024.

in the first phase it starts with a high conflict rate and continues with a lower

conflict rate in the second phase. This characteristic of WormBench could be

very useful in testing how well adaptive TM systems perform in the presence of

changes in runtime TM-application behavior.

Based on the analyzed results in this section and the described characteristics

of WormBench in the previous section, we will next show by example run con-

figuration that WormBench can mimic the behavior of genome application from

STAMP.

3.4.5 Modeling a TM Application

To demonstrate that WormBench is highly configurable we prepared a run con-

figuration that has the similar transactional characteristics of the genome appli-

cation from the STAMP benchmark. Table 3.7 compares the TM and runtime

characteristics of the genome (Gen.) application and the run configuration for

WormBench (WB) that mimics genome. Read per TX is the reads and Write

per TX is the Writes. The commit rate and the number of reads (R) is very

similar to the original values in genome. The proposed run configuration scales

101

Chapter3/Figures/EPS/128_init_commit_rate.eps

3.5 Porting STAMP

up closely following the speedup rate of the original application. The number

of writes (W) per transaction in WormBench is a little bit higher than in the

original application but a careful tuning would be possible to lower writes and at

the same time keep the other parameters unchanged.

T#

Commit Rate Read per TX Write per TX Speedup

Gen. WB Gen. WB Gen. WB Gen. WB

1 1 1 36.36 31.48 1.37 1.96 1 1

2 0.998 0.998 34.26 31.60 1.37 1.96 2.18 1.4

4 0.994 0.995 37.97 31.81 1.37 1.96 3.47 2.2

8 0.985 0.987 46.219 32.30 1.37 1.96 5.43 2.87

Table 3.7: Modeling Genome application with WormBench.

To obtain the results shown on Table 3.7 we used the following run configu-

ration:

• Worms body length = 1

• Worms head size = 4

• BenchWorld of size 52x52

• Randomly generated stream of worm operations, where the ration between

the worm operations was- Operations(1:2:3:4:5:6:7:8:9:10:11:12:13:14:15) =

Ration(1:1:1:0:0:2:1:1:1:1:1:1:2:0:0)

This is just a small example that demonstrates the high configurability of

WormBench and how it can be used to reproduce the runtime and TM charac-

teristics of a specific multi threaded application.

3.5 Porting STAMP

To test extensions in the Bartok STM Bayes, Genome and Intruder from the

STAMP TM benchmark suite [20] were ported from C to C#. The C versions were

implemented in a modular object oriented style and it was straightforward to port

them to C#. In C# atomic blocks were annotated with the available language

102

3.6 Summary

construct supported by the Bartok compiler. In the original STAMP applications,

the memory accesses inside atomic blocks are made through explicit calls to the

STM library, whereas in C# the calls to the STM library are automatically

generated by the compiler.

After porting these applications had performance problems mainly due to the

object granularity of conflict detection which Bartok-STM supports. After series

of optimizations which are described later in Chapter 6 the performance of these

applications was improved and aligned with their original versions.

3.6 Summary

In summary, the experience of using atomic blocks and TM in large applications

such as AtomicQuake showed that indeed TM makes parallel programming easier

than locks. TM is found to be useful for implementing fine grain synchronization

for high number of objects or pointer based data structures such as trees and

graphs. TM simplifies parallel programming in two ways. First, the programmer

does not need to know which data is shared. In large programs it could be very

difficult to identify all sides where a data can be accessed by two or more threads,

particularly if the data is pointer based. Second, the programmer does not need

to associate locks with the shared data and keep document this for future main-

tenance. Third, the programmer does not need to manually implement atomicity

using locks for the operations which mutate shared data. Forth, the programmer

does not need to use any locking schemes to avoid deadlocks. All these opera-

tions are transparently handled by the underlying TM. Besides synchronization,

another place where TM can provide a gentle solution is failure atomicity. In

AtomicQuake was demonstrated how TM can be used to recover from an error

which in other case would cause the process to terminate.

Performance results obtained from AtomicQuake were encouraging. The STM

version of AtomicQuake scaled well. However, compared to the lock-based ver-

sion STM had high single threaded overhead ranging between x4-x5 time slow

down. One reason for this could be that the compiler optimizations did not fil-

ter the operations on non-shared memory and they were also indirected through

103

3.6 Summary

the STM library. This would suggest that more work should be done on effec-

tively distinguishing the operations on shared and non-shared memory. Another,

performance problem of using STM was the sudden performance degradation on

high number of threads. One reason for this could be the use of unnecessary

large atomic blocks or presence of false conflicts. Unfortunately this problem left

unstudied because the tools that were used were proprietary and did not provide

sufficient profiling information.

Also, the experience of using atomic blocks and TM in a large application

showed that TM is not yet mature technology for developing production stable

software. It was encountered that more work should be done on semantics of

transactions, language extensions, compiler integration, debuggers and profilers.

AtomicQuake is a rich TM workload which can be used to benchmark com-

plete TM implementations. Its atomic blocks have different transactional char-

acteristics. Inside atomic blocks there are uses of IO operations, error handling,

nesting, composition and function calls.

WormBench is another TM application. Unlike AtomicQuake, it is parame-

terized synthetic workload. Its development did not have the goal of studying

how atomic blocks and TM can be used but rather to deliver a tool that can be

easily configured to have specific runtime characteristics.

In this dissertation, STAMP applications were used to evaluate the extensions

made on the Bartok-STM compiler which are described in the remaining of the

theses. They were also used to demonstrate series of optimization techniques for

TM. Because of their small code base they were a good choice to port from C to

C#.

104

Chapter 4

Debugging

Many researchers have developed research prototypes for atomic blocks, some

based on static analysis for automatic lock inference, and others based on various

kinds of transactional memory (TM), either implemented in software (STM) or

hardware (HTM) [56]. However, based on the experience in our team of de-

veloping complex transactional applications such as AtomicQuake [135] (Sec-

tion 3.3), QuakeTM [42], RMS-TM [67], WormBench [134] (Section 3.4) and

Haskell-STM [52] we found it difficult and frustrating to use current debuggers

when writing programs using atomic blocks and TM. This experience has mo-

tivated us to study how to extend debuggers to better support transactional

applications.

This chapter presents the new principles and approaches for debugging trans-

actional programs that were developed. In particular, we introduce the idea of

distinguishing between debugging at the level of atomic blocks, and debugging at

the level of transactional memory. When working at the level of atomic blocks,

the programmer should only be aware that the blocks run atomically and in isola-

tion: the programmer should not see implementation details such as exactly how

atomic blocks are built over TM, or the internal algorithms used by a given TM

implementation. Thus, when a breakpoint fires in an atomic block, the inter-

rupted thread will be the only one in any atomic block. If the programmer single

steps through the block, they will not see conflicts, transaction re-executions, and

so on. A rule of thumb is that, at this level, the experience using the debugger

105

should be the same, whether atomic blocks are built over TM, or whether they

are built over a static analysis for lock inference.

Conversely, when debugging at the lower level of transactions, the programmer

is presented with a view to the underlying implementation of atomic blocks

i.e. TM. This view is intended for debugging performance errors—for instance,

identifying the instructions that are responsible for conflicts between transactions.

Transactions represent the runtime execution of atomic blocks and have various

attributes such as the number of aborts, status, priority, nesting level, and read

and write sets. This information is helpful in debugging pathological cases such

as forms of starvation [18]. In addition, besides finding errors, the debugger must

be extended to handle basic information about the transactions, such as the read

and write sets, in order to present the user with a correct view of memory. For

example, in lazy versioning STMs that buffer the updates until commit, the user

might be confused if the values of the variables in a watch list do not change

while stepping inside an atomic block. Moreover, the user might be interested in

debugging inside a particular atomic block only when a specific change in its state

happens such as a transition from valid to invalid. To help in these situations, the

user can additionally use the debugger to monitor for various events associated

with the change of the transaction status and when for example a conflict is

detected, the debugger will break automatically and display relevant information

such as conflicting threads, statements and memory addresses.

New debugger abstractions enable the control of transaction and their state

dynamically. These abstractions provide mechanisms to create and to remove

debug-time transactions under the control of the debugger without changing and

recompiling the source code. Such features are useful when investigating errors

such as data races, atomicity violations and order violations – much as existing

debuggers provide abstractions for modifying the contents of data in memory

when investigating errors.

This chapter continues in Section 4.1 with a discussion on the problems which

motivated the study on extending debuggers with support for atomic blocks

and TM. Section 4.2 subways the state of the art in the area and relates this

work to the others. Section 4.3 describes the design of the debugger framework

and its implementation on WinDbg and Bartok-STM. Section 4.4 introduces the

106

4.1 Motivation

approach of debugging applications at the level of atomic blocks. Section 4.5

introduces the approach of debugging applications at the level of transactions.

Section 4.6 introduces the new debugger abstractions for managing transactions

at debug-time. Section 4.7 summarizes this chapter.

4.1 Motivation

Extending the debuggers with support for transactional applications was primar-

ily motivated by the experience of developing AtomicQuake [135] (see Section 3.3).

While developing AtomicQuake there were encountered several difficulties of de-

bugging this application. These difficulties are:

1. While stepping in the code the debugger always steps inside the atomic

block instead of executing it as if a single instruction. This makes difficult

to finding synchronization errors which manifested at the level of atomic

blocks i.e. atomicity violations.

2. It is very difficult to debug wrong code inside the atomic because: 1)

the debugger does not distinguish between speculative and non-speculative

values and 2) the sudden aborts return the control flow to the beginning

of the atomic block. The latter is particularly frustrating when debugging

the implementation of function called inside atomic blocks.

3. The debugger does not have abstractions to see and modify the state of the

TM system such as removing/inserting entries to the read or write set.

4. The debugger does not have abstractions to break when the TM state

changes, for example to break when conflict happens and show relevant

information about the conflict. Such functionality is useful to examine spe-

cific conflicts which hurt the performance.

5. The debugger does not have abstractions to: 1) create new atomic, 2) re-

move existing atomic blocks, 3) change the scope of existing atomic blocks

without exiting the debugging sessions. Such functionality is particularly

107

4.2 Related Work

useful for identifying non-deterministic synchronization without exiting the

debugging session.

6. The debugger does not have mechanisms to abort or explicitly commit a

transaction.

These problems are explored and addressed with the work described in this

chapter.

4.2 Related Work

In a parallel work with this one, Herlihy and Lev have developed an infrastructure

for debugging transactional applications—tm db [59]. From a user’s perspective,

compared to our work, when debugging a transactional application with the ab-

stractions that Herlihy and Lev introduce, it will look like debugging at the level

of transactions (discussed in Section 4.5). Their approach has the objective to

properly integrate the debugger with the TM implementation. The primary focus

of tm db is to consistently expose the TM state through the debugger without

changing the existing debugging conventions. In addition to transaction-level

debugging we introduce the notion of debugging at the level of atomic blocks,

attempting to abstract over whether or not these are implemented with TM. We

also propose and implement mechanisms to create debug time transactions, split

atomic blocks and modify the state of transactions under the control of the de-

bugger. In tm db Herlihy and Lev introduce important concepts such as logical

value, scopes, distinction between transactional reads, writes and their respec-

tive conflict coverages. These new concepts abstract the internal organization of

different STM systems. Logical values are necessary for preserving the isolation

property of transactions when debugging at the level of transactions. Abstracting

the reads and writes with their respective coverages hides the internal mechanism

to manage the read and write sets and also help in identifying false conflicts. In-

corporating these new abstractions into our extension would provide users an

uniform view to the TM state when debugging at the level of transactions.

108

4.3 Design and Implementation

Using their debugging infrastructure, Herlihy and Lev provided support for

8 different TM implementations [74]. To do so, they implemented separate Re-

mote Debugging Module (RDM) systems, one for each library variation, and they

extended the STM libraries with support for debugging.

In earlier work, before tm db, Lev and Moir discussed how the debugger and

the TM implantation should by integrated [73]. They surveyed features that a

debugger could provide by leveraging the underlying TM system. From their

work, we were inspired that seeing the read set and write set of transactions can

help to understand the reason for aborts.

Chafi et al. have developed a micro architectural extension TAPE [23] for the

Transactional Coherence and Consistency [24] system that has HTM support.

They used TAPE to profile and optimize transactional applications by studying

the locations where transactions conflict much like we do in conflict point discov-

ery but in STM. These two approaches can be combined in a hybrid transactional

memory system.

Recent work carried by Gupta et al. leveraged the existing infrastructure in

a hardware transactional memory system RaceTM [47] to detect data races in

multi-threaded applications. The combination of this functionality and debug-

time transactions would be a complete tool to find and fix data races in multi-

threaded applications at debug time.

4.3 Design and Implementation

We prototyped our ideas in an extension module for the publicly-available WinDbg

debugger [84]. Concretely, we target transactional C# applications compiled with

Bartok [55] compiler. However, our design decisions are motivated by maintaining

applicability of our approaches to other debuggers, other TMs, and to non-TM

implementations of atomic blocks.

WinDbg is a multi-purpose debugger for Win32 applications. Its functional-

ity can be extended by using the Microsoft Debug Engine Extension APIs [83].

WinDbg extensions are Dynamic Link Libraries (DLL) that implement and ex-

port a number of callback functions. Some of these callbacks are required by the

109

4.3 Design and Implementation

Figure 4.1: Decoupled design approach for the debugger extension. The compo-

nents in gray represent our extension and the dashed lines represent TM opera-

tions. The implementation of TmTargetDbg is specific for our STM library and

the implementation of TmDbgExt is specific for WinDbg family of debuggers.

debugger for the extension’s integration, and other callbacks implement the ad-

ditional user commands that extend the debugger functionality or let it visualize

specific data structures.

Bartok is an ahead-of-time C# compiler with language level support for

atomic blocks. The runtime execution of the atomic blocks in applications com-

piled with Bartok is handled by an STM library which from now on we will refer

to as Bartok-STM. Bartok-STM updates memory locations in-place by logging

the old value for rollback in case a conflict happens. It detects conflicts at an

object granularity, eagerly for write operations and lazily for read operations.

In the following sections we introduce our design and implementation of the

debugger extension and then from Section 4.4 return to the high-level debugging

approaches.

110

Chapter4/Figures/EPS/dbg_design.eps

4.3 Design and Implementation

4.3.1 Design Approach

We have chosen a decoupled design for extending WinDbg. Our design consists of

two components: a debugger extension library (TmDbgExt) and an STM-library

debug helper (TmTargetDbg). Figure 4.1 shows the structure of the system.

TmDbgExt implements the end-user debugger commands for use with atomic

blocks and transactions. It is dynamically loaded by WinDbg and runs as part

of the debugger process and uses the debugger engine (DbgEng) to access the

target. TmDbgExt is specific to a particular debugger, but independent of the

TM in use. Conversely, TmTargetDbg runs in the address space of the program

being debugged. TmTargetDbg is specific to the TM, but independent of the

debugger.

We were inspired by the approach described in Lev’s presentation [71]. Com-

paring with Herlihy and Lev’s subsequent paper [59], we have only one component

at the debugger side (TmDbgExt), whereas Lev’s design uses two (tm db and a

Remote Debugging Module, RDM). tm db defines an common interface for im-

plementing extensions to debug transactional applications. It can be used with

all debuggers providing the proc service interface and is independent of the

TM implementation. RDM provides tm db with functionality for debugging a

particular TM. Within the target process, the TM runtime system provides a

support layer (RTDB). We chose to avoid placing any TM-specific components

on the debugger side—the developer of our TmTargetDbg will not need to know

about the debugger and vice versa. Ultimately, we might be tempted to define

a common interface and communication mechanisms between TmDbgExt and

TmTargetDbg—but this seems premature at the moment.

We also experimented with an alternative approach which implements all the

functionality in the debugger extension (TmDbgExt), without the helper compo-

nent in the target process. In this approach the debugger extension is coupled

with the STM library implementation and depends on the layout of the data

structures, size of buffers, alignment, and so on. For instance, suppose that we

want to check if a specific memory address is in the read set of a transaction.

The debugger-side module would need to be coupled to the layout of the data

structure representing the read set entry and the field where the address is stored.

111

4.3 Design and Implementation

Also, the module has to know any possible alignment restrictions that the com-

piler might apply. Modifying the read set entry data structure by adding a new

field or compiling for different architecture (e.g., 64-bit) would require changing

and re-testing the debugger extension. We felt that this model was not a good

fit with rapidly-evolving transactional memory systems.

We believe our decoupled design approach can readily be applied to imple-

mentations of atomic blocks over other TMs; the details of TmTargetDbg will

vary, depending on the exact data structures used, but the approach will remain

the same.

4.3.2 Interaction Between TmDbgExt and TmTargetDbg

The interaction between the debugger and the STM library has two levels of

indirection. First, TmDbgExt accesses TmTargetDbg over the debugger engine

API and then TmTargetDbg accesses the STM internals (see Figure 4.1). Tm-

TargetDbg acts as a wrapper for the STM library and exports a set of functions

listed in Table 4.1. TmDbgExt may query or modify the STM state by setting a

call to one or more of these functions. To safely execute a function in the target

process, TmDbgExt saves the process context prior the call and restores it after

the call. For simplicity, we have designed the prototypes of the TmTargetDbg

functions in a way that if the return value is larger than a register (e.g., an array

or a data structure) the value is stored in a temporary location and the address

to this location is returned.

4.3.3 Internal Breakpoints

We use breakpoints to implement many of our new debugger features. For in-

stance, when debugging at the level of atomic blocks and a normal breakpoint

fires inside an atomic block, we must check that the current transaction is valid,

and then “clean” the visible state of other threads (e.g., by rolling back trans-

actions that other threads are in). This provides the impression of isolation. In

many examples like this we either need to cause the target process to execute

STM-helper functions, or we need to roll forward application code in the target

process.

112

4.3 Design and Implementation

Operation Description

GetTxStatus Get the status of the transaction.

SetTxStatus Set the status of the transaction.

GetPriority Get the priority of the transaction.

SetPriority Set the priority of the transaction.

GetReadSet Get the read set of a transaction.

GetWirteSet Get the write set of a transaction.

AddToReadSet Add entry to the read set.

RemoveFromReadSet Remove an entry from the read set.

AddToWriteSet Add entry to the write set.

RemoveFromWriteSet Remove an write from the read set.

GetNestingLevel Get the nesting level of a transaction.

GetOriginalValue Get value before a speculative update.

GetSpeculativeValue Get value after speculative update.

IsTxIrrevocable Check if a transaction is irrevocable

SwitchToIrrevocable Switches transaction to irrevocable mode.

StartIrrevocableTx Starts a transaction in irrevocable mode.

CommitIrrevocableTx Commits an irrevocable transaction.

SplitTx Splits a transaction

Table 4.1: The API of TmTargetDbg component.

113

4.3 Design and Implementation

Both of these operations involve adding temporary breakpoints in addition

to those set by the user (e.g., we must regain control after rolling forward). We

refer to these as “internal” breakpoints. As described later in this thesis, we used

internal breakpoints to override the step command to interpret atomic blocks

as a single statement (Section 4.4.1), to implement watchpoints (Section 4.5.1),

to implement debug-time transactions (Section 4.6.1) and to split atomic blocks

(Section 4.6.2).

We use a breakpoint-time callback to distinguish ordinary user-breakpoints

from internal breakpoints. The callback overrides the default debugger behavior

of suspending the target program when an internal breakpoint is hit and, if neces-

sary, it executes complementary actions associated with the internal breakpoint.

The diagram in Figure 4.2 shows how the callback works. When a break-

point is hit, the callback checks whether it is a normal breakpoint, or an internal

breakpoint. If it is a normal breakpoint and the event thread is executing a trans-

action, the callback executes a complementary action to switch the transaction

to irrevocable mode [115; 126] and breaks to the debugger prompt (Section 4.4).

If the breakpoint is internal, the callback executes a complementary action based

on its type (purpose). Also, depending on the type of the internal breakpoint the

debugger may either break or continue execution as if the breakpoint is not hit.

4.3.4 Probe Effect and Overhead

Of course, as with many debugging techniques, the approach described here might

add a probe effect because of the changes on the underlying STM. We have mea-

sured the probe effect over the Red Black Tree micro benchmark which reflects

even the minimal overheads in an amplified scale. Table 4.2 shows relative dif-

ference between a binary compiled without any additional logging and binary

compiled with the logging required for conflict point detection. Column Exe-

cution Time shows the relative difference between execution times and column

Aborts shows the relative difference between abort rates. This experiment sug-

gests that while the probe effect may change the fine-grain behavior of the pro-

gram it does not introduce or remove high level contention. Qualitatively, when

reducing contention on hot spots identified by conflict point discovery, contention

114

4.3 Design and Implementation

Figure 4.2: Using a breakpoint callback to distinguish between normal user break-

points and the internal breakpoints. Also, the breakpoints fired during transac-

tion execution may require to do complementary actions such as switching the

transaction to irrevocable mode.

115

Chapter4/Figures/EPS/bp_callback.eps

4.4 Debugging at the Level of Atomic Blocks

Threads Execution Time Aborts

1 0.0% n/a

2 0.4% 1.2%

4 6.0% 4.5%

8 10.6% 1.6%

16 5.6% 10.0%

Table 4.2: The probe effect of the debugger extensions. In this experiment we

used the Red Black Tree microbenchmark.

in the underlying program is reduced. Similarly, programs with low contention

under normal execution have low contention under conflict point discovery.

4.4 Debugging at the Level of Atomic Blocks

This section discusses the approach for debugging transactional applications at

the level of atomic blocks. We extend the debugger to model the semantics

of atomic blocks, presenting the user with the impression that they run with

atomicity and isolation (even when the underlying implementation uses TM).

