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café, las charlas de pasillo y los puntos de vista diferentes. La hospitalidad de

Alejandra Arlettaz merece una mención especial. Le agradezco sus atenciones y

el haberme soportado durante el tiempo que compart́ı departamento con ella y

Fernando Rastellini.



Quiero también agradecer a Vı́ctor Zurita y a Zeidy Sarabia, del equipo de lid-

erazgo de la sección de Performance Engineering en General Electric, que amable-

mente me han brindado todas las facilidades para preparar la defensa y presentación

final de esta tesis.

Los recursos financieros que hicieron posible mi estancia en Barcelona fueron

provistos por el Consejo Nacional de Ciencia y Tecnoloǵıa de México que tuvo a
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Resumen

No es frecuente encontrar un campo donde dos ramas principales de la F́ısica estén

involucradas. La Magnetohidrodinámica es uno de tales campos debido a que in-

volucra a la Mecánica de Fluidos y al Electromagnetismo. Aun cuando puede pare-

cer que esas dos ramas de la F́ısica tienen poco en común, comparten similitudes en

las ecuaciones que gobiernan los fenómenos involucrados en ellas. Las ecuaciones

de Navier–Stokes y las ecuaciones de Maxwell, ambas en la ráız de la Magneto-

hidrodinámica, tienen una condición de divergencia nula y es esta condición de

divergencia nula sobre la velocidad del fluido y el campo magnético lo que origina

algunos de los problemas numéricos que surgen en la modelación de los fenómenos

donde el flujo de fluidos y los campos magnéticos están acoplados.

El principal objetivo de este trabajo es desarrollar un algoritmo eficiente para la

resolución mediante elementos finitos de las ecuaciones de la Magnetohidrodinámica

de fluidos incompresibles.

Para lograr esta meta, los conceptos básicos y las caracteŕısticas de la Magne-

tohidrodinámica se presentan en una breve introducción informal.

A continuación, se da una revisión completa de las ecuaciones de gobierno de

la Magnetohidrodinámica, comenzando con las ecuaciones de Navier–Stokes y las

ecuaciones de Maxwell. Se discute la aproximación que da origen a las ecuaciones

de la Magnetohidrodinámica y finalmente se presentan las ecuaciones de la Mag-

netohidrodinámica.

Una vez que las ecuaciones de gobierno de la Magnetohidrodinámica han sido

definidas, se presentan los esquemas numéricos desarrollados, empezando con la

linealización de las ecuaciones originales, la formulación estabilizada y finalmente

el esquema numérico propuesto. En esta etapa se presenta una prueba de conver-

gencia.

Finalmente, se presentan los ejemplos numéricos desarrollados durante este tra-

bajo. Estos ejemplos pueden dividirse en dos grupos: ejemplos numéricos de com-

paración y ejemplos de interés tecnológico. Dentro del primer grupo están incluidas

simulaciones del flujo de Hartmann y del flujo sobre un escalón. El segundo grupo

incluye simulaciones del flujo en una tobera de inyección de colada continua y el

proceso Czochralski de crecimiento de cristales.



Abstract

It is not frequent to find a field where two major branches of Physics are involved.

Magnetohydrodynamics is one of such fields because it involves Fluid Mechanics

and Electromagnetism. Although those two branches of Physics can seem to have

little in common, they share similarities in the equations that govern the phenomena

involved. The Navier–Stokes equations and the Maxwell equations, both at the root

of Magnetohydrodynamics, have a divergence free condition and it is this divergence

free condition over the velocity of the fluid and the magnetic field what gives origin

to some of the numerical problems that appear when approximating the equations

that model the phenomena where fluids flow and magnetic fields are coupled.

The main objective of this work is to develop an efficient finite element algorithm

for the incompressible Magnetohydrodynamics equations.

In order to achieve this goal the basic concepts and characteristics of Magneto-

hydrodynamics are presented in a brief and informal introduction.

Next, a full review of the governing equations of Magnetohydrodynamics is

given, staring from the Navier–Stokes equations and the Maxwell equations. The

MHD approximation is discussed at this stage and the proper Magnetohydrody-

namics equations for incompressible fluid are reviewed.

Once the governing equations have been defined, the numerical schemes devel-

oped are presented, starting with the linearization of the original equations, the

stabilization formulations and finally the numerical scheme proposed. A conver-

gence test is shown at this stage.

Finally, the numerical examples performed while this work was developed are

presented. These examples can be divided in two groups: numerical benchmarks

and numerical examples of technological interest. In the first group, the numerical

simulations for the Hartmann flow and the flow over a step are included. The

second group includes the simulation of the clogging in a continuous casting nozzle

and Czochralski crystal growth process.
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5.50 Lift Coefficient in the Von Kármán’s Vortex Street for Ha=5.0 . . . 99
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5.55 Pressure Variations in the Von Kármán’s Vortex Street for Ha=2.5 . 102

5.56 Pressure Variations in the Von Kármán’s Vortex Street for Ha=5.0 . 102
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5.68 Variations for Velocity y in the Von Kármán’s Vortex Street for Ha=5.0108
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Chapter 1

Preliminaries

1.1 Introduction

This thesis presents a stabilized finite element approximation for the incompressible

Magnetohydrodynamics1 equations. This stabilized finite element approximation

is focused at incompressible fluids and the main technological applications in mind

are those related with material processing techniques. The numerical simulation of

MHD phenomena faces two problems: the stabilization of the numerical solution

and the enforcement of the free divergence condition of the magnetic field.

Although MHD originates in the XIXth century, its applications are more

recent. It was not until early 1980’s that the academic world realized the potential

uses of MHD in the processing of liquid metals. The main advantage of MHD in the

liquid metals processing is that it provides a mean of non intrusive manipulation.

This non intrusive manipulation in liquid metals makes possible to stir, damp and

levitate liquid metals avoiding any contamination.

With the advent of modern numerical methods the simulation of MHD phenom-

ena started, but it faced important problems, mainly because of spurious solutions

in the magnetic field. These spurious solutions made desirable the development of

a completely stabilized finite element approximation of MHD equations. In this

thesis the stabilization of MHD equations is performed using the algebraic version

of the Variational Multiscale approach. Another problem faced in finite element

approximations of MHD is the enforcement of the free divergence condition of the

magnetic field. This last problem is addressed using a fictitious variable r which

plays the role of a Lagrange multiplier.

The stabilized finite element approximation presented in this work makes pos-

sible to gain insight in very complex phenomena which take place in modern met-

allurgy when magnetic fields are used to process liquid metals. This insight will be

useful to design and optimize operations where MHD phenomena takes place and

therefore important industrial process can be improved.

1MHD will be used as abbreviation

1
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1.2 Objectives

In a broad sense, the main goal of this work is to develop a numerical tool which

makes possible to simulate the behavior of liquid metals in the presence of mag-

netic fields. To accomplish this goal several objectives must be formulated. These

objectives are reviewed next.

1.2.1 General Objective

The objective of this thesis is the theoretical formulation, development, computa-

tional implementation and application of a numerical model for Magnetohydrody-

namics equations for incompressible fluids. For the development of this numerical

model the Variational Multiscale approach for stabilized finite elements will be

used.

1.2.2 Specific Objectives

The specific objectives to achieve in order to succeed in the general objective are:

1. To study the state of the art of the following subjects:

• Numerical simulation of fluid flow using stabilized finite elements.

• Numerical simulation of MHD using finite elements.

• Stabilization methods using Variation Multiscales.

• Industrial applications of MHD.

2. To arrive to a theoretical formulation of a numerical model for MHD equations

for incompressible fluids in the stationary case.

3. To build a computational formulation of the numerical model for MHD equa-

tions for incompressible fluids in the stationary case in ZEPHYR.2

4. To arrive to a theoretical formulation of a numerical model for MHD equations

for incompressible fluids in the time–dependent case.

5. To build a computational formulation of the numerical model for MHD equa-

tions for incompressible fluids in the time–dependent case in ZEPHYR.

6. To develop a convergence study for stationary and time–dependent cases. To

compare this study with results reported by others researchers.

7. To incorporate the thermal coupling in the numerical model.

8. To build numerical simulations of industrial cases where MHD is involved.

2ZEPHYR is a Stabilized Finite Element Method program developed by Prof. Codina´s re-
search group at UPC
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1.3 State of the Art

This section provides a review of the state of the art in four different fields related

with this research. First, it is presented a brief review of the historical develop-

ment of Magnetohydrodynamics because MHD is still an obscure and unknown

topic not only for the layperson but also for the scientifically literate reader. It

is also presented a review of the development experience by the applications of

Magnetohydrodynamics. Some of the applications of Magnetohydrodynamics have

been abandoned, others are well established and a third group is still under devel-

opment. It is also highly convenient to know the previous attempts to apply the

Finite Element Method to the simulation of phenomena related to Magnetohydro-

dynamics. This is the main reason why a review of Finite Element Method applied

to Magnetohydrodynamics is documented. Finally, the last part of this section is

devoted to review the stabilization techniques in the Finite Element Method.

1.3.1 Brief Historical Review of MHD

The Maxwell equations and the Navier–Stokes equations are scientific knowledge

originated in the XIXth century, nevertheless MHD did not fully develop until

the XXth century. The first MHD phenomena were reported by Ritchie [54]. At

the same time Faraday [20] tried unsuccessfully to measure the electric potential

induced between the opposite banks of the Thames river by the movement of the

water in the Earth’s magnetic field. Although conceptually the experiment was

sound, he failed because the instruments available at that time did not have enough

sensitivity. This can be seen as the first serious attempt to take into account MHD

effects in real life situations.

The next important development of MHD took place when Larmor [41] proposed

that the magnetic fields around the planets and stars were originated by the so

called Dynamo Effect. This effect consists in the appearance of a magnetic field

because the liquid metallic core of the planet acts like a self–induced dynamo.

This theory was confirmed and developed further by Cowling [16]. Shortly after

Cowling works, Hartmann [26, 27], published theoretical and experimental works

on mercury flow under the influence of magnetic fields. Due to this work the flow

of a liquid metal under the influence of a magnetic field was named Hartman Flow.

The last theoretical development in MHD was done when Alfvén [1] published

the discovery of the waves that take place in plasma due to ions oscillations around

their equilibrium positions. This discovery points the beginning of a new branch of

Physics, fully developed, and called Magnetohydrodynamics, name that was coined

and first used by the same Alfvén [2]. His work in MHD was awarded with the

Nobel Prize for Physics in 1970.

1.3.2 Development of MHD Applications

As was explained in section 1.3.1, MHD has its origins in the XIXth century but

its applications began to appear some time after. In 1917 Kürth [38] suggested the

idea of using a magnetic field to stir a liquid metal before its solidification. In 1933
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Shtanko [59] made the first experiment to stir liquid metals using a stator from an

electric motor where he put a small sample of liquid steel. An aspect less known

about MHD applications is that Albert Einstein and Leonard Szilard [19] patented

a pump for liquid metals, which employed MHD. This patent was the result of

their efforts to design and build new refrigeration cycles. Those readers interested

in this facet of Albert Einstein are referred to the article of Hughes [33]. In 1958,

Mullin and Hulme [48] suggested by the first time the use of magnetic fields in the

processing of semiconductors.

One of the most studied applications of MHD is its use in MHD generators. The

objective is to build an electric generator which could transform thermal energy or

kinetic energy directly into electricity, employing plasmas as work fluid. This idea is

not new, the same Faraday proposed it in his Bakerian lecture to the Royal Society,

[20]. The first research was done at Westinghouse Company in the late 1930´s and

the first patent was issued to Karlovitz in 1940, [36]. Although the theory behind

MHD generator is correct some problems have arisen. The main problems are the

generation of toxic by–products, generator inefficiency3 and economic limitations.

These problems together with the increasing availability of nuclear energy made

interest in MHD generators decline by the late 1960’s.

In 1962 Phillips [52] proposed the use of MHD to build a magnetohydrodynamic

propeller to drive ships and submarines. This idea was latter developed by the

Mitsubishi company which built in 1992 a ship called Yamato I,[57]. This ship

used a liquid helium-cooled superconductor to propel the water. Unfortunately the

project was a complete failure because the speed achieved was only 15 Km/hr. The

failure can be attributed to the fact that the magnetic field employed at Yamato I

was only 4.0 Teslas.

Since the late seventies of the XXth century the metallurgic industry started

to use extensively magnetic fields to stir metallic alloys during their solidification.

In the beginning of the eighties research related with metallurgical applications of

MHD started. The term Metallurgical Magnetohydrodynamics was coined in the

conference of the International Union of Theoretical and Applied Mechanics held

in Cambridge (UK) in 1982 [47]. Since then, the research in MHD has focused

on applications of MHD related with metallurgy because it is an area which has

an important research potential. The reader interested in an exhaustive revision

of MHD applied to metallurgy is referred to the papers written by Davidson [17]

and Dold and Benz [18]. Recently MHD applications have been proposed in very

unusual fields. For instance it is used in an artificial heart, [50], and it is used to

detect the wakes of vessels, [63], this last application with obvious military uses.

1.3.3 Finite Element Applied to MHD

The first work were the finite element method is applied to the equations of MHD

dates from the early seventies. Wu [62] applies the finite element method to MHD

equations considering a completely developed,unsteady, laminar, incompressible

3Typical MHD generators have efficiencies around 17%, which compared to 40% in conventional
Rankine cycle power plants made MHD generators unattractive.
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Hartmann flow. In this work the author only treats low magnetic Reynolds num-

bers and therefore he considers that the applied magnetic field is not altered by

the movement of the fluid. After this work Bani and Lal [60] made some research

applying the finite element method to MHD equations at small Hartmann num-

bers, but opposed to Wu, calculating the induced magnetic field. Peterson [51]

offers a theoretical study on the existence and uniqueness of the solution for a fi-

nite element scheme over the case of an unperturbed applied magnetic field. In

1989, Tezer–Sezgin and Köksal [61] applied the finite element method to MHD

equations on problems with Hartmann numbers up to 100. In the theoretical anal-

ysis, Gunzburger, Meir and Peterson [24] performed a complete study of Galerkin

approximation of stationary incompressible MHD equations and they offer proof of

existence and uniqueness of the solution. All the previous works took the magnetic

field and the velocity as unknowns. An alternative approach is tackled by Meir and

Schmidt, [45, 46]. They take as unknowns the velocity and the electric current.

Also Meir [44], introduces the study of thermally coupled MHD flows. Armero and

Simo [3] presented numerical schemes that preserve the dissipative properties of the

continuum transient system and applied these schemes to two-dimensional MHD

problems.

One of the biggest concerns about the finite element method applied in situa-

tions where magnetic fields are involved is the onset of spurious solutions in the

magnetic field. These spurious solutions are commonly associated to the numerical

treatment of the Maxwell equations. Nonetheless, Jiang, Wu and Povinelli [34],

showed that the origin of the spurious solutions is the inadequate handling of the

magnetic field divergence equation (3.3.4). In the same article, the authors pro-

posed to employ a fictitious variable r, which plays the same role than a Lagrange

multiplier to enforce the equation (3.3.4). Based in this last article Ben Salah, at

[56, 55], proposed a stabilized finite element scheme for the MHD equations using

the fictitious variable r. Gerbeau [21] studied the convergence of a finite element

scheme for the MHD equations although without including in the analysis the ficti-

tious variable r. Guermond and Nimev, [22, 23], applied the finite element method

to MHD equations in the low frequency limit in a domain composed of conducting

and isolating regions. Finally Charina [10] developed a mixed variational formula-

tion for velocity, stress, current and potential boundary conditions for stationary

MHD. In this work, a finite element discretization is used. Existence and unique-

ness, if solution is under the assumption of sufficient small data can be proved as

in [24]. The interested reader can also consult Gunzburger classic book [25].

1.3.4 Stabilized Finite Element Method

Given the fact that a stabilized finite element scheme is the aim of this work, it

is convenient to review briefly the history of the stabilization concept in the finite

element method.

It is considered that Brooks and Hughes [8] presented the first stabilized finite

element scheme. In this work they introduced diffusion in the streamlines to avoid

numerical oscillations due to low diffusion in Convection-Diffusion problems and in

the equations of Navier-Stokes. Shortly after this work, in 1984, Arnold, Brezzi and
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Fortin [4] presented a stabilized finite element scheme where a triangular element

used linear interpolations for velocity and pressure, but also the velocity field was

enriched with bubble functions. Hughes, Franca and Balestra, [31], employed a

stabilized finite element scheme to solve the Stokes problem using equal order in-

terpolations for pressure and velocity and therefore avoiding the inf-sup condition.

The inf-sup condition imposes compatibility restrictions between the interpolation

fields involved in the mixed formulation, in order to assure convergence and unique-

ness of the solution. Shortly after this, Hughes, Franca and Hulbert [32], developed

the GLS method (Galerkin Least Squares). In this last method the stabilization

terms are based on the residual of the governing equation. Baiocchi, Brezzi and

Franca [5], showed in 1993 that the GLS method and the method based in bubble

functions were equivalent. The works of Hughes [29], and Hughes, Feijoo, Mazzei

and Quincy [30], presented a formulation of the method of sub–scales, which is a

frame where other stabilization methods can be identified, formulated and justified.

Codina [11], presents a comparative and detailed vision of the different stabiliza-

tion methods, Codina [13] proposes a stabilization method based on the algebraic

version of the Variational Multiscales approach, finally Codina [14] proposed a sta-

bilization method based on taking the sub–scales orthogonal to the finite element

space.

1.4 Structure of the Thesis

In this section the structure of this thesis is presented and briefly discussed. This

work is divided in six chapters where the MHD phenomena is presented and dis-

cussed, its numerical scheme is developed and some numerical simulations, per-

formed during the development of the research, are presented. The constituent

chapters of this thesis are:

Chapter 2: An Informal Introduction to Magnetohydrodynamics

This chapter provides a brief and informal introduction to Magnetohydrody-

namics. MHD is not a topic normally covered in undergraduate or graduate

courses and therefore an introduction is necessary. The introduction is shal-

low and non exhaustive. Its main goal is to explain the physical mechanism

behind the interaction between fluid velocity and magnetic fields. This chap-

ter also explains some applications of MHD in liquid metals processing.