Consequently, when debugging a program using atomic blocks, we provide

facilities to single-step over entire blocks so that they appear as indivisible oper-

ations (Section 4.4.1), and to step into a block while preserving the appearance

that it is executing in isolation (Section 4.4.2).

By analogy, a debugger for a language implemented with garbage collection

(GC) will abstract away the details of how the heap is structured—e.g., when

single-stepping, it would not step into the GC implementation if it runs, and it

would clear and re-set data watchpoints if the underlying objects are relocated.

4.4.1 Stepping Over Atomic Blocks

The atomicity property of atomic blocks guarantees that the statements com-

prising the atomic block execute either all or none. When debugging higher-level

concurrency errors in transactional applications, the user may therefore have the

116

4.4 Debugging at the Level of Atomic Blocks

1: atomic {

2: ...// Initialize the bounding box

3: if (ent->v.modelindex)

4: SV_FindTouchedLeafs (ent, sv.worldmodel->nodes);

5: ent->num_leafs = 0;

6: if (ent->v.modelindex)

7: SV_FindTouchedLeafs (ent, sv.worldmodel->nodes);

8: if (ent->v.solid != SOLID_NOT) {

9: tm_block_flag = true;

10: i=1;

11: node = sv_areanodes; // Areanode tree

12: while (1) {

13: if (node->axis == -1)

14: break;

15: if (ent->v.absmin[node->axis] > node->dist) {

16: node = node->children[0];

17: i *= 2;

18: }

19: else if (ent->v.absmax[node->axis] < node->dist) {

20: node = node->children[1];

21: i = i*2 + 1;

22: }

23: else

24: break;

25: }

26: if (ent->v.solid == SOLID_TRIGGER)

27: InsertLinkBefore (&ent->area, &node->trigger_edicts);

28: else

29: InsertLinkBefore (&ent->area, &node->solid_edicts);

30: }

31: } // end atomic

Figure 4.3: The body of the atomic block in function SV LinkEdict from Atomic

Quake which is responsible for changing the location of an object such as a player

from its old to the new position in the map (areanode tree).

117

4.4 Debugging at the Level of Atomic Blocks

expectation that the debugger will execute the atomic block in its entirety with-

out being interested in what is going on inside—much as the user may step over

a complete function call.

Earlier work that studied the construction of parallel programs with atomic

blocks and TM [92; 100] and our experience of developing such applications [42;

67; 93; 134; 135] suggests that programmers organize transactional synchroniza-

tion between threads in a different, more abstract, way by relying on the atomicity

of complete transactions but not identifying the individual shared data structures

to protect them with locks. In this approach, the concurrency errors in trans-

actional applications are coarser and manifest on the level of atomic blocks and

not on the level of individual statements inside the atomic block.

Existing debuggers are not aware of atomic block boundaries and so they

do not provide the illusion of atomicity. In such a case, instead of helping to

identify the concurrency problem, the debugger may cause additional confusion,

especially if the atomic block contains sophisticated logic and function calls. For

example, Figure 4.3 shows the body of the atomic block in function SV LinkEdict

taken from the AtomicQuake code (see Section 3.3). This function is responsible

for changing the location of a game object (e.g., a player) from one to another

location in the game map. Suppose that we are searching for an error and want

to see the state of the map data structure (i.e. sv areanodes line 11) before and

after executing the atomic block. When we advance in the debugger, we would

normally proceed by stepping into each of the statements inside the atomic block.

This will show the intermediate changes, rather than the overall effect of the block.

Furthermore, if the transaction implementing the atomic block aborts part-way

through, the user may find execution back at the start of the first statement.

Without debugger support for TM, a workaround for this problem is to put a

breakpoint at the end of the atomic block (i.e. line 31) and to continue execution

up to that point. This has the effect of executing the atomic block as a single

statement.

To support execution of complete atomic blocks, we provide a distinct tmstep

operation. This steps over the whole atomic block in a single operation. To

implement this, TmDbgExt puts internal breakpoints at the functions exported

by TmTargetDbg that are called at the start and end of an outermost transaction

118

4.4 Debugging at the Level of Atomic Blocks

Figure 4.4: The illusion of atomicity in TmDbgExt is implemented by putting

internal breakpoints at the functions EventOnStart and EventOnCommit called

by the STM library when outermost transactions start and commit respectively.

When the breakpoint on function EventOnStart is hit, TmDbgExt continues exe-

cution in go mode, and when the breakpoint on EventOnCommit is hit TmDbgExt

restores the execution to step mode.

(Figure 4.4). These breakpoints are enabled by default and, when the first one is

hit upon starting a transaction, the debugger continues to execute until it reaches

the matching commit function. When committing the outermost function the

breakpoint on the commit function is hit and this time the debugger switches

back to normal stepping mode.

4.4.2 Stepping Inside Atomic Blocks

The isolation property of atomic blocks guarantees that threads will not see

the intermediate updates made by a thread which executes an atomic block.

Consequently, we provide a mechanism to preserve isolation when stepping into

atomic blocks.

This is intended for debugging errors within a single atomic block—for in-

119

Chapter4/Figures/EPS/atomicity.eps

4.5 Debugging at the Level of Transactions

stance, if our code in function InsertLinkBefore (Figure 4.3 line 26–29) is wrong,

and its internal logic needs to be examined. Debugging within an atomic block

is activated automatically when a breakpoint is hit while executing a transaction.

For example, if the user puts a breakpoint at line 27 in Figure 4.4 then the user

will be able to advance inside the atomic block by stepping over each statement.

To preserve the appearance of isolation, we must take care to prevent interfer-

ence between transactions—e.g., consuming speculative updates from concurrent

transactions, operating on an inconsistent view of memory, or being aborted and

re-executed. For instance, in the code example from Figure 4.3 the root of the

areanode tree is assigned to a local variable (line 11), and if a second transaction

commits a change to the root, then InsertLinkEdict might operate on invalid

data. Debugging logic inside an atomic block based on invalid values but not yet

detected conflict, camouflages the actual problem and violates isolation.

We preserve isolation by switching the transaction being debugged into irre-

vocable mode [115; 126] (i.e., a transaction that is guaranteed to commit). Our

implementation of irrevocable transactions is simplistic: before switching to irre-

vocable mode the TM library validates all transactions and makes sure that the

only transaction being executed is the irrevocable one (rolling back any others).

Thus, while stepping through an atomic block, the user will see only actual values

and never see transactional aborts.

If a conditional breakpoint is reached while executing a transaction, we first

validate the transaction, and if the validation passes successfully we break into

the debugger. If validation fails, then the transaction is aborted and re-executed,

without breaking into the debugger.

This is necessary to prevent invalid transactions from falsely suspending the

execution, and reflects our intended semantics for atomic blocks which are de-

signed to abstract the details of particular TM implementations.

4.5 Debugging at the Level of Transactions

When debugging at the level of transactions, the debugger extension deliberately

exposes a TM-based implementation of atomic blocks. The aim is to provide

the user with means to discover and reason about pathological situations, such

120

4.5 Debugging at the Level of Transactions

as those described by Jayaram et al. [18]. Such examples can harm overall per-

formance or prevent progress.

When debugging at the level of transactions, the user can step into the state-

ments inside an atomic block without changing the transaction into irrevocable

mode like we did in Section 4.4. In such a case, when advancing line-by-line over

the source code, the execution of two or more atomic blocks may be interleaved,

and the user may observe the effect of this interleaving on the TM system. At

any time, the user can see the state of any active transaction, and inspect the

following attributes:

• The status of the transaction such as valid, invalid, blocked.

• The priority of the transaction.

• How many times the transaction aborted and re-executed.

• The transaction’s read and write set.

• Whether the transaction is irrevocable.

• The ID of the thread executing the transaction.

• The original and the speculative value of a variable.

The debugger must distinguish between original and speculative values in or-

der to support some of its existing features. For example, a user might have a

variable in a watch list that is speculatively updated in a transaction. The un-

derlying value of this variable will not change in TM systems with lazy versioning

(i.e., which buffer updates until commit). In such cases, the debugger must mon-

itor transactional writes to check if this variable is updated by a transaction and

display its most current value. Herlihy and Lev [59] make a more detailed analysis

of this problem and discusses the changes for the current debuggers in order to

support it.

By combining these primitive queries, we have also implemented richer op-

erations to intersect the read or write sets of two or more transactions. This

is intended to help the programmer understand the common data sets between

121

4.5 Debugging at the Level of Transactions

the transactions, and to discover pathological cases that prevent transactions to

progress and hurt the overall application performance.

However, the user would usually prefer not to dive in the world of this compli-

cated debugging which requires knowledge about the workings of the underlying

TM implementation until a specific event happens such as a transition from a

valid to an invalid state due to a conflict. We discuss transaction events in more

detail in the next section.

4.5.1 Transaction Events

Our debugger extension can monitor transaction events that relate to changes in

the status of the transaction and its read and write sets. The events that users

can monitor are:

• Transaction start.

• Transaction commit.

• Transaction abort.

• New read or write set entry.

A user can set a watchpoint on any of these events. When the watchpoint is

triggered, the debugger breaks and provides contextual information such as the

event thread, the conflicting transactions, the conflict addresses, or the entry

being added into the read or write set. To avoid interrupting the target process

at uninteresting places, the user can also introduce filters for these events so that

the event is triggered—for example, only if the conflict happens on a specific

atomic block(s).

To be able to catch the transaction events as they happen, we define stub

functions in TmTargetDbg for each of these events. The stubs are called by the

STM library when the event happens. To break on an event, TmDbgExt places a

internal breakpoint on the entry to the relevant stub. Also, to filter out irrelevant

events, TmDbgExt can modify a filter mask variable defined in TmTargetDbg (see

Figure 4.5). Depending on the filter criteria the STM library decides whether or

122

4.6 Debug-Time Transaction Management

Figure 4.5: Filtering uninteresting events. The debugger extension sets filter

mask for thread id 2 and instruction address to monitor for conflicts. When

conflict happens the STM checks the masks and if they are true calls the function

EventOnConflict which is set a breakpoint.

not to call the corresponding event function. We enable these tests only when

compiling in debug mode.

4.6 Debug-Time Transaction Management

Our final set of debugger extension features allow the user to manage the trans-

actions under the control of the debugger. At the level of atomic blocks, the

user can create debug-time transactions or split atomic blocks. These features

are intended for investigating errors in the source code, and trying to patch the

errors without modifying and recompiling the source code (e.g., when testing out

a hypothesis for what is causing a race condition).

Although it might be error prone, drawing analogy from current debuggers’

functionality that allow users to modify the program aspects by changing the

values of variables in memory or processor registers, we were motivated to imple-

ment operations that the user might use to change the state of the transactions

123

Chapter4/Figures/EPS/filter_masks.eps

4.6 Debug-Time Transaction Management

such as by adding or removing entries into the transaction’s read and write set

when debugging at the level of transactions.

4.6.1 Debug-Time Transactions

A debug-time transaction is a new debugger abstraction that helps for the cor-

rectness debugging of transactional applications. While debugging, a user may

notice that atomic blocks are missing in certain places or that atomic blocks

could be reduced in size. Figure 4.6 has a contrived example (line 26) where a

data race occurs because an atomic block is too small. Figure 4.7 has an example

where, instead of defining one large atomic block, the program uses two smaller

blocks. In such cases, the user can create a debug-time transaction or enlarge the

scope of an existing atomic block by marking the boundaries of the new atomic

block on the source code. Thereafter, the debugger ensures that the debug-time

transactions are executed atomically, as if regular atomic blocks, but without

exiting the debug process to change and recompile the source code.

In Figure 4.8 we show a difficult to find atomicity violation example that

we discovered in the QuakeTM [47] source code after a careful inspection. The

error manifested in disconnecting the clients from the game session due to bad

formatted messages. We checked the functions such as WriteMulticast which

build these client messages and their definitions were all correctly synchronized.

To see how the execution changes, we randomly created and removed temporary

atomic blocks or coarsened existing ones. Due to the nondeterministic nature

of the error, it took us quite long time to constrain the problematic location

to the code that interprets Quake extension functions implemented in Quake C

and compiled to intermediate representation. If we were able to create, remove

and resize atomic blocks while debugging, we would find the problematic location

easier. In this case we would save a lot of time from changing and recompiling the

source code and trying to reproduce the error by re-establishing the client-server

game session.

Later, by reverse engineering the Quake extension functions interpreted inside

this problematic code, we noticed that there is one function (FireAxe) which calls

124

4.6 Debug-Time Transaction Management

1: static public void Main(string[] args) {

2: Thread t1 = new Thread(ThreadEntryIncrement);

3: Thread t2 = new Thread(ThreadEntryDecrement);

4:

5: t1.Start();

6: t2.Start();

7: }

8:

9: static void ThreadEntryIncrement() {

10: int temp = 0;

11:

12: atomic {

13: temp = counter;

14: temp++;

15: counter = temp;

16: }

17: }

18:

19: static void ThreadEntryDecrement() {

20: int temp = 0;

21:

22: atomic {

23: temp = counter;

24: temp--;

25: }

26: counter = temp;

27: }

Figure 4.6: An example where the atomic block in lines 22-25 is shorter and line

26 must be included in the atomic block.

initially a = b = 0;

.

Thread 1 Thread 2

.

1: atomic{

2: a++;

3: } atomic {

4: a++;

5: atomic{ }

6: b--;

7: assert(a + b == 0);

8: }

Figure 4.7: An example of incorrectly splitting a critical section in two smaller

atomic blocks. The shown interleaving between thread 1 and thread 2 will result

in violating the invariant that a+b=0.

125

4.6 Debug-Time Transaction Management

// Correctly synchronized function

void

WriteMulticast(message) {

atomic {

<update message buffer>;

}

}

.

Thread 1 Thread 2

1: void FireAxe(){

2: WriteMulticast(msg_part1);

3: WriteCoordinate(coord);

4: WriteMulticast(msg_part2);

5: }

Figure 4.8: A difficult-to-discover atomicity violation from QuakeTM code. In

a serial execution, the two calls to WriteMulticast function would be executed

one after other and the two parts of the multicast message would be next to each

other. To properly synchronize this is necessary to call FireAxe method inside

an atomic block.

the function WriteMulticast several times to build the individual parts of a mul-

ticast message. This pattern of use is similar to calling printf to print multiple

lines on the console. In a serial execution, these functions would execute one

after the other and build a correct message. But in multi-threaded execution,

although each WriteMulticast function is correctly synchronized a possible in-

terleaving with another thread, like the one shown in the Figure 4.8, would result

in a malformed packet.

The implementation of debug-time transactions, relies on the availability of

irrevocable transactions in the STM library. When the user marks the start

and the end of the transaction TmDbgExt gets the addresses of the statements

using the debugger engine and puts internal breakpoints (see Section 4.3.3) at

these places—one denoting the start and other denoting the end of the transac-

tion. And when the start or end breakpoint is hit, TmDbgExt calls respectively

the StartIrrevocableTransaction or CommitIrrevocableTransaction func-

tion from TmTargetDbg by following the method described in Section 4.3.2.

There is one more subtlety of calling function StartIrrevocableTransaction.

126

Chapter4/Figures/EPS/quake_atomicity_violation.eps

4.6 Debug-Time Transaction Management

Figure 4.9: Splitting a transaction. TmDbgExt puts a internal breakpoint

(IntBpt) denoting the place where the transaction is to be split. When the break-

point is hit the debugger transparently calls a function SplitTransaction in the

target process, creating the effect of committing a transaction and initiating a

new one.

This method manipulates locks within the STM library and must synchronize

with other threads (e.g., if they are also trying to start irrevocable transac-

tions). Consequently, if we call this method by resuming only one thread in

the target process and keep the other threads blocked may cause deadlock.

Therefore, in this case we resume all target-process threads until the call to

StartIrrevocableTransaction is complete.

4.6.2 Splitting Atomic Blocks

To split a large atomic block into two smaller ones, we provide the user with

two alternatives. In the first alternative, while stepping inside an atomic block,

the user can split the transaction for one time only at the place where the next

statement is to be executed. In the second alternative, the user marks at which

statement to split the transaction (see Figure 4.9). In the former case follow-

ing the method for calling functions in the target process, described in Sec-

tion 4.3.2, we call the SplitTransaction function from TmTargetDbg. In the

latter case, TmDbgExt creates a internal breakpoint on the location where the

transaction is to be split. Whenever any breakpoint is hit, TmDbgExt checks

if it is used to split an atomic block and if so, the debugger transparently calls

the SplitTransaction function and continues the execution without breaking

into the debugger. In effect, function SplitTransaction commits the current

transaction and then immediately initiates a new transaction.

127

Chapter4/Figures/EPS/split_transaction.eps

4.7 Summary

One subtlety inherent to our STM implementation that should be considered

implementing this feature is where the split point is introduced. The user should

be disallowed to split atomic blocks in functions that are not defining the out-

ermost transaction. In this situation, the second part of the transaction (e.g.,

lines 4-6) may not be able to roll back to an interior point (the place where the

transaction was split) because the function stack is torn down.

We believe that users who want to optimize their transactional applications

by decreasing the size of the coarse grain atomic blocks would greatly benefit

from this feature. For example, at debug-time users can split the large atomic

blocks and see how this affects the correctness and the runtime performance.

4.6.3 Modifying Transactional State

TmDbgExt implements user commands to directly modify the state of the trans-

action by changing any of its attributes and also adding or removing an entry into

the transaction’s read and write set while debugging at the level of transactions

(see Section 4.5). All these operations may cause an incorrect execution of the

application and it is the user’s responsibility to use them reasonably. Adding an

entry into the read or write set of a transaction may cause the transaction to

become invalid and abort. The debugger extension detects such cases and warns

the user by requesting to confirm the action. These operations are implemented

by calling the respective functions from Table 4.1 which modify the STM state.

4.7 Summary

This chapter presented three different debugging approaches for transactional

applications. Debugging at the level of atomic blocks provides users the same

experience across different underlying implementation mechanism. The debugger

is extended to reflect the atomicity and isolation properties of atomic blocks and

this makes it easier to debug synchronization problems across different atomic

blocks and incorrect code within atomic blocks. Debugging at the level of trans-

actions assumes that the underlying implementation of atomic blocks is TM and

exposes their typical attributes such as read and write set. Debugging by following

128

4.7 Summary

this approach is useful to discover pathological cases that have negative impact

on the overall runtime performance. We introduced mechanisms for adding and

removing atomic blocks under the control of the debugger which would make

debugging synchronization problems such as atomicity violations easier. In our

implementation of these features, we followed a general decoupled approach that

can be applied to any debugger and TM system. The extensions that we made

on the underlying STM system add marginal overhead and low probe effect.

129

Chapter 5

Profiling

Chapter 3 made conclusions that it is easier to write programs using transactional

memory (TM). However, if a program is to perform well, then the program-

mer needs to understand which transactions are likely to conflict and to adapt

their program to minimize this [18]. Several studies report that the initial ver-

sions of transactional applications can have very high abort rates [42; 92; 100]—

anecdotally, programmers tend to focus on the correctness of the application by

defining large transactions without appreciating the performance impact.

Various ad hoc techniques have been developed to investigate performance

problems caused by TM. These techniques are typically based on adding special

kinds of debugging code which execute non-transactionally, even when they are

called from inside a transaction. This non-transactional debugging allows a pro-

gram to record statistics about, for example, the number of times that a given

transaction is attempted.

This chapter describes a series of methodical profiling techniques which aim

to provide a way for a programmer to examine and correct performance problems

of transactional applications. We focus, in particular, on performance problems

caused by conflicts between transactions: conflicts are a problem for all TM

systems, irrespective of whether the TM is implemented in hardware or software,

or exactly which conflict detection mechanisms it uses.

In this work we follow two main principles. First, we want to report all results

to the programmer in terms of constructs present in the source code (e.g., if an

object X in the heap is subject to a conflict, then we should describe X in a way

130

that is meaningful to the programmer, rather than simply reporting the object’s

address). Second, we want to keep the probe effect of using the profiler as low as

we can: we do not want to introduce or mask conflicts by enabling or disabling

profiling.

We identify three main techniques for profiling TM applications. The first

technique identifies multiple conflicts from a single program run and associates

each conflict with contextual information. The contextual information is neces-

sary to relate the wasted work to parts of the program as well as constructing the

winner and victim relationship between the transactions. The second technique

identifies the data structures involved in conflicts, and it associates the contended

objects with the different places where conflicting accesses occur. The third tech-

nique visualizes the progress of transactions and summarizes which transactions

conflict most. This is particularly useful when first trying to understand a trans-

actional workload and to identify the bottlenecks that are present.

Our profiling framework is based on the Bartok-STM system [55]. Bartok is

an ahead-of-time C# compiler which has language-level support for TM. Where

possible, the implementation of our profiling techniques aims to combine work

with the operation of the C# garbage collector (GC). This helps us reduce the

probe effect because the GC already involves synchronization between program

threads, and drastically affects the contents of the processors’ caches; it therefore

masks the additional work added by the profiler. Although we focus on Bartok-

STM, we hope that the data collected during profiling is readily available in other

TM systems.

This chapter continues in Section 5.1 with a discussion on the problems which

motivated the study on the profiling techniques for transactional applications.

Section 5.2 surveys the state of the art in the area and relates this work to the

others. Section 5.3 introduces the profiling techniques. Section 5.4 describes the

design and implementation of the profiling framework and evaluates its overhead

and probe effect. Section 5.5 summarizes this chapter.

131

5.1 Motivation

5.1 Motivation

The primary motivation for this work was the experience of building Atomic-

Quake. Despite the existing experiments which reported reasonable TM over-

head, AtomicQuake had high single threaded overhead ranging between 4 and 5

times slowdown over the base non-TM version. It was very difficult and even pos-

sible to understand what are the exact reasons the high overhead. There were two

reasons of making AtomicQuake difficult to profile. First, the STM runtime did

not provide profiling at the sufficient level of detail to draw complete conclusions.