Chapter 3: Governing Equations of Magnetohydrodynamics

This chapter reviews the main governing equations of MHD. The Navier–

Stokes equations and the Maxwell equations are covered in the frame work of

Continuum Mechanics. The MHD approximation is also reviewed in order to

understand the limitations of the model employed. The final MHD equations

are also covered in this chapter. The Boussinesq approximation in MHD is

briefly studied together with the non dimensional form of the MHD equations.

Finally MHD keystone, the Hartmann flow, is presented.

Chapter 4: Numerical Schemes

The development of numerical schemes used in this work is presented in this



1.5 Notation 7

chapter. The variational form of MHD equations is presented together with its

time discretization. Next, a simple linearization is studied in detail. The main

contribution of this work, the stabilization method for the MHD problem, is

also presented in this chapter. Finally the definitive numerical scheme is

presented together with a convergence test.

Chapter 5: Numerical Simulations

Results from numerical simulations performed in this research are presented

in this chapter. All numerical simulations were done using ZEPHYR. The

numerical simulations presented are the Hartmann Flow, Flow Over a Step,

Flow Past a Circular Cylinder, Clogging in Continuous Casting of Steel and

Crystal Growth. The last two simulations are oriented toward practical ap-

plications of MHD in materials processing techniques.

Chapter 6: Conclusions

This chapter presents the conclusions and achievements of this research. Some

suggestions for future research lines to be developed, as a direct consequence

of this research, are also discussed.

It is worthy of mention the fact that this research effort has produced so far,

three articles in journals and one in proceedings. These articles are listed next:

• R. Codina and N. Hernandez–Silva

“Stabilized finite element approximation of the stationary magnetohydrody-

namics equations”, Comput. Mech. Vol. 38, pp. 344–355, (2006).

• R. Codina and N. Hernández

“Approximation of the thermally coupled MHD problem using a stabilized

finite element method”, Submitted to Journal of Computational Physics.

• N. Hernández and R. Codina

“Finite Element Simulation of the Czochralski Process for Crystal Growth”,

Submitted to Finite Elements in Analysis and Design.

• N. Hernández and R. Codina

“Resolución numérica de las ecuaciones de la magnetohidrodinámica en el pro-

ceso Czochralski para la obtención de cristales semiconductores”, Memorias

del V Congreso Internacional de Métodos Numéricos en Ingenieŕıa, Centro

de Investigación en Matemáticas, ISBN: 978-968-5733113. Eds. S. Botello y

M.A. Moreles. Guanajuato (México), Febrero 3-5, 2010.

1.5 Notation

In an area like MHD, which is a combination of two fields like Fluid Mechanics

and Electromagnetism, it is important to have a clear notation in order to avoid

misunderstandings or confusions. One clear example of these confusions is the use of

µ which in Fluid Mechanics is used for dynamic viscosity and in Electromagnetism
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is used for magnetic permeability. In order to avoid such problems the notation

used in this work is presented next.
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α Thermal diffusivity

β Thermal expansion coefficient

γ Lorentz factor

ǫ Electric permittivity

ǫ0 Electric permittivity for free space

λ Impedance

µ Dynamic viscosity

µm Magnetic permeability

µ0 Magnetic permeability for free space

ν Kinematic viscosity

ρ Mass density

ρe Electric charge density

ρr Reference density

σ Conductivity

σ Stress tensor

Φ(u) Rate of viscous dissipation

ψ Heat source

B Magnetic flux density

B Characteristic magnetic field for a flow

c Speed of light in free space

cp Specific heat at constant pressure

D Rate of Deformation tensor, Electric flux density

E Electric field strength

F Body force

f Body force per mass unit

Gr Grashof number

H Magnetic field strength

Ha Hartmann number

I Identity tensor

J Electric current density

kt Heat conductivity

l Characteristic length for a flow

p Pressure

Pr Prandtl number

q Electric charge

r Fictitious Magnetic Pressure

Re Reynolds number

Rm Magnetic Reynolds number

S Coupling parameter

ϑ Temperature

ϑr Reference temperature

U Characteristic velocity for a flow

u Velocity of the fluid
D(•)
Dt

Material derivative

(u · ∇) (•) Convective derivative
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Chapter 2

An Informal Introduction to

Magnetohydrodynamics

The objective of this chapter is to provide a brief and informal introduction to

Magnetohydrodynamics. This is done in order to delineate the kind of phenomena

to be studied. The first section explains what is Magnetohydrodynamics and what

is the subject of study of Magnetohydrodynamics. The second section explains the

physical mechanism behind the interaction between magnetic fields and conduct-

ing fluids which is the hallmark of Magnetohydrodynamics. The third and final

section reviews some practical applications of Magnetohydrodynamics in Materials

Processing.

2.1 What is Magnetohydrodynamics?

Magnetohydrodynamics is a branch of Physics which studies the mutual interaction

between fluids in movement and magnetic fields. Although fluid flows and magnetic

fields are almost ubiquitous, they only interact when the fluid in movement is an

electric conductor and non magnetic. These restrictions over the kind of fluid only

leave liquid metals, hot ionized gases (plasmas) and strong electrolytes as the fluids

to be studied by MHD.

Although MHD can seem to be a Science Fiction topic by the general public 1

its effects are present in every day life. For instance, the ocean covers 71% of the

surface of the Earth, and saline water is a strong electrolyte, therefore the Earth’s

magnetic field interacts with the sea water. This interaction between saline water

and the Earth’s magnetic field gives origin to an induced magnetic field, although

it is too small to be seen without very sensitive instruments.

Another phenomenon related with MHD is the Earth’s magnetic field itself. The

Earth’s magnetic field is generated due to the so called Dynamo Effect which is the

process of magnetic field generation by the inductive action of a conducting fluid.

1Any layperson usually recalls MHD in relation with Tom Clancy’s novel “The Hunt for the
Red October”

11
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It is generally believed that the convection in the outer Earth’s core, combined with

stirring caused by Earth’s rotation gives rise to the Earth’s magnetic field.

One of the most beautiful phenomenon in Nature is the Aurora Borealis which

is also governed by MHD. This phenomenon is originated from the interaction

between the Earth’s magnetosphere and the solar wind. Both of them are ionized

gases (plasma), which can conduct electricity. They are immersed in a magnetic

field (Earth’s magnetic field) and due to the movement of one relative to the other

an electric current arises in the closed circuit that threads both plasmas. This string

of natural phenomena illustrates how the MHD is not a Science Fiction topic but

a useful branch of Physics.

Although MHD finds most of its applications in Astrophysics and Geophysics,

there are important applications in material processing phenomena, but those ap-

plications will be reviewed in section 2.3.

2.2 Physical Mechanism of MHD

In order to gain insight of the MHD phenomena it is important to visualize the

way in which MHD works. It is important to understand which kind of physical

mechanism is behind the coupling between the velocity field of the flow and the

magnetic field. First, it must be said that the mutual interaction between the

magnetic field and the velocity field of the fluid, arises from three different physical

principles which are: Faraday’s Law, Ampère’s Law and Lorentz’s Force. Each one

of these physical principles intervenes in the coupling.

It could be useful to think the coupling as a three steps process. Although this

is quite artificial, it is helpful in order to understand the interaction between the

magnetic field and the velocity field.

1. The relative movement between the conducting fluid and the imposed mag-

netic field generates, according to Faraday’s Law, an Electro Motive Force

(E.M.F.). This E.M.F. originates an electric current.

2. In turn, the electric current originated by the E.M.F. gives origin to a second

magnetic field, according to Ampère’s Law. The second magnetic field is

called induced magnetic field. The induced magnetic field is added to the

imposed magnetic field. The effect of the two magnetic fields is such that it

seems like if the fluid were dragging the magnetic lines.

3. The resulting magnetic field (the original and the induced) interacts with the

density of induced current, to give rise to a Lorentz’s Force. This force acts

on the conducting fluid against the relative movement between the fluid and

the imposed magnetic field.

As a result of the last two points it can be said that the general effect of MHD

is the reduction or vanishing of the relative movement between the fluid and the

imposed magnetic field. Although this general effect is true in every case where

MHD is present, there are several parameters which have influence over MHD.
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These parameters, that are reviewed in section 3.5.3 together with the dimension-

less numbers used at MHD phenomena, led to different outcomes on the MHD

phenomena.

Basically MHD phenomena can be divided in two groups based in the charac-

teristic length of the phenomena. When the characteristic length of the phenomena

is very large as in astrophysics and geophysics, MHD phenomena is highly domi-

nated by the advection of the magnetic field. This advection of the magnetic field

gives origin to phenomena like Alfvén waves. If the characteristic length of the

phenomena is not really large, like in the engineering applications, the advection

of the magnetic field is less dominant, although it is still present. This research is

focused in engineering applications where there is advection of the magnetic field

but not as dominant as in astrophysical applications.

2.3 Applications of MHD in Materials Processing

Roughly speaking magnetic fields can be employed to melt, pump, stir and levitate

liquid metals during foundry operations. Although the basic idea behind the use

of magnetic field to manipulate liquid metals dates from 1917, it was not until the

early 1980’s when the term Metallurgical MHD was coined.

The main advantage of MHD in metallurgy is the fact that it offers a way to

apply non invasive volumetric forces over the liquid metals. This non invasive way

to manipulate liquid metals avoids the inclusion of impurities in the final cast.

2.3.1 Stirring of Liquid Metals

Today, the most used process in the metallurgical industry is continuous casting.

This process consists in pouring the molten metal into a mold where it partially

solidifies and then it is extracted. In this method, slabs are continuous, therefore

the name of the process. The process is depicted in figures 2.1 and 2.2.

As can be seen in figure 2.2, the slab solidifies from a liquid metal reservoir.

This reservoir is refilled and the process is a non stop operation. Several defects can

appear in the slab during the continuous casting operation. Such defects can be

segregated alloying elements, non metallic inclusions, small cavities due to the for-

mation of gas bubbles and center–line porosities associated with shrinkage of metal

during solidification. All of these defects can be reduced, if not eliminated at all,

stirring the liquid metal before solidification. The stirring favors the homogeneity

of the mixture ruling out the defects. Given the fact that stirring by mechanical

means will contaminate the mixture, MHD non invasive means offer the perfect

way to stir the metallic mixture.

The method used to stir the metallic mixture using magnetic fields is similar to

the operation of induction motors. Electromagnets are placed near the mold and

the rotating electromagnetic field produced stirs the liquid metal. Figure 2.3 shows

the general set–up of these electromagnets in the continuous casting process.
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Figure 2.1 Continuous Casting Process

Figure 2.2 Schematic Continuous Casting Process

Figure 2.3 Electromagnets in the Continuous Casting Process
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2.3.2 Damping of Movements in Liquid Metals

The method to stir liquid metals using rotating magnetic fields was discussed briefly

in the last section. Some times what is needed is the suppression rather than the

production of movements in the fluid. This suppression of the movements inside

the fluid can be achieved using strong stationary magnetic fields. The physical

mechanism behind the suppression is that the movement of the fluid through the

lines of the magnetic field induces a electric current and therefore a Joule dissipa-

tion. This Joule dissipation gives origin to a lost of kinetic energy which transforms

in thermal energy.

Roughly speaking, the application of strong stationary magnetic fields to liquid

metals seeks the suppression of movements in the free surface of the liquid metal

to avoid the entrance of any debris inside the liquid metal. This debris usually are

oxides and other materials which form a scum in the surface of the liquid metal.

The case of a jet of liquid metal feeding a mold is the most frequent one where the

movement must be damped.

In some cases the movement is caused by natural convection and a strong sta-

tionary magnetic field can be used in order to suppress the perturbations in the

liquid metal. These perturbations often affect negatively the quality of the crys-

talline structure. The crystalline structure is fundamental in industries like the

semiconductor industry, where Bridgeman and Czochralski methods are widely

used to make monocrystal semiconductor ingots that are cut in slices in order to

manufacture semiconductor devices as photovoltaic cells and integrated circuits.

Figure 2.4 shows one of the ingots obtained in the Czochralski process.

Figure 2.4 Silicon Ingot obtained by Czochralski Crystal Growth Process

In figure 2.5 the Czochralski method is depicted. In this case the objective is to

produce a semiconductor mono–crystal. As it was said, applying a strong stationary

magnetic field, the movements of the fluid due to differences in temperature are

damped. This leads to a more regular mono–crystal with less defects.

2.3.3 Instabilities in Interfaces

In this section, a particular application of MHD for a specific metal is discussed,

contrary to the sections 2.3.1 and 2.3.2 where general applications were discussed.

Today most aluminum in the world is produced using the Hall– Héroult process.

In this process alumina is dissolved in a bath of molten cryolite. The mixture
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Figure 2.5 Czochralski Crystal Growth Process

is electrolyzed using an electric current between 180 kA and 350 kA, and liquid

aluminum is produced at the cathode. The liquid aluminum is denser than the

cryolite and it sinks to the bottom of the bath where it is collected. In figure 2.6

the reduction cells used in this process are depicted.

Figure 2.6 Aluminum Reduction Cell

The biggest concern when using the Hall–Héroult method is the huge need

of electrical power. Being the cryolite the material with the biggest resistivity

its level must be kept at the minimum to reduce the consumption of electricity.

Nevertheless, the level of cryolite must be high enough to prevent perturbations

in the interface between aluminum and cryolite, which under certain conditions

can stop the production of aluminum. Therefore the level of cryolite must be the

smallest one which assures stable operation with minimum consumption of electric

power. The MHD equations for incompressible fluids are the governing equations

of the fluids involved in the instabilities in reduction cells. Although the basic

mechanism behind the instabilities is already understood, numerical simulations of

this process are necessary in order to completely understand the phenomenon.
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2.3.4 Cold Crucibles

Some metals like titanium or nickel are highly reactive and have a tendency to

attack refractory walls of conventional furnaces. In order to deal with such metals

cold crucibles are often used. These devises are designed to melt and cast the metal

in a single operation. The lower part of the cold crucible acts like a casting mold

and the upper part acts like an induction furnace. This devise is known as cold

crucible because the liquid metal is held in a water cooled cooper crucible. Figures

2.7 and 2.8 show a real cold crucible and its schematic representation respectively.

Figure 2.7 Cold Crucible

In order to heat the metal properly the cold crucible design must allow the

magnetic field to pass through the conducting walls. This is achieved segmenting

the wall and isolating each segment so that the eddy currents are forced to circulate

in each segment. In this way a smooth distribution of the current in the inner

surface of the wall generates a magnetic field inside the crucible.

The cold crucible process has the potential to produce high purity parts of a
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Figure 2.8 Schematic View of a Cold Crucible

wide variety of materials ranging from aerospace alloys to biocompatible materials

for surgical implants and silicon for photovoltaic and electronic applications.

2.3.5 Electromagnetic Separation of Inclusions

One of the main problems in metallurgy is the contamination of molten metals

with small solid inclusions. These inclusions are mainly oxides and carbides with

a melting point higher than the metal. These inclusions are harmful for the qual-

ity of the final cast. Generally speaking these non metallic inclusions reduce the

mechanical properties and increase the risk of corrosion. The aim is to remove

the inclusions from the liquid metal before it solidifies. Figure 2.9 shows two non

metallic inclusions under the microscope.

Figure 2.9 Non Metallic Inclusions

The most conventional methods to achieve the inclusions separation are sedi-
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mentation and filtration. Sedimentation is limited by the size of the particles being

removed because it cannot remove particles smaller than 100µm. Filtration can

remove particles smaller than 30 µm but often the ceramic filters used in this pro-

cess contaminate the liquid metal after some time of use. In order to remedy the

shortcomings of these two methods of separation, electromagnetic techniques are

being investigated.

Figure 2.10 Schematic view of Archimides Electromagnetic Force

Basically the electromagnetic separation technique requires an externally im-

posed magnetic field to induce a flotation force in the non metallic inclusions. As

can be seen in figure 2.10 the current density travels left to right in the molten

metal. Given the fact that the particles are non metallic and nonconducting, there

is no current inside the particles. The imposed magnetic field is applied point-

ing out the plane. The resulting Lorentz’s Force points downwards. The particles

present in the molten metal experience an opposite force, called Archemides Elec-

tromagnetic Force, as a result of Newton’s third law. Although the electromagnetic

separation process has been investigated since early 1960’s, no generally accepted

technique has been obtained.
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Chapter 3

Governing Equations of

Magnetohydrodynamics

3.1 Introduction

The main goal of this chapter is to present the governing equations of Magnetohy-

drodynamics. MHD is a branch of Physics that can be thought as the intersection

of Fluid Mechanics and Electromagnetism, therefore the Navier–Stokes equations

and the Maxwell equations are presented. First, the Navier–Stokes equations are

presented briefly but as clear as possible, because these equations are usually well

known. Following, the Maxwell equations are presented, paying attention to its dif-

ferential form, constitutive equations and boundary conditions. The theory behind

Lorentz force is also reviewed because Lorentz force is the link between mechanical

and electromagnetic phenomena. The general magnetohydrodynamic problem is a

quite complex task and therefore some approximations must be made in order to

obtain a satisfactory solution the MHD problem. These approximations are also

discussed in this chapter. The final general form of the equations of Magnetohy-

drodynamics is reviewed and discussed together with the way in which thermal

coupling is handled through Boussinesq approximation. The non dimensional form

is also reviewed. Finally the last section of this chapter is devoted to present the

Hartmann flow, which can be considered the archetype of MHD flows.

3.2 Navier Stokes Equations

The Navier–Stokes equations are the governing equations for the behavior of New-

tonian fluids, which are fluids that exhibit a linear relation between the velocity and

the shear stress. These equations where originally proposed by the French engineer

Claude–Louis–Marie–Henry Navier (1785–1836) in 1822. In the original Navier’s

work, he proposed a law of interaction between molecules totally inconsistent from

the physical point of view, and in 1845 the English physicist George Gabriel Stokes

21
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(1819–1903) correctly derived the same equations using an approach based in the-

ory of continua. The Navier–Stokes equations are derived from a mass balance

and a momentum balance for incompressible fluids. This analysis stars from the

continuity equation:

1

ρ

Dρ

Dt
+∇ · u = 0 (3.2.1)

The derivative Dρ

Dt
is the rate of change of density following a fluid particle. The

fluids under study are incompressible, therefore the density cannot change over

time, that is, ρ is constant and the continuity equation becomes:

∇ · u =0. (3.2.2)

Once the mass balance has been performed, the momentum balance is presented.

Starting with the Cauchy equation of motion:

ρ
Du

Dt
= ∇ · σ+ ρf (3.2.3)

where ρ is the mass density (kilogram meter−3) of the fluid, σ is the stress tensor,

f is the body force per unit mass and u is the velocity of the fluid (meter second−1).
D(•)
Dt

is the material derivative and is defined as:

D(•)

Dt
=

∂(•)

∂t
+ (u · ∇) (•) (3.2.4)

and (u · ∇) (•) is the convective derivative. In the case of an incompressible fluid

σ can be defined by the constitutive equation:

σ = −pI+ 2µD (3.2.5)

where D is the rate of deformation tensor defined as:

D =
1

2

[
(∇u) + (∇u)

T
]
≡ ∇

Su (3.2.6)

and µ is the dynamic viscosity (kilogram meter−1second−1). ∇Su is known as the

symmetrical gradient of u. If the expression (3.2.4) for u and the expression (3.2.5)

together with (3.2.2) are substituted into (3.2.3) the Navier–Stokes equations for a

Newtonian incompressible fluid are obtained:

∂u

∂t
+ (u·∇)u− ν∆u+

1

ρ
∇p = f (3.2.7)

In the last expression ν is the kinematic viscosity (meter2 second−1) and is related

to the dynamic viscosity µ by the expression ν = µ/ρ. Readers interested in a more

detailed derivation of the Navier–Stokes equations are referred to classical books

as Landau[40] and Batchelor [6].

In order to properly describe the behavior of Newtonian incompressible fluids

equations (3.2.7) and (3.2.2) are the only equations needed. These equations relate
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the velocity field u = u (x, t) with the pressure p = p (x, t) evaluated both at a

point x ∈ Ω and a time t ∈ [0, T ] . The physical domain Ω ⊂ ℜ
n where n = 2, 3

is the place where the variables are under study. Finally in order to properly solve

the Navier–Stokes equations, initial and boundary conditions are needed. These

conditions are:

u (x, 0) = u0, x ∈ Ω (3.2.8)

u (x, t) = 0, x ∈ ∂Ω (3.2.9)

The expression (3.2.9) is the so called non slip boundary condition and it is a

restriction over the velocity of the fluid that must be null in any solid wall at rest

which has contact with the fluid. This boundary condition was adopted for the

sake of simplicity, although other conditions will be needed in the applications.

3.3 Maxwell Equations

The Maxwell equations rule the behavior of electromagnetic phenomena. Although

these equations bear the name of the Scottish physicist James Clerk Maxwell (1831–

1879), they were well known before the scientific work of Maxwell. The reason to

name these equations after Maxwell is the fact that he was the first to present them

in a unified way to explain the electromagnetic phenomena. Maxwell also modified

the Ampère law to include the effect of time–varying electric fields over magnetic

fields, the so called displacement current, ∂D
∂t

in Ampère law.

Maxwell presented these equations in a paper to the Royal Society in 1865

[43]. In that paper he presented the equations in scalar notation because at that

time, vectorial notation was not developed yet. It was not until 1892 when Oliver

Heaviside, an English electric engineer, rewrote these equations in the modern

vectorial notation [28].

3.3.1 General Differential Form

In order to describe the electromagnetic phenomena, the Maxwell equations use

four vector fields. These vector fields are functions of position x ∈ ℜ
3, and time

t ∈ ℜ
+, in others words, they are functions of ℜn

× (0,∞) into ℜ
n, where n = 2, 3.

The vector fields are:

B(x, t) , Magnetic Flux Density (Tesla).

H(x, t) , Magnetic Field Strength (Ampere meter−1).

D(x, t) , Electric Flux Density (Coulomb meter−2).

E(x, t) , Electric Field Strength (V olt meter−1).



24 3. Governing Equations of Magnetohydrodynamics

These four vector fields together describe the electromagnetic field, which is

created by a distribution of sources consisting of static electric charges and flows of

electric charges. The Maxwell equations apply over the whole space ℜ
n occupied

by the electromagnetic field and are:

∂B

∂t
+∇×E = 0 (3.3.1)

∂D

∂t
−∇×H = −J (3.3.2)

∇·D = ρe (3.3.3)

∇·B = 0 (3.3.4)

where ρe is the electric charge density (Coulomb meter−3) and J is the electric

current density (Ampere meter−2). In order to clarify the concepts it is useful to

mention that a electric current is the flow of q, an electric charge (Coulomb) .

Equation (3.3.1) is called Faraday’s law and it states the relation between a

time–varying magnetic field and an electric field. Equation (3.3.2) is called Ampère–

Maxwell law and it states that both time–varying electric field and electric currents

give origin to magnetic fields. The Divergence condition (3.3.3) over electric fields

gives the effect of charge density over electric flux density. Finally the divergence

condition (3.3.4) over magnetic field states that there are no magnetic monopoles.

Readers interested in a more detailed explanation about the Maxwell equation are

referred to the classical book of Landau [39]. Together with the Maxwell equations,

it is important to mention the continuity equation for electric charge:

∇ · J+
∂ρe

∂t
= 0 (3.3.5)

It is worthy of attention the fact that the divergence conditions (3.3.3) and

(3.3.4) can be derived from Faraday law (3.3.1) and Ampère–Maxwell equation

(3.3.2), provided charge is conserved, that is, while (3.3.5) is valid. This fact does

not mean that these two divergence conditions can be entirely dismissed from a

mathematical model of an electromagnetic phenomena. In any case the divergence

conditions (3.3.3) and (3.3.4) must be true at t = 0.

3.3.2 General Integral Form

Some authors prefer to state equations (3.3.1)–(3.3.4) in its integral form. This in-

tegral form can be obtained applying Gauss’s and Stokes’s theorems to the Maxwell

equations. Although in this work the integral form will not be used, it is presented

for reference purposes:

∮

C

E · dl = −
d

dt

∫ ∫

S

B · ds (3.3.6)
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∮

C

H · dl =
d

dt

∫ ∫

S

D · ds +

∫ ∫

S

J · ds (3.3.7)

∮

S

D · ds =

∫ ∫ ∫

V

ρedv (3.3.8)

∮

S

B · ds = 0 (3.3.9)

In order to properly explain equations (3.3.6)–(3.3.9) let us consider figures 3.1–

3.4. Figure 3.1 explains Faraday’s law (3.3.6), which relates the voltage induced in

a loop (C) by a time–varying magnetic flux density passing through the surface S

formed by the loop.

Figure 3.1 Material surface for the integral form of Faraday law

Figure 3.2 explains Ampère–Maxwell law (3.3.7), which relates the scalar mag-

netic potential induced in a loop (C) by the current and the time–varying electric

field passing through the surface S formed by the loop.

Figure 3.2 Material surface for the integral form of Ampère law

Figure 3.3 explains Gauss’s law for electric fields (3.3.8). This law states that the

electric flux emanating from a bounded volume V equals the total charge enclosed

in that volume. Finally figure 3.4 explains Gauss’s law for magnetic fields(3.3.9).



26 3. Governing Equations of Magnetohydrodynamics

This law states that no magnetic flux emanates from a bounded domain, in others

words, there are no magnetic monopoles in nature.

Figure 3.3 Material volume for the integral form of Gauss law for the electric flux D

Figure 3.4 Material surface for the integral form of Gauss law for the magnetic flux B

3.3.3 Lorentz Force

The Lorentz force is the link between mechanical and electromagnetic phenom-

ena. In the case of MHD, it provides one of the two coupling mechanism between

the Navier–Stokes equations and the Maxwell equations. In order to present the

Lorentz force, this discussion starts with the force over a single particle. The total

force exerted over a particle is given by expression (3.3.10). The particle travels

with velocity u in the presence of an electric field and a magnetic field, and has an

electric charge q:

f = qEs + qEi + qu×B (3.3.10)

The first force qEs is the Coulomb Force, which arises from the repulsive or

attractive forces charged particles exert over other charged particles. The second

force qEi is originated by the induced electric field Ei. Induced electric fields arise

when a variable magnetic field is present, as stated by Faraday’s law. The third
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and last force, qu×B, is the force exerted over a charged particle which travels

with velocity u in a magnetic field. This force is called Lorentz Force and as it can

be seen, if the particle stops the force will vanish.

At this point it is important to focus upon electric and magnetic fields in moving

reference frames. In the case of a magnetic field and an electric field present in a

laboratory reference frame and a charged particle moving in this laboratory frame,

the force over the particle is due to the electric field and the magnetic field, f =

qE+ qu×B.

But if in order to measure the force, a different reference frame is used, and this

reference frame moves in such way that the particle appears to be instantaneously

at rest, the force over the particle is fr = qEr. This fact provides a way to link the

electric fields in both reference frames, because f = fr, and therefore the electric

fields are related by:

Er = E+ u×B (3.3.11)

It is important to emphasize the fact that magnetic fields B and Br are the

same. Taking back the discussion to forces over charged particles, the expression

(3.3.10) can be summarized as:

f = q(E+ u×B) (3.3.12)

where the forces over the charged particle are due only to the electric field and to

the Lorentz force. Expression (3.3.12) has a volumetric equivalent:

F = ρeE+ J×B (3.3.13)

3.3.4 Constitutive Equations

In order to be well–posed, the Maxwell equations must be complemented by two

constitutive equations. These constitutive equations relate E and H with D and B,

respectively. These constitutive equations are dependent on the material properties

of the media, where the electromagnetic phenomena take place. In the following,

three different scenarios are described for these constitutive equations:

1. Free Space

If the domain where the magnetic field is located is vacuum, the constitutive

equations are:

D = ǫ0E (3.3.14)

and

B = µ0H (3.3.15)

where ǫ0 and µ0 are called the electric permittivity and the magnetic perme-

ability for the free space. The values of these constants are: ǫ0 ≈ 8.854 ×
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10−12Farad meter−1 and µ0 = 4π × 10−7Henry meter−1. It is also im-

portant to mention that c = (ǫ0µ0)
−1/2

, where c is the speed of the light in

vacuum (c ≈ 2.998× 108meter second−1)

2. Isotropic Materials

In case the properties of the media do not depend upon the direction and the

material is linear, the constitutive equations are:

D = ǫE (3.3.16)

and

B = µmH (3.3.17)

where ǫ and µm
1 are called the electric permittivity and the magnetic per-

meability for specific material. Both ǫ and µm are positive scalars.

3. Anisotropic Materials

Some materials have electromagnetic properties which depend upon the di-

rection. In such cases the electric permittivity and the magnetic permeability

in (3.3.16) and (3.3.17) become positive definite tensors.

Ohm’s Law must be mentioned together with these constitutive equations be-

cause, although it is not a fundamental law of electromagnetism, it is quite impor-

tant and can be considered as a constitutive equation. If the case of a stationary

conductor is considered, Ohm’s Law can be enunciated as:

J = σE (3.3.18)

where σ is the conductivity (Siemens meter−1). In case of a conductor in move-

ment is considered, Ohm’s law is the same but the electric field must be measured

in a frame of reference. Such frame of reference must be moving with the same ve-

locity as the conductor. In order to measure the electric field in a moving reference

frame expression (3.3.11) must be used. Therefore expression (3.3.18) becomes:

J = σEr = σ(E+ u×B) (3.3.19)

3.3.5 Boundary Conditions at Interfaces

As any set of partial differential equations, the Maxwell equations must have bound-

ary conditions to be well–posed. In order to properly describe the different bound-

ary conditions that arise in electromagnetic phenomena, the situation depicted in

figure 3.5 is analyzed.

1Almost all textbooks in Electromagnetism use µ for the magnetic permeability. In order to

distinguish the magnetic permeability from dynamic viscosity, µm will be used for the former and

µ for the latter.



3.3 Maxwell Equations 29

Figure 3.5 Boundary conditions in the interface between two regions

Region 1 and region 2 have different magnetic properties and are divided by

an interface S with unit normal n̂, pointing from region 2 into region 1. For this

situation, four different boundary conditions, known as field continuity conditions,

arise. These conditions are:

n̂× (E1 −E2) = 0 (3.3.20)

n̂ · (D1 −D2) = 0 (3.3.21)

n̂× (H1 −H2) = 0 (3.3.22)

n̂ · (B1 −B2) = 0 (3.3.23)

Only two of four conditions must be used. One from (3.3.20) and (3.3.23) and

one from (3.3.21) and (3.3.22). If the interface has an imposed current density, Js

or surface charge density, ρs, (3.3.21) and (3.3.22) must be modified to:

n̂ · (D1 −D2) = ρs (3.3.24)

n̂× (H1 −H2) =Js (3.3.25)

If one of the two materials of the interface is a perfect conductor, the electric

field in that region will vanish and the boundary conditions become:

n̂×E1 = 0 (3.3.26)

Expression (3.3.26) is valid if the region 2 is the perfect conductor. If the material

in region 2 is not a perfect conductor but an imperfect conductor and allows the

electric field to penetrate only a small distance, a better boundary condition would

be the so called impedance boundary condition:

n̂×H1 − λ(n̂×E1)× n̂ = 0 (3.3.27)
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where λ is the impedance (Ohm) and it is a positive function over the surface S of

the material.

3.4 The MHD Approximation

The solution of magnetohydrodynamics equations in its full form is a rather com-

plex task, therefore, in order to ease the difficulties, some approximations are as-

sumed. The approximation is completely consistent with the conditions assumed

in this work for liquid metals. These approximations together are named the MHD

Approximation and are enumerated next:

1. Non relativistic velocity of the fluid. The velocity, in phenomena where

processing techniques use MHD, is far away from relativistic velocities. Given

the fact that |u|
2
≪ c2, it is completely possible to use a Newtonian reference

frame because the Lorentz factor γ, is near unity. The Lorentz factor is

defined as:

γ =

√√√√1−

(
|u|

2

c2

)
(3.4.1)

and it is present in the Lorentz transformation which converts measurements

of space and time between two different frames, where one frame is in relative

motion with respect to the other. Let us consider two frames of reference O

and Q, where O uses (t, x, y, z) and Q uses (t′, x′, y′, z′) as Cartesian coordi-

nates to measure space and time and assume that the x axis and the x′ axis

overlap and the y axis and the z axis are parallel to the y′ axis and the z′

axis respectively. If relative velocity between O and Q is v along the common

x axis, the Lorentz transformation is:

t′ = γ
(
t−

vx

c2

)

x′ = γ (x− vt)

y′ = y

z′ = z

(3.4.2)

In the case of γ ≈ 1, the well known Galilean transformation is recovered:

t′ = t

x′ = (x− vt)

y′ = y

z′ = z

(3.4.3)



3.5 MHD Equations 31

2. The Induced magnetic field is small. It is assumed that the induced mag-

netic field is much smaller than the applied magnetic field. This assumption

also implies that the electric field is of order u×B.

3. Phenomena involving high frequency are not considered. It is as-

sumed that the displacement current ∂D
∂t

can be neglected compared with

J, the conduction current. This approximation modifies Ampère law (3.3.2),

and it takes the form:

∇×H = J (3.4.4)

which is some times called the pre–Maxwell Ampère law. This approximation

also implies that the working fluid is a conductor rather than a dielectric. This

is due to the fact that in dielectrics, even for low frequencies, ∂D
∂t

is still larger

than J, which is null.

4. Electric energy can be neglected when compared with magnetic

energy. This means that the principal interaction takes place between the

magnetic field and the fluid.

5. Space charge can be neglected. Space charge ρe can be neglected in

some expressions. The first expression where ρe is neglected is the volumetric

Lorentz force (3.3.13). The electrostatic force ρeE, when compared with the

Lorentz force J×B, turns out to be negligible and expression (3.3.13) takes

the form:

F = J×B (3.4.5)

Space charge can also be neglected in the equation of conservation of charge

and therefore ∂ρe

∂t
= 0, because any net charge that lies in the interior of

a conductor will move to the surface almost immediately by the action of

electrostatic repulsion forces. The equation of conservation of charges takes

the form:

∇ · J = 0 (3.4.6)

3.5 MHD Equations

This section is devoted to present the final general form of the magnetohydro-

dynamics equations. The deduction of the induction equation is presented and

the final form of the MHD equations is also presented. The thermal coupling is

discussed and finally the dimensionless form of the MHD equations is presented.
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3.5.1 General Form

Equations (3.2.7) and (3.2.2) for the fluid phenomena and equations (3.3.1), (3.4.4),

(3.3.4), (3.3.17), (3.3.19) and (3.4.5) for the electromagnetic phenomena are all that

is needed to develop the MHD equations. Summarizing, the equations are:

∂u

∂t
+ (u·∇)u− ν∆u+

1

ρ
∇p = f

∇ · u = 0

∂B

∂t
+∇×E = 0

∇×H = J

B = µmH

∇·B = 0

J = σ (E+ u×B)

F = J×B

In order to deduce the complete system of MHD equations, the electric field

must be obtained from Ohm’s law (3.3.19):

E =
1

σ
J− u×B (3.5.1)

The current J is also needed, and it is obtained after H from (3.3.17) is substituted

into pre–Maxwell Ampère’s law (3.4.4)

J =
1

µm

(∇×B) (3.5.2)

Now expressions (3.5.1) and (3.5.2) are substituted into Faraday’s law (3.3.1) and

after proper reorganization the so called induction equation is obtained:

∂B

∂t
+

1

µmσ
∇× (∇×B)−∇× (u×B) = 0 (3.5.3)
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Equation (3.5.3) relates the magnetic field and the velocity of the conducting fluid.

µm and σ are positive constants already defined in section 3.3.4. It is also necessary

to substitute the expression (3.5.2) into the Lorentz force (3.4.5) and divide between

the density ρ to get an expression for the force over the fluid:

f =
1

µmρ
(∇×B)×B. (3.5.4)

The force over the fluid (3.5.4) exerted by the magnetic field is really part of

the right hand side of the equation (3.2.7). In order to have all unknowns in the

left hand side of this equation the Lorentz force is put in the left hand side of that

equation, and it takes the final form of:

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇p−

1

µmρ
(∇×B)×B = fu (3.5.5)

Arranging the equations the complete system of MHD equations is:

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρ
∇p−

1

µmρ
(∇×B)×B = fu

∇ · u = 0

∂B

∂t
+

1

µmσ
∇× (∇×B)−∇× (u×B) = fb

∇ ·B = 0

(3.5.6)

where fuand fb are force vectors for the fluid and the magnetic field respectively.