Second, the environment we used (i.e. the prototype version of Intel C/C++

with STM support) were closed source and we did not have clear understanding

about its low level operation.

The conclusion after encountering these these problems was that programmers

need:

1. systematic way of obtaining profiling information from the underlying TM

(i.e. profiling framework);

2. profiling results which are reported in a form independent from the under-

lying TM implementation; and

3. profiling results give comprehensive information about the TM related bot-

tlenecks – i.e. where, when and why conflicts happen.

Later studies also supported these findings. Pankratius [92] and Rossbach [100]

report that very first versions of TM programs perform poor because programmers

tend to use large atomic blocks because they focus on the correct implementation

of the synchronization and ignore the performance.

These problems are explored and addressed with the work described in this

chapter.

5.2 Related Work

Chafi et al. developed the Transactional Application Profiling Environment

(TAPE) which is a profiling framework for HTMs [23]. The raw results that

132

5.2 Related Work

TAPE produces can be used as input for the profiling techniques that we have

proposed. This would enable profiling transactional applications that execute on

HTMs or HyTMs.

In a similar manner, the Rock processor provides a status register to under-

stand why transactions abort [34] (reflecting conflicts between transactions, and

aborts due to practical limits in the Rock TM system). Examples include trans-

actions being aborted due to a buffer overflow or a cache line eviction. Profiling

applications in this way is complementary to our work which will allow users to

further optimize their code for certain TM system implementations.

Concurrent with our own work, Chakrabarti [25] introduced dynamic conflict

graphs (DCG). A coarse grain DCG represents the abort relationship between

the atomic blocks similar to aborts graph (see Figure 5.7). A fine grain DCG

represents the conflict relationship between the conflicting memory references.

To identify the conflicting memory references, Chakrabarti proposed a technique

similar to basic conflict point discovery (which is described in this chapter). Our

new extensions over basic conflict point discovery (Section 5.3.2) would generate

more complete DCGs. The more detailed fine grain DCGs would complement

the profiling information by linking the symptoms of lost performance to the

reasons at finer statement granularity. In addition, identifying conflicting objects

is another feature which relates the different program statements where conflicts

happen with the same object and vice versa.

Independently from us, Lourenço et al. [76] have developed a tool for visual-

izing transactions similar to the transaction visualizer that we describe in Sec-

tion 5.3.5. They also summarize the common transactional characteristics that

are reported in the existing literature such as abort rate, read and write set, etc.

over the whole program execution. Our work complements theirs by reporting

results in source language such as variable names instead of machine addresses.

Also, we provide local summary which is helpful for examining the performance

of specific part of the program execution.

Sonmez et al. [111] have profiled Haskell-STM applications using per-atomic

block statistics. We extend this work by providing mechanisms to obtain statis-

tics at various granularity, including per-transaction, per-atomic block, local and

133

5.3 Profiling Techniques

global summary. In addition, our statistics include contextual information com-

prising the function call stack which is displayed via the top-down and bottom-up

views. The contextual information helps relating the conflicts to the many con-

trol flows in large applications where atomic blocks can be executed from various

functions and where atomic blocks include library calls.

In this earlier work, we also explored the common statistical data used in

the research literature to describe the transactional characteristics of the TM

applications: time spent in transactions, read set, write set, abort rate, etc. In

addition we generate a histogram about how much of the transactions’ execution

interleave. This information is particularly useful to see the amount of parallelism

in the program and find cases when a program does not abort but also does not

scale.

5.3 Profiling Techniques

As with any other application, factors such as compiler optimizations, the oper-

ating system, memory manager, cache size, etc. will effect on the performance

of programs using TM. However in addition to these factors, performance of

transactional applications also depends on 1) the performance of the TM system

itself (e.g., the efficiency of the data structures that the TM uses for managing

the transactions’ read-sets and write-sets), and 2) the way in which the program

is using transactions (e.g., whether or not there are frequent conflicts between

concurrent transactions).

Figure 5.1 provides a contrived example to illustrate the difference between

TM-implementation problems and program-specific problems. The code in the

example executes transactional tasks (line 4) and, depending on the task’s result,

it updates elements of the array x. This code would execute slowly in TM systems

using näıve implementations of lazy version management: every iteration of the

for loop would require the TM system to search its write set for the current

value of variable taskResult (lines 6 and 8). This would be an example of a

TM-implementation problem (and, of course, many implementations exist that

support lazy version management without näıve searching [56]). On the other

hand, if the programmer had placed the while loop inside the atomic block, then

134

5.3 Profiling Techniques

the program’s abort rate would increase regardless of the TM implementation.

This would be an example of a program-specific problem.

This research focuses on this second kind of problem. The rationale behind

this is that reducing conflicts is useful no matter what kind of TM implementation

is in use; optimizing the program for a specific TM implementation may give

additional performance benefits on that system, but the program might no longer

perform as well on other TM systems.

In this section we describe our profiling techniques for transactional memory

applications. These profiling techniques operate on typical TM data and are not

restricted to our profiling framework only. Therefore, the ideas described here are

also applicable for other STMs and HTMs. We follow two main principles. First,

we report the results at the source code language such as variable names instead

of memory addresses or source lines instead of instruction addresses. Results

presented in terms of structures in the source code are more meaningful as they

convey semantic information relevant to the problem and the algorithm. Second,

we want to reduce the probe effect introduced by profiling, and to present results

that reflect the program characteristics and are independent from the underlying

TM system. For this purpose, we exclude the operation time of the TM system

(e.g. roll-back time) from the reported results.

5.3.1 Basic Conflict Point Discovery

Conflict point discovery is a technique to identify the statement where a trans-

action is detected to be invalid and consequently aborted. Results from conflict

point discovery are reported in source code level (see Figure 5.2) and includes

information how many times a given statement has been involved in a conflict.

We support conflict point discovery by using further “stub” functions to pro-

vide abstraction over the underlying STM library. These stubs are called when

the STM library does book-keeping work. In effect, this automates the reach point

technique we used in earlier work [42], by removing the need for manual instru-

mentation of code. We experimented with an alternative implementation that

operates entirely on the debugger side, but the overhead of additional internal

breakpoints was prohibitively high.

135

5.3 Profiling Techniques

int taskResult = 0;

.

1: while (!taskQueue.IsEmpty) {

2: atomic {

3: Task task = taskQueue.Pop();

4: taskResult = task.Execute();

5: for (int i < 0; i < n; i++) {

6: if (x[i] < taskResult) {

7: x[i]++;

8: } else if (x[i] > taskResult) {

9: x[i]--;

10: }

11: }

12: }

13: }

Figure 5.1: An example loop that atomically executes a task and updates array

elements based on the task’s result. The repeated use of taskResult value at

lines 6 and 8 would expose the TM specific overheads between lazy versioning

(i.e. buffered updates) and eager versioning (i.e. in-place updates) TMs. Lazy

versioning TMs would execute this code fragment slower because the TM would

need to obtain the most recent value of taskResult by searching in the write

buffer. On the other side, this code would have a program specific bottleneck if

the programmer had conservatively put the whole while loop inside the atomic

block.

File:Line #Conf. Method Line

Hashtable.cs:51 152 Add if (_container[hashCode] ...

Hashtable.cs:48 62 Add uint hashCode = HashSdbm ...

Hashtable.cs:53 5 Add _container[hashCode] = n ...

Hashtable.cs:83 5 Add while (entry != null)

ArrayList.cs:79 3 Contains for (int i = 0; i < cont ...

ArrayList.cs:52 1 Add if (count == capacity - 1)

Figure 5.2: Example output generated by conflict point discovery for the C#

version of Genome application.

136

5.3 Profiling Techniques

Figure 5.3: This figure shows how we identify the locations in the source code

where conflicts happen. We modified the read and write barriers in the STM

library to log their return address in the user code. When conflict is detected,

we record the return address associated with the conflicting memory access in

Conflicts Table and increment the conflict counter. At the end of the execution,

using the debugger engine (DbgEng) we translate the addresses into source lines.

In Bartok-STM, conflicts can be detected in the write barriers, intermediate

validations of the read set and the commit method (which also validates the read

set). In the stubs we add to read and write barriers, we log the return address of

the STM operation, along with the address of the memory location being accessed

(see Figure 5.3). The return address of these functions is the place in the user

code where the actual access to the memory is done. If the STM library detects a

conflict while handling any of these methods we record the return address together

with the origin of the conflict—whether caused by read or write. If the address

is already recorded, then we increment a conflict counter associated with it.

Next section describes extensions over this basic conflict point discovery which

assign additional context to help identify the hot control flow which causes most

conflicts.

137

Chapter5/Figures/EPS/conflict_point_discovery.eps

5.3 Profiling Techniques

increment() { probability80() { probability20() {

counter++;

} probability = random() % 100; probability = random() % 100;

if (probability < 80) if (probability >= 80) {

atomic { atomic {

increment(); increment();

} }

... ...

} }

.

Thread 1 Thread 2

.

for (int i < 0; i < 100; i++) { for (int i < 0; i < 100; i++) {

probability80(); probability80();

probability20(); Probability20();

} }

Figure 5.4: In this example code two threads call functions which increment

a shared counter with different probability. Basic conflict point discovery will

only report that all conflicts happen in function increment. However without

knowing which function calls increment most the user cannot find and optimize

the critical path. In this example the critical path would be probability80 –

increment.

138

5.3 Profiling Techniques

5.3.2 Advanced Conflict Point Discovery

The previous section introduced a “conflict point discovery” technique that iden-

tifies the first program statements involved in a conflict. However, after using

this technique to profile applications from STAMP, we identified two limitations:

1) it does not provide enough contextual information about the conflicts and 2)

it accounts only for the first conflict that is found because one or other of the

transactions involved is then rolled back.

In small applications and micro-benchmarks most of the execution occurs in

one function, or even in just a few lines. For such applications, identifying the

statements involved in conflicts would be sufficient to find and understand the TM

bottlenecks. However, in larger applications with more complicated control flow,

the lack of contextual information means that basic conflict point discovery would

only highlight the symptoms of a performance problem without illuminating the

underlying causes.

For example, in Figure 5.4 the two functions probability80 and probability20

atomically increment a shared counter by calling the function increment with

a probability of 80% and 20%. When probability80 and probability20 are

called in a loop by two different threads, basic conflict point discovery will report

that all conflicts happen inside the function increment. But this information

alone is not sufficient to reduce conflicts because the user would need to distin-

guish between the different stack back-traces that the conflicts are part of. In this

case, the calls involving probability80 should be identified as more problem-

atic than those going through probability20. Similarly, for other transactional

applications, the reasons for the poor performance would most likely be for us-

ing, for example, inefficient parallel algorithms, using unnecessarily large atomic

blocks, or using inappropriate data structures which allow low degrees of concur-

rent usage.

The second disadvantage of basic conflict point discovery is that it only iden-

tifies the first conflict that a transaction encounters. It is possible that two trans-

actions might conflict on a series of memory locations and so, if we account for

only the first conflict, the profiling results will be incomplete. As a consequence,

the user will not be able to properly optimize the application and most likely will

139

5.3 Profiling Techniques

// Thread 1 // Thread 2

1: atomic { atomic {

2: obj1.x = t1; ...

3: obj2.x = t2; ...

4: obj3.x = t3; ...

5: ... obj1.x = t1;

6: ... obj2.x = t2;

7: ... obj3.x = t3;

8: } }

Figure 5.5: Basic conflict point discovery would only display the first statements

where conflicts happen. On the given examples these statements are line 2 for

Thread 1 and line 5 for Thread 2. However, the remaining statements are also

conflicting and most likely revealed on the subsequent profiles.

need to repeat the profiling several times until all the omitted conflicts are re-

vealed. The programmer can end up needing to “chase” a conflict down through

their code, needing repeated profile-edit-compile steps. Figure 5.5 provides an

example: basic conflict point discovery would only identify the conflicts on obj1

(line 2 for Thread 1 and line 5 for Thread 2). However, the remaining statements

are also conflicting and most likely will be revealed by subsequent profiles once

the user has eliminated the initial conflicting statements.

We address the described limitations namely by providing contextual infor-

mation about the conflicts and accounting for all conflicting memory accesses

within aborted transactions.

The contextual information comprises the atomic block where the conflict

happens and the call stack at the moment when the conflict happens. It is

displayed via two views: top-down and bottom-up (Figure 5.6). In both cases,

each node in the tree refers to a function in the source code. However, in the top-

down view, a node’s path to the root indicates the call-stack when the function

was invoked, and a node’s children indicate the other functions that it calls. The

leaf nodes indicate the functions where conflicts happen. Consequently, a function

called from multiple places will have multiple parent nodes. Conversely, in the

bottom-up view, a root node indicates a function where a conflict happens and

its children nodes indicate its caller functions. Consequently, a function called

from multiple places will have multiple child nodes. Furthermore, to help the

140

5.3 Profiling Techniques

Figure 5.6: On the left is top-down tree view and on the right bottom-up

tree view obtained from the 4-threaded execution of non-optimized Intruder

application. The top-down view (left) shows that almost 100% (82.6%+17.4%

summed from the two trees) of the total wasted work is accumulated at func-

tion ProcessPackets. The bottom-up view (right) shows that 64.5% of the total

wasted work is attributed to function ProcessPackets, and 27.2% to function

Queue.Push which is called from ProcessPackets and the rest to other functions.

The non-translated addresses are internal library calls. Because of different exe-

cution paths that follow from the main program thread and the worker threads

the top-down view draws 2 trees instead of 1.

141

Chapter5/Figures/EPS/abort_tree.eps

5.3 Profiling Techniques

programmer find the most time-consuming stack traces in the program, each node

includes a count of the fraction of wasted work that the node (and its children)

are responsible for.

To find all conflicting objects in an aborting transaction, we simply continue

checking the remaining read set entries for conflicts. In the rare case, when the

other transactions that are involved in a conflict are still running, we force them to

abort and re-execute each transaction serially. This way we collect the complete

read and write sets of the conflicting transactions. By intersecting the read and

write sets, we obtain the potentially conflicting objects. Unlike basic conflict

point discovery, our approach will report that all statements in the code fragment

from Figure 5.5 are conflicts. Our profiling tool displays the relevant information

about the conflicting statements and conflicting objects in the bottom-up view

(Figure 5.6) and the per-object view respectively (Figure 5.8).

Besides identifying conflicting locations, it is important to determine which of

them have the greatest impact on the program’s performance. The next section

introduces the performance metrics which we use to do this, along with how we

compute them.

5.3.3 Quantifying the Importance of Aborts

The profiling results should draw the user’s attention to the atomic blocks whose

aborts cause the most significant performance impact. As in basic conflict point

discovery, a näıve approach to quantify the effect of aborted transactions would

only count how many times a given atomic block has aborted. In this case

results will wrongly suggest that a small atomic block which only increments

a shared counter and aborts 10 times is more important than a large atomic

block which performs many complicated computations but aborts 9 times. To

properly distinguish between such atomic blocks we have used different metric

called WastedWork. WastedWork counts the time spent in speculative execution

which is discarded on abort.

Besides quantifying the amount of lost performance, it is equally important

that the profiling results surface the possible reasons for the aborts. For exam-

ple, the Bayes application has 15 separate atomic blocks, one of which aborts

142

5.3 Profiling Techniques

Figure 5.7: Example aborts graph from the execution of Bayes application. In

this graph, 46% of the total wasted work in the program is when AB10 aborts

AB12

much more frequently than the others (FindBestInsertTask). The Wasted-

Work metric will tell us at which atomic block the performance is lost, but to

reduce the number of aborts the user will also need to find the atomic blocks

which cause FindBestInsertTask to abort. To mitigate this, we have introduced

an additional metric ConflictWin. ConflictWin counts how many times a given

transaction wins a conflict with respect to another transaction which aborts.

Using the information from the WastedWork and ConflictWin metrics, we

construct the aborts graph; we depict this graphically in Figure 5.7, although

our current tool presents the results as a matrix. The aborts graph summarizes

the commit-abort relationship between pairs of atomic blocks; it is similar to

Chakrabarti’s dynamic conflict graphs [25] in helping linking the symptoms of

lost performance to their likely causes.

5.3.4 Identifying Conflicting Data Structures

Atomic blocks abstract the complexity of developing multi-threaded applications.

When using atomic blocks, the programmer needs to identify the atomicity in

the program whereas using locks the programmer should identify the shared data

structures and implement atomicity for the operations that manipulate them.

143

Chapter5/Figures/EPS/aborts_graph_bayes2.eps

5.3 Profiling Techniques

However, based on our experience using atomic blocks, it is difficult to achieve

good performance without understanding the details of the data structures in-

volved [42; 135].

If the programmer wants transactional applications to have good performance

it is necessary to know the shared data structures and the operations applied to

them. In this case the programmer can use atomic blocks in an optimal way

by trying to keep their scope as small as possible. For example, as long as the

program correctness is preserved, the programmer should use two smaller atomic

blocks instead of one large atomic block or as in Figure 5.1 put the atomic block

inside the while loop instead of outside. An existing work illustrated examples

where smaller atomic blocks aborted less frequently and incurred less wasted

work when they did abort [42; 67; 93].

In addition, the underlying TM system may support language-level primi-

tives to tune performance, or provide an API that the programmer can use to

give hints about the shared data structures. For example, Yoo et al. [130] used

the tm waiver keyword [89] to instruct the compiler to not instrument thread-

private data structures with special calls to the STM library. In Haskell-STM [52]

the user must explicitly identify which variables are transactional. To reduce the

overhead of privatization safety, Spear et al. [114] have proposed that the pro-

grammer should explicitly tell which transactions privatize data [113]. We believe

that profiling results can help programmers use these techniques by describing

the shared data-structures used by transactions, and how conflicts occur when

accessing them.

In small workloads which in total have few data structures, the results from

conflict point discovery (Section 5.3.1) would be sufficient to identify the shared

data structures. For example, in the STAMP applications, there are usually only

a small number of distinct data structures, and it is immediately clear which

transaction is accessing which data.

However, in larger applications, data structures can be more complex, and can

also be created and destroyed dynamically. To handle this kind of workload, our

prototype tool provides a tree view that displays the contended objects along with

the places where they are the subject of conflicts (Figure 5.8). In the example,

144

5.3 Profiling Techniques

Figure 5.8: Per-object bottom-up abort tree. This view shows the contended

objects and the different locations within the program where they have been

involved in conflicts. Results shown are obtained from the 4 threaded execution

of non-optimized Intruder application. For example, object fragmentedMapPtr

has been involved in conflict at 5 different places - 3 in function ProcessPackets,

1 in Delete and 1 in Insert. Each object is also cumulatively assigned wasted

work. Non-translated addresses are internal library calls.

145

Chapter5/Figures/EPS/per_object_abort_tree.eps

5.3 Profiling Techniques

Figure 5.9: This figure demonstrates our method of identifying conflicting objects

on the heap. The code fragment on the left creates a linked list with 4 elements.

When the TM system detects a conflict in the atomic block, it logs the address

of the contended object. During GC, the conflicting address is traced back to the

GC root which is the list node. Then the memory allocator is queried at which

instruction the memory at address ”0x08” was allocated. At the end, by using

the debugger engine the instruction is translated to a source line.

the object fragmentedMapPtr has been involved in conflicts at 5 different places

which have also been called from different functions.

In our profiling framework we have developed an effective and low-overhead

method for identifying the conflicting data structures, both static and dynamic. It

is straightforward to identify static data structures such as global shared counters:

it is sufficient to translate the memory address of the data structure back to a

variable. However, it is more difficult when handling dynamically-allocated data

structures such as an internal node of a linked list; the node’s current address in

memory is unlikely to be meaningful to the programmer.

For instance, suppose that the atomic block in Figure 5.9 conflicts while

executing list[2]=33 (assigning a new value to the third element in a linked

list). To describe the resulting conflict to the programmer, we find a path of

references to the internal list node from an address that is mapped to a symbol.

This approach is similar to the way in which the garbage collector (GC) finds

non-garbage objects. Indeed, in our environment, we map the conflicting objects

to symbols by finding the GC roots that they are reachable from. If the GC root is

a static object then we can immediately translate the address to a variable name.

If the GC root is dynamically created, we use the memory allocator to find the

instruction at which GC root was allocated and translate the instruction to a

source line. To do this, we extended the memory allocator to record allocation

146

Chapter5/Figures/EPS/identifying_conflicting_objects_method.eps

5.3 Profiling Techniques

Figure 5.10: The transaction visualizer plots the execution of Genome with 4

threads. Successfully committed transactions are colored in black and aborted

transactions are colored in gray. From this view, we can easily distinguish the

different phases of the program execution such as regions with high aborts. By

selecting different regions in this view, our tool summarize the profiling data only

for the selected part of the execution. To increase the readability of the data, we

have redrawn this figure based on a real execution.

locations.

5.3.5 Visualizing Transaction Execution

The next aspect of our profiling system is a tool that plots a time line of the

execution of all the transactions by the different threads (Figure 5.10). In the view

pane the transactions start from the left and progress to the right. Successfully

committed transactions are colored black and aborted transactions are colored

gray. The places where a color is missing means that no transaction has been

running. The view in Figure 5.10 plots the execution of the Genome application

from STAMP. From this view we can easily identify the phases where aborts

are most frequent. In this case, most aborts occur during the first phase of

the application when repeated gene segments are filtered by inserting them in a

hashtable and during the last phase when building the gene sequence.

The transaction visualizer provides a high-level view of the performance. It

is particularly useful at the first stage of the performance analysis when the user

identifies the hypothetical bottlenecks and then analyzes each hypothesis thor-

oughly. Another important application of the transaction visualizer is to identify

different phases of the program execution (e.g., regions with heavily aborting

147

Chapter5/Figures/EPS/transactoin_visulizer_genome.eps

5.3 Profiling Techniques

transactions).