System (3.5.6) is all that is needed to completely describe isothermal MHD phe-

nomena.

3.5.2 Thermal Coupling

If the fluid has thermal fluctuations at the same time than the MHD phenomena

takes place, it is mandatory to use the thermal energy equation, which under the

Boussinesq approximation (i.e. flow speed is small compared with the speed of

sound and temperature differences in the fluid are small) can be simplified to:

ρcp

(
∂ϑ

∂t
+ (u · ∇) ϑ

)
−∇ · (kt∇ϑ)− J ·E− Φ(u) = Q (3.5.7)

where: cp is the specific heat, kt is the heat conductivity, ϑ is the temperature,

Φ(u) is the rate of viscous dissipation and Q is the heat source. The term J · E

is the Joule heating and it is the process by which the flow of an electric current

through a conductor releases heat. If the current in the term J · E is substituted

using expression (3.5.2) and the electric field is substituted by (3.5.1) the next

expression for J ·E can be obtained:

J · E =
1

µ2
mσ

‖∇ ×B‖
2

(3.5.8)
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It is also necessary define the rate of viscous dissipation Φ(u) in equation (3.5.7)

as:

Φ(u) = 2µD : D (3.5.9)

It is important to recall that Boussinesq approximation assumes that the varia-

tions on ρ are negligible except for the body force ρg where g is the acceleration of

the gravity. In this term it is assumed that the density depends on the temperature

in the following way:

ρ = ρr

[
1− β̂ (ϑ− ϑr)

]
(3.5.10)

where ρr is the reference density, ϑr is the reference temperature and β̂ is thermal

expansion coefficient. Considering the previous developments the MHD equations

take the form:

∂u

∂t
+ (u · ∇)u− ν∆u+

1

ρr
∇p−

1

µmρr
(∇×B)×B = fu + g

[
1− β̂ (ϑ− ϑr)

]

∇ · u = 0

∂B

∂t
+

1

µmσ
∇× (∇×B)−∇× (u×B) = fb

∇ ·B = 0

ρrcp

(
∂ϑ

∂t
+ (u · ∇)ϑ

)
− kt∆ϑ−

1

µ2
mσ

‖∇ ×B‖
2
− Φ(u) = Q

(3.5.11)

3.5.3 Dimensionless Form

Some times it is useful to work with a dimensionless system of equations. The use of

such systems gives origin to some dimensionless numbers which offer information

about the kind of flow under study. In order to get a non dimensional form of

the MHD systems, (3.5.6) and (3.5.11), first the dimensional variables must be

replaced with non-dimensionalized variables which are: u∗ = u/U0, B
∗ = B/B0,

p∗ = p/ρr U
2
0 , x

∗ = x/L0, y
∗ = y/L0, z

∗ = z/L0, ϑ
∗ = (ϑ − ϑr)/∆ϑ and t∗ =

t U0/L0, where U0 is the characteristic velocity of the flow, L0 is the characteristic

length of the flow, B0 is the characteristic magnetic flux density of the flow, ρr is

the reference density and ∆ϑ = ϑR−ϑr, with ϑR as the highest temperature of the

fluid and ϑr the minimum temperature of the fluid. After substituting those non-

dimensionalized variables in the equations and regrouping some terms the system

(3.5.6) takes the following form:
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∂u

∂t
+ (u · ∇)u−

1

Re
∆u+∇p− S (∇×B)×B = fu

∇ · u = 0

∂B

∂t
+

1

Rm
∇× (∇×B)−∇× (u×B) = fb

∇ ·B = 0

(3.5.12)

and the system (3.5.11) takes the following form:

∂u

∂t
+ (u · ∇)u−

1

Re
∆u+∇p− S (∇×B)×B = fu +

Gr g

Re2S ‖g‖
ϑ

∇ · u = 0

∂B

∂t
+

1

Rm
∇× (∇×B)−∇× (u×B) = fb

∇ ·B = 0

∂ϑ

∂t
+ (u · ∇)ϑ−

1

Pr Re
∆ϑ−

Ha2Ec

ReRm2
‖∇ ×B‖

2
− Φ(u) = Q.

(3.5.13)

The asterisks in the variables have been removed in order to simplify the expres-

sions. Systems (3.5.12) and (3.5.13) present several non-dimensional parameters.

These are defined next together with some others non-dimensional parameters that

although are not used in (3.5.12) and (3.5.13) will be used in this research :

1. Reynolds Number Re.

This non dimensional parameter is the ratio of inertial forces to viscous

forces. The transition between laminar and turbulent flow is determined

by the Reynolds number. The Reynolds number is given by:

Re =
U0L0

ν
(3.5.14)

2. Magnetic Reynolds Number Rm.

The Magnetic Reynolds number is indicative of the relation between advection

and diffusion of the magnetic field. When Rm is large diffusion is weak and

the magnetic field lines behave as elastic bands attached to the fluid. This

behavior gives origin to the so called Alfvén waves. On the other hand, if

Rm is small, u has little influence on B and the induced magnetic field is

negligible by comparison with the imposed magnetic field. In this last case

the phenomenon is dissipative rather than elastic because the kinetic energy

is converted in heat via Joule dissipation.

Using the Magnetic Reynolds number it is possible to understand how the

parameters µm,σ, U0 and L0 influence the outcome of MHD phenomena.
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When Rm → 0 the imposed magnetic field remains unperturbed. This is the

case when µm,σ, U0 and L0 are all in the range of liquid metals. On the

other hand when Rm → ∞ the imposed and the induced magnetic field are

of the same order. This last situation is often associated with astrophysical

MHD because in those cases L0 is quite large. All simulations performed in

the development of this work have small Rm, because although liquid metals

have an electric conductivity around 106Ω−1m−1, the velocities involved are

around 1 m/s and therefore they are small. It is important to mention that

although Rm in industrial phenomenon is small and the induced magnetic

field is negligible, this magnetic field is strong enough to influence the fluid

flow. The magnetic Reynolds number is:

Rm = µmσU0 L0 (3.5.15)

3. Hartmann Number Ha.

The Hartmann number represents the ratio of the Lorentz force to the viscous

forces. This dimensionless number is important because it gives an indication

of the influence of the magnetic field over the boundary layers developed in

the flow. This parameter will be discussed further in section 3.6. It is given

by:

Ha = B0L0

√
σ

ρν
(3.5.16)

4. Coupling Parameter S.

This dimensionless number represents the ratio between magnetic forces and

inertial forces. Sometimes the interaction parameter is called the magnetic

force coefficient. When it is small the magnetic field barely affects the flow

field. On the other hand if this parameter is greater than 1 the magnetic field

affects the flow field extremely. The coupling parameter is:

S =
B2

0

µmρr U
2
0

(3.5.17)

5. Grashof Number Gr.

The Grashof number is the ratio between the buoyancy force and the viscous

force. When buoyancy is the only driving force of the fluid the velocity is

completely determined by the quantities in the Grashof number, given by:

Gr =
gβ̂∆ϑL3

0

ν2
(3.5.18)

6. Prandtl Number Pr.

The Prandtl number is function of the properties of the fluid. It is the ratio

of momentum diffusivity and thermal diffusivity. When Pr is small it means

that the heat diffuses very quickly compared to the velocity. This means
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that the thickness of the boundary layer is bigger than the velocity boundary

layer. The Prandtl number is very low in liquid metals, usually around 0.01.

It is given by:

Pr =
ν

α
=

cpµ

kt
(3.5.19)

7. Eckert Number Ec.

The Eckert number only affects the temperature field and only has to be taken

into account when friction gives rise to a noticeable warming of the fluid. It

is the ratio of the kinetic energy to the internal energy in the boundary layer

of the fluid:

Ec =
U2
0

cp ∆ϑ
(3.5.20)

These non-dimensional parameters provide information regarding the nature of

the flow in different circumstances and also give some insight about the behavior

of the phenomena under study.

3.6 Hartmann Flow

The Hartmann flow is to MHD what the Poiseuille flow is to classical fluid me-

chanics. The Hartmann flow consists in a flow of a conducting fluid between two

parallel plates under the influence of an externally imposed magnetic field.These

parallel plates can be electric conductors or insulators. The general situation of

this flow is depicted in figure 3.6

Figure 3.6 Schematic view of the Hartmann Flow

In order to solve this flow some assumptions must be made. First it is as-

sumed that the width of the duct is infinite, this means that z0 >> y0. It is also

assumed that the length of the duct is long enough to allow the velocity to be

unidimensional. It is assumed that the velocity and the magnetic field have the
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form u = (ux (y) , 0, 0) and B = (bx (y) , 1, 0). Finally the pressure is assumed to

be given by:

p(x, y) = −Gx−
Sb2(y)

2
+ P0

where G is the pressure gradient in x. After substituting the expressions for u,

B and p(x, y) into the stationary MHD equations (3.5.12), the following system of

equations is found:

∂2ux(y)

∂y2
+ ReS

∂bx(y)

∂y
= −GRe

∂2bx(y)

∂y2
+ Rm

∂ux(y)

∂y
= 0

(3.6.1)

System (3.6.1) needs to be complemented by the following boundary condition

for insulating walls:

B× n̂ = Bd
× n̂ (3.6.2)

and a boundary condition for conducting walls which is:

B · n̂ = Bd
· n̂ (3.6.3)

where Bd = (0, 1). The solutions for system (3.6.1) are:

ux(y) =
GRe

Ha tanh(Ha)

(
1−

cosh(yHa)

cosh(Ha)

)
(3.6.4)

bx(y) =
G

S

(
sinh(y Ha)

sinh(Ha)
− y

)
(3.6.5)

for insulating wall. In the case of conducting walls the solutions are:

ux(y) =
GRe

Ha2

(
1−

cosh(y Ha)

cosh(Ha)

)
(3.6.6)

and

bx(y) =
G

S

(
sinh(y Ha)

Ha cosh(Ha)
− y

)
(3.6.7)

The solution (3.6.4) provides an interpretation of Hartmann number Ha. If

Ha → 0 the parabolic velocity profile of the Poiseuille flow is recovered. IfHa → ∞

the flow consists in two Hartmann layers on both walls and in the center a core of

uniform flow. All the vorticity is pushed to the walls. This situation can be seen

in the figure 3.7, where the parabolic profile is recovered when Ha → 0 and a flat

profile is formed when Ha → ∞.

The behavior of the magnetic field is presented in figure 3.8. In that figure it can

be seen that when Ha = 0 the induced magnetic field is null and when Ha grows

the induced magnetic field is less intense. This is because less induced magnetic

field is needed to overcome the viscous forces.
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Chapter 4

Numerical Schemes

4.1 Introduction

This chapter presents the development of the numerical scheme for the magnetohy-

drodynamics equations. First the initial and boundary value problem is presented

together with its weak form. The time discretization is reviewed after the weak form

of the MHD problem is presented. The linealization scheme and the block–iterative

coupling are issues also discussed. The stabilized formulation of finite elements for

the linear problem is presented. Finally the complete numerical scheme is discussed

and analyzed.

4.2 Problem Statement

This section is devoted to the development of the initial boundary value problem

and its weak form. For the sake of brevity the development to arrive from the

initial boundary value problem to its weak form is omitted and only the final result

is reviewed. The initial boundary value problem, also known as strong problem,

is the system of governing equations for the phenomena under studied, and in the

case of MHD phenomena the system of governing equations is (3.5.11). System

(3.5.11) is submitted to a very well known process in order to arrive to a weak

or variational problem. The weak or variational problem can be conceived as a

relaxed version of the initial boundary value problem because the weak problem

demands less smoothness of the solutions. Although the weak problem demands

less smoothness of the solutions, it contains all the information found in the initial

boundary value problem. The process employed in order to arrive to the variational

problem consists in first multiply the governing equations by appropriate weight

functions and then integrating over the physical domain. After these steps, the weak

form of the original problem is obtained integrating by parts using the Green–Gauss

Theorem.

41
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4.2.1 Initial and boundary value problem

The strong problem of MHD equations is: Find (u, p,B, r, ϑ) such that ∀x ∈ Ω ⊂

ℜ
n, where n = 2, 3; the following system of equations holds:

∂tu+ (u · ∇)u− ν∆u+
1

ρr
∇p−

1

µmρr
(∇×B)×B+ gβϑ = fu + g [1 + βϑr]

∇ · u = 0

∂tB+
1

µmσ
∇× (∇×B)−∇× (u×B) +∇r = fb

∇ ·B = 0

∂tϑ+ (u · ∇)ϑ−
kt

ρrcp
∆ϑ−

1

ρrcpµ2
mσ
|∇ ×B|

2
−

2µ

ρrcp

∣∣∇Su
∣∣2 = Q

(4.2.1)

where:
u is the velocity of the fluid

p is the pressure of the fluid

B is the magnetic flux density

r is the fictitious magnetic pressure

ϑ is the temperature

fu is the vector force for the momentum equation

fb is the vector force for the magnetic induction equation

ν is the kinematic viscosity

ρr is the reference density

µm is the magnetic permeability

g is the acceleration of the gravity

β is the thermal expansion coefficient

σ is the conductivity

kt is the heat conductivity

cp is the specific heat at constant pressure

In order to obtain the solution of system (4.2.1), the following boundary condi-

tions must be satisfied:

On ΓE,u : u = 0

On ΓN,u : n · σ = t̄

On ΓE,B : n×B = 0, r = 0

On ΓN,B : n ·B = B̄, n× (∇×B) = J̄

On ΓE,ϑ : ϑ = ϑ̄

On ΓN,ϑ :
kt

ρrcp
n · ∇ϑ = q̄

(4.2.2)

together with the previous boundary conditions the following initial conditions must

be satisfied:
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u = u0 at t = 0

B = B0 at t = 0

ϑ = ϑ0 at t = 0

(4.2.3)

System (4.2.1) together with boundary conditions (4.2.2) and initial conditions

(4.2.3) is the strong form of the MHD problem and it will be transformed into a

weak or variational form. At this point it is convenient to clarify the use of r in

system (4.2.1). r is a fictitious magnetic pressure used to enforce the divergence

free condition for B, (3.3.4). Its use was proposed by Jiang, Wu and Povinelli [34],

and it is employed to prevent the onset of spurious solutions in the magnetic field.

It is worthy of mention the fact that the force term fb, introduced for generality

purposes, has to be divergence free. In a similar way, the initial magnetic field B0

must be also solenoidal. If we take divergence of magnetic advection equation in

(4.2.1) and use the essential boundary condition on the magnetic field n ×B = 0

it turns out that r = 0. Nevertheless, the introduction of r will be useful to

enforce zero divergence condition over the magnetic field, while keeping the correct

functional setting of the problem.

4.2.2 Weak form

As was said previously, in order to obtain the variational form of the original prob-

lem, first (4.2.1) must be multiplied by an appropriate weight function. If the

unknowns of the original problem are (u, p,B, r, ϑ) then the proposed weight func-

tions are (v, q,C, s, ψ). After multiplying the strong form by the weight functions,

integrating over the domain Ω and applying the Green– Gauss Theorem, the weak

form is obtained:

For each t ∈ (0,∞), find (u, p,B, r, ϑ) ∈ (Vu × Vp × VB × Vr × Vϑ) such that:

(∂tu,v) +Auu(u,u,v) +AuB(B,B,v) +Auϑ(ϑ,v) − bu(p,v) =Lu(v)

bu(q,u) = 0

(∂tB,C) +ABu(u,B,C) +ABB(B,C) + bB(r,C) =LB1(C)

bB(s,B) =LB2(s)

(∂tϑ, ψ) +Aϑu,1(u, ϑ, ψ) +Aϑu,2(u,u, ψ) +AϑB(B,B, ψ) +Aϑϑ(ϑ, ψ) =LT (ψ)

(4.2.4)

∀ (v, q,C, s, ψ) ∈ (Vu × Vp × VB × Vr × Vϑ), where the spaces of functions are de-

fined as:
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Vu =
{
v ∈ L2(0, T ;H1(Ω)d))|v = 0 on ΓE,u

}
(4.2.5)Vp =

{
q ∈ D′(0, T ;L2(Ω))|

∫

Ω

q = 0 if ΓN,u = ∅

}
(4.2.6)VB =

{
C ∈ L2(0, T ;H(curl,Ω))|n×C = 0 on ΓE,B

}
(4.2.7)Vr =

{
s ∈ D′(0, T ;H1(Ω))|s = 0; on ΓE,B = ∅

}
(4.2.8)Vϑ =

{
ψ ∈ L2(0, T ;H1(Ω))|ψ = 0; on ΓE,ϑ

}
(4.2.9)

where L2(Ω) is the space of square–integrable functions:

L2(Ω) =

{
u :

∫

Ω

|u|
2
dx <∞

}
(4.2.10)

Also H1(Ω) is the Sobolev space of order 1, the space consisting of those functions

u in L2(Ω) together with all their weak partial derivatives Dαu. This space is

defined as:

H1(Ω) =
{
u : Dαu ∈ L2(Ω) ∀ |α| ≤ 1

}
(4.2.11)

Finally H(curl,Ω) is defined as:

H(curl,Ω) =
{
u : u ∈ L2(Ω),∇× u ∈ L2(Ω)

}
(4.2.12)

In order to completely understand this variational form, let us remember the

definition of the inner product for functions belonging to L2(Ω):

(u,v) =

∫

Ω

u · v (4.2.13)

with this definition it is clear that:

(∂tu,v) =

∫

Ω

∂tu · v (4.2.14)

(∂tB,C) =

∫

Ω

∂tB ·C (4.2.15)

(∂tϑ, ψ) =

∫

Ω

∂tϑψ (4.2.16)

Also, several multilinear forms must be defined in order to write down the

variational form:
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Auu(u1,u2,v) =

∫

Ω

v · (u1 · ∇)u2 + ν

∫

Ω

∇v : ∇u2 (4.2.17)

AuB(B1,B2,v) = −
1

µmρr

∫

Ω

v · (∇×B1)×B2 (4.2.18)

Auϑ(ϑ,v) = β

∫

Ω

v · gϑ (4.2.19)

ABu(u,B,C) = −

∫

Ω

C · ∇ × (u×B) (4.2.20)

ABB(B,C) =
1

µmσ

∫

Ω

(∇×C) · (∇×B) (4.2.21)

Aϑu,1(u, ϑ, ψ) =

∫

Ω

ψu · ∇ϑ (4.2.22)

Aϑu,2(u1,u2, ψ) = −
2µ

ρrcp

∫

Ω

ψ∇Su1 : ∇Su2 (4.2.23)

AϑB(B1,B2, ψ) = −
1

ρrcpµ2
mσ

∫

Ω

ψ (∇×B1) · (∇×B2) (4.2.24)

Aϑϑ(ϑ, ψ) =
kt

ρrcp

∫

Ω

∇ψ · ∇ϑ (4.2.25)

bu(q,v) =
1

ρr

∫

Ω

q∇ · v (4.2.26)

bB(s,C) =

∫

Ω

∇s ·C (4.2.27)

Lu(v) =

∫

Ω

v · [fu + g(1 + βϑr)] +

∫

ΓN,u

v · t̄ (4.2.28)

LB1(C) =

∫

Ω

C · fb +

∫

ΓN,B

v · J̄ (4.2.29)

LB2(s) =

∫

ΓN,B

sB̄ (4.2.30)

Lϑ(ψ) =

∫

Ω

ψQ+

∫

ΓN,ϑ

ψ q̄ (4.2.31)

A more compact expression for the weak form of the MHD problem is the

following:

Find U such that:

M (∂tU,V) +A (U,V) = L (V) (4.2.32)

∀V, where U = (u, p,B, r, ϑ)
t
and V = (v, q,C, s, ψ)

t
.