To obtain information at a finer or coarser granularity, the user can respec-

tively zoom in or zoom out. Clicking at a particular point on the black or gray

line displays relevant information about the specific transaction that is under the

cursor. The information includes: read set size, write set size, atomic block id,

and if the transaction is gray (i.e., aborted) it displays information about the

abort. By selecting a specific region within the view pane, the tool automatically

generates and displays summarized statistics only for the selected region.

Existing profilers for transactional applications operate at a fixed granular-

ity [9; 23; 93; 111]. They either summarize the results for the whole execution

of the program or display results for the individual execution of atomic blocks.

Neither of these approaches can identify which part of a program’s execution in-

volves the greatest amount of wasted work. But looking at Figure 5.10 we can

easily tell that in Genome transactions abort at the beginning and the end of the

program execution.

The statistical information summarized for the complete program execution

is too coarse and hides phased executions, whereas per-transaction information

is too fine grain and misses conclusive information for the local performance.

Obtaining local performance summary is important for optimizing transactional

applications because we can focus on the bottlenecks on the critical path and

then effectively apply Amdhal’s law.

By using the transaction visualizer, the programmer can easily obtain a local

performance summary for the profiled application by marking the region that

(s)he is interested in. This will automatically generate summary information

about the conflicts, transaction read and write set sizes, and other TM charac-

teristics, but only for the selected region. The local performance summary from

Figure 5.10 shows that aborts at the beginning of the program execution happen

only in the first atomic block and aborts at the end of the program execution

happen at the last atomic block in program order.

The global performance summary that our tool generates includes most of

the statistics that are already used in the research literature. These are total

and averaged results for transaction aborts, read and write set sizes, etc. In

addition we build a histogram about the time two or more transactions were

148

5.4 Profiling Framework

executing concurrently. This histogram is particularly useful when diagnosing

lack of concurrency in the program. For example, it is possible that a program

has very low wasted work but it still does not scale because transactions do not

execute concurrently.

5.4 Profiling Framework

We have implemented our profiling framework for the Bartok-STM system [55].

Bartok-STM updates memory locations in-place by logging the original value

for rollback in case a conflict occurs. It detects conflicts at object granularity,

eagerly for write operations and lazily for read operations. The data collected

during profiling is typical of many other TM systems, of course.

The main design principle that we followed when building our profiling frame-

work was to keep the probe effect and overheads as low as possible. We sample

runtime data only when a transaction starts, commits or aborts. For every trans-

action we log the CPU timestamp counter and the read and write set sizes. For

aborted transactions we also log the address of the conflicting objects, the in-

structions where these objects were accessed, the call stack of aborting thread

and the atomic block id of the transactions that win the conflict. We process the

sampled data offline or during garbage collection.

We have evaluated the probe effect and the overhead of our profiling frame-

work on several applications from STAMP and WormBench (Table 5.1 and Ta-

ble 5.2). To quantify the probe effect, we compared the application’s overall abort

rate when profiling is enabled versus the abort rate when profiling is disabled; a

low probe effect is indicated by similar results in these two settings.

Our results suggest that profiling reduces the abort rate seen, but that it

does not produce qualitative changes such as masking all aborts. These effects

are likely to be due to the additional time spent collecting data reducing the

fraction of a thread’s execution during which it is vulnerable to conflicts. In ad-

dition, logging on abort has the effect of contention reduction because it prevents

transactions from being restarted aggressively.

149

5.4 Profiling Framework

#
T
h
re
ad

s
B
ay
es
+

B
ay
es
-

G
en

+
G
en

-
In
tr
d
+

In
tr
d
r-

L
ab

r+
L
ab

r-
V
ac
+

V
ac
-

W
B
+

W
B
-

2
4.
39

4.
69

0.
09

0.
10

3.
69

3.
51

0.
19

0.
15

0.
80

0.
80

0.
00

0.
00

4
16
.2
9

27
.3
1

0.
29

0.
50

14
.9
0

13
.6
5

0.
35

0.
36

2.
30

2.
45

0.
00

0.
00

8
53
.7
4

66
.0
8

0.
50

0.
82

39
.6
4

37
.4
1

0.
40

0.
47

4.
91

5.
30

0.
02

0.
02

T
ab

le
5.
1:

T
h
e
ab

or
t
ra
te

(i
n
%
)
w
h
en

th
e
p
ro
fi
li
n
g
is

en
ab

le
d
(”
+
”)

an
d
d
is
ab

le
d
(”
-”
).

R
es
u
lt
s
sh
ow

th
at

th
e

p
ro
fi
li
n
g
fr
am

ew
or
k
in
tr
o
d
u
ce
s
sm

al
l
p
ro
b
e
eff

ec
t
b
y
re
d
u
ci
n
g
th
e
ab

or
t
ra
te

fo
r
so
m
e
ap

p
li
ca
ti
on

s.
R
es
u
lt
s
ar
e

av
er
ag
e
of

10
ru
n
s.

R
es
u
lt
s
fo
r
1
ar
e
om

it
te
d
b
ec
au

se
th
er
e
ar
e
n
o
co
n
fl
ic
ts
.

#
T
h
re
ad

s
B
ay
es
+

B
ay
es
-

G
en

+
G
en

-
In
tr
d
+

In
tr
d
r-

L
ab

r+
L
ab

r-
V
ac
+

V
ac
-

W
B
+

W
B
-

1
1.
59

1.
00

1.
28

1.
00

1.
29

1.
00

1.
07

1.
00

1.
26

1.
00

0.
71

1.
00

2
1.
00

0.
56

0.
92

0.
65

0.
97

0.
58

0.
64

0.
61

0.
83

0.
59

0.
60

0.
55

4
0.
23

0.
23

0.
91

0.
50

0.
91

0.
36

0.
45

0.
46

0.
58

0.
40

0.
41

0.
33

8
0.
21

0.
20

0.
72

0.
50

1.
57

0.
38

0.
72

0.
56

0.
53

0.
34

0.
33

0.
22

T
ab

le
5.
2:

N
or
m
al
iz
ed

ex
ec
u
ti
on

ti
m
e
w
it
h
p
ro
fi
li
n
g
en
ab

le
d
(”
+
”)

an
d
p
ro
fi
li
n
g
d
is
ab

le
d
(”
-”
).

R
es
u
lt
s
ar
e
av
er
ag
e

of
10

ru
n
s
an

d
n
or
m
al
iz
ed

to
th
e
si
n
gl
e
th
re
ad

ed
ex
ec
u
ti
on

of
th
e
re
sp
ec
ti
ve

w
or
k
lo
ad

b
u
t
w
it
h
p
ro
fi
li
n
g
d
is
ab

le
d
.

150

5.5 Summary

In applications with large numbers of short-running transactions, overheads

can be higher as costs incurred on entry/exit to transactions are more significant.

Profiling is based on thread-private data collection, and so the profiling framework

is not a bottleneck for the applications’ scalability.

5.5 Summary

This chapter introduced new techniques for profiling transactional applications.

The goal of these profiling techniques is to help programmers find the bottlenecks

specific to the program rather than the bottlenecks specific to the underlying TM

system. To generate more comprehensive results we have extended our previous

work on conflict point discovery. The extensions include metrics such as Wast-

edWork and ConflictWin, assigning context to conflict points, building abort

graphs, visualizing the transactions and identifying conflicting objects and data

structures. We report all results in source code level such as variable names and

statements.

Our profiling framework is based on Bartok-STM. The collected runtime data

is common for the typical TM systems and can be obtained from other STMs and

HTMs. Making the profiling framework less intrusive was one of our main design

principles. Therefore we process the data offline or at runtime during garbage

collection.

To examine the effectiveness of the proposed techniques we have profiled ap-

plications from STAMP TM benchmark suite and WormBench. Based on the

profiling results we could successfully optimize Bayes, Labyrinth and Intruder.

Bayes is an example where programs do not perform as expected when ported

from non-object oriented environment such as C to object oriented environment

such as C# or vice-versa. Labyrinth is an example where the programmer may

give hints to the underlying TM system about the shared data structures and

the operations applied on them. Intruder is an example of a program with poor

performance which can be improved by using data structures with higher degree

of parallelism and restructuring the code to reduce the wasted work.

151

Chapter 6

Optimizations

This chapter describe techniques to be used in a methodical approach for opti-

mizing transactional applications. By applying these techniques the programmer

can optimize the program to a specific TM implementation just like optimizing

a program to a specific micro-architecture.

The optimization techniques are to be used after profiling a TM application

and target performance improvements by reducing transaction abort rate and

consequently wasted work. First, the programmer can try to change the loca-

tion of the most conflicting write operations by moving them up or down within

the scope of the atomic block. Depending on the underlying TM system, these

changes may have significant impact on the overall performance making the ap-

plication to scale well or bad (see Figure 6.14). Second, scheduling mutually con-

flicting atomic blocks to not execute in parallel would reduce the contention but

when overused it may introduce new aborts and also serialize transactions. Third,

checkpointing the transactions just before the most conflicting statements would

reduce the wasted work by re-executing only the invalid part of the transaction.

Forth, using pessimistic reads or treating transactional read operations as if they

are writes can increase the forward progress in long running read-only transac-

tions. Fifth, excluding memory references from conflict detection would increase

the single-threaded performance and decrease aborts substantially. While the

last approach might be very effective, applying it might be rather subtle because

such transformations might not preserve the program correctness.

152

These optimization techniques can be automated through feedback directed

compilation. Existing TM compilers [39; 52; 55; 89] and profilers [25; 76; 137]

(see Section 5.4) can be extended to transparently pass compilation and profiling

hints between each other. Depending on the transactional characteristics of the

applications the compiler can adaptively apply different optimizations and choose

the most suitable one after a certain number of iterations.

We describe how we ported a series of TM programs from C to C#. Initially,

four of these applications did not scale well after porting (Bayes, Labyrinth and

Intruder from the STAMP suite [20]). Profiling revealed that our version of Bayes

had false conflicts due to Bartok-STM’s object-level conflict detection. Another

performance problem in Bayes was the wasted work caused by the aborts of the

longest atomic block which is read-only. The remedy for the former problem was

to modify the involved data structures and the remedy for the latter problem

was to schedule the atomic block to not execute together with the atomic blocks

which cause it to abort. Genome’s performance suffered because of false conflicts

on a congested hashtable. Its performance was brought to level by replacing a

congested open addressing hashtable with a chaining hashtable. Labyrinth did

not scale well because the compiler instrumented calls to the STM library for

all memory accesses inside the program’s atomic blocks. In contrast, the C ver-

sion performed many of these memory accesses without using the STM library.

We were able to achieve good scalability in the C# version by using early re-

lease to exclude the safe memory accesses from conflict detection. The authors

of the STAMP benchmark suite report that Intruder scales well on HTM sys-

tems but does not scale well on some STMs. Indeed, initially, Intruder scaled

badly on Bartok-STM. However, after replacing a contended red-black tree with

a hashtable, and rearranging a series of operations, we achieved scalability com-

parable to that of HTM implementations. We also showed how to reduce wasted

work by using nested atomic blocks. In Intruder, wrapping the most conflict-

ing statements in nested atomic blocks reduces the wasted work from 45.5% to

36.8% (Table 6.5 versions Base and Nested Insert). Finally, we verified that our

modified version of Intruder continued to scale well on other STMs and HTMs.

These results illustrate how achieving scalability across the full range of current

TM implementations can be extremely difficult. Aside from these example, the

153

6.1 Motivation

remaining workloads we studied performed well and we found no further oppor-

tunities for reducing their conflict rates.

This chapter continues in Section 6.1 with the motivation for studying the

optimization strategies and techniques for transactional application. Section 6.2

surveys the various technics used so far to optimize transactional applications.

Section 6.3 introduces the profiling techniques. Section 6.4 discusses how the

compiler can automatically compile the code with applying these optimization

techniques. Section 6.5 demonstrates how we profiled and optimized transactional

applications from the STAMP TM benchmark suite. Section 6.6 summarizes this

chapter.

6.1 Motivation

Atomic blocks and transactions are yet knew programming abstraction and it

is not studied how a programmer should tackle with the performance problems

in programs which use them. Transactions add new types of bottlenecks to the

applications which are specific to the TM programming model. Resolving these

bottlenecks first require knowing where and why they happen and second know-

ing the underlying TM system. One type of the bottlenecks can be at higher

application level. For example, using unnecessarily large atomic block instead

of using two smaller atomic blocks or using data structure with lower degree of

parallelism such as red black tree instead of a hashtable (e.g. for implementing

a lookup table). Another type of bottlenecks can be at lower architectural level

which depend on the implementation of the TM system. Example of such bottle-

necks are false conflicts or how aborts are handled. The common between these

two types of bottlenecks is the wasted work generated by aborting transactions.

Once the nature of the TM bottlenecks in a program is known the programmer

should follow a methodical approach for optimization which have the sole goal of

reducing the wasted work. The work described in this chapter has the objective

to demonstrate set of optimization techniques which can be used in a systematic

way to reduce the wasted work in transactional applications.

154

6.2 Related Work

6.2 Related Work

Adl-Tabatabai et al. [5] and Harris et al. [55] have described and implemented

transactional memory optimizations in compilers with language level support of

software transactional memory. Some of these leverage existing compiler opti-

mizations such as loop transformations or common subexpression elimination on

transactional code. Others are transactional memory specific and target detecting

and eliminating redundant calls to the STM library such as repeated logging of

the same object. For example when the compiler sees that an object is first read

and then updated, then the compiler can skip instrumenting OpenForRead and

instrument only one OpenForWrite call for both operations. This can be seen

as being similar to using pessimistic reads (Section 6.3.4) however pessimistic

reads can be used also for objects that are only read but not updated. Our op-

timization techniques are complementary and can be applied on a code which is

already optimized by the compiler. Unlike automatic compiler optimizations, our

techniques rely on prior profiling information about the program execution and

the underlying TM implementation.

Bronson et al. [19] have used feedback directed compilation to optimize strongly

isolated STM programs. In STMs, to provide strong isolation between trans-

actional and non-transactional code, the non-transactional code should also be

instrumented with calls to the underlying STM library. The compiler reads profil-

ing data and instruments cheaper versions of STM calls for the non-transactional

code that does not conflict but these calls are otherwise more expensive when a

conflict happens. In Section 6.4 we describe how our optimization techniques (ex-

cept early release) can be implemented in a such feedback directed compilation

framework. While Bronson et el.’s optimizations are for the non-transactional

code, ours are for the transactional code. Thus, they can be combined under the

same framework to optimize both the transactional and non-transactional code.

To reduce aborts, Sonmez et al. [112] have interchangeably used pessimistic

and optimistic reads in the Haskell runtime. Whenever an object becomes highly

contended it uses pessimistic reads and whenever the object becomes less con-

tended it switches back to optimistic reads. Identifying conflicting objects at

runtime and switching between optimistic and pessimistic logging comes with

155

6.2 Related Work

additional overhead. Using conflict point discovery, the programmer can easily

identify the always conflicting objects and by using local transactional summaries

the programmer can see when an object is contended and when not. In such cases

the programmer can statically specify whether to open an object for read pes-

simistically and when to switch between pessimistic and optimistic reads. Static

decisions can be used to exclude objects from dynamic decisions. This would

reduce the runtime overhead of identifying conflicting objects and switching be-

tween two logging mechanisms for these objects. On the other side, dynamic

decisions would increase the parallelism by switching between pessimistic and

optimistic logging earlier than the static specification.

Several researchers have examined various methods for scheduling transactions

dynamically [35; 37; 78; 129]. Typically transactions are continuously monitored

for their abort frequency. Whenever the abort rate exceeds a certain threshold,

transactions are serialized to reduce contention. Other approaches go one step

further by keeping the history of the read and write sets of the transactions and

try to predict weather two atomic blocks will conflict if they are executed con-

currently. When possible the TM system may schedule two atomic blocks that

are likely to conflict to execute on the same core. Unlike dynamic scheduling,

static scheduling cannot be flexible and adapt to the changing behavior of trans-

actions. However, static scheduling does not have runtime overheads and might

perform better in cases when the transactional characteristics of atomic blocks

are constant. In addition, these two approaches can be combined to complement

each others’ deficiencies – static scheduling can be used for the atomic blocks

with predictive behavior and dynamic scheduling for those with non-predictive

behavior.

Dice et al. [34] used privatization in a transactional implementation of a min-

imum spanning forest algorithm [66] to reduce the set of read set entries so that

it entirely fits into the limited size hardware buffers of the Rock processor. In

effect this optimization techniques reduces the probability of conflicts because it

reduces the shared data on which transactions may operate.

Lupei et al. [77] have identified the set of memory which transactions access

at runtime. Based on the analyzes they have dynamically scheduled transactions

which operate on the same memory range to execute on the same thread. This

156

6.3 Optimization Techniques

kind of optimization prevents two transactions which are potentially about to

conflict to execute concurrently.

6.3 Optimization Techniques

In this section we describe several approaches to optimize transactional memory

applications. These optimization techniques are TM implementation specific and

changes on the code that favor one TM may have no effect or even perform worse

on other TMs. Therefore, to properly apply these optimizations the programmer

should be familiar with the implementation details of the underlying TM system.

These optimization approaches are analogous to optimizing an application for a

specific micro-architecture, for example, optimizing for the L1 cache size or the

CPU’s branch predictor.

6.3.1 Moving Statements

Moving statements such as hoisting loop invariants outside of a loop is a pervasive

technique that optimizing compilers apply. Similarly, to reduce the cache miss

rate, one can decide to pre-fetch data by manually moving a memory reference

statement up in the code. Analogous to these examples, TM applications can

also perform better by simply moving assignment statements (or statements that

update memory) up or down in the code. Figure 6.14 plots the execution time

of the Intruder application from the STAMP [20] benchmark suite using Bartok-

STM [55]. In Beginning a call to a method which pushes an entry to a queue

is moved to the beginning of the atomic block, and in End the call to the same

method is moved to the end of the atomic block. Figure 6.1 is a contrived code

example which represent how the code changes in Beginning and End look like.

The reason for the performance difference lies in the way how memory updates

are handled by the TM system. In Bartok-STM, all update operations first lock

the object and keep it locked until commit. If the requesting transaction sees that

another transaction has already locked the object for update it aborts itself. In

STMs like Bartok-STM and TinySTM [39] with encounter time locking, updates

at the beginning of an atomic block on a highly contended shared variable such as

157

6.3 Optimization Techniques

// Beginning // End // Nested

1: atomic { atomic { atomic {

2: counter++ <statement 1> <statement 1>

3: <statement 1> <statement 2> <statement 2>

4: <statement 2> <statement 3> <statement 3>

5: <statement 3>

6: ... counter++; atomic {

7: } } counter++;

8: }

9: }

(a) (b) (c)

Figure 6.1: A code where the increment of the shared counter is: (a) moved up

(hoisted) to the beginning of the atomic block, (b) moved down to the end of

atomic block, and (c) wrapped inside a nested atomic block.

a shared counter (Figure 6.1 (a)) may have the effect of a global lock. When one

transaction successfully locks the object it will keep the lock until commit. In the

mean time all the threads that try to execute the same atomic block will not be

able to acquire the object’s lock and will abort. This will serialize the program

execution at this point. On the other hand, when the same update operation

is at the end of the atomic block (see Figure 6.1 (b)) the transaction will keep

the object locked for short time thus allowing other threads to execute the code

concurrently until the problematic statement.

Because the approach of improving performance by moving the location of

the statements relies on detecting WaW conflicts eagerly, it may not have effect

on other TM systems. For example, when executed on the TL2 STM library [33],

the location of the same statement affects the performance comparatively much

less (see Figure 6.15). TL2 buffers updates and detects all types of conflicts lazily

at commit time.

To identify exactly which statements to move, we used a profiling tool for TM

applications built for Bartok-STM. This tool identifies the conflicting statements

and assigns how much work is wasted at these statements in similar way as

described in Chapter 5 and by Chakrabarti [25]. A statement which updates

the memory and causes large wasted work would be a candidate for moving its

location. However, the changes that the programmer makes should preserve the

program correctness.

158

6.3 Optimization Techniques

6.3.2 Atomic Block Scheduling

The purpose of transaction scheduling is to reduce the contention for performance.

There is significant research on how transaction scheduling can be automated but

to the best of our knowledge the problem of scheduling atomic blocks statically

has not been studied.

Dynamic transaction scheduling introduces overhead at runtime because of

the additional bookkeeping necessary to decide how to schedule the transactions.

Static scheduling does not introduce such overheads. In addition, the scheduling

requirements of a transactional application may be simple and not require any

adaptive runtime algorithms. For example, Bayes from STAMP TM benchmark

suite [20] has 15 atomic blocks but almost all the wasted work in the application is

caused only by two atomic blocks that abort each other. For this case, a decision

to statically schedule the two atomic blocks to not execute at the same time would

be trivial. To decide exactly which atomic blocks to schedule, the programmer

needs to know the atomic block which is responsible for the major part of the

wasted work as well as the list of the other atomic blocks that it conflicts with.

Such information can be obtained through conflict discovery graphs [25] or abort

graphs from Section 5.3.3 (see Figure 6.7). However, the programmer should be

aware that scheduling may not always deliver the expected performance. It is

possible that after setting a specific schedule new conflicts appear or the program

execution serializes.

6.3.3 Checkpoints

Various mechanisms have been proposed to implicitly checkpoint transactions

at runtime [17; 122]. If a checkpointed transaction aborts, it is rolled back up

to the earliest valid checkpoint. Checkpoints can improve the performance of

transactional applications because (i) the transaction is not re-executed from the

beginning and (ii) the valid checkpoints are not rolled back. The latter is partic-

ularly important for in-place update (i.e. eager versioning) TM systems because

rollback operations are expensive. For example, suppose that we checkpoint the

code in Figure 6.1 (b) at line 5. If conflict is detected at line 6 when incrementing

159

6.3 Optimization Techniques

the counter and the remaining part of the transaction (i.e. lines 1–5) is valid,

then only the increment will be rolled back and re-executed.

Techniques to automatically checkpoint transactions exists, but to the best of

our knowledge there is no study on statically placing checkpoints. In the ideal

case, transactions would re-execute only the code that is not valid. To achieve

this, every transactional memory reference should be checkpointed, however this

would cause excessive overhead. Therefore, it is necessary to identify where ex-

actly to checkpoint a transaction. Good checkpoint locations are just before the

memory references that cause most of the conflicts. We can easily identify these

locations by using tools for profiling transactional memory applications such as

conflict point discovery (Sectionr̃efsec:ch5:ProfilingTechniques). Conflict point

discovery is a technique that identifies the statements that are involved in a con-

flict and quantifies their importance based on the wasted work. The programmer

can manually checkpoint transactions just before the statements that cause most

of the conflicts. Similarly to a transaction scheduling (Section 6.3.2), static check-

pointing can be combined with dynamic checkpointing to off-load the runtime for

the known conflicts.

Table 6.4 and Table 6.5 show the effect of checkpointing an atomic block in

Intruder. In this experiment we used nested atomic blocks as shown in Figure 6.1

(c) because our STM library did not have checkpointing mechanisms. In this case,

if the nested atomic block is invalid but the code in the outer block is valid, only

the nested atomic block will re-execute. In effect this is the same as checkpointing

at line 5 in Figure 6.1 (a).

As we can see, one can implement checkpoints by combining the use of atomic

blocks. Furthermore, unlike checkpoints, nested atomic blocks are composable

and can be used in functions that are called within other atomic blocks or outside

atomic blocks [54].

6.3.4 Pessimistic Reads

To detect conflicts between transactions, the underlying TM implementation

needs to know which memory references are accessed for read and for write.

High performance STMs are not obstruction-free [38; 45], an implication of such

160

6.3 Optimization Techniques

// AB1 // AB2

1: atomic { atomic {

2: local_X = X; X++;

3: <statement 1> }

4: ...

5: <statement N>

6: }

Figure 6.2: AB1 is a long running atomic block which uses the value X and AB2

is a short running atomic block which increments X. If AB1 and AB2 execute

concurrently, AB1 will be most of the time aborted by AB2.

design would allow one transaction be always aborted by another transaction.

For example, consider a simple program of two atomic blocks AB1 and AB2.

Suppose that AB1 is a long running transaction which uses the value of a shared

variable X to perform complicated operations and AB2 has only a single instruc-

tion which increments X. In this case, AB2 will cause AB1 to abort repeatedly

because AB1 will not be able to reach the commit point before AB2 (Figure 6.2).

To overcome this problem the user may use pessimistic reads or treat read

operations as if they are writes. In the first approach it is necessary to update all

transactional references to X with the proper pessimistic read operations. With-

out compiler support, finding all such references manually might be difficult and

in some cases impossible. The latter approach is less intrusive because the pro-

grammer does not need to update the other references to X. Using pessimistic

reads or opening X for write in AB1 from Figure 6.2 would subsequently cause

AB2 to abort and let AB1 to make forward progress. However, this kind of

modification, while providing forward progress for AB1, may cause the remaining

atomic blocks to abort more than they did before and therefore not have any

performance improvement. For example, Bartok-STM pessimistically locks ob-

jects on write. In this case, if AB1 locks X at the beginning of the atomic block,

then all other executions of AB2 will abort trying to open X for write. But if

AB1 executes less frequently than AB2, then AB1 winning the conflicts over AB2

would be better.

We can find conflicting read operations such as X in AB1 from Figure 6.2

by looking at the results of conflict point discovery. From these results we can

161

6.3 Optimization Techniques

explicitly tell the compiler to open the read operations involved in many conflicts

for write. However, the programmer should use such operations carefully because

they may introduce new conflicts which might have negative performance impact.

6.3.5 Early Release

Early release is a mechanism to exclude entries in the transaction’s read set from

conflict detection [108; 110]. In certain applications it is possible that the final

result of an atomic block is still correct although the read set is not valid. For

example, consider an atomic block which inserts entries in a sorted linked list

(Figure 6.3). Thread T1 wants to insert value 2 and thread T2 wants to insert

value 6. To find the right place to insert the new values the two threads iterate

over the the list nodes and consequently add them to the transaction’s read set.

T2 aborts because T1 finishes faster and after inserting the new node it invalidates

T2’s read set. However, T2 could still correctly insert the node although some

entries in its read set are invalid. In this case we can exclude all nodes except 5

from conflict detection.

After carefully studying the Lee’s path routing algorithm, Watson et. al. [125]

have used early release to exclude a major part of the transaction’s read set from

conflict detection. To achieve similar results, Yoo et al. [130] instructed the

compiler and Cao Minh et al. [20] deliberately skipped inserting calls to the STM

library while copying the shared matrix into a thread local variable in Labyrinth.

Caching the values of shared variables to a thread local storage, as in Bayes, is

another form of excluding the shared variables from conflict detection.

The experience of these studies reports that early release improves the ap-

plication performance significantly. However, the programmer should not forget

that it is not a safe operation (i.e. it can break program correctness). Applying

this technique requires prior knowledge about the shard data structures used in

the algorithm and the operations applied on them – namely whether or not the

algorithm can be relaxed. The available profiling tools can help in identifying the

shared objects that are involved in conflicts. Provided with this information, the

programmer can focus on the specific objects and try to use early release when

possible or use different implementations for the data structures.

162

6.3 Optimization Techniques

Figure 6.3: Transaction T1 inserts number 2 and transaction T2 inserts number

6 in sorted linked list. Without using early release T2 will abort and when using

early release T2 will commit successfully.

163

Chapter6/Figures/EPS/early_release_linked_list.eps

6.4 Feedback Directed Compilation

// Non-instrumented // Instrumented code

1: atomic { atomic {

2: local_x = shared_x; OpenForRead(shared_x);

3: shared_y = 5; local_x = shared_x;

4: } OpenForWrite(shared_y);

5: shared_y = 5;

6: }

(a) (b)

Figure 6.4: To track the memory references for later conflict detection, the com-

piler instruments calls to the STM library for the memory reads and updates.

(a) non-instrumented atomic block, (b) atomic block instrumented with calls

to OpenForRead and OpenForWrite respectively for the read and write memory

references. The example is for in-place update STM.

6.4 Feedback Directed Compilation

Feedback directed compilation is a method of compiling a source code to a binary

based on profiling data which is collected from previous program executions. This

compilation approach has the advantage of identifying and optimizing the code

segments that constitute a large part of the program execution thus improving

the performance.

In this section we discuss how to apply the techniques from Section 6.3 for a

feedback directed compilation. There already exist several compilers [39; 55; 89]

and profilers [23; 76; 137] for transactional applications. Building a framework for

transparent integration between the compiler and the profiler is a well understood

engineering task which was studied by other researcher work [26; 69].

6.4.1 Moving Statements

In some cases, moving an assignment statement within the same atomic block can

be automated. Moving the statement up in the code could be trivial. It would be

sufficient that the compiler instruments the respective OpenForWrite operation

earlier in the code and leaves the assignment operation in its place. In the example

from Figure 6.4 (b), that would imply to instrument the call to OpenForWrite

at line 2. However, the same approach cannot be used for moving a statement

164

6.4 Feedback Directed Compilation

down in the code order; calling OpenForWrite after a memory updated will not

be correct. Moving statements down in the code would require additional code

analysis to ensure that the program correctness is preserved. However, if the user

manually moves down the problematic statement, the compiler can repeatedly

move the place of OpenForWrite operation up and at the end choose the one

which delivers the best performance.

Furthermore, similar automatic code reordering can be effectively applied to

statements within functions called inside the atomic block by moving them within

the function scope. Moving function calls within the scope of an atomic block

would require inter procedural analysis which in some cases may not be sufficient.

6.4.2 Atomic Block Scheduling

Unlike moving statements around, the program correctness cannot be broken by

scheduling the execution of atomic blocks. In this case, the task of the compiler

would be simpler. The compiler can schedule the atomic blocks based on the

profiling information obtained from aborts graph (Figure 6.7). The compiler can

repeat various scheduling policies until obtaining the best performance [91; 120].

6.4.3 Checkpoints

Just like atomic block scheduling, checkpoints are also safe operations. The

compiler can arbitrarily instrument checkpoint operations or wrap code segments

within nested atomic blocks. A more advanced approach could be using abstract

nested transactions (ANT) [53]. The process of automatic checkpoint instrumen-

tation can be trivial as described in Section 6.3.3: the compiler will automatically

instrument checkpoints just before the statements which are involved in more than

a certain threshold number of conflicts.

6.4.4 Pessimistic Reads

Using pessimistic reads or opening read memory references for write is also a safe

operation and can be easily performed by the available STM compilers. However,

overuse of these operations may have negative impact on the performance due

165

6.5 Case Studies

to introducing new conflicts or serializing transactions [112]. The compiler can

choose the statements based on the number of conflicts they have been involved

in and the wasted time that these conflicts have caused. This information can

be obtained from the fine grain conflict discovery graphs [25] or a conflict point

discovery (Section 5.3). The compiler can selectively open the most conflicting

read memory references for write. Because opening a specific object for write

may create other conflicts, the compiler can combine several profiling histories

when choosing the statements to open for write [103].

Currently, there are compiler optimizations that directly open a memory ref-

erence for write when there are cases of write after read [55]. This also saves the

runtime from logging the same memory operation into both read and write sets.

6.4.5 Early Release

Early release is not a safe operation. To benefit from early release, deep knowledge

about the problem and the solution is required. As far as we know there are no

mechanisms to automate early release in transactional applications.

6.5 Case Studies

In this section we present a series of case studies of profiling and optimizing the

performance of applications from the STAMP TM benchmark suite [20] and from

the synthetic WormBench workload [134] by using our techniques. The goal of

these case studies is to evaluate the effectiveness of our profiling and optimization

techniques: namely wether the profiling techniques reveal the symptoms and

causes of the performance lost due to conflicts in these applications and wether our

optimization techniques indeed improve the performance of these applications.

To see whether our profiling and optimization techniques can be equally ap-

plied across a range of TM implementations we utilize two different STMs –

TL2 [33] and Bartok-STM [55]. TL2 buffers speculative updates and detects

conflicts lazily at commit time for both reads and writes. It operates at word

granularity by hashing a memory address to transactional word descriptor. Bar-

tok is an ahead of time C# to x86 compiler with language level support for STM.

166

6.5 Case Studies

#Threads BayesNonOpt BayesOpt IntrdNonOpt IntrdOpt LabrNonOpt LabrOpt

1 1.00 1.00 1.00 1.00 1.00 1.00

2 0.32 0.56 1.16 0.58 5.25 0.61

4 1.49 0.23 2.92 0.36 30.42 0.46

8 4.81 0.20 n/a 0.38 n/a 0.56

Table 6.1: The normalized execution time of Bayes, Labyrinth and Intruder before

and after optimization. Results are average of 10 runs and the execution time for

each applications is normalized to its single threaded execution time. ”n/a” means

that the application run longer than 10 minutes and was forced termination.

Bartok-STM updates memory locations in-place by logging the original value for

rollback in case a conflict occurs. It detects conflicts at object granularity, eagerly

for write operations and lazily for read operations.

For this experiment we have ported several applications from the STAMP

suite from C to C#. We did this in a direct manner by annotating the atomic

blocks using the available language construct that the Bartok compiler supports.

In the original STAMP applications, the memory accesses inside atomic blocks

are made through explicit calls to the STM library, whereas in C# the calls to

the STM library are automatically generated by the compiler. WormBench is

implemented in the C# programming language.

6.5.1 Bayes

Bayes implements an algorithm for learning the structure of Bayesian networks

from observed data. Initially our C# version of this application scaled poorly (see

Table 6.1). By examining the data structures involved in conflicts, we found that

the most heavily contended object is the one used to wrap function arguments in

a single object of type FindBestTaskArg (Figure 6.5(a)). Bartok-STM detects

conflicts at object granularity, and so concurrent accesses to the different fields

of the same object result in false conflicts. The false conflicts caused 98% of the

total wasted work. With 2 threads the wasted work constituted about 24% of the

program’s execution, and with 4 threads it increased to 80%. We optimized the

code by removing the wrapper object FindBestTaskArg and passing the function

arguments directly (see Figure 6.5(b)). After this small optimization Bayes scaled

as expected (Table 6.1).

167

6.5 Case Studies

From this point we wanted to see wether we can improve the performance of

Bayes more. We noticed that out of 15 atomic blocks only one, atomic block

AB12, aborts most and causes 93% of the total wasted work. AB12 calls the

method FindBestInsertTask and from the per-atomic block statistics we could

see that it is the longest read-only transaction. Aborts graph in Figure 6.6 shows

that atomic block AB12 is always being aborted by a non-read-only atomic

blocks AB6 and AB11. Most of the aborts of AB12 are caused by AB11. AB11 is

a very short running atomic block which updates and caches the shared variables

baseLogLikelihood and numTotalParent into a thread local variable. Based on

this profiling information we have decided to statically schedule atomic blocks

AB11 and AB12 to not execute in parallel. The results in Figure 6.7 showed to be

slightly better but not encouraging because new pairs of aborting atomic blocks

appeared. Now the aborts dominated between B10 and AB12 constituting 46%

of the total wasted work. Despite adding an additional schedule between AB10

and AB12 the execution time did not get better while wasted work was evenly

distributed among the non-scheduled atomic blocks.

Figure 6.8 is a histogram which shows the time when the execution of two or

more transactions are overlapping and Figure 6.9 is a histogram which shows the

number of active transactions at the moment when a new transaction starts. In

the both figures we can see that scheduling atomic blocks limits the parallelism

– fewer transactions overlap during execution (Figure 6.8) and there are fewer

active transactions at the moment when a new transaction starts (Figure 6.9).

Furthermore, in Figure 6.8 we can see that in the Base version (i.e. with no

scheduling) about 35% of the time there is only one transaction executing and

14% of the time there are eight transactions executing in parallel. Considering

that 83% of execution in Bayes is spent in transactions [20] the results from the

histogram might suggest that the execution of transactions simply do not overlap.

However, the actual reason is different. Bayes has few very long running atomic

blocks and the remaining atomic blocks are comparably shorter (e.g. 100x to 10

000x shorter). Most of the time only one thread is executing one of these long

transactions and the remaining threads execute the short transactions. This can

be confirmed with the results from Figure 6.9. In the Base version 80% of the

time when a new transaction stars there are already 7 other transactions running.

168

6.5 Case Studies

//Function declaration with wrapper object

Task FindBestInsertTask(FindBestTaskArg argPtr) {

Learner learnerPtr = argPtr.learnerPtr;

Query[] queries = argPtr.queries;

...

}

.

// Preparing a wrapper object

FindBestTaskArg argPtr = new FindBestTaskArg();

argPtr.learnerPtr = learnerPtr;

argPtr.queries = queries;

.

// Pass arguments with a wrapper object

FindBestInsertTask(argPtr);

(a)

.

// Function declaration with explicit parameters

Task FindBestInsertTask(

Learner learnerPtr, Query[] queries, ...)

.

// Passing arguments without a wrapper object

FindBestInsertTask(learnerPtr, queries, ...)

(b)

Figure 6.5: Code fragments from Bayes: a) the original code with the wrapper

object FindBestTaskArg; b) the optimized code with the removed wrapper object

and passing the function parameters directly.

After we schedule AB11 (i.e. a short transaction) and AB12 (i.e. a 40 000 times

longer transaction) to not execute in parallel the number of active transactions

drops significantly.

6.5.2 Genome

In this section we describe how we iteratively optimized a C# version of the

Genome application from the STAMP TM application suite [20]. We use conflict

point discovery to examine how transactions progress.

Genome is a gene sequencing application implemented in C using TL2 STM

library [33]. We initially ported this application from C to C# in a direct man-

ner by annotating the atomic blocks using the available language constructs that

the Bartok compiler implements. In the original version of Genome, the mem-

ory accesses inside atomic blocks are made through explicit calls to the STM

169

6.5 Case Studies

AB6 AB11

AB12
20% 73%

Figure 6.6: Aborts graph of Bayes before any schedule. In this graph we can see

that AB12 is aborted by AB6 and AB12. Aborts between AB11 and AB12 cause

73% of wasted work in the program and aborts between AB6 and AB12 20% of

the wasted work.

Figure 6.7: Aborts graph of Bayes when atomic blocks AB11 and AB12 are

scheduled to not execute in parallel. In this figure AB10 aborts AB12 and the

wasted work due to these aborts is 46% from the total program execution. Results

are obtained from an execution with 8 threads.

170

Chapter6/Figures/EPS/aborts_graph_bayes_before_schedule.eps
Chapter6/Figures/EPS/aborts_graph_bayes2.eps

6.5 Case Studies

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6 7 8

n
o
rm
a
li
z
e
d
 t
im
e

Threads

Histogram

The time when the execution of transactions is overlapping

Base

Sched1

Sched2

Figure 6.8: Bayes - this figure shows a histogram of the time when the execution

of two or more transactions have overlapped.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 2 3 4 5 6 7 8

n
o
rm
a
li
z
e
d
 n
u
m
b
e
r

Threads

Histogram - Number of active transactions at the time when a

new transaction starts

Base

Sched1

Sched2

Figure 6.9: Bayes - this figure shows a histogram of the number of active trans-

actions when a new transaction starts execution.

171

Chapter6/Figures/EPS/histogram_overlap_time.eps
Chapter6/Figures/EPS/histogram_number_of_transactions_at_start.eps

6.5 Case Studies

library, whereas in the C# port the STM library calls are automatically gener-

ated by the compiler. Our observations optimizing the C# version therefore do

not necessarily reflect aspects of the manually-instrumented C program.

We performed our experiments on a 4*2-core CPU with 2 hardware threads

per core. We show the effect of the different improvements on the normalized

performance and on the reduction in the abort rate in Figure 6.10 and Figure 6.11

respectively. For comparison, we also show variants where we used a global lock

in place of the atomic blocks (prefixed with L). We developed four variants using

atomic blocks:

Unoptimized Genome (Unopt). Our first version of the C# Genome appli-

cation had poor performance and did not scale. The reason for this was a very

high abort rate. Using conflict point discovery, we saw that most of the conflicts

happened in the first phase of the Genome application when duplicate gene seg-

ments are filtered by adding them to a hashtable. The highest contention was in

two conflict points: 1) the test in a loop that checks whether a bucket already

contains the entry to be added, and 2) when incrementing a shared counter that

indicates the number of elements in the hashtable. After a careful look at the

implementation of our hashtable we realized that it is a variation of an open ad-

dressing hashtable where entries are stored in the bucket array and the array is

probed for empty slots on collisions.

Using chaining hashtable (Opt). The open addressing hashtable performs

poorly in our implementation because Bartok-STM uses object level conflict de-

tection: all array elements are considered as one object with respect to the conflict

detection. We changed the implementation of the hashtable to a chaining version

and also removed the shared counter, much like the hashtable from the STAMP

suite. After these changes Genome’s conflict rate was very low and scaled as in

the original C version (see Figure 6.10 Opt).

Friendly fire pathology when rehashing. A second observation was that,

when running with 4 or more threads, sometimes the execution was unusually

long. Then looking at the number of re-executions of the individual atomic

172

6.5 Case Studies

84.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

#threads

Unopt

Opt

OptInit

OptNoBk

L-Opt

L-OptInit

L-OptNoBk

Figure 6.10: The execution time of Genome, normalized to L-Opt.

blocks, we observed the friendly fire pathology [18]: transactions were aborting

one another without any being able to commit. Linking this information with

the conflict points we found the underlying reason: one transaction was trying

to rehash and at the same time another thread was starting the execution of the

same atomic block. Then the two transactions were continuously aborting each

other. When running with 2 threads it is less likely that the execution of the same

atomic block will overlap, but with 4 or more threads this probability becomes

much higher. Although a better solution could be found, our quick approach was

to initialize the hashtable with a larger bucket array.

Initializing the buckets (OptInit). At this point, we examined the conflict

data of the application more carefully and noticed that the number of conflicts

when adding an element to a hashtable was approximately the same as the number

of entries in the hashtable. Almost every addition of a new entry to the hashtable

was causing a conflict. The reason for this was that we were initializing the

elements in the bucket array at the time of adding the first entry in the bucket

and again due to the object granularity conflict detection this was causing other

transaction working on the array to abort. Our solution for this problem was to

initialize the bucket array with default bucket objects during the initialization

phase. This significantly reduced the abort rate (see Figure 6.11 OptInit) and

173

Chapter6/Figures/EPS/genome-scaling-xl.eps

6.5 Case Studies

60.0%

98.4% 99.4% 100.0%

0%

20%

40%

60%

80%

100%

2 4 8 16

A
bo

rt
 r

at
e

#threads

Unopt

Opt

OptInt

OptNoBk

Figure 6.11: The effect of the optimizations on the abort rate.

Figure 6.12: The different variants of the chaining hashtable we used in Genome.

Opt uses bucket objects and does not initialize the bucket array. OptInt is the

same as Opt but the bucket array is initialized. OptNoBk is a version of Opt that

stores linked lists directly on the bucket array.