In this final form of the weak problem M (U,V) is given by:

M (U,V) = (u,v) + αB 〈B,C〉+ αϑ 〈ϑ, ψ〉 (4.2.33)
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A (U,V) is given by:

A (U,V) =Auu(u,u,v) +AuB(B,B,v) +Auϑ(ϑ,v)− bu(p,v) + bu(q,u)

+αB [ABu(u,B,C) +ABB(B,C) + bB(r,C)− bB(s,B)]

+αϑ [Aϑu,1(u, ϑ, ψ) +Aϑu,2(u,u, ψ) +AϑB(B,B, ψ) +Aϑϑ(ϑ, ψ)]

(4.2.34)

and L (V) is given by:

L (V) = Lu(v) + αB [LB1(C) + LB2(s)] + αϑLϑ(ψ) (4.2.35)

where αB and αϑ are scaling factors.

4.3 Time Discretization

Although system (4.2.32) has less strict requirements that (4.2.1), because it de-

mands less smoothness of the solutions, it is still a continuous system both in time

and space. Before tackling the spacial discretization it is convenient to deal with

the time discretization. First let us divide the time interval [0, T ] into N time steps

of uniform length δt. It is clear that:

δt = T/N (4.3.1)

tn = nδt (4.3.2)

tn+1 = tn + δt (4.3.3)

where n = 0, 1, 2, 3, . . . , n, . . . , N . In every time step un, pn, Bn, rn, ϑn respec-

tively denote approximations of u(nδt,x), p(nδt,x), B(nδt,x), r(nδt,x), ϑ(nδt,x).

The cylindrical nature of Ω×[0, T ] makes more convenient to use finite differences in

time discretization. While discussing time discretization, it is better to reformulate

(4.2.32) as:

M (∂tU,V) = L (V)−A (U,V) = F (U,V) . (4.3.4)

Now, in order to present the so called θ–method, let us define the next convex

combinations:

xn+θ := θxn+1 + (1− θ)xn (4.3.5)

tn+θ := θtn+1 + (1 − θ)tn (4.3.6)

where θ ∈ [0, 1]. Once the convex combinations are defined, the time derivative can

be approximated by a weighted average of xn+1 and xn at the end of the points of

integration. For a problem of the form dx
dt

= F (x, t), this leads to:
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1

δt

(
xn+1

− xn
)
= θF

(
xn+1, tn+1

)
+ (1− θ)F (xn, tn) (4.3.7)

this last equation is the θ–scheme. Different methods are obtained from (4.3.7)

with different values of θ. If θ < 1/2 the schemes are conditionally stable and

the best known scheme is the Euler method. For values of θ ≥ 1/2 methods are

unconditionally stables. The most common of these methods are Backward Euler

θ = 1, Galerkin θ = 2/3 and Crank–Nicholson θ = 1/2. Applying the θ–method to

(4.3.4) the next expression is obtained:

M
1

δt

(
Un+1

−Un,V
)
= F

(
Un+θ,V

)
(4.3.8)

An equivalent form for this expression is:

M
1

δt

(
Un+1

−Un,V
)
+A

(
Un+θ,V

)
= L (V) (4.3.9)

4.4 Linealization and Block-Iterative Coupling

Given the nature of the MHD problem, neither the Maxwell equations nor the

Navier–Stokes equations can be solved separately and they ought to be solved in the

same domain and at the same time. This requirement, of course, presents problems

because in order to solve the Navier-Stokes equations it is mandatory to have the

magnetic field flux density B, which is obtained solving the Maxwell equations.

In turn, in order to solve the Maxwell equations the velocity u is required. This

situation make necessary to linearize and decouple the Maxwell equations and the

Navier–Stokes equations.

4.4.1 Linearization of the stationary MHD problem

For the sake of simplicity, let us consider in this analysis problem (3.5.6), which is

reproduced next:

(u · ∇)u− ν∆u+
1

ρr
∇p−

1

µmρr
(∇×B)×B = fu

∇ · u = 0

1

µmσ
∇× (∇×B)−∇× (u×B) +∇r = fb

∇ ·B = 0

Boundary conditions are not included to simplify the presentation. Grouping the

unknowns and the weight functions in U = (u, p,B, r)
t
and V = (v, q,C, s)

t
re-

spectively, the variational problem can be stated as:

A (U,V) = L (U,V) (4.4.1)
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where:

A (U,V) = Auu (u,u,v) +AuB (B,B,v)− bu (p,v) + bu (q,u)

+ αB [ABu (u,B,C) +ABB (B,C) + bB (r,C)− bB (s,B)]
(4.4.2)

Taking the scaling coefficient as αB = 1/(µmρr) we have:

A (U,V) =

∫

Ω

v · (u · ∇)u+ ν

∫

Ω

∇v : ∇u−
1

µmρr

∫

Ω

v · (∇×B)×B

−
1

ρr

∫

Ω

p∇ · v +
1

ρr

∫

Ω

q∇ · u

−
1

µmρr

∫

Ω

C · ∇ × (u×B) +
1

µmρr

1

µmσ

∫

Ω

(∇×C) · (∇×B)

+
1

µmρr

∫

Ω

∇r ·C−
1

µmρr

∫

Ω

∇s ·B

(4.4.3)

The simplest way to linearize this problem is by a fixed point treatment of

the quadratic terms. In order to do that let us assume that the velocity and the

magnetic field are known at iteration k, uk and Bk, respectively, and we have

to compute these fields at iteration k + 1. If ei(k) = k or ei(k) = k + 1 and

e′i(k) = 2k+ 1− ei(k), the approximation of A (U,V) at iteration k+ 1, using the

fixed point method can be written as:

Ak+1 (U,V) =

∫

Ω

v ·
(
ue1(k) · ∇

)
ue′1(k) + ν

∫

Ω

∇v : ∇uk+1

−
1

µmρr

∫

Ω

v ·
(
∇×Be2(k)

)
×Be′2(k)

−
1

ρr

∫

Ω

pk+1
∇ · v +

1

ρr

∫

Ω

q∇ · uk+1

−
1

µmρr

∫

Ω

C · ∇ ×
(
ue3(k) ×Be′3(k)

)

+
1

µmρr

1

µmσ

∫

Ω

(∇×C) ·
(
∇×Bk+1

)

+
1

µmρr

∫

Ω

∇rk+1
·C−

1

µmρr

∫

Ω

∇s ·Bk+1

(4.4.4)

In order to have a stable problem at each iteration, we should guarantee that

Ak+1
(
Uk+1,Vk+1

)
≥ 0, which leads to conditions:

∫

Ω

uk+1
·

(
ue1(k) · ∇

)
ue′1(k) ≥ 0 (4.4.5)

∫

Ω

[
−uk+1

·

(
∇×Be2(k)

)
×Be′2(k) −Bk+1

· ∇ ×

(
ue3(k) ×Be′3(k)

)]
≥ 0 (4.4.6)
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When ∇ · uk = 0,∇ · Bk = 0, these conditions hold only if e1(k) = k (as it is

well known), e2(k) = k and e3(k) = k + 1. Therefore, calling a ≡ uk, u ≡ uk+1,

b ≡ Bk, B ≡ Bk+1, the only fixed point linearization of the problem that is stable

is:

(a · ∇)u− ν∆u+
1

ρr
∇p−

1

µmρr
(∇×B)× b = fu

∇ · u = 0

1

µmσ
∇× (∇×B)−∇× (u× b) +∇r = fb

∇ ·B = 0

(4.4.7)

System (4.4.7) is the problem for which the stabilized finite element scheme will be

built.

4.4.2 Full coupling and block–iterative coupling

Let us consider again the stationary problem, but now accounting also for the

thermal coupling. Once the approach to deal with the nonlinearity has been de-

terminated, the thermal coupling is easy to treat, since the temperature term in

the momentum equation is linear. It may be considered either a full coupling or a

block iterative coupling. Both options can be written in a single format as follows.

If e(k) = k or e(k) = k + 1 and e′i(k) = 2k + 1 − ei(k), the fully linearized and

coupled problem is introduced:

Auu(u
k,uk+1,v) +AuB(B

k+1,Bk,v) +Auϑ(ϑ
e(k),v)− bu(p

k+1,v) = Lu (v)

bu
(
q,uk+1

)
= 0

ABu

(
uk+1,Bk,C

)
+ABB

(
Bk+1,C

)
+ bB

(
rk+1,C

)
= LB1 (C)

bB
(
s,Bk+1

)
= LB2 (s)

Aϑu,1

(
ue′(k), ϑk+1, ψ

)
+Aϑϑ(ϑ

k+1, ψ) = Lk
T (ψ)

(4.4.8)

where

LT
k (ψ) = LT (ψ)−Aϑu,2

(
ue′(k),ue′(k), ψ

)
−AϑB

(
Be′(k),Be′(k), ψ

)
. (4.4.9)

It is clear that when e(k) = k + 1 and thus e′(k) = k, the problem needs to be

solved for uk+1, pn+1, Bk+1, sk+1 and ϑk+1 in a coupled way. The production of

heat given by Aϑu,2

(
ue′(k),ue′(k), ψ

)
and AϑB

(
Be′(k),Be′(k), ψ

)
needs to be eval-

uated at the previous iteration (unless a Newton-Raphson-type strategy is used).

On the other hand, when e(k) = k the problem can be solved first for uk+1, pn+1,
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Bk+1 and rk+1. Once these variables are computed, temperature may be updated

by solving the last equation of (4.4.8). In this case it is possible to use the variables

uk+1 and Bk+1 just computed, thus leading to a Gauss–Seidel–type coupling. Of

course, a Jacobi coupling, in which Lk
T in (4.4.9) is evaluated with uk and Bk is also

possible. However, the computational effort is the same and convergence is known

to be faster for Gauss–Seidel–type coupling. The interested reader is referred to the

work of Cervera, Codina and Galindo [9] for a further discussion over this subject.

4.4.3 Time discrete and linearized scheme

The next step is to consider the time discrete problem using the generalized trape-

zoidal rule together with the linearization scheme described in the previous sub-

section (4.4.2). These leads to the following problem: For n = 0, 1, 2, . . . given

un,pn,Bn,rn and ϑn, find un+1,pn+1,Bn+1,rn+1and ϑn+1 as the converged solu-

tions of the following iterative algorithm:

(δtu
n,k+1,v) +Auu(u

n+θ,k,un+θ,k+1,v) +AuB(B
n+θ,k+1,Bn+θ,k,v)

+Auϑ(ϑ
n+θ,e(k),v)− bu(p

n+1,k+1,v) =Ln+θ
u (v)

bu(q,u
n+1,k+1) =0

(δtB
n,k+1,C) +ABu(u

n+θ,k+1,Bn+θ,k,C) +ABB(B
n+θ,k+1,C)

+bB(r
n+1,k+1,C) =Ln+θ

B1 (C)

bB(s,B
n+1,k+1) =Ln+θ

B2 (s)

(δtϑ
n,k+1, ψ) +Aϑu,1(u

n+θ,e′(k), ϑn+θ,k+1, ψ) +Aϑϑ(ϑ
n+θ,k+1, ψ) =L

n+θ,k
T (ψ)

(4.4.10)

with the definition:

L
n+θ,k
T (ψ) = Ln+θ

T (ψ)−Aϑu,2(u
n+θ,e

′(k),un+θ,e
′(k), ψ)−

AϑB(B
n+θ,e′(k),Bn+θ,e′(k), ψ).

(4.4.11)

For implementation purposes, it is very convenient to write the problem to be

solved as a time–discrete system of linear convection–diffusion–reaction equations

(CDR equations). Let us consider the case e(k) = k+1 in (4.4.8), the case e(k) = k

being similar, and let us call a ≡ un+θ,k, u ≡ un+θ,k+1, b ≡ Bn+θ,k, B ≡ Bn+θ,k+1.

The differential equations associated to system (4.4.10) are:
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δtu+ (a · ∇)u− ν∆u+
1

ρr
∇p−

1

µmρr
(∇×B)× b+ gβϑ =fu

∇ · u =0

δtB+
1

µmσ
∇× (∇×B)−∇× (u× b) +∇r =fb

∇ ·B =0

δtϑ+ (a · ∇)ϑ−
kt

ρrcp
∆ϑ =Qtot

(4.4.12)

where:

Qtot = Q−
1

ρrcpµ2
mσ
|∇ × b|

2
−

2µm

ρrcp

∣∣∇Sa
∣∣2 . (4.4.13)

The problem considered can be written as the vector differential equation:

MδtU+ L(U) = F in Ω (4.4.14)

where M is defined as M = diag(I, 0, αBI, 0, αϑ), I being the d × d identity, and

δtU = (δt)−1(U −Un), with Un known, F = [fu, 0, fb, 0, Qtot]
t
is a known vector

of nunk = 2d+ 3 components and the operator L is given by:

L(U) =




(a · ∇)u− ν∆u+ 1
ρr
∇p− 1

µmρr
(∇×B)× b+ gβϑ

∇ · u
1

µmσ
∇× (∇×B)−∇× (u× b) +∇r

∇ ·B

(a · ∇)ϑ− kt

ρrcp
∆ϑ




(4.4.15)

This is an operator of the form:

L(U) := Ai

∂U

∂xi
−

∂

∂xi

(
Kij

∂U

∂xj

)
+ SU, (4.4.16)

whereAi, Kij and S are nunk×nunk matrices (i, j = 1, . . . d). Ai are the convective

matrices, Kij are the diffusive matrices and S is the reaction matrix. Let matrices

Ai be split as Ai = Ac
i + A

f
i , where Ac

i is the part of the convection matrices

which is not integrated by parts and A
f
i is the part that is integrated by parts. In

our case, matrices A
f
i come from the first order derivatives of the hydrodynamic

pressure p. It would be also possible to integrate by parts the first order derivatives

corresponding to the terms (u·∇)u and∇×(u×B). The weak form of the problem

supplied with the appropriate homogeneous boundary conditions can be written

again as the time discrete and linearized counterpart of (4.2.34):

M(δtU,V) +Alin(U,V) = L(V) (4.4.17)
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where:

Alin(U,V) :=

∫

Ω

VtAc
i

∂U

∂xi
−

∫

Ω

∂

∂xi

(
VtA

f
i

)
U+

∫

Ω

∂Vt

∂xi
Kij

∂U

∂xi

L(V) :=

∫

Ω

VtF.

(4.4.18)

For the particular case of the MHD problem:

Alin(U,V) =

∫

Ω

v · (a · ∇)u+ ν

∫

Ω

∇v : ∇u−
1

µmρr

∫

Ω

v · (∇×B)× b

−
1

ρr

∫

Ω

p∇ · v +
1

ρr

∫

Ω

q∇ · u

−
1

µmρr

∫

Ω

C · ∇ × (u× b) +
1

µmρr

1

µmσ

∫

Ω

(∇×C) · (∇×B)

+
1

µmρr

∫

Ω

∇r ·C−
1

µmρr

∫

Ω

∇s ·B

(4.4.19)

From now on, the kinematic pressure will be used and therefore p← p/ρ.

4.5 Stabilized Formulation for the Stationary, Lin-

earized and Thermally Uncoupled Problem

In order to prevent the onset of numerical oscillations and spurious modes, the

numerical scheme must be stabilized. Basically, the stabilization is aimed to cir-

cumvent the div–stability condition, ensuring that as h→ 0 at least, that discretely

solenoidal functions tend to solenoidal functions. In this section the formulation

of the stabilized scheme is presented for the stationary, linearized and thermally

uncoupled problem.

4.5.1 Stability of the Galerkin approximation

As the first step in the building of the stabilized formulation of the numerical scheme

for the MHD equations, the linearized uncoupled stationary problem is considered.

Its variational form is: Find U ∈W such that

Alin(U,V) = L(V) ∀V ∈ W (4.5.1)

Assuming that ∇ · a = 0 and ∇ · b = 0, Alin satisfies the stability estimate:

Alin(U,V) = ν ‖∇u‖
2
+

1

µmρr

1

µmσ
‖∇ ×B‖

2
. (4.5.2)
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This stability estimate together with the classical inf–sup conditions between(
H1

0 (Ω)
)d

and L2
0 (Ω) and between H0 (curl,Ω) and H

1
0 (Ω), given respectively by:

inf
q∈L2

0
(Ω)

sup
v∈(H1

0
(Ω))d

(q,∇ · v)

‖q‖ ‖∇v‖
≥ βf > 0, (4.5.3)

inf
s∈H1

0
(Ω)

sup
C∈H0(curl,Ω)

(∇s,C)

‖∇s‖ (‖∇×C‖+ ‖C‖)
≥ βm > 0, (4.5.4)

where βf and βm are constants, are enough to guarantee that the linearized problem

is well posed. Therefore, for each iteration k, given uk and Bk, there is a unique

Uk+1 =
(
uk+1, pk+1,Bk, sk+1

)
, solution of the linearized problem (4.5.1).