174

Chapter6/Figures/EPS/genome-abort-xl.eps
Chapter6/Figures/EPS/genome_hashtables.eps

6.5 Case Studies

#Threads TCC-Orig TCC-Opt Eazy-Orig Eazy-Opt TL2-Orig TL2-Opt

1 1.00 1.01 1.00 0.96 1.00 0.80

2 0.73 0.67 0.61 0.59 0.92 0.60

4 0.51 0.43 0.37 0.35 0.63 0.48

8 0.39 0.31 0.26 0.22 0.65 0.52

Table 6.2: Execution time of Intruder before and after optimization on Scalable-

TCC, Eazy-HTM and TL2. Results are average of 10 runs and normalized to the

single threaded original version of Intruder.

made the application scale up to 16 threads.

Removing the buckets (OptNoBk). We have also developed a slightly dif-

ferent version of the chaining hashtable which does not have buckets and stores

the linked list directly into the buckets array. This approach is slightly faster be-

cause it saves one indirection when performing a hashtable operation but has the

same even higher contention than Opt. Figure 6.12 visualizes the implementation

differences between the chaining hashtables that we used to optimize Genome.

We can see from Figure 6.11 that OptInit has smallest abort rate and scales up

to 16 threads whereas Opt and OptNoBk scale up to 8 threads and are saturated

at 16 threads. OptNoBk is faster because of saving one extra indirection due to

the direct pointer in the array and not initializing all the buckets. In Figure 6.10

we can see that the single threaded execution of Unopt has the best performance

but simply the implementation of this hashtable is not TM friendly.

6.5.3 Intruder

Intruder implements a network intrusion detection algorithm that scans network

packets and matches them against a dictionary of known signatures. The authors

of STAMP report that this application scales well on HTM systems but does not

scale well on STMs [20]. Therefore understanding and eliminating the bottlenecks

of this application was a challenge for us.

Our profiling techniques showed that the most contended objects in Intruder

are fragmentedMapPtr and decodedQueuePtr. In 4-threaded execution, aborts

in which fragmentedMapPtr was involved caused 67.6% wasted work and aborts

in which decodedQueuePtr was involved caused 27.1% of wasted work. The

175

6.5 Case Studies

#Threads AB1 AB2 AB3

1 0.00% 0.00% 0.00%

2 5.48% 91.01% 4.51%

4 3.38% 94.90% 1.72%

8 5.45% 93.43% 1.12%

Table 6.3: The wasted work caused by the aborts of the different atomic blocks

in Intruder. Results are normalized.

wasted work of the both objects constituted 92.7% of the total program execu-

tion. The fragmentedMapPtr object is a map data structure used to reassemble

the fragmented packets. Its implementation is based on red black tree and most

important conflicts were happening during lookup. On the other hand, the lookup

was invoked while adding a new entry to check if it already exists. Our approach

of resolving the bottleneck at fragmentedMapPtr was to replace the underlying

implementation with a chained hashtable. Unlike red black tree, when using

hashtable transactions access fewer objects (i.e. their read set is smaller) and

consequently have lower probability of conflict. We have experimentally verified

that using hashtable instead of red black tree improves the application perfor-

mance across different STM and HTM implementations (see Table 6.2). For

this experiment we used state-of-the-art HTM systems (Scalable-TCC [24] and

Eazy-HTM [119]) in a simulated environment.

Although we achieved satisfiable scalability for Intruder we continued to ex-

amine its performance in more depth. Intruder has in total three atomic blocks

and our per-atomic block profiling showed that only one of them causes signifi-

cant wasted work (Table 6.3). The subject atomic block contains only a call to

method Decoder.Process (see Figure 6.13). We used our profiling tool to see

exactly which statements from this atomic block are involved in conflicts. The

results of conflict point discovery are shown in Table 6.4 (version Base).

Most of the conflicts in our system are read-after-write (RaW) or write-after-

read (WaR) type and therefore detected at commit time (line 39). When the

number of threads is low, significant amount of wasted work is caused due to

conflicts at the statement which calls method decodedQueuePtr.Push (line 31).

decodedQueuePtr data structure maintains the list of the packets which are as-

sembled from several segments. Conflicts at this statement are of write-after-write

176

6.5 Case Studies

1: public Error Process(Packet packetPtr) {

2: ...

3: if (numFragment > 1) {

4: ...

5: if (fragmentedListPtr == null) {

6: ...

7: } else {

8: ...

9: fragmentedListPtr.InsertSorted(packetPtr);

10: if (fragmentedListPtr.GetSize() == numFragment) {

11: int i, numByte = 0;

12: foreach (Packet fragmentPtr in fragmentedListPtr) {

13: if (fragmentPtr.FragmentId != i) {

14: fragmentedMapPtr.Remove(flowId);

15: return Error.ERROR_INCOMPLETE;

16: }

17: numByte += fragmentPtr.Length;

18: i++;

19: }

20:

21: char[] data = new char[numByte];

22: int dst = 0;

23: foreach (Packet fragmentPtr in fragmentedListPtr){

24: Array.Copy(fragmentPtr.Data, data, dst);

25: dst += fragmentPtr.Length;

26: }

27: Decoded decodedPtr = new Decoded();

28: decodedPtr.flowId = flowId;

29: decodedPtr.data = data;

30:

31: decodedQueuePtr.Push(decodedPtr);

32: fragmentedMapPtr.Remove(flowId);

33: }

34: }

35: } else {

36: ...

37: } // end of if (numFragment > 1)

38: return Error.ERROR_NONE;

39: }

Figure 6.13: Code fragment from Intruder. Method Decoder.Process is called

inside an atomic block. Because of space constraints some irrelevant code such

as initializations are omitted.

177

6.5 Case Studies

(WaW) type which Bartok-STM detects eagerly. When the number of threads in-

creases, the wasted work at the call to method fragmentedListPtr.InsertSorted

becomes dominant. fragmentedListPtr is a helper data structure (sorted list)

used to assemble a packet from several segments. Conflicts at the call to InsertSorted

are also WaW. Contention at this point increases with the number of threads be-

cause the probability of multiple threads inserting different segments belonging

to the same packet increases.

We tried to reduce wasted work by moving the call to Push from the end

of the atomic block (line 31) to the beginning of the atomic block (line 8). We

anticipated that detecting conflicts earlier and aborting transactions earlier would

generate less wasted work – speculative execution and state to rollback. However,

opposite to our expectations the performance of the application degraded (see

Figure 6.14). The conflict point analysis for the modified version showed that the

poor performance is due to the increase in the number of re-executions and the

abort rate of the atomic block (Table 6.4 version Push Move Up).

The reason for the increase in the number of re-executions and consequently

the abort rate is specific to the implementation of Bartok-STM. When threads

are about to update the decodedQueuePtr object, the TM system first locks

the object. In this case when one thread successfully acquires object’s lock all

the other threads fail and abort until the lock is released during commit. In

fact, the updates on decodedQueuePtr have the same effect as if it is a global

lock. When the update is at the end of the atomic block (line 31) threads

can execute large part of the atomic block concurrently, but when it is at the

beginning of the atomic block (line 8) threads serialize trying to acquire the lock

for decodedQueuePtr. The serialized execution is also confirmed by reading the

histogram of the time when transactions are executed concurrently. However, on

TM systems that detect WaW conflicts lazily at commit time such code changes

do not have significant effect. We have performed the same experiment using TL2.

In this case the performance of Intruder is similar in both cases (see Figure 6.15).

As discussed in Section 6.3.3, the high abort rate at the statements which call

Push and InsertSorted suggests that using checkpoints or nested atomic blocks

would improve the performance. We have carried three different experiments: 1)

we have wrapped the call to Push in a nested atomic block (Table 6.4 version

178

6.5 Case Studies

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 4 8 16

E
x
e
c
u
ti
o
n
 t
im
e
 -
n
o
rm
a
li
z
e
d

Threads

Move Statements

Intruder (Eager Conflict Detection for Writes)

End

Beginning

Figure 6.14: This figure shows the effect of changing the location of only one

statement inside an atomic block on typical STM systems which detect Write-

After-Write conflicts eagerly. At Beginning an update operation is near the be-

ginning of an atomic block and at End the update operation is near the end of

the atomic block.

0.00

0.50

1.00

1.50

2.00

2.50

1 2 4 8 16

E
x
e
c
u
ti
o
n
 t
im
e
 -
n
o
rm
a
li
z
e
d

Threads

Move Statements

Intruder (Lazy Conflict Detection for Writes)

End

Beginning

Figure 6.15: This figure shows the effect of changing the location of only one

statement inside an atomic block on typical STM systems which detect Write-

After-Write conflicts lazily. At Beginning an update operation is near the begin-

ning of an atomic block and at End the update operation is near the end of the

atomic block.

179

Chapter6/Figures/EPS/intruder_move_eager_cd_normalized.eps
Chapter6/Figures/EPS/intruder_move_lazy_cd_normalized.eps

6.5 Case Studies

#Thd Version InsertSorted Push Commit Abort #Re-exec. Wasted Work

2

Base 2.94% 48.06% 49.00% 1.88% 0.02 2.28%

Push Move Up 0.00% 100.00% 0.00% 58.48% 1.43 40.16%

Nested Push 11.77% 9.22% 79.01% 1.42% 0.01 1.14%

Nested Insert 60.80% 38.79% 0.37% 1.38% 0.01 2.02%

Nested Ins.+Push 98.54% 0.70% 0.76% 1.38% 0.01 1.36%

4

Base 19.16% 23.41% 57.42% 13.78% 0.16 14.74%

Push Move Up 0.0% 100.00% 0.0% 70.60% 2.41 63.30%

Nested Push 28.26% 2.01% 69.73% 9.50% 0.11 10.60%

Nested Insert 88.15% 10.33% 1.52% 18.48% 0.27 14.36%

Nested Ins.+Push 97.53% 0.08% 2.39% 8.27% 0.09 11.30%

8

Base 38.38% 13.31% 48.31% 36.16% 0.57 40.84%

Push Move Up 0.00% 100.00% 0.0% 77.10% 3.38 83.45%

Nested Push 44.13% 0.11% 55.76% 28.46% 0.40 42.02%

Nested Insert 90.32% 1.50% 8.18% 13.45% 0.16 23.83%

Nested Ins.+Push 99.05% 0.04% 0.91% 25.40% 0.34 39.60%

Table 6.4: The transactional characteristics of the atomic block which executes

function Decoder.Process from Figure 6.13. InsertSorted, Push and Commit

indicate the wasted work caused by the conflicts detected respectively at the calls

to methods InsertSorted (line 9), Push (line 31) and when transaction commits

(line 39). Abort indicates the abort rate of this atomic block. #Re-execute

indicates the number of consecutive re-executions when abort happens. Wasted

Work indicates the part of this atomic block execution which was wasted because

of aborts.

180

6.5 Case Studies

#Thrd Version Norm. Time Abort WW

2

Base 0.54 2.38% 3.20%

Push Move Up 0.80 28.35% 27.34%

Nested Push 0.54 3.14% 2.66%

Nested Insert 0.54 2.76% 3.30%

Nested Ins. + Push 0.54 3.08% 2.98%

4

Base 0.31 11.52% 17.56%

Push Move Up 0.75 72.22% 77.90%

Nested Push 0.30 12.64% 16.10%

Nested Insert 0.31 10.98% 18.48%

Nested Ins. + Push 0.32 9.93% 15.77%

8

Base 0.27 32.12% 45.50%

Push Move Up 0.92 90.10% 96.03%

Nested Push 0.28 33.40% 53.48%

Nested Insert 0.25 26.45% 36.80%

Nested Ins. + Push 0.30 29.78% 47.38%

Table 6.5: Transactional characteristics of Intruder summarized for the whole

program execution. Norm. Time is the normalized execution time of each version

to its single threaded execution, Abort is the abort rate, WW is the wasted work

caused by aborts.

181

6.5 Case Studies

Nested Push), 2) we have wrapped the call to InsertSorted in a nested atomic

block (Table 6.4 version Nested Insert) and 3) we have wrapped both calls in

nested atomic blocks (Table 6.4 version Nested Ins. + Push). We have extended

Bartok-STM to support partial roll back for nested transactions i.e. if the outer

transaction is valid, only the nested transaction will re-execute.

From conflict point discovery we can see that invoking Push inside a nested

transaction reduces the wasted work and improves the performance of the outer

atomic block (Table 6.4 version Nested Push). The nested atomic saves time by

preventing the outer transaction from rollback and re-execution when it is valid.

This modification has also changed the balance over the sources of wasted work

by shifting some of the wasted work to InsertSorted and Commit. When only

InsertSorted is wrapped in a nested atomic block we can see that the wasted

work at the call to InsertSorted increases with the same amount at which

conflicts on Commit decrease. This suggests that besides the WaW conflicts, there

are also RaW and WaR conflicts which are detected at the end of the commit.

When using nested transactions, most of these conflicts are detected when the

nested transaction commits, otherwise the same conflicts are detected when the

outer transaction commits. In other words, the nested atomic block changes

the conflict detection to an earlier point during the execution of the outer atomic

block (i.e. the end of the nested atomic block). In effect, this reduces the amount

of speculative execution due to conflicts which otherwise would be discovered at

the end of the outer atomic block. Using nested atomic blocks at both places

subsumes the observed results from conflict point discovery (Table 6.4 version

Nested Ins. + Push).

Table 6.5 shows the summarized results over the whole program execution for

the different versions of Intruder. These results suggest that the best performance

for 4 threads is achieved when Push is called inside a nested atomic and for 8

threads when InsertSorted is called inside nested atomic block. Despite the

lower wasted work the execution time of Intruder is not significantly better than

the base version. The reason is that nested atomic blocks incur small runtime

overhead which is not always amortized by the saved wasted work.

Early release, which is demonstrated in the following section, is another tech-

nique that can squiz a bit more performance from Intruder. As described in

182

6.5 Case Studies

Figure 6.3, it is possible to use early release when packet segments are inserted

in sorted order in fragmentedListPtr (Figure 6.13 line 9).

Last but not least, we would like to note that the authors of STAMP have

designed this benchmark suite with the purpose to benchmark the performance

of different TM implementations. Therefore, to benchmark broad spectrum of

implementations it is not necessary that applications in this suite are implemented

in the most optimal way and expected to scale. In fact, Intruder is a very useful

workload because it illustrates how an application’s behavior can be dependent

on the TM system that it uses. We also believe that STAMP authors were aware

that using hashtable instead of red black tree would make the application more

scalable for STMs.

6.5.4 Labyrinth

Labyrinth implements a variant of Lee’s path routing algorithm used in drawing

circuit blueprints. The only data structure causing conflicts in this application

was the grid on which the paths are routed. Almost all conflicts were happening in

the method that copies the shared grid into a thread local memory. The wasted

work due to the aborts at this place amounted to 80% of the total program

execution with 2 threads and 98% with 4 threads. In this case we followed a well

known optimization strategy described by Watson et al. [125]. The optimization

is based on domain specific knowledge that the program still produces correct

result even if threads operate on an outdated copy of the grid. Therefore, we

annotated the grid copy method to instruct the compiler to not instrument the

memory accesses inside grid copy with calls to the STM library, which in fact is

functionally the same as using early release. After this optimization Labyrinth’s

execution was similar to the one reported by the STAMP suite’s authors [20] (see

Table 6.1).

Although our prior knowledge of the existing optimization technique, this use

case serves as a good example when TM applications can be optimized by giving

hints to the TM system in similar way as with early release.

183

6.5 Case Studies

#Threads Application Abort Wasted Work

2

Genome 0.10% 0.10%

Vacation 0.80% 1.20%

WormBench 0.00% 0.00%

4

Genome 0.50% 0.20%

Vacation 2.45% 4.80%

WormBench 0.01% 0.02%

8

Genome 0.82% 0.50%

Vacation 5.30% 7.90%

WormBench 0.03% 0.07%

Table 6.6: Percentage of the wasted work due to aborts in Genome, Vacation and

WormBench.

6.5.5 Vacation and WormBench

Vacation and WormBench scaled as reported by their respective authors and had

very little wasted work (see Table 6.6). In these applications, there was not any

opportunity for further optimizations.

In Vacation we saw that the most aborting atomic block encloses a while

loop. We were tempted to move the atomic block inside the loop as in Figure 5.1

but that would change the specification of the application that the user can

specify the number of the tasks to be executed atomically. Moving the atomic

block inside the loop would always execute one task and therefore reduce the

conflict rate but the user will no longer be able to specify the number of the tasks

that should execute atomically. Also, similar changes may not always preserve

the correctness of the program because they may introduce atomicity violation

errors. In Genome, though very few, aborts occurred in the first and the last

atomic blocks in the program order (see Figure 5.10). In our setup, WormBench

had almost not conflicts — in 8-threaded execution from 400 000 transactions

only about 1100 aborted.

184

6.6 Summary

6.6 Summary

In this chapter we have introduced techniques for optimizing transactional mem-

ory applications. These techniques are to be used in a methodical approach for

optimizing applications to a specific TM implementation when profiling informa-

tion is available. We have profiled the applications from the STAMP TM bench-

mark suite using a TM-enabled profiling tool. Although these applications are

carefully written to have minimal overheads, we could find a performance niche

in them which we used to demonstrate the effect of our optimization techniques.

In Genome an open addressing hashtable was a congestion point of false con-

flicts due to the object level conflict detection in our STM library. It was easy

to see this problem using conflict point discovery. A solution was to replace the

open addressing hashtable with a chaining hashtable in which elements are stored

in a separate linked list object thus eliminating the false conflicts.

In Bayes, after a simple profiling, we have seen that only two mutually abort-

ing atomic blocks are responsible for almost all the wasted work in the program.

We have statically scheduled these two atomic blocks to not execute in paral-

lel. Although our schedule introduced new aborts between other pair of atomic

blocks, it decreased the amount of the total wasted work.

In Intruder, depending on whether the underlying TM system detects WaW

conflicts eagerly or lazily, the location of a memory assignment may have signif-

icant impact on the program performance. In TMs which detect WaW conflicts

eagerly, detecting such conflicts earlier during the execution of an atomic block

can cause less wasted work but at the same time cause other threads executing

the same atomic block to serialize. On the other side, TM systems which de-

tect WaW conflicts lazily are not affected by the statements location. Also, in

Intruder, we have shown that nested atomic blocks can be used as checkpoints.

Checkpoints placed just before the conflicting statements can reduce wasted work

on aborts and therefore improve the overall performance.

In Labyrinth we showed that early release can be a very effective way to reduce

conflicts. However, yet this approach is not safe and should be applied carefully

with knowledge about how the application algorithm can be relaxed.

185

6.6 Summary

In an iterative profile-and-optimize process, manual tuning can be automated

with a feedback directed compilation. We have also discussed how our techniques

can be implemented in feedback directed compilers.

186

Chapter 7

Conclusion

In this dissertation I studied the programmability aspects of real-world parallel

programs using atomic blocks and transactional memory (TM). The goal set was

to answer the following questions:

• Is programming with atomic blocks and TM easier than locks?

• Is performance of TM competitive to locks?

• Is TM a mature technology to be used in developing production software?

In Chapter 3, I have answered these questions by developing AtomicQuake.

AtomicQuake was developed from the parallel version of the Quake game server

by replacing all lock based synchronization with atomic blocks. The experience

on developing AtomicQuake answered the above questions and also showed that

the following assertions which are part of the thesis statement are true:

1. Parallel programming using atomic blocks is easier than fine-grain locking

schemes;

2. TM is not a bottleneck for the scalability of the parallel applications. How-

ever, unlike the performance results obtained with micro-benchmarks and

small kernel applications, TM is not as efficient as locks in large real world

applications. In a real transactional application TM has high single threaded

overhead and unanticipated abort overheads at the presence of contention;

187

3. TM technology is not mature enough to be used for developing production

software because of the following reasons:

(a) Language extensions and semantics are not expressive enough to imple-

ment I/O, errors and recover from errors inside transactions. For ex-

ample, locks cannot be replaced directly because their use do not match

the block based structure of atomic blocks;

(b) Existing application development tools such as compilers, debuggers

and profilers have minimal or no support for TM. For example, debug-

gers are not aware of atomic blocks and they cannot execute atomic

blocks atomically. Also, existing profiling tools do not provide relevant

information to discover and understand the TM overheads;

4. In large parallel applications replacing the lock-based synchronization with

atomic blocks is not straightforward. It requires careful examination of the

code to understand the locking policy (i.e. which lock protects which shared

data).

AtomicQuake contains rich uses of transactions and also its transactions have

different runtime characteristics. All these make AtomicQuake a valuable work-

load for benchmarks complete implementations of TM which span across several

layers on the software stack. It is an important contribution because it has driven

the research in TM further by opening new problems. While the other researchers

were busy with addressing some of these problems I have focused on three of them:

1. Debugging support for TM applications;

2. Profiling techniques for TM applications;

3. Optimization approaches for TM applications.

In Chapter 4 I have investigated how to extend existing debuggers with sup-

port for programs that use atomic blocks and TM. I have contributed to the TM

research by introducing new debugging techniques that fall in three categories:

1. debugging at the level of atomic blocks;

188

2. debugging at the level of transactions;

3. managing transactions at debug-time.

When debugging at the level of atomic blocks a whole block is executed as

if it was a single instruction. If the user wants to step inside an atomic block

to debug wrong code the debugger ensures that the user will not observe incon-

sistent speculative values and aborts. This approach extends the debugger with

the atomicity and isolation semantics of transactions. It is intuitive and also

abstracts the underlying implementation of atomic blocks which might be either

based on lock inference such as a global lock or TM. Conversely, when debugging

at the level of transactions the implementation of atomic blocks is not any more

abstracted and the programmer can observe the state of the underlying TM imple-

mentations. This approach is mainly intended for debugging performance errors

- for instance identifying the instructions which are responsible for a conflict.