It can be shown that, under the same conditions for which the non linear prob-

lem has a unique solution, the sequence
{
Uk

}
k≥0

strongly converges to the unique

solution of the nonlinear problem, the interested reader is referred to [58]. The

proof of this result is technical, but quite simple, and follows the same strategy as

for the stationary Navier–Stokes equation without magnetic coupling, for further

detains see [15].

4.5.2 The Subgrid Scale Framework for a General CDR sys-

tem of Equations

The basic idea of the stabilization method proposed here is based on the subgrid

scale concept introduced by Hughes [29]. The ideas and concepts presented are a

summary of the approach described in [12].

The starting idea is to split the continuous space as W = Wh ⊕ W̃ , where Wh

is the finite element space in which the approximate solution will be sought. W̃ is

called the space of subscales or subgrid scales. Keeping this split of spaces in mind,

it is possible to write the continuous problem as the following system of equations:

Alin(Uh,Vh) +Alin(Ũ,Vh) = L (Vh) ∀Vh ∈Wh (4.5.5)

Alin(Uh, Ṽ) +Alin(Ũ, Ṽ) = L
(
Ṽ
)
∀Ṽ ∈ W̃ (4.5.6)

where U = Uh+ Ũ and U ∈Wh, Ũ ∈ W̃ . It is useful for the following to introduce

the notation:

∫

Ω′

:=

nel∑

e=1

∫

Ωe

,

∫

∂Ω′

:=

nel∑

e=1

∫

∂Ωe

where nel is the number of elements of the finite element partition used to built Wh

and Ωe denotes the domain of element e. The next step is integrating by parts all

terms in Alin(Ũ,Vh) in (4.5.5) and the left hand side term of (4.5.6) within each

element domain, this yields the following expression:
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Alin(Uh,Vh)+

∫

∂Ω′

Ũtni

(
Kij

∂Vh

∂xj
−A

f
i Vh

)
+

∫

Ω′

Ũt
L
∗ (Vh) = L (Vh) (4.5.7)

∫

∂Ω′

Ṽtni(Kij

∂

∂xj
(Uh + Ũ)−A

f
i (Uh+ Ũ))+

∫

Ω′

Ṽt
L(Uh) =

∫

Ω′

Ṽt [F− L (Uh)]

(4.5.8)

where ni is the i-th component of the exterior normal to ∂Ωe and L∗ is the adjoint

operator of L with homogeneous Dirichlet boundary conditions, given by:

L
∗(U) := −

∂

∂xi

(
At

iU
)
−

∂

∂xi

(
Kt

ij

∂U

∂xj

)
(4.5.9)

Equation (4.5.8) is equivalent to:

L(Ũ) = F− L(Uh) +Vh,ort in Ωe, (4.5.10)

Ũ = Ũske on ∂Ωe, (4.5.11)

where Vh,ort is obtained from the condition that Ũ must belong to W̃ , not to the

whole space W , and Ũske is a function defined on the element boundaries and it is

such that:

qn := ni

(
Kij

∂

∂xj
(Uh + Ũ)−A

f
i (Uh + Ũ)

)
(4.5.12)

is continuous across inter–element boundaries, and therefore the first term in the

left-hand-side of (4.5.8) vanishes.

Different subgrid scale (SGS) stabilization methods can be devised depending

on the way problem (4.5.10)-(4.5.11) is approximated. The intent of this research

is not to propose a new methodology but rather how to apply a well established

formulation to the incompressible MHD problem. This well known method can be

obtained by approximating the subscales by the algebraic expression:

Ũ ≈ τ [F− L (Uh)] (4.5.13)

where τ is a nunk × nunk matrix of stabilization parameters, the expression of

which is discussed in the following subsection. To close the approximation, the

inter–elements boundary terms in (4.5.7) is neglected, this can be understood as

taking Ũske = 0 on the inter–elements boundaries. The final problem is: Find

Uh ∈Wh such that:

Alin(Uh,Vh) +

∫

Ω′

Ũt
L
∗ (Vh) = L (Vh) ∀Vh ∈Wh

which, upon substitution of the subscales given by (4.5.13), yields the following

discrete problem: Find Uh ∈Wh such that:
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Alin
stab(Uh,Vh) = Lstab (Vh) ∀VhWh (4.5.14)

where the bilinear form Alin
stab and the linear form Lstab are now given by:

Alin
stab(Uh,Vh) = Alin(Uh,Vh)−

∫

Ω′

L
∗ (Vh)

t
τL (Uh) , (4.5.15)

Lstab (Vh) = L (Vh)−

∫

Ω′

L
∗ (Vh)

t
τF. (4.5.16)

4.5.3 Stabilized Finite Element Approximation for the Lin-

earized MHD Problem

In this section, a stabilized finite element to approximate problem (4.5.1) is pre-

sented. The first step is to recast the problem as a system of linear convection–

diffusion equations. It is in this general setting that the finite element approxima-

tion will be described.

Stabilization for this problem has several goals. The first one is to avoid the need

to satisfy the discrete version of the inf–sup conditions (4.5.3) and (4.5.4), which

will allow us to use different interpolation for the variational problem, therefore

avoiding the discrete version of the inf–sup conditions will lead to use equal order

and continuous interpolation for all unknowns. The second goal is to obtain error

estimates valid in the limit ν → 0 and µmσ → ∞, that is, convection dominated

flows, both in the Navier–Stokes equations and in the Maxwell equations. Finally

the third goal is to account properly for the coupling of the hydrodynamic and the

magnetic problems (µmρr → 0). That these goals are all satisfied will be seen in

the error estimate to be presented.

Up to now, the algebraic version of the SGS stabilization has been described in

a general setting. The goal now is to apply this stabilization to the MHD problem

under consideration. In order to accomplish this task, the adjoint operator of the

linearized uncoupled MHD problem L∗ (Vh) is now given by:

L
∗ =




−a · ∇v − ν∆v −∇q − 1
µmρr

b× (∇×C)

−∇ · v
1

µmρr
∇× (v × b) + 1

µmρr

1
µmσ
∇× (∇×C)− 1

µmρr
∇s

−
1

µmρr
∇ ·C


 (4.5.17)

To define the method for the particular MHD problem, an expression for the

matrix of stabilization parameters τ needs to be proposed. There is no general way

to define it for system of equations (4.2.1). It must be defined for each particular

problem taking into account its stability deficiencies.

The stability of the numerical scheme can be improved maintaining optimal

accuracy by taking a simple diagonal expression for τ , with one scalar component

for each of the equations. In the 3D case the expression for τ is:

τ = diag (τ1, τ1, τ1, τ2, τ3, τ3, τ3, τ4) (4.5.18)
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Using this expression and (4.5.17), it follows that the stabilized bilinear form that

needs to be considered in problem (4.5.14) is:

Alin
stab(Uh,Vh) = Alin(Uh,Vh)−

∫

Ω′

L
∗ (Vh)

t
τL (Uh) =

(a · ∇vh,vh) + ν (∇uh,∇vh)− (ph,∇ · vh) + (qh,∇ · uh)

+
1

µmρr
(Bh,∇× (vh × b))−

1

µmρr
(Ch,∇× (uh × b))

+
1

µmρr

1

µmσ
(∇×Bh,∇×Ch)

+
1

µmρr
(∇rh,Ch)−

1

µmρr
(∇sh,Bh)

+ (Xu (vh, qh,Ch) + ν∆vh, τ1 (Xu (uh, ph,Bh)− ν∆uh))h

+ (∇ · vh, τ2(∇ · uh))h

+ (XB(sh,vh)−
1

µ2
mρrσ

∇× (∇×Ch), τ3(XB(rh,uh)−
1

µ2
mρrσ

∇× (∇×Bh)))h

+
1

µ2
mρ

2
r

(∇ ·Ch, τ4(∇ ·Bh))h

(4.5.19)

where the following abbreviations have been introduced:

Xu (vh, qh,Ch) := a · ∇vh +∇qh +
1

µmρr
b× (∇×Ch) ,

XB(sh,vh) = −
1

µmρr
∇× (vh × b) +

1

µmρr
∇sh,

and (•, •)h is defined as:

(f, g)h :=

nel∑

e=1

∫

Ωe

fg.

Finally, the right–hand–side of the stabilized problem (4.5.14) is given by:

Lstab (Vh) = L (Vh)−

∫

Ω′

L
∗ (Vh)

t
τF

= 〈ff ,v〉+
1

µmρr
(fm,C)

+ (Xu(vh, qh,Ch) + ν∆vh, τ1ff )h

+ (XB(sh,vh)−
1

µ2
mρrσ

∇× (∇×Ch), τ3fm)h

(4.5.20)

The definition of the stabilized finite element method is now complete up to the

expression of the stabilization parameters. The expression proposed for the MHD

problem is:
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τ1 = α−1

(
1 +

1
√
αγ

β

)
−1

(4.5.21)

τ2 = c5
h2

τ1
(4.5.22)

τ3 = γ−1

(
1 +

1
√
αγ

β

)
−1

(4.5.23)

τ4 = c6ρ
2
rµ

2
m

h2

τ3
(4.5.24)

where α, β and γ are given by:

α : = c1
a

h
+ c2

ν

h2
(4.5.25)

β : = c3
1

µmρr

b

h
(4.5.26)

γ : = c4
1

µmρr

1

µmσ

1

h2
(4.5.27)

It is understood that this expressions are evaluated element by element. Here,

a is the maximum norm of the velocity field a computed in the element under con-

sideration. Likewise, b denotes the maximum norm of the magnetic field intensity

b in the same element and h denotes the diameter of the element. The constants

ci with i = 1, 2, 3, 4, 5, 6 are independent of the physical parameters of the prob-

lem and the mesh discretization. In the numerical calculations the values for this

constants are c1 = 2 , c2 = 4 , c3 = 1 , c4 = 4 , c5 = 1 and c6 = 1.

In the following subsection this choice is justified from the numerical analysis of

the problem. The approach is constructive, posing conditions on the stabilization

parameters obtained from the requirement that the method is stable (coercive)

and optimally accurate. For simplicity, the parameters τi with i = 1, 2, 3, 4 are

considered constant.

4.5.4 Numerical Analysis and Design of the Stabilization Pa-

rameters

In this subsection, the formulation introduced before is analyzed and, in particular,

to justify the choice (4.5.21)–(4.5.24). For the sake of simplicity, a and b are

assumed constant. Likewise, the finite element meshes are assumed quasi–uniform.

In this case, h in (4.5.21)–(4.5.24) can be taken the same for all elements (the

maximum element diameter), and therefore τi with i = 1, 2, 3, 4 are also constant.

Moreover, for quasi–uniform meshes the following estimates hold:

‖∇vh‖ ≤
Cinv

h
‖vh‖ , ‖∇∇vh‖ ≤

Cinv

h
‖∇vh‖ (4.5.28)
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for any function vh in the finite element space and for a certain constant Cinv .

The stability and convergence analysis will be made using the following mesh–

dependent norm:

|‖Uh‖| := ν ‖∇uh‖
2
+

1

µmρr

1

µmσ
‖∇×Bh‖

2

+ τ1

∥∥∥∥a · ∇uh +∇ph +
1

µmρr
b× (∇×Bh)

∥∥∥∥
2

+ τ2 ‖∇ · uh‖

+ τ3
1

µ2
mρ

2
r

‖−∇× (uh × b) +∇rh‖
2
+ τ4

1

µ2
mρ

2
r

‖∇ ·Bh‖
2

≡ ν ‖∇uh‖
2
+

1

µmρr

1

µmσ
‖∇×Bh‖

2

+ τ1 ‖Xu(uh, ph,Bh)‖
2
+ τ2 ‖∇ · uh‖

2

+ τ3 ‖XB(rh,uh)‖
2
+ τ4

1

µ2
mρ

2
r

‖∇ ·Bh‖
2

(4.5.29)

In all that follows, C will denote a positive constant, not necessarily the same at

different appearances.

4.5.4.1 Coercivity

The first step is proving stability in the form of coercivity of the bilinear form

(4.5.19). It is immediately checked that:

Alin
stab(Uh,Vh) =A

lin(Uh,Vh)−

∫

Ω′

L
∗ (Vh)

t
τL (Uh)

=ν ‖∇u‖
2
+

1

µmρr

1

µmσ
‖∇ ×B‖

2

+τ1 ‖Xu(uh, ph,Bh)‖
2
− τ1ν

2
‖∆uh‖

2
+ τ2 ‖∇ · uh‖

2

+τ3 ‖XB (rh,uh)‖
2
− τ3

1

µ2
mρ

2
r

1

µ2
mσ

2
‖∇ ×∇×B‖

2

+τ4
1

µ2
mρ

2
r

‖∇ ·Bh‖
2

(4.5.30)

Using the second inverse estimate in (4.5.28), it is clear that the necessary and

sufficient condition for Alin
stab to be coercive is that:

ν − τ1ν
2C

2
inv

h2
≥ αν ⇐⇒ τ1 ≤ (1 − α)

1

ν

h2

C2
inv

, (4.5.31)

1

µ2
mρrσ

− τ3
1

µ4
mρ

2
rσ

2

C2
inv

h2
≥ α

1

µ2
mρrσ

⇐⇒ τ3 ≤ (1 − α)µ2
mρrσ

h2

C2
inv

(4.5.32)
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with 0 < α < 1. Conditions (4.5.31) and (4.5.32) yield:

Alin
stab(Uh,Vh) ≥ C |‖Uh‖| (4.5.33)

for a constant C independent of the discretization and of the physical parameters.

Constant C only depends on the constants of the stabilization parameters.

4.5.4.2 Optimal Accuracy

In the previous subsection, conditions (4.5.31) and (4.5.32) over the stabilization

parameters were obtained by requiring stability, the rest of the conditions will be

obtained by imposing that the stabilized method proposed is optimally accurate,

which will lead to optimal convergence.

For a function v, let πh(v) be its optimal finite approximation. It is assumed

that the following interpolation estimate holds:

ǫi(v) := ‖v − πh(v)‖Hi(Ω) ≤ Ch
k+1−i

‖v‖Hk+1(Ω) i = 0, 1, (4.5.34)

where ‖v‖Hq(Ω) is the H
q(Ω)–norm of v, that is, the sum of the L2(Ω)–norm of the

derivatives of v up to degree q, and k is the degree of the finite element approxi-

mation.

Next, it will be proved that the error function of the formulation is:

E(h) := τ
−1/2
1 ǫ0(u) + τ

−1/2
2 ǫ0(p) + τ

−1/2
3 ǫ0(B) + τ

−1/2
4 ǫ0(r) (4.5.35)

the conditions on the stabilization parameters to be obtained, will in fact show that

this is indeed the error function and that this error functional is optimal.

Let U be the solution of the continuous problem and πh(U) its optimal fi-

nite element approximation. The accuracy estimate that will be needed to prove

convergence later on is:

Alin
stab(U − πh(U),Vh) ≤ CE(h) |‖Vh‖| , (4.5.36)

for any finite element function Vh. This can be proved by showing that both the

Galerkin and the stabilization terms in Alin
stab satisfy estimate (4.5.36). Starting

with Galerkin contribution:
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Alin(U− πh(U),Vh) =

−(u− πh(u), a · ∇vh) + ν(∇(u − πh(u)),∇vh)

−(p− πh(p),∇ · vh)− (∇qh,u− πh(u))

−
1

µmρr
(u− πh(u),b×∇×Ch) +

1

µmρr
(B− πh(B),∇× (vh × b))

+
1

µ2
mρrσ

(∇×Ch, (B− πh(B)))−
1

µmρr
(r − πh(r),∇ ·Ch)

−
1

µmρr
(∇sh,B− πh(B))

≤C(ǫ0(u)τ
−1/2
1 τ

1/2
1 ‖Xu(vh, qh,Ch)‖+ ν1/2ǫ1(u)ν

1/2
‖∇vh‖

+ǫ0(p)τ
−1/2
2 τ

1/2
2 ‖∇ · vh‖

+ǫ0(B)τ
−1/2
3 τ

1/2
3 ‖XB(sh,vh)‖+

1

(µmρrµmσ)1/2
ǫ1(B)

1

(µmρrµmσ)1/2
‖∇×Ch‖

+ǫ0(r)τ
−1/2
4 τ

1/2
4

1

µmρr
‖∇ ·Ch‖)

(4.5.37)

Conditions (4.5.31) and (4.5.32) and the expression of the interpolation errors

imply:

ν1/2ǫ1(u) ≤ Cǫ0(u)τ
−1/2
1 ,

1

(µmρrµmσ)1/2
ǫ1(B) ≤ Cǫ0(B)τ

−1/2
3

and therefore from (4.5.37) it follows that the Galerkin contribution Alin(U −

πh(U),Vh) to A
lin
stab(U− πh(U),Vh) can be found in (4.5.36). It remains to prove

that also the stabilization terms can be bounded in this way:
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−

∫

Ω′

L
∗(Vh)

t
τL(U − πh(U))

=(Xu(u− πh(u), p− πh(p),B− πh(B)) − ν∆(u− πh(u)),

τ1(Xu(vh, qh,Ch) + ν∆vh)h

+(∇ · (u− πh(u)), τ2∇ · vh)h

+(XB(r − πh(r),u − πh(u)) +
1

µmρrµmσ
∇×∇× (B− πh(B)),

τ3XB(sh,vh)−
1

µmρrµmσ
∇×∇×Ch)h

+
1

µ2
mρ

2
r

(∇ · (B− πh(B)), τ4∇ ·Ch)h

≤C(τ
1/2
1 ‖Xu(u− πh(u), p− πh(p),B− πh(B))‖ + τ

1/2
1 ν ‖∆(u− πh(u))‖)

×(|‖Vh‖|+ τ
1/2
1 ν ‖∆vh‖)

+Cτ
1/2
2 ǫ1(u) ‖Vh‖

+C(τ
1/2
3 ‖XB(r − πh(r),u− πh(u))‖+ τ

1/2
3

1

µmρrµmσ
‖∇ ×∇× (B− πh(B))‖)

×(|‖Vh‖|+ τ
1/2
3

1

µmρrµmσ
‖∇ ×∇×Ch‖)

+Cτ
1/2
4

1

µmρr
ǫ1(B) ‖Vh‖

(4.5.38)

Using once again conditions (4.5.31) and (4.5.32) and the inverse estimates

(4.5.28), the following expressions are obtained:

τ
1/2
1 ν ‖∆vh‖ ≤ Cτ

1/2
1 ν1/2

Cinv

h
ν1/2 ‖∇vh‖ ≤ C |‖Vh‖| , (4.5.39)

τ
1/2
3

1

µ2
mρrσ

‖∇×∇×Ch‖ ≤ Cτ
1/2
3

1

(µ2
mρrσ)

1/2

Cinv

h

1

(µ2
mρrσ)

1/2
‖∇ ×Ch‖

≤C |‖Vh‖|

(4.5.40)

So far, any aditional condition has been posed on the stabilization parameters

other than (4.5.31) and (4.5.32), found from the requirement of coercivity. The

rest of the conditions will come from the requirement of optimal accuracy.
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From (4.5.38), the next expression can be obtained:

−

∫

Ω′

L
∗(Vh)

t
τL(U − πh(U))

≤C |‖Vh‖| τ
1/2
1

(
a

h
ǫ0(u) +

ν

h2
ǫ0(u) +

1

h
ǫ0(p) +

1

µmρr

b

h
ǫ0(B)

)

+C |‖Vh‖| τ
1/2
2

1

h
ǫ0(u)

+C |‖Vh‖| τ
1/2
3

1

µmρr

(
b

h
ǫ0(u) +

1

µmσ

1

h2
ǫ0(B) +

1

h
ǫ0(r)

)

+C |‖Vh‖| τ
1/2
4

1

µmρr

1

h
ǫ0(B)

≤C |‖Vh‖|

[
τ
1/2
1 (

a

h
+

ν

h2
) +

τ
1/2
3

µmρr

b

h
+ τ

1/2
2

1

h

]
ǫ0(u)

+C |‖Vh‖|

[
τ
1/2
1

1

h

]
ǫ0(p)

+C |‖Vh‖|

[
τ
1/2
1

µmρr

b

h
+

τ
1/2
3

µmρr

1

µmσ

1

h2
+

τ
1/2
4

µmρr

b

h

]
ǫ0(B)

+C |‖Vh‖|

[
τ
1/2
3

µmρr

1

h

]
ǫ0(r)

(4.5.41)

From the definitions (4.5.21)–(4.5.24) of the stabilization parameters it follows

that these terms can be bounded also as indicated in (4.5.36).

4.5.4.3 Convergence

As a trivial consequence of the properties of stability and accuracy in the sense of

(4.5.36), it is trivial to show that the method is optimally convergent. From the

orthogonality property Alin
stab(U −Uh,V) = 0 for any finite element function Vh,

a consequence of the consistency of the method, the next expression is obtained:

C ‖πh(U) −Uh‖
2
≤Alin

stab(πh(U) −Uh, πh(U)−Uh)

≤Alin
stab(πh(U) −U, πh(U)−Uh)

≤CE(h) |‖πh(U) −Uh‖| ,

(4.5.42)

from where |‖πh(U)−Uh‖| ≤ CE(h). Now the triangle inequality implies:

|‖U−Uh‖| ≤ |‖U− πhU‖|+ |‖πh(U) −Uh‖|

≤ |‖U− πhU‖|+ CE(h)
(4.5.43)
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A trivial check using the expression of the norm |‖•‖| given by (4.5.29). the

interpolation estimates (4.5.34) and the stabilization parameters (4.5.21)–(4.5.24)

shows that |‖U− πhU‖| ≤ CE(h), from where:

|‖U−Uh‖| ≤ CE(h). (4.5.44)

The fact that this error estimate is exactly the same as the estimate for the

interpolation error |‖U− πhU‖| ≤ CE(h) justifies why it has to be considered

“optimal”. Moreover, a simple inspection of what happens in the limit of dominant

second order terms shows that in this case the error estimate reduces to the estimate

that could be found using the Galerkin method using finite element spaces satisfying

the discrete form of (4.5.3)–(4.5.4), but now, however, using equal interpolation for

all the variables. Likewise, in the limit ν → 0 and µmσ → ∞, the error estimate

(4.5.44) does not blow up and the result can also be considered optimal. The

interested reader is referred to [13] for a similar discussion.

4.5.4.4 Remarks on Non Smooth Solutions

It known that problems involving the Maxwell equations may exhibit solutions

strictly in H0(curl,Ω) for the magnetic field, i.e. non smooth solutions. These solu-

tions appear when the domain Ω is non convex, i.e. the domain presents re–entrant

corners. Methods based on penalization used to enforce divergence condition on the

magnetic field, fail to converge to these non smooth solutions. In order to address

this problem, we need to weight the terms that introduce this divergence control or

use mixed interpolations. Neither of these options is easily applicable. The former

option is not easy to apply to general three dimensional problems and the latter

option requires the discrete version of the inf–sup condition (4.5.4). These draw-

backs render stabilization methods, as the one proposed in this research, as the only

alternative to use the simple continuous Lagrangian approximation of the magnetic

field. However, in the formulation we propose the last term in (4.5.19)gives control

to the divergence in the magnetic field, therefore expressions for τ4 smaller than

the one given in (4.5.24) might be required.

4.6 Final Numerical Scheme

The final numerical scheme that is proposed is obtained by applying the finite

element stabilization technique described in Section 4.5 to the time discrete and

linearized problem (4.4.10). The space discretization of these equations, adding

stabilization terms as those that appear in (4.5.19) and (4.5.20) for the stationary

thermally uncoupled problem, will lead to the following algorithm:

For n = 0, 1, 2, . . . , given un, pn,Bn, rn and ϑn, find un+1
h , pn+1

h ,Bn+1
h , rn+1

h and

ϑn+1
h , as the converged solutions of the following iterative algorithm:
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(δtu
n,k+1
h ,vh)+Auu(u

n+θ,k

h ,u
n+θ,k+1
h ,vh) +AuB(B

n+θ,k+1
h ,B

n+θ,k

h ,vh)

+Auϑ(ϑ
n+θ,e(k)
h

,vh)− bu(p
n+1,k+1
h

,vh)

+τ
n+θ,k
1

(
u
n+θ,k

h · ∇vh + ν∆vh,R
n+θ,k+1
h,u

)
h

+τ
n+θ,k
2

(
∇ · vh, R

n+θ,k+1
h,p

)
h

+τ
n+θ,k
3

(
−∇× (vh ×Bn+θ

h ),R
n+θ,k+1
h,B

)
h
= Ln+θ

u (vh)

(4.6.1)

bu(qh,u
n+1,k+1
h ) + τ

n+θ,k
1

(
1

ρr
∇qh,R

n+θ,k+1
h,u

)

h

(4.6.2)

(δtB
n,k+1
h ,Ch) +ABu(u

n+θ,k+1
h ,B

n+θ,k

h ,Ch) +ABB(B
n+θ,k+1
h ,Ch)

+bB(r
n+1,k+1
h ,Ch)

+τ
n+θ,k
1

(
−

1

µmρr
(∇×Ch)×B

n+θ,k

h ,R
n+θ,k+1
h,u

)

h

+τ
n+θ,k
3

(
1

µmσ
∇× (∇×Ch),R

n+θ,k+1
h,B

)

h

+τ
n+θ,k
4

(
∇ ·Ch, R

n+θ,k+1
h,r

)
h
= Ln+θ

B1 (Ch)

(4.6.3)

bB(sh,B
n+1,k+1
h ) + τ

n+θ,k
3

(
∇sh,R

n+θ,k+1
h,B

)
h
= Ln+θ

B2 (sh) (4.6.4)

(δtϑ
n,k+1
h , ψh) +Aϑu,1(u

n+θ,e′(k)
h , ϑ

n+θ,k+1
h , ψh) +Aϑϑ(ϑ

n+θ,k+1
h , ψh)

τ
n+θ,k
5

(
u
n+θ,k

h · ∇ψh +
kt

ρrcp
∆ψh, R

n+θ,k+1
h,ϑ

)

h

= L
n+θ,k
T (ψh)

(4.6.5)

where the residuals have been introduced:

Rh,u := δtuh + a · ∇uh − ν∆uh +
1

ρr
∇ph −

1

µmρr
(∇×Bh)× b+ gβϑh − ff

Rh,p := ∇ · uh

Rh,B := δtBh +
1

µmσ
∇× (∇×Bh)−∇× (uh × b) +∇rh − fm

Rh,r := ∇ ·Bh

Rh,ϑ := δtϑh + a · ∇ϑh −
kt

ρrcp
∆ϑh −Qtot
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The superscript n+ θ, k+1 in (4.6.1)-(4.6.5) denotes that these residuals are eval-

uated with uh, ph, Bh, rh and ϑh at this time step and iteration counter, whereas

now a ≡ u
n+θ,k

h and b ≡ B
n+θ,k

h .

The stabilization parameters τi, i = 1, 2, 3, 4 are given in (4.5.21)-(4.5.24),

whereas

τ5 =

(
c1
a

h
+ c2

kt

ρrcph2

)
−1

(4.6.6)

Note that the thermal coupling effect has been neglected in the design of the sta-

bilization terms.

4.7 Programming Notes

In order to have the final numerical scheme (4.6.1)-(4.6.5) implemented, the CDR

module of ZEPHYR1 was used. The CDR module allows to implement finite ele-

ment schemes of any system of partial differential equations that can be expressed in

a Convection Diffusion Reaction form. A nonlinear system of convection-diffusion-

reaction equations has the form presented in equation (4.4.16). Basically the CDR

module works performing a do loop over the elements as is shown in algorithm (1).

Algorithm 1 Basic Algorithm of the CDR module

1: for ielem = 0 to nelem do

2: for igaus = 1 to ngaus do

3: Calculate Cartesian derivatives and Jacobian

4: Calculate the CDR matrices and the τ terms

5: Calculate contribution from Galerkin terms

6: Calculate the perturbation from the Galerkin test functions

7: Calculate the residual within each element

8: Multiply test functions by residuals

9: Add Gauss point contribution

10: end for

11: if nboun > 0 then

12: for iboun = 0 to nboun do

13: Compute boundary matrix and RHS for the CDR equations

14: Modify the element stiffness matrix to impose Dirichlet boundary con-

ditions

15: Assembly the RHS

16: Assembly the matrix for the CDR equation.

17: end for

18: end if

19: Solve the algebraic system

20: end for

1ZEPHYR is an in house finite element code developed at Prof. R. Codina’s research group
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In algorithm (1) nelem is the number of elements in the finite element mesh,

ngaus is the number of Gauss points for the particular type of element used and

nboun is the number of Dirichlet boundaries.

In order to implement the numerical scheme presented in algorithm 1 explicit

expressions for the CDR matrices must be used. The convective matrices Ai,

diffusion matrices Kij and the reaction vector S are presented next. For d = 3

there are three convective matrices A1, A2 and A3 and nine difussive matrices

K11, K12, K13, K21, K22, K23, K31, K32 and K33. Finally there is a reaction

matrix S.

Explicit expressions for these matrices are given next:

A1 =




a1 0 0 1
ρr

0 b2
µmρr

b3
µmρr

0 0

0 a1 0 0 0 −
b1

µmρr
0 0 0

0 0 a1 0 0 0 b1
µmρr

0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

b2 −b1 0 0 0 0 0 0 0

b3 0 −b1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 −a1ρrcp




(4.7.1)

A2 =




a2 0 0 0 −
b2

µmρr
0 0 0 0

0 a2 0 1
ρr

b1
µmρr

0 b3
µmρr

0 0

0 0 a2 0 0 0 −
b2

µmρr
0 0

0 1 0 0 0 0 0 0 0

−b2 b1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 b3 −b2 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 −a2ρrcp




(4.7.2)

A3 =




a3 0 0 0 −
b3

µmρr
0 0 0 0

0 a3 0 0 0 −
b3

µmρr
0 0 0

0 0 a3
1
ρr

b1
µmρr

b2
µmρr

0 0 0

0 0 1 0 0 0 0 0 0

−b3 0 b1 0 0 0 0 0 0

0 −b3 b2 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 −a3ρrcp




(4.7.3)
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K11 =




ν 0 0 0 0 0 0 0 0

0 ν 0 0 0 0 0 0 0

0 0 ν 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
µmσ

0 0 0

0 0 0 0 0 0 1
µmσ

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 kt




(4.7.4)

K12 =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 −
1

µmσ
0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(4.7.5)

K13 =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 −
1

µmσ
0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(4.7.6)

K21 =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 −
1

µmσ
0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(4.7.7)
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K22 =




ν 0 0 0 0 0 0 0 0

0 ν 0 0 0 0 0 0 0

0 0 ν 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1
µmσ

0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
µmσ

0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 kt




(4.7.8)

K23 =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 −
1

µmσ
0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(4.7.9)

K31 =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −
1

µmσ
0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(4.7.10)

K32 =




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −
1

µmσ
0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(4.7.11)
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K33 =




ν 0 0 0 0 0 0 0 0

0 ν 0 0 0 0 0 0 0

0 0 ν 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1
µmσ

0 0 0 0

0 0 0 0 0 1
µmσ

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 kt




(4.7.12)

S =




0 0 0 0 0 0 0 0 gxβ

0 0 0 0 0 0 0 0 gyβ

0 0 0 0 0 0 0 0 gzβ

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




(4.7.13)

It is necessary to mention that, for the matrix S, the terms arising from the

linearization of the Joule effect have not been considered. Basically the CDR

matrices are used to calculate the contributions to Galerkin term from advective,

diffusive and reactive terms. Following algorithm (1) provides the method to solve

an steady problem (time independent), but the real nature of the MHD phenomena

involve evolutive (time dependent) problems.

In order to have an adequate temporal discretization for the MHD problem the

following algorithm was implemented:

Algorithm 2 Algorithm for the time discretization

1: while ctime <= timef − epsilon and istep >= nsmax do

2: Computes the time step

3: Update boundary conditions

4: Get an initial guess for the unknown

5: Solve the internal problem for CDR equations

6: Checks the general convergence of the run

7: Close the time step

8: end while

Algorithm (2) shows the basic steps that must be taken in order to perform

a time discretization for the CDR equations. In this algorithm (2) ctime is the

current time, timef is the final time, epsilon is a tolerance for the time and nsmax

is the maximum number of steps. The time step used in algorithm (2) is calculated

using θ–scheme.
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4.8 Convergence Test

In order to analyze the convergence properties of the stabilized finite element ap-

proximation presented, a two dimensional problem in the square domain Ω =

]0, 1[×]0, 1[ is considered. This problem possesses a closed form analytical solu-

tion. The components of the body forces fu =
(
fux

, fuy

)
and fb =

(
fbx , fby

)
are

prescribed as:

fux
= f1(x) (d’1(y))

2
f ’1(x)

− f ’1(x)d1(y)f1(x)d”1(y)

−
1

Re
[f”1(x)d’1(y) + f1(x)d”’1(y)]

+ S [f ’2(x)d2(y) (f”2(x)d2(y) + f2(x)d”2(y))]

fuy
= −f1(x)d’1(y)f”1(x)d1(y)

+ (f ’1(x))
2
d1(y)d’1(y)

+
1

Re
[d1(y)f”’1(x) + d”1(y)f ’1(x)]

+ S [f2(x)d’2(y) (f”2(x)d2(y) + f2(x)d”2(y))]

fbx = f1(x)f ’2(x) [d”1(y)d2(y) + d’1(y)d’2(y)]

− f ’1(x)f2(x) [d’1(y)d’2(y) + d1(y)d”2(y)]

−
1

Rm
[f”2(x)d”’2(y) + f2(x)d2(y)]

fby = −d’1(y)d2(y) [f ’1(x)f ’2(x) + f1(x)f”2(x)]

− d1(y)d’2(y) [f”1(x)f2(x) + f ’1(x)f ’2(x)]

+
1

Rm
[f”’2(x)d2(y) + f ’2(x)d”2(y)]

where the prime denotes differentiation. Note that in this example we use the

dimensionless numbers Re, Rm and S to characterize the problem. Endowed with

this body forces the 2D problem has an exact solution for the velocity given by

u = (ux, uy) where:

ux(x, y) := f1(x)d’1(y)

uy(x, y) := −f ’1(x)d1(y)

The analytical solution for the magnetic field is B = (Bx, By) now with:

Bx(x, y) := f2(x)d’2(y)

By(x, y) := −f ’2(x)d2(y).

In this particular example, the functions f1(x), f2(x), d1(y) and d2(y) are chosen

as:
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f1(x) = x2(1− x)2

f2(x) = x2(1− x)2

d1(y) = y2(1− y)2

d2(y) = y2(1− y)2

The square domain Ω has been discretized with five different uniform meshes of

2× 25× 25,2× 50× 50,2× 75× 75,2× 100× 100 and 2× 125× 125 triangular linear

elements. The characteristic length of the meshes are h = 1/25, 1/50, 1/75, 1/100

and 1/125.

The convergence plots measured in the discrete L2 (Ω)–norm for the velocity

and the magnetic field are shown in figures 4.1 and 4.2 respectively. The slope of

the convergence curve has to be compared with the line of slope two also shown in

the figures. It is observed that the numerical convergence has also approximately

slope two (1.93 for the velocity and 2.03 for the magnetic field), which is optimal

for the linear elements employed in the calculation.
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Chapter 5

Numerical Simulations

The numerical simulations, performed while this research was developed, are pre-

sented in this chapter. Five numerical simulations were performed. The first nu-

merical simulation presented is the Hartmann flow. This flow was chosen because

it can be used to check the accuracy of the numerical scheme. The flow over a

step is the second numerical simulation presented. In this numerical simulation the

qualitative behavior of the vorticity is analyzed. The third numerical simulation

presented is the flow past a circular cylinder. This simulation is time dependent and

allows the analysis of the temporal behavior of the numerical scheme. The fourth

numerical simulation is the clogging in continuous casting of steel. This simulation

is also time dependent and it applies the numerical scheme in a simplified industrial

case. The final numerical simulation is a Czochralski crystal growth process. This

simulation is also an application of the numerical scheme to a simplified industrial

case, which presents thermal coupling and therefore convection movements in the

fluid are present.

5.1 Hartmann Flow

The Hartmann flow is the simplest of all incompressible MHD flows. Due to its

simplicity it is a really practical benchmark for the numerical scheme developed

in this research. The general characteristics of the Hartmann flow were briefly

discussed in section 3.6. In that section the boundary conditions (3.6.2), (3.6.3)

and the solutions for the velocity and the magnetic field, (3.6.4), (3.6.5), (3.6.6)

and (3.6.7) were presented. Those boundary conditions and solutions were used to

build a benchmark, whose results are presented in this section.