To debug synchronization errors I have introduced a new debugger abstraction

– debug-time transaction. Debug-time transactions let the programmer to ma-

nipulate the synchronization by introducing new atomic blocks or enlarging the

scope of existing atomic blocks from within the debugger. I have implemented

these ideas in a debugger extension for WinDbg and a debugging framework for

Bartok-STM. Findings in Chapter 4 showed that the following assertion which is

part of the thesis statement is true:

5. It is difficult to find synchronization errors in TM applications and de-

bug wrong code inside atomic blocks because conventional debuggers are

not aware of atomic blocks and TM. To find the synchronization errors

between atomic blocks such as atomicity violations and asymmetric data

races debuggers need to be extended with the atomicity semantics of trans-

actions. To debug wrong code inside atomic blocks without observing spec-

ulative updates from other transactions, debuggers need to be extended with

the isolation semantics of transactions;

In Chapter 5 I have investigated methods to profile transactional applications

and report the profiling results in a form independent from the underlying TM im-

plementation. I have contributed to the TM research by introducing new a series

189

of profiling techniques for transactional applications. These techniques provide in

depth and comprehensive information to help the programmer in identifying and

understanding the bottlenecks specific to the TM programming model. These

techniques can be classified in three categories:

1. techniques to identify multiple conflicting locations;

2. techniques to identify conflicting objects; and

3. techniques to visualize how threads spend their time and how transactions

progress.

I have demonstrated that these techniques can be implemented efficiently for

an existing STM – Bartok-STM. I have extended Bartok-STM with a lightweight

profiling framework which is responsible to collect runtime data. To minimize the

overhead and probe effect, the large portion of the raw data is processed offline

by a visualization tool and the remaining small portion of data is processed at

runtime during during garbage collection. Findings in Chapter 5 showed that the

following assertion which is part of the thesis statement is true:

6. TM applications have different types of bottlenecks which are specific to

the TM programming model. These bottlenecks are caused by the aborting

transactions and are difficult to anticipate and understand. To find and

understand these bottlenecks properly requires new profiling techniques which

report results in an from independent of the underlying TM implementation;

In Chapter 6 I have examined the TM specific bottlenecks by profiling appli-

cations from STAMP TM benchmark suite and from the synthetic WormBench

workload. I have contributed to the TM research by introducing series of tech-

niques for a methodical optimization of transactional applications. The target of

these optimization techniques is to reduce the wasted work caused by aborting

transactions. They require knowledge of the underlying TM implementation and

leverage low-level mechanisms. I have demonstrated the effectiveness of these

techniques by optimizing Genome, Bayes, Intruder and Labyrinth applications

190

7.1 Future Work

from the STAMP TM benchmark suite. Findings in Chapter 6 showed that the

last assertion which is part of the thesis statement is true:

7. The performance of TM applications can be improved with TM-specific opti-

mizations which leverage the specific mechanisms provided by the underlying

TM implementation. For example, the same program can execute faster if

the programmer uses transaction checkpoints, nested atomic blocks or early

release.

7.1 Future Work

Research described in this dissertation can be extended in two directions. The

first approach is to investigate in more depth feedback directed optimizations and

their implementation. This would naturally follow from the profiling and opti-

mization work described in Chapter 5 and Chapter 6 respectively. While working

on the profiling and optimization techniques for transactional applications I have

noticed that there is a potential for improving the application performance by

giving compile-time hints to the TM system. For example, the programmer can

statically schedule the execution of two atomic blocks which abort each other

to not overlap, or the programmer can statically choose between lazy and eager

conflict detection for a given object, or the programmer can statically change

the granularity of conflict detection for a specific object which is involved in

false conflicts. Some of these ideas are already explored in runtime implemen-

tations; however runtime implementations require additional booking and incur

overheads. Based on the profiling information the runtime characteristics of the

STAMP applications are regular and do not change in time suggesting that static

settings would suffice. It would be interesting to implement these ideas in the

Bartok-STM compiler and compare their performance with the respective run-

time implementations (for those which exist). Also, it would be interesting to

study hybrid implementations such as combination between static and runtime,

where the static hints are used to offload the runtime overhead.

The second approach for extending this work is to carefully study the L1 data

cache miss rate caused by the STM operations which manage the transactional

191

7.1 Future Work

metadata (i.e. read and write set, logs, validation). While I was profiling the

transactional applications from the STAMP benchmark suite I have noticed that

the STM operations cause x3-x4 times more cache misses in a single-threaded

program execution and the cache miss rate increase with the number of threads.

This increase can be explained with the increase of the number of of instructions

because of the STM operations. However, a smart hardware support for STM

can reduce this cache miss rate. A reduced cache miss rate would improve the

application performance by reducing the single threaded overhead of the STM

and being less scalability bottleneck. Also, such hardware extension could be

applied in other domains as well.

192

References

[1] Mart́ın Abadi, Tim Harris, and Mojtaba Mehrara. Transactional memory

with strong atomicity using off-the-shelf memory protection hardware. In

PPoPP ’09: Proc. 14th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 185–196, Febrary 2009. 35, 50, 52

[2] Ahmed Abdelkhalek and Angelos Bilas. Parallelization and performance

of interactive multiplayer game servers. In IPDPS ’04: Proc. 18th inter-

national parallel and distributed processing symposium, pages 72–81, April

2004. 10, 47, 52, 55, 56, 59

[3] Ahmed Abdelkhalek, Angelos Bilas, and Andreas Moshovos. Behavior and

performance of interactive multi-player game servers. In Proc. Int. IEEE

Symposium on the Performance Analysis of Systems and Software (ISPASS-

2001, pages 355–366, November 2001. 56

[4] Ali-Reza Adl-Tabatabai and Tatiana Spheisman. Draft specification of

transactional langauge constructs for c++ version 1.0.2. Mainling group,

April 2010. 20

[5] Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, Brian R. Murphy,

Bratin Saha, and Tatiana Shpeisman. Compiler and runtime support for

efficient software transactional memory. In PLDI ’06: Proc. 2006 ACM

SIGPLAN Conference on Programming Language Design and Implementa-

tion, pages 26–37, June 2006. 38, 155

[6] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Memory models for

open-nested transactions. In MSPC ’06: Proc. 2006 Workshop on Memory

System Performance and Correctness, pages 70–81, March 2006. 29

193

REFERENCES

[7] Kunal Agrawal, I-Ting Angelina Lee, and Jim Sukha. Safe open-nested

transactions through ownership. In PPoPP ’09: Proc. 14th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 151–

162, February 2009. 29

[8] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leis-

erson, and Sean Lie. Unbounded transactional memory. In HPCS ’05:

Proc. 11th International Symposium on High-Performance Computer Ar-

chitecture, pages 316–327, February 2005. 45

[9] Mohammad Ansari, Kim Jarvis, Christos Kotselidis, Mikel Lujan, Chris

Kirkham, and Ian Watson. Profiling transactional memory applications. In

PDP ’09: Proceedings of the 2009 17th Euromicro International Conference

on Parallel, Distributed and Network-based Processing, pages 11–20, 2009.

148

[10] Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos Kozyrakis,

and Kunle Olukotun. The opentm transactional application programming

interface. In Proceedings of the 16th International Conference on Parallel

Architectures and Compilation Techniques, pages 376–387, September 2007.

82

[11] Alexandro Baldassin and Sebastian Burckhardt. Lightweight software

transactions for games. In HotPar ’09: HotPar 09: Proc. 1st Workshop

on Hot Topics in Parallism, March 2009. 51

[12] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware mem-

ory protection to build a high-performance, strongly-atomic hybrid trans-

actional memory. In ISCA ’08: Proc. 35th international symposium on

computer architecture, pages 115–126, June 2008. 52

[13] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-

rency Control and Recovery in Database Systems. Addison Wesley Publish-

ing Company, 1987. ISBN 0-20110-715-5. 84

194

REFERENCES

[14] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Deconstruct-

ing transactional semantics: The subtleties of atomicity. In WDDD ’05:

Proc. 4th workshop on duplicating, deconstructing and debunking, pages

48–55, June 2005. 52

[15] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Deconstruct-

ing transactional semantics: The subtleties of atomicity. In WDDD ’05:

Fourth Annual Workshop on Duplicating, Deconstructing, and Debunking,

June 2005. 34

[16] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Unrestricted

transactional memory: Supporting I/O and system calls within transac-

tions. Technical Report TR-CIS-06-09, University of Pennsylvania, De-

partment of Computer and Information Science, May 2006. 52

[17] Colin Blundell, Arun Raghavan, and Milo M.K. Martin. RETCON: trans-

actional repair without replay. In ISCA ’10: Proc. 37th International Sym-

posium on Computer Architecture, pages 258–269, June 2010. 159

[18] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill,

Michael M. Swift, and David A. Wood. Performance pathologies in hard-

ware transactional memory. In ISCA ’07: Proc. 34th international sym-

posium on computer architecture, pages 81–91, June 2007. 106, 121, 130,

173

[19] Nathan G. Bronson, Christos Kozyrakis, and Kunle Olukotun. Feedback-

directed barrier optimization in a strongly isolated STM. In POPL ’09:

Proc. of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 213–225, January 2009. 155

[20] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-

tun. STAMP: Stanford transactional applications for multi-processing. In

IISWC ’08: Proc. 11th IEEE International Symposium on Workload Char-

acterization, pages 35–46, September 2008. 49, 102, 153, 157, 159, 162, 166,

168, 169, 175, 183

195

REFERENCES

[21] Michael J. Carey, David J. DeWitt, Chander Kant, and Jeffrey F.

Naughton. A status report on the OO7 OODBMS benchmarking effort.

In OOPSLA ’94: Proc. 9th annual conference on object-oriented program-

ming systems, language, and applications, pages 414–426, October 1994.

48

[22] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung,

Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun. The atomos trans-

actional programming language. In PLDI ’06: Proc. 2006 ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages

1–13, June 2006. 35

[23] Hassan Chafi, Chi Cao Minh, Austen McDonald, Brian D. Carlstrom, Jae-

Woong Chung, Lance Hammond, Christos Kozyrakis, and Kunle Olukotun.

TAPE: A transactional application profiling environment. In ICS ’05: Proc.

19th international conference on supercomputing, pages 199–208, June 2005.

109, 132, 148, 164

[24] Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen McDonald, Chi

Cao Minh, Woongki Baek, Christos Kozyrakis, and Kunle Olukotun. A

scalable, non-blocking approach to transactional memory. In HPCA ’07:

Proc. 13th IEEE International Symposium on High Performance Computer

Architecture, pages 97–108, February 2007. 28, 44, 109, 176

[25] Dhruva R. Chakrabarti. New abstractions for effective performance analysis

of STM programs. In PPoPP ’10: Proceedings of the 15th ACM SIGPLAN

symposium on Principles and practice of parallel programming, pages 333–

334, January 2010. 15, 133, 143, 153, 158, 159, 166

[26] Pohua P. Chang, Scott A. Mahlke, and Wen-mei W. Hwu. Using profile

information to assist classic code optimizations. Softw. Pract. Exper., 21

(12):1301–1321, 1991. ISSN 0038-0644. 164

[27] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks for

atomic sections. In PLDI ’08: Proc. International Conference on Program-

ming Language Design and Implementation, pages 304–315, June 2008. 24

196

REFERENCES

[28] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Sampson,

Michael Van Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo Colavin.

Unbounded page-based transactional memory. In ASPLOS ’06: Proc. 12th

International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 347–358, October 2006. 45

[29] Jaewoong Chung, Hassan Chafi, Chi Cao Minh, Austen Mcdonald, Brian D.

Carlstrom, Christos Kozyrakis, and Kunle Olukotun. The common case

transactional behavior of multithreaded programs. In HPCA ’06: Proc.

12th International Conference on High-Performance Computer Architec-

ture, pages 266–277, February 2006. 48

[30] Intel Corporation. Intel R© C++ STM Compiler Prototype Edition 2.0 Lan-

guage Extensions and User’s Guide. Intel Corporation, 2 edition, March

2008. 61, 77

[31] David Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off the

grass: Locking the right path for atomicity. In CC ’08: Proc. International

Conference on Compiler Construction, pages 276–290, April 2008. 24

[32] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark

Moir, and Daniel Nussbaum. Hybrid transactional memory. In ASPLOS

’06: Proc. 12th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 336–346, October 2006.

45

[33] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC

’06: Proc. 20th ACM International Symposium on Distributed Computing,

pages 194–208, September 2006. 24, 38, 158, 166, 169

[34] Dave Dice, Yossi Lev, Mark Moir, and Daniel Nussbaum. Early experience

with a commercial hardware transactional memory implementation. In

ASPLOS ’09: Proc. 14th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 157–168, March

2009. 49, 133, 156

197

REFERENCES

[35] Shlomi Dolev, Danny Hendler, and Adi Suissa. Car-stm: scheduling-based

collision avoidance and resolution for software transactional memory. In

PODC ’08: Proc. of 27th ACM Symposium on Principles of Distributed

Computing, pages 125–134, August 2008. 33, 156

[36] Aleksandar Dragojevic, Rachid Guerraoui, and Michal Kapalka. Dividing

transactional memories by zero. In TRANSACT ’08: 3rd Workshop on

Languages, Compilers, and Hardware Support for Transactional Comput-

ing, February 2008. 49

[37] Aleksandar Dragojević, Rachid Guerraoui, Anmol V. Singh, and Vasu

Singh. Preventing versus curing: avoiding conflicts in transactional mem-

ories. In PODC ’09: Proc. of the 28th ACM Symposium on Principles of

Distributed Computing, pages 7–16, 2009. 33, 156

[38] Robert Ennals. Software transactional memory should not be obstruction-

free. Technical Report IRC-TR–06–052, Intel, 2006. 160

[39] Pascal Felber, Christof Fetzer, Ulrich Mller, Torvald Riegel, Martin Skraut,

and Heiko Sturzrehm. Transactifying applications using an open compiler

framework. In TRANSACT ’07: 2nd Workshop on Languages, Compilers,

and Hardware Support for Transactional Computing, August 2007. 82, 153,

157, 164

[40] Pascal Felber, Vincent Gramoli, and Rachid Guerraoui. Elastic transac-

tions. In DISC ’09: Proc. 23rd international Conference on Distributed

Computing, pages 93–107, September 2009. 37

[41] Keir Fraser. Practical lock freedom. PhD thesis, PhD Thesis, Cambridge

University Computer Laboratory, 2003. Also available as Technical Report

UCAM-CL-TR-579. 35

[42] Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal, Adrian Cristal,

Eduard Ayguade, Tim Harris, and Mateo Valero. Quaketm: paralleliz-

ing a complex sequential application using transactional memory. In ICS

’09: Proc. 23rd international conference on Supercomputing, pages 126–135,

June 2009. 8, 11, 14, 20, 50, 105, 118, 130, 135, 144

198

REFERENCES

[43] Dan Grossman. The transactional memory / garbage collection analogy. In

OOPSLA ’07: Proc. 22nd ACM SIGPLAN Conference on Object-oriented

Programming Systems and Applications, pages 695–706, October 2007. 19

[44] Andrew S. Grove. Only the paranoid survive. Doubleday, 1st edition, 1996.

ISBN 978-0385482585. 1

[45] Rachid Guerraoui and Michal Kapalka. On obstruction-free transactions.

In SPAA ’08: Proc. of the 20th Symposium on Parallelism in Algorithms

and Architectures, pages 304–313, June 2008. 160

[46] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. STMBench7: A bench-

mark for software transactional memory. In EuroSys ’07: Proc. 2nd Euro-

pean systems conference, pages 315–324, March 2007. 12, 48

[47] Shantanu Gupta, Florin Sultan, Srihari Cadambi, Franjo Ivancic, and Mar-

tin Rotteler. Using hardware transactional memory for data race detection.

In IPDPS ’09: Proc. 23rd IEEE international parallel and distributed pro-

cessing symposium, pages 1–11, May 2009. 109, 124

[48] Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge.

Component-based lock allocation. In PACT ’07: Proc. 16th International

Conference on Parallel Architecture and Compilation Techniques, pages

353–364, September 2007. 24

[49] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Michael Chen, Christos

Kozyrakis, and Kunle Olukotun. Transactional coherence and consistency:

Simplifying parallel hardware and software. In MICRO ’04: Proc. 37th

IEEE/ACM International Symposium in Microarchitecture, pages 92–103,

November 2004. 28, 44

[50] Derin Harmanci, Vincent Gramoli, Pascal Felber, and Christof Fetzer. Ex-

tensible transactional memory testbed. JPDC ’10: Journal of Parallel Dis-

tributed Computcomputing, 70:1053–1067, October 2010. 49

[51] Tim Harris. Exceptions and side-effects in atomic blocks. Sci. Comput.

Program., 58:325–343, December 2005. ISSN 0167-6423. 35

199

REFERENCES

[52] Tim Harris and Keir Fraser. Language support for lightweight transactions.

In OOPSLA ’03: Proc. 18th ACM SIGPLAN conference on object-oriented

programming, systems, languages, and applications, pages 388–402, October

2003. 105, 144, 153

[53] Tim Harris and Srdjan Stipic. Abstract nested transactions. In TRANS-

ACT ’07: 2nd Workshop on Languages, Compilers, and Hardware Support

for Transactional Computing, August 2007. 32, 165

[54] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.

Composable memory transactions. In PPoPP ’05: Proc. 10th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming,

pages 48–60, February 2005. 21, 68, 160

[55] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing

memory transactions. In PLDI ’06: Proc. 2006 ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 14–25, June

2006. 38, 40, 82, 95, 109, 131, 149, 153, 155, 157, 164, 166

[56] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory (Syn-

thesis Lectures on Computer Architecture). Morgan & Claypool Publishers,

2nd edition, June 2010. ISBN 978-1598291247. 2, 38, 72, 105, 134

[57] Tim Harris, Saša Tomic, Adrián Cristal, and Osman Unsal. Dynamic filter-

ing: multi-purpose architecture support for language runtime systems. In

Proceedings of the fifteenth edition of ASPLOS on Architectural support for

programming languages and operating systems, pages 39–52, March 2010.

45

[58] Maurice Herlihy and Eric Koskinen. Transactional boosting: a methodology

for highly-concurrent transactional objects. In PPoPP ’08: Proc. 13th ACM

SIGPLAN symposium on principles and practice of parallel programming,

pages 207–216, February 2008. 52

200

REFERENCES

[59] Maurice Herlihy and Yossi Lev. tm db: A generic debugging library for

transactional programs. In PACT ’09: Proc. 18th international confer-

ence on parallel architectures and compilation techniques, pages 136–145,

September 2009. 13, 108, 111, 121

[60] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural

support for lock-free data structures. In ISCA ’93: Proc. 20th International

Symposium on Computer Architecture, pages 289–300, May 1993. 2, 24, 44,

48

[61] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer,

III. Software transactional memory for dynamic-sized data structures. In

PODC ’03: Proc. 22nd Symposium on Principles of Distributed Computing,

pages 92–101, July 2003. 35

[62] Michael Hicks, Jeffrey S. Foster, and Polyvios Prattikakis. Lock inference

for atomic sections. In TRANSACT ’06: 1st Workshop on Languages,

Compilers, and Hardware Support for Transactional Computing, June 2006.

24

[63] W. Daniel Hillis and Guy L. Steele, Jr. Data parallel algorithms. Commun.

ACM, pages 1170–1183, 1986. 1

[64] Sungpack Hong, Tayo Oguntebi, Jared Casper, Nathan Bronson, Christos

Kozyrakis, and Kunle Olukotun. Eigenbench: A simple exploration tool

for orthogonal tm characteristics. In IISWC ’10: 2010 International Sym-

posium on Workload Characterization, pages 1–11, December 2010. 12,

49

[65] ID Software. Quake. 50, 55

[66] Seunghwa Kang and David A. Bader. An efficient transactional memory

algorithm for computing minimum spanning forest of sparse graphs. In

PPoPP ’09: Proc. 14th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 15–24, Febryary 2009. 49, 156

201

REFERENCES

[67] Gokcen Kestor, Vasileios Karakostas, Osman Unsal, Adrian Cristal,

Ibrahim Hur, and Mateo Valero. RMS-TMS: A transactional memory

benchmark for recognition, mining and synthesis applications. In ICPE

’11: Proc. International Conference on Performance Engineering, March

2011. 50, 105, 118, 144

[68] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and

Anthony Nguyen. Hybrid transactional memory. In PPoPP ’06: Proc.

11th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 209–220, March 2006. 45

[69] Chris Lattner and Vikram Adve. Llvm: A compilation framework for life-

long program analysis & transformation. In CGO ’04: Proc. of 2004 Inter-

national Symposium on Code Generation and Optimization, pages 75–86,

March 2004. 164

[70] Suh-Yin Lee and Ruey-Long Liou. A multi-granularity locking model for

concurrency control in object-oriented database systems. In Transactions

on Knowledge and Data Engineering, pages 144–156, February 1996. 60,

85

[71] Yossi Lev. Making debuggers transaction-ready. Transactional Memory:

From Implementation to Application, Seminar 2008241, Dagstuhl, Ger-

many, June 2008. 111

[72] Yossi Lev and Jan-Willem Maessen. Split hardware transactions: true

nesting of transactions using best-effort hardware transactional memory.

In PPoPP ’08: Proc. 13th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 197–206, February 2008. 35

[73] Yossi Lev and Mark Moir. Debugging with transactional memory. In

TRANSACT’ 07: 2nd Workshop on Languages, Compilers, and Hardware

Support for Transactional Computing, August 2007. 13, 109

[74] Yossi Lev, Victor Luchangco, Virendra J. Marathe, Mark Moir, Dan Nuss-

baum, and Marek Olszewski. Anatomy of a scalable software transactional

202

REFERENCES

memory. In TRANSACT’ 09: 4th Workshop on Languages, Compilers, and

Hardware Support for Transactional Computing, February 2009. 109

[75] Yi Liu, Xin Zhang, He Li, Mingxiu Li, and Depei Qian. Hardware trans-

actional memory supporting i/o operations within transactions. In HPCC

’08: Proc. 10th IEEE International Conference on High Performance Com-

puting and Communications, pages 85–92, September 2008. 35, 68

[76] Joao Lourenço, Ricardo Dias, Joao Lúıs, Miguel Rebelo, and Vasco Pes-

sanha. Understanding the behavior of transactional memory applications.

In PADTAD ’09: Proceedings of the 7th Workshop on Parallel and Dis-

tributed Systems, pages 1–9, July 2009. 16, 133, 153, 164

[77] Daniel Lupei, Bogdan Simion, Don Pinto, Matthew Misler, Mihai Burcea,

William Krick, and Cristiana Amza. Transactional memory support for

scalable and transparent parallelization of multiplayer games. In EuroSys:

’10: Proc. 5th European Conference on Computer Systems, pages 41–54,

April 2010. 11, 51, 53, 156

[78] Walther Maldonado, Patrick Marlier, Pascal Felber, Adi Suissa, Danny

Hendler, Alexandra Fedorova, Julia L. Lawall, and Gilles Muller. Scheduling

support for transactional memory contention management. In PPoPP ’10:

Proce. of the 15th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, pages 79–90, 2010. 33, 156

[79] Sandya Mannarswamy, Dhruva R. Chakrabarti, Kaushik Rajan, and Su-

joy Saraswati. Compiler aided selective lock assignment for improving the

performance of software transactional memory. In PPoPP ’10: Proc. 15th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, pages 37–46, January 2010. 27

[80] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer. Autolocker: syn-

chronization inference for atomic sections. In POPL ’06: Conference record

of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, pages 346–358, January 2006. 24

203

REFERENCES

[81] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh,

Hassan Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectural se-

mantics for practical transactional memory. In ISCA ’06: Proc. 33rd In-

ternational Symposium on Computer Architecture, pages 53–65, June 2006.

35

[82] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-

Tabatabi, Richard L. Hudson, Bartin Saha, and Adam Welc. Practical

weak-atomicity semantics for Java STM. In SPAA ’08: Proc. 20th annual

symposium on parallelism in algorithms and architectures, pages 314–325,

June 2008. 52

[83] Microsoft Corporation – MSDN. Debugger engine and extension APIs, .

http://msdn.microsoft.com/en-us/library/cc267863.aspx. 109

[84] Microsoft Corporation – MSDN. Debugging tools for windows, .

http://msdn.microsoft.com/en-us/library/cc266321.aspx. 109

[85] Milos Milovanovic, Osman S. Unsal, Adrián Cristal, Srdjan Stipic, Ferad

Zyulkyarov, and Mateo Valero. Compile time support for using transac-

tional memory in c/c++ applications. In INTERACT ’07: Proc. 11th

Annual Workshop on the Interaction between Compilers and Computer Ar-

chitecture, February 2007. 8

[86] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,

Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun.

An effective hybrid transactional memory system with strong isolation guar-

antees. In ISCA ’07: Proc. 34th International Symposium on Computer

architecture, pages 69–80, June 2007. 9, 45

[87] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and

David A. Wood. LogTM: log-based transactional memory. In HPCA ’06:

Proc. 12th IEEE International Symposium on High Performance Computer

Architecture, pages 254–265, February 2006. 28, 44

204

http://msdn.microsoft.com/en-us/library/cc267863.aspx
http://msdn.microsoft.com/en-us/library/cc266321.aspx

REFERENCES

[88] Yang Ni, Vijay S. Menon, Ali-Reza Adl-Tabatabai, Antony L. Hosking,

Richard L. Hudson, J. Eliot B. Moss, Bratin Saha, and Tatiana Shpeisman.

Open nesting in software transactional memory. In PPoPP ’07: Proc.

12th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 68–78, March 2007. 29, 52

[89] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkow-

its, James Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy,

Jeffrey Olivier, Serguei Preis, Bratin Saha, Ady Tal, and Xinmin Tian.

Design and implementation of transactional constructs for C/C++. In

OOPSLA ’08: Proc. 23rd ACM SIGPLAN conference on Object oriented

programming systems languages and applications, pages 195–212, October

2008. 50, 82, 144, 153, 164

[90] Kunle Olukotun and Lance Hammond. The future of microprocessors.

Queue, pages 26–29, 2005. 1

[91] Zhelong Pan and Rudolf Eigenmann. Rating compiler optimizations for

automatic performance tuning. In SC ’04: Proc. of the 2004 ACM/IEEE

Conference on Supercomputing, page 14, November 2004. 165

[92] Victor Pankratius, Ali-Reza Adl-Tabatabai, and Frank Otto. Does trans-

actional memory keep its promises? Results from an empirical study. Tech-

nical Report 2009-12, University of Karlsruhe, September 2009. 20, 118,

130, 132

[93] Cristian Perfumo, Nehir Sonmez, Srdan Stipic, Adrian Cristal, Osman Un-

sal, Tim Harris, and Mateo Valero. The limits of software transactional

memory (STM): Dissecting Haskell STM applications on a many-core en-

vironment. In CF ’08: Proc. ACM international conference on computing

frontiers, pages 67–78, May 2008. 50, 118, 144, 148

[94] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional

memory. In ISCA ’05: Proc. 32nd International Symposium on Computer

Architecture, pages 494–505, July 2005. 45

205

REFERENCES

[95] Hany E. Ramadan, Christopher J. Rossbach, Donald E. Porter, Owen S.

Hofmann, Aditya Bhandari, and Emmett Witchel. MetaTM/TxLinux:

transactional memory for an operating system. In ISCA ’07: Proc. 34th

International Symposium on Computer Architecture, pages 92–103, June

2007. 51

[96] Torvald Riegel, Pascal Felber, and Christof Fetzer. Dynamic performance

tuning of word-based software transactional memory. In PPoPP’08: Proc.

13th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 237–246, February 2008. 27, 38

[97] Michael F. Ringenburg and Dan Grossman. Atomcaml: first-class atom-

icity via rollback. In ICFP ’05: Proc. 10th ACM SIGPLAN International

Conference on Functional Programming, pages 92–104, September 2005. 21

[98] Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter, Hany E.

Ramadan, Bhandari Aditya, and Emmett Witchel. Txlinux: using and

managing hardware transactional memory in an operating system. In SOSP

’07: Proc. 21st ACM SIGOPS Symposium on Operating Systems Principles,

pages 87–102, October 2007. 51

[99] Christopher J. Rossbach, Hany E. Ramadan, Owen S. Hofmann, Donald E.

Porter, Aditya Bhandari, and Emmett Witchel. TxLinux and MetaTM:

transactional memory and the operating system. Commununications of the

ACM, 51:83–91, September 2008. ISSN 0001-0782. 51

[100] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is trans-

actional programming actually easier? In PPoPP ’10: Proc. 15th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming,

pages 47–56, January 2010. 20, 118, 130, 132

[101] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh,

and Benjamin Hertzberg. Mcrt-stm: a high performance software trans-

actional memory system for a multi-core runtime. In PPoPP ’06: Proc.

11th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 187–197, March 2006. 38, 41

206

REFERENCES

[102] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural

support for software transactional memory. In MICRO ’06: Proc. 39th

IEEE/ACM International Symposium on Microarchitecture, pages 185–196,

December 2006. 45

[103] Serap Savari and Cliff Young. Comparing and combining profiles. The

Journal of Instruction-Level Parallelism, 2(1942-9525), May 2000. 166

[104] William N. Scherer, III and Michael L. Scott. Advanced contention manage-

ment for dynamic software transactional memory. In PODC ’05: Proc. 20th

ACM Symposium on Principles of Distributed Computing, pages 240–248,

July 2005. 28

[105] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balen-

siefer, Dan Grossman, Richard L. Hudson, Katherine F. Moore, and Bratin

Saha. Enforcing isolation and ordering in STM. In PLDI ’07: Proc. of the

2007 ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 78–88, June 2007. 35, 52

[106] Arrvindh Shriraman, Michael F. Spear, Hemayet Hossain, Virendra J.

Marathe, Sandhya Dwarkadas, and Michael L. Scott. An integrated

hardware-software approach to flexible transactional memory. In ISCA ’07:

Proc. 34th International Symposium on Computer Architecture, pages 104–

115, June 2007. 45

[107] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible

decoupled transactional memory support. In ISCA ’08: Proc. 35th Inter-

national Symposium on Computer Architecture, pages 139–150, June 2008.

44

[108] Travis Skare and Christos Kozyrakis. Early release: Friend or foe? In

WTMW ’06: In Workshop of Transactional Memory Workloads, June 2006.

162

[109] Travis Skare and Christos Kozyrakis. Early release: Friend or foe? In

WTW ’06: In 2006 Workshop of Transactional Memory Workloads, June

2006. 35

207

REFERENCES

[110] Nehir Sonmez, Cristian Perfumo, Srdjan Stipic, Adrian Cristal, Osman S.

Unsal, and Mateo Valero. Unreadtvar: Extending haskell software transac-

tional memory for performance. In TFP ’07: In Proc. 8th Symposium on

Trends in Functional Programming, April 2007. 35, 162

[111] Nehir Sonmez, Adŕıan Cristal, Osman S. Unsal, Tim Harris, and Mateo

Valero. Profiling transactional memory applications on an atomic block

basis: A haskell case study. In MULTIPROG ’09: Proc. 2dn workshop on

Programmability issues for multi-core computers, January 2009. 133, 148

[112] Nehir Sonmez, Tim Harris, Adrián Cristal, Osman Unsal, and Mateo

Valero. Taking the heat off transactions: Dynamic selection of pessimistic

concurrency control. In IPDPS ’09: Proc. 23rd IEEE International Sym-

posium on Parallel and Distributed Processing, pages 1–10, May 2009. 155,

166

[113] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L.

Scott. Privatization techniques for software transactional memory. In

PODC’07: Proc. 26th ACM Symposium on principles of distributed com-

puting, pages 338–339. August 2007. 144

[114] Michael F. Spear, Luke Dalessandro, Virendra Marathe, and Michael L.

Scott. Ordering-based semantics for software transactional memory. In

OPODIS ’08: Proc. 12th International Conference on Principles of Dis-

tributed Systems, pages 275–294, December 2008. 144

[115] Michael F. Spear, Michael Silverman, Luke Dalessandro, Maged M.

Michael, and Michael L. Scott. Implementing and exploiting inevitability

in software transactional memory. In ICPP ’08: Proc. 37th IEEE interna-

tional conference on parallel processing, pages 59–66, October 2008. 114,

120

[116] Michael F. Spear, Maged M. Michael, Michael L. Scott, and Peng Wu. Re-

ducing memory ordering overheads in software transactional memory. In

CGO ’09: Proc. 7th IEEE/ACM International Symposium on Code Gen-

eration and Optimization, pages 13–24, March 2009. 35, 68

208

REFERENCES

[117] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice Hall, 1994.

ISBN 978-0132199087. 84

[118] Andrew S. Tanenbaum. Modern Operating Systems (2nd Edition). Prentice

Hall, 2001. ISBN 978-0130313584. 60, 85

[119] Saša Tomić, Cristian Perfumo, Chinmay Kulkarni, Adrià Armejach, Adrián

Cristal, Osman Unsal, Tim Harris, and Mateo Valero. Eazyhtm: eager-lazy

hardware transactional memory. In MICRO ’09: Proc. 42nd IEEE/ACM

International Symposium on Microarchitecture, pages 145–155, December

2009. 28, 44, 176

[120] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and

David I. August. Compiler optimization-space exploration. In CGO ’03:

Proc. of the 2003 International Symposium on Code Generation and Opti-

mization, pages 204–215, March 2003. 165

[121] Haris Volos, Andres Jaan Tack, Neelam Goyal, Michael M. Swift, and Adam

Welc. xcalls: safe i/o in memory transactions. In EuroSys ’09: Proc. 4th

ACM European Conference on Computer Systems, pages 247–260, April

2009. 35

[122] M. M. Waliullah and Per Stenstrom. Intermediate checkpointing with con-

flicting access prediction in transactional memory systems. Technical re-

port, Chalmers University of Technology. 159

[123] M. M. Waliullah and Per Stenstrom. Intermediate checkpointing with con-

flicting access prediction in transactional memory systems. In IPDPS ’08:

Proc. 22nd IEEE International Parallel & Distributed Processing Sympo-

sium, pages 1–11, April 2008. 31

[124] Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, and Ali-Reza Adl-

Tabatabai. Code generation and optimization for transactional memory

constructs in an unmanaged language. In CGO ’07: Proceedings of the

International Symposium on Code Generation and Optimization, pages 34–

48, March 2007. 61, 77, 82

209

REFERENCES

[125] Ian Watson, Chris Kirkham, and Mikel Lujan. A study of a transactional

parallel routing algorithm. In PACT ’07: Proc. 16th International Confer-

ence on Parallel Architecture and Compilation Techniques, pages 388–398,

September 2007. 49, 162, 183

[126] Adam Welc, Bratin Saha, and Ali-Reza Adl-Tabatabai. Irrevocable trans-

actions and their applications. In SPAA ’08: Proc. 20th Symposium on

Parallelism in Algorithms and Architectures, pages 285–296, June 2008. 35,

66, 68, 114, 120

[127] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh,

and Anoop Gupta. The SPLASH-2 programs: Characterization and

methodological considerations. In ISCA ’95: Proc. 22nd annual interna-

tional symposium on computer architecture, pages 24–38, June 1995. 50

[128] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos,

Mark D. Hill, Michael M. Swift, and David A. Wood. LogTM-SE: Decou-

pling hardware transactional memory from caches. In HPCA ’07: Proc.

13th IEEE International Symposium on High Performance Computer Ar-

chitecture, pages 261–272, February 2007. 28, 44

[129] Richard M. Yoo and Hsien-Hsin S. Lee. Adaptive transaction scheduling

for transactional memory systems. In SPAA ’08: Proc. of 20th Symposium

on Parallelism in Algorithms and Architectures, pages 169–178, 2008. 33,

156

[130] Richard M. Yoo, Yang Ni, Adam Welc, Bartin Saha, Ali-Reza Adl-

Tabatabai, and Hsien-Hsin S. Lee. Kicking the tires of software transac-

tional memory: Why the going gets tough. In SPAA ’08: Proc. 20th annual

symposium on parallelism in algorithms and architectures, pages 265–274,

June 2008. 54, 66, 144, 162

[131] Craig Zilles and Lee Baugh. Extending hardware transactional memory

to support nonbusy waiting and nontransactional actions. In TRANSACT

’06: 1st Workshop on Languages, Compilers, and Hardware Support for

Transactional Computing, June 2006. 35

210

REFERENCES

[132] Ferad Zyulkyarov, Milos Milovanovic, Osman Unsal, Adrián Cristal, Ed-

uard Ayguadé, Tim Harris, and Mateo Valero. Memory management

for transaction processing core in heterogeneous chip-multiprocessors. In

OSHMA ’07: Workshop on Operating System support for Heterogeneous

Multicore Architectures, September 2007. 8

[133] Ferad Zyulkyarov, Osman S., Adrián Cristal, and Mateo Valero. Synthetic

workloads for transactional memory. In ACACES ’07: Proc. 2nd Advanced

Computer Architecture and Compilation for Embedded Systems, pages 135–

137, August 2007. 8

[134] Ferad Zyulkyarov, Sanja Cvijic, Osman Unsal, Adrián Cristal, Eduard

Ayguade, Tim Harris, and Mateo Valero. Wormbench: a configurable work-

load for evaluating transactional memory systems. In MEDEA ’08: Proc.

9th workshop on MEmory performance, pages 61–68, October 2008. 8, 12,

47, 105, 118, 166

[135] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal, Adrián Cristal, Ed-

uard Ayguadé, Tim Harris, and Mateo Valero. Atomic quake: using trans-

actional memory in an interactive multiplayer game server. In PPoPP ’09:

Proc. 14th ACM SIGPLAN symposium on Principles and practice of par-

allel programming, pages 25–34, February 2009. 8, 10, 20, 47, 85, 105, 107,

118, 144

[136] Ferad Zyulkyarov, Tim Harris, Osman S. Unsal, Adŕıan Cristal, and Ma-

teo Valero. Debugging programs that use atomic blocks and transactional

memory. In PPoPP ’10: Proc. 15th ACM SIGPLAN symposium on Prin-

ciples and practice of parallel computing, pages 57–66, January 2010. 7,

15

[137] Ferad Zyulkyarov, Srdjan Stipic, Tim Harris, Osman S. Unsal, Adŕıan

Cristal, Ibrahim Hur, and Mateo Valero. Discovering and understanding

performance bottlenecks in transactional applications. In PACT’10: Proc.

19th International Conference on Parallel Architectures and Compilation

Techniques, pages 285–294, September 2010. 7, 15, 153, 164

211

REFERENCES

[138] Ferad Zyulkyarov, Srdjan Stipic, Tim Harris, Osman S. Unsal, Adŕıan

Cristal, Ibrahim Hur, and Mateo Valero. Discovering and understanding

performance bottlenecks in transactional applications. In IJPP’11: to appar

at International Journal of Parallel Programming, 2011. 7

212

	PhD Thesis - Ferad Zyulkyarov.pdf
	1 Introduction
	1.1 Thesis Statement
	1.2 Contributions
	1.3 Publications
	1.4 Research Context
	1.4.1 AtomicQuake
	1.4.2 WormBench
	1.4.3 Debugging
	1.4.4 Profiling

	1.5 Outline

	2 Background - Transactional Memory
	2.1 Language Constructs
	2.2 Design and Operation
	2.2.1 Interface
	2.2.2 Data Versioning
	2.2.3 Conflict Detection
	2.2.4 Conflict Resolution
	2.2.5 Commit
	2.2.6 Abort

	2.3 Additional Functionality
	2.3.1 Nested Transactions
	2.3.2 Transaction Checkpointing
	2.3.3 Abstract Nested Transactions
	2.3.4 Transaction Scheduling
	2.3.5 Strong vs. Weak Isolation
	2.3.6 Handling Irrevocable Actions
	2.3.7 Early Release

	2.4 Implementations
	2.4.1 Software Transactional Memory
	2.4.1.1 TL2
	2.4.1.2 Bartok-STM

	2.4.2 Hardware Transactional Memory
	2.4.3 Hybrid Transactional Memory

	2.5 Summary

	3 Developing Programs with Atomic Blocks and Transactional Memory
	3.1 Motivation
	3.2 Related Work
	3.3 Atomic Quake
	3.3.1 Quake Overview
	3.3.1.1 Parallel Quake
	3.3.1.2 Shared Data Structures

	3.3.2 Using Transactions
	3.3.2.1 Where Transactions Fit
	3.3.2.2 Non-Block-Structured Critical Sections
	3.3.2.3 Thread Private Storage
	3.3.2.4 Condition Synchronization
	3.3.2.5 IO and Irrevocability Inside Transactions
	3.3.2.6 Error Handling Inside Transactions
	3.3.2.7 Privatization
	3.3.2.8 Call Graph Structure in Atomic Blocks

	3.3.3 Experimental Results
	3.3.3.1 Experimental Methodology
	3.3.3.2 Application Characteristics
	3.3.3.3 Per-Atomic Block Characteristics

	3.4 WormBench
	3.4.1 Requirements for a Synthetic TM Workload
	3.4.1.1 Synchronization Problems
	3.4.1.2 Metrics

	3.4.2 Design and Implementation
	3.4.3 Runtime Characteristics
	3.4.4 Experimental Analysis
	3.4.4.1 Description of the Run Configurations
	3.4.4.2 Results

	3.4.5 Modeling a TM Application

	3.5 Porting STAMP
	3.6 Summary

	4 Debugging
	4.1 Motivation
	4.2 Related Work
	4.3 Design and Implementation
	4.3.1 Design Approach
	4.3.2 Interaction Between TmDbgExt and TmTargetDbg
	4.3.3 Internal Breakpoints
	4.3.4 Probe Effect and Overhead

	4.4 Debugging at the Level of Atomic Blocks
	4.4.1 Stepping Over Atomic Blocks
	4.4.2 Stepping Inside Atomic Blocks

	4.5 Debugging at the Level of Transactions
	4.5.1 Transaction Events

	4.6 Debug-Time Transaction Management
	4.6.1 Debug-Time Transactions
	4.6.2 Splitting Atomic Blocks
	4.6.3 Modifying Transactional State

	4.7 Summary

	5 Profiling
	5.1 Motivation
	5.2 Related Work
	5.3 Profiling Techniques
	5.3.1 Basic Conflict Point Discovery
	5.3.2 Advanced Conflict Point Discovery
	5.3.3 Quantifying the Importance of Aborts
	5.3.4 Identifying Conflicting Data Structures
	5.3.5 Visualizing Transaction Execution

	5.4 Profiling Framework
	5.5 Summary

	6 Optimizations
	6.1 Motivation
	6.2 Related Work
	6.3 Optimization Techniques
	6.3.1 Moving Statements
	6.3.2 Atomic Block Scheduling
	6.3.3 Checkpoints
	6.3.4 Pessimistic Reads
	6.3.5 Early Release

	6.4 Feedback Directed Compilation
	6.4.1 Moving Statements
	6.4.2 Atomic Block Scheduling
	6.4.3 Checkpoints
	6.4.4 Pessimistic Reads
	6.4.5 Early Release

	6.5 Case Studies
	6.5.1 Bayes
	6.5.2 Genome
	6.5.3 Intruder
	6.5.4 Labyrinth
	6.5.5 Vacation and WormBench

	6.6 Summary

	7 Conclusion
	7.1 Future Work

	References