In order to implement the numerical benchmark, first a rectangular domain was

built using GiD,1 and the boundary conditions were imposed over that domain.

Figure 5.1 shows schematically the domain and the boundary conditions.

The boundary conditions over the domain consist of non slip boundary con-

ditions on the walls and imposed parabolic profile at the inlet and the outlet for

1GiD is a pre and post process software developed at CIMNE

73
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Figure 5.1 Boundary Conditions for Hartmann flow

the velocity. In the case of the magnetic field, the boundary conditions over the

domain consist of an imposed normal component of the magnetic field on the walls

and an imposed tangential component at the inlet and the outlet. The variable

r is set to r = 0 over the whole boundary. The rectangular domain used for this

simulation was meshed using GiD. Four different meshes were build using linear

triangular elements. The number of elements and nodes for the four meshes used

are presented in the table 5.1. Mesh number 1 is shown in figure 5.2.

Figure 5.2 Uniform Mesh used for Hartmann flow

The fact that there can be two different cases for the magnetic field profile

was presented in section 3.6. The first case takes place when insulating walls

are employed and the second case takes place when conducting walls are used.

Therefore the numerical simulations for Hartmann flow cover these two situations.

The objective of this numerical simulation in both cases is to observe the change

in the velocity profile while the intensity of the magnetic field is increased. In

order to appreciate the effects of the increasing magnetic coupling over the velocity

profile the simulations were performed for the following Hartmann numbers: Ha =
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Mesh Elements Nodes

1 3200 1681

2 6400 3321

3 12800 6601

4 25600 13161

Table 5.1 Number of Elements and Nodes for Uniform Meshes

0.0, 5.0, 10.0. The effect of increasing the Hartmann number over the velocity is to

flat the velocity profile. In other words the effect of the magnetic field tends to

homogenize the velocity of the fluid along the y axis.

Although four different meshes were used, only results for mesh number 2 are

presented. This is done in order to keep the presentation as simple as possible and

not to overwhelm the reader with several graphics. Also, it is worth of remark that,

although the simulations were performed over a complete rectangular domain, it is

better for visualization purposes, to use a cut on the domain in order to clearly see

the profiles of velocity and magnetic field in their x–component.

Figures 5.3 to 5.8 show the velocity and magnetic profiles for mesh 2 and for

the cases of Ha = 0.0, 5.0, 10.0. These figures belong to the insulating walls case.

In figure 5.3 the velocity profile for Ha = 0.0 is shown. As can be seen, there is

no effect over the profile because there is no magnetic field. The lack of magnetic

field for Ha = 0.0 can be seen in figure 5.4. Figure 5.5 shows the velocity profile

for Ha = 5.0. In this case, it can be seen a clear flattening of the profile, contrary

to Ha = 0.0, because now there is a magnetic field as can be seen in figure 5.6.

This flattening effect is further increased for Ha = 10.0. The numerical solutions

obtained in the case of isolating walls in the Hartmann flow match the analytical

solutions provided by (3.6.4), (3.6.5).
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Figure 5.8 Magnetic Profile for Ha=10 and Mesh 2, Insulating Walls

In figures 5.9 to 5.13 the velocity and magnetic field profiles for the case of con-

ducting walls in Hartman flow are presented. As in the previous case the Hartmann

number takes the values of Ha = 0.0, 5.0, 10.0. The velocity profile takes the same

values as in the case of isolating walls, but the magnetic profile is quite different,

because the boundary condition for the magnetic field is imposed over its deriva-

tive. As in the previous case the general effect of the increase of the Hartmann

number is to flat the velocity profile along the y axis. It is worth of mentioning

the fact that the values of the induced magnetic field are really small, as can be

seen in the figures. Although the induced magnetic field is small, it is still strong

enough to modify the behavior of the fluid. In order to properly show the induced

magnetic field in the figures, its value has been divided by the Reynolds Magnetic

Rm, and multiplied by 1000.

As a final conclusion it can be said that the numerical benchmark, provided by

the Hartmann flow, offers a good match between the numerical and the analytical

solutions of the flow. This numerical simulations confirms the general behavior of

MHD where the vorticity is killed by the magnetic field.

5.2 Flow Over a Step

This numerical simulation was originally proposed by Gerbeau in [21]. The ob-

jective is to model the flow of a fluid in a duct with a step while a magnetic field

is imposed. The domain under study is shown in figure 5.14 together with the

imposed boundary conditions.

The boundary conditions for the velocity consist of non slip condition in the

walls of the duct and imposed profiles at the inlet and the outlet. In the case of the

magnetic field the boundary conditions consist of imposed normal component for

the magnetic field in the walls of the duct and tangential component imposed over
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Figure 5.14 Domain and boundary conditions for the flow over a step
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the magnetic field at the inlet and the outlet. Although the velocity profiles imposed

at the inlet and the outlet should be Hartmann profiles the original Pouiseille

profiles proposed by Gerbeau are used. The domain of this simulation is meshed

using GiD and the mesh consists of 7771 linear triangular elements and 4029 nodes.

This mesh is shown in the figure 5.15.

Figure 5.15 Mesh used for the flow over a step

The general effect to be observed is the vanishing of the whirlpool over the step

and the uniformity of the flow when the magnetic field is applied. Figures 5.16 to

5.20 show the flow and how it is affected when the magnetic field is applied. These

figures clearly show that the whirlpool vanishes while the intensity of the magnetic

field is increased.

Figure 5.16 Velocity in the Flow Over a Step for Ha=0

As can be seen in figure 5.18 the flow stars to get uniform when the Hartmann

number is equal to Ha = 5.0. This uniformity deepens as the Hartmann number

increases. Figures 5.19 to 5.20 show how the flow finally gets very uniform when

Ha = 10.0 and Ha = 20.0.

Special attention must be paid to the whirlpool over the step. Figures 5.21 to

5.23 show a zoom on the area immediately over the step. In order to clearly show
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Figure 5.17 Velocity in the Flow Over a Step for Ha=1

Figure 5.18 Velocity in the Flow Over a Step for Ha=5

Figure 5.19 Velocity in the Flow Over a Step for Ha=10
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Figure 5.20 Velocity in the Flow Over a Step for Ha=20

the whirlpool over the step, the velocity is depicted using vectors. The figures

show how the whirlpool is unaffected when the Hartmann number is Ha = 0.0.

This situation shows little change for Ha = 5.0 because at this Hartmann number,

recirculation is still present in the flow. When the intensity of the magnetic field

is increased the recirculation will vanish as can be seen at Ha = 10.0 where the

whirlpool is completely gone, but the flow is not completely uniform.

Figure 5.21 Vortex over the step for Ha=0

Figures 5.24 and 5.25 show how the recirculation vanishes under the influence

of the magnetic field. The vortex over the step is no longer there and the flow is

very uniform. This fact is explained because the magnetic field exerts forces over

the fluid. Those forces act contrary to the movement of the fluid and the flow gets

uniform. Although this is a pure academic example, it shows an important hallmark

of MHD, the suppression of unwanted movements in the fluid. This characteristic

of MHD is extensively used in industries where the fluids involved are electrical

conductors.
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Figure 5.22 Vortex over the step for Ha=1

Figure 5.23 Vortex over the step for Ha=5

Figure 5.24 Vorticity over the step for Ha=10
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Figure 5.25 Vorticity over the step for Ha=20

Finally, figures 5.27 to 5.30, show the x component in the magnetic field. This

component is the induced magnetic field and as can be seen in the figures, before

the step it resembles the induced magnetic field found in the Hartmann flow. Also

can be seen in the figures that the highest intensity in this induced magnetic field

is located where the fluid velocity gradient is highest. It worthy of mention the

fact that this induced magnetic field is behind the suppression of movement in the

fluid.

Figure 5.26 Induced Magnetic Field in the Flow Over a Step for Ha=0
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Figure 5.27 Induced Magnetic Field in the Flow Over a Step for Ha=1

Figure 5.28 Induced Magnetic Field in the Flow Over a Step for Ha=5
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Figure 5.29 Induced Magnetic Field in the Flow Over a Step for Ha=10

Figure 5.30 Induced Magnetic Field in the Flow Over a Step for Ha=20
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5.3 Flow Past a Circular Cylinder

This numerical simulation was taken from Armero and Simo [3]. The problem

consists on the flow of a conducting fluid around a circular cylinder while a mag-

netic field is imposed. The flow around a circular cylinder gives origin to the very

well known phenomenon of Von Kármán’s Vortex Street. Although it is named

after Hungarian scientist Theodore Von Kármán, this phenomenon was well known

before Von Kármán’s birth. Von Kármán himself acknowledges this fact in [37].

The main objective in this numerical simulation is to observe the vanishing of the

vortexes shed by the cylinder. Another important result that can be obtained from

this simulation is the variation over time of the drag coefficient, the lift coefficient,

the velocities and the pressure.

In order to implement this simulation the domain was built using GiD and

adequate boundary conditions were imposed in that domain boundary. The domain

and the boundary conditions are shown in figure 5.31. In order to evaluate the

solution obtained from the numerical scheme, several points in the domain are

specified in order to follow the temporal variation of velocity and pressure at those

points. These points are shown in figure 5.32 and their coordinates are presented

in table 5.2.

Figure 5.31 Domain and boudary conditions used in the Von Kármán’s Vortex Street

The boundary conditions for this simulation consist of an imposed constant

velocity at the inlet, zero velocity in the upper and lower parts of the domain

in the initial time and free velocity at the outlet. The boundary conditions for

the magnetic field consist of an imposed normal component in the upper and lower

parts of the domain and an imposed tangent component at the inlet and the outlet.

In the circular cylinder, the non slip boundary condition is imposed on the surface

of the cylinder and the magnetic field is fixed in its y components.

The domain in this simulation was meshed using GiD. The mesh is presented

in the figure 5.33 and it consists of 4000 linear triangular elements and 2100 nodes.
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Figure 5.32 Dimensions and points used in the domain for the Von Kármán’s Vortex

Street

Point x y

172 12.0 4.0

423 8.0 4.0

625 8.0 1.2

652 6.0 4.0

1664 4.0 1.0

Table 5.2 Points used in the Von Kármán’s Vortex Street and their coordinates
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As can be seen in figure 5.33 the mesh is symmetrical in order to properly simulate

the vortex formation.

Figure 5.33 Mesh used in the Von Kármán’s Vortex Street

The numerical simulation is performed for the following Hartmann numbers:

Ha = 0.0, 0.5, 1.0, 2.5, 5.0, 10.0. These Hartmann numbers are obtained increasing

the imposed magnetic field. The intended effect of this increment in the magnetic

field is to suppress the vortexes. This effect can be observed in the following

sequence of figures where the magnetic field was increased starting from 0.0 until

it reached 10.0

Figure 5.34 Velocity in the Von Kármán’s Vortex Street for Ha=0.0

Figures 5.34 to 5.39 show how the progressive increment of the intensity in the

magnetic field turns off the shedding of the vortexes from the circular cylinder. This

is due to the fact that the general effect of Magnetohydrodynamics is to prevent

relative movement between the magnetic field and the fluid. This effect gives rise to

a more uniform flow, and therefore no vortexes appear in the flow. This uniformity

of the velocities in the flow precludes the de–attachment of the boundary layer in

the cylinder or any other profile under study. As can be seen in the figures, even

low Hartmann numbers preclude the shedding of vortexes. Figure 5.37 shows how
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Figure 5.35 Velocity in the Von Kármán’s Vortex Street for Ha=0.5

Figure 5.36 Velocity in the Von Kármán’s Vortex Street for Ha=1.0

Figure 5.37 Velocity in the Von Kármán’s Vortex Street for Ha=2.5
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Figure 5.38 Velocity in the Von Kármán’s Vortex Street for Ha=5.0

Figure 5.39 Velocity in the Von Kármán’s Vortex Street for Ha=10.0
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at Hartman Ha = 2.5 the vortexes have completely vanished. Other important

parameters that can be measured are the drag and lift coefficients. These are

also important results from this numerical simulation and are defined in equations

(5.3.1) and (5.3.2):

CD =
FD

1
2ρ u

2AP

(5.3.1)

CL =
FL

1
2ρ u

2 AP

(5.3.2)

where CD is the drag coefficient, CL is the lift coefficient, FD is the drag force, FL

is the lift force, AP is the frontal area of the circular cylinder, ρ is the density and

u is the velocity of the fluid. These coefficients are non dimensional forces over the

circular cylinder and provide a way to analyze the flow in time. The variations over

time of the drag coefficient are shown in figures 5.40 to 5.45 and the variation over

time of the lift coefficient are shown in figures 5.46 to 5.51.
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Figure 5.40 Drag Coefficient in the Von Kármán’s Vortex Street for Ha=0.0

The variations in the drag and lift coefficients show that the suppression of the

vortexes affects the forces exerted in the circular cylinder. The biggest effect is

upon the lift force which actually vanishes. This fact can be explained by the lack

of fluctuations in the pressure. The drag coefficient only diminishes and does not

vanish because the velocity in the x axis is still present, but the drag force due to

pressure and the vorticity behind the cylinder have disappeared. The effects over

the drag an lift coefficients have made MHD an interesting option to control the

drag forces and separation control over ships propellers, although this approach is

still under investigation [49].

The five points, presented in table 5.2, were selected in order to monitor the

values of pressure and velocity in x an y. The values of velocity and pressure

are presented for each of the six different Hartmann numbers employed in this
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Figure 5.41 Drag Coefficient in the Von Kármán’s Vortex Street for Ha=0.5
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Figure 5.42 Drag Coefficient in the Von Kármán’s Vortex Street for Ha=1.0
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Figure 5.43 Drag Coefficient in the Von Kármán’s Vortex Street for Ha=2.5
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Figure 5.44 Drag Coefficient in the Von Kármán’s Vortex Street for Ha=5.0
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Figure 5.45 Drag Coefficient in the Von Kármán’s Vortex Street for Ha=10.0
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Figure 5.46 Lift Coefficient in the Von Kármán’s Vortex Street for Ha=0.0
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Figure 5.47 Lift Coefficient in the Von Kármán’s Vortex Street for Ha=0.5
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Figure 5.48 Lift Coefficient in the Von Kármán’s Vortex Street for Ha=1.0
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Figure 5.49 Lift Coefficient in the Von Kármán’s Vortex Street for Ha=2.5
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Figure 5.50 Lift Coefficient in the Von Kármán’s Vortex Street for Ha=5.0
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Figure 5.51 Lift Coefficient in the Von Kármán’s Vortex Street for Ha=10.0

numerical simulation, and as can be seen in the figures its behavior matches the

previously presented behavior of the drag and lift coefficients.
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Figure 5.52 Pressure Variations in the Von Kármán’s Vortex Street for Ha=0.0

Figures 5.52 to 5.54 show the time variation of pressure for the five points

selected for Ha = 0.0, 0.5, 1.0. As can be seen in those figures the initial increasing

of the magnetic field has very little effect over the variations in pressure.

Figures 5.55 to 5.57 show the time variation of pressure for the five points

selected for Ha = 2.5, 5.0, 10.0. Contrary to Ha = 0.0, 0.5, 1.0 the effect over

these pressures is significant, because the magnetic field completely suppresses the

oscillations in pressure. The oscillations in the velocity for the different Hartmann

numbers also present the same behavior as the oscillations in pressure. Figures
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Figure 5.53 Pressure Variations in the Von Kármán’s Vortex Street for Ha=0.5
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Figure 5.54 Pressure Variations in the Von Kármán’s Vortex Street for Ha=1.0
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Figure 5.55 Pressure Variations in the Von Kármán’s Vortex Street for Ha=2.5
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Figure 5.56 Pressure Variations in the Von Kármán’s Vortex Street for Ha=5.0
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Figure 5.57 Pressure Variations in the Von Kármán’s Vortex Street for Ha=10.0

5.58 to 5.63 show the variation in the x component of the velocity and figures 5.64

to 5.69 show the variation in the y component of the velocity.
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Figure 5.58 Variations for Velocity x in the Von Kármán’s Vortex Street for Ha=0.0

As conclusion it can be said that the presence of magnetic fields in flows where

oscillations can occur precludes their onset. This numerical benchmark shows

clearly this behavior. This numerical benchmark also offers clues over the use

of magnetic fields in the control of drag and lift forces. As can be seen in the drag

and lift graphics the use of magnetic fields, reduce the value of the drag forces and

also controls the de–attachment of boundary layers.
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Figure 5.59 Variations for Velocity x in the Von Kármán’s Vortex Street for Ha=0.5
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Figure 5.60 Variations for Velocity x in the Von Kármán’s Vortex Street for Ha=1.0
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Figure 5.61 Variations for Velocity x in the Von Kármán’s Vortex Street for Ha=2.5
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Figure 5.62 Variations for Velocity x in the Von Kármán’s Vortex Street for Ha=5.0
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Figure 5.63 Variations for Velocity x in the Von Kármán’s Vortex Street for Ha=10.0
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Figure 5.64 Variations for Velocity y in the Von Kármán’s Vortex Street for Ha=0.0
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Figure 5.65 Variations for Velocity y in the Von Kármán’s Vortex Street for Ha=0.5
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Figure 5.66 Variations for Velocity y in the Von Kármán’s Vortex Street for Ha=1.0
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Figure 5.67 Variations for Velocity y in the Von Kármán’s Vortex Street for Ha=2.5
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Figure 5.68 Variations for Velocity y in the Von Kármán’s Vortex Street for Ha=5.0



5.4 Clogging in Continuous Casting of Steel 109

-1

-0.5

 0

 0.5

 1

 0  100  200  300  400  500

V
el

oc
ity

 Y

Time

Variations of Velocity Y

Point   66
Point  444
Point  451
Point  551

Point 1890

Figure 5.69 Variations for Velocity y in the Von Kármán’s Vortex Street for Ha=10.0

5.4 Clogging in Continuous Casting of Steel

Steel is the most important metal alloy in the present. The majority of the steel

is made using the Continuous Casting Process. This process is briefly described in

section 2.3.1. Among the possible problems in the continuous casting process, the

blocking of the nozzle employed is one of the most severe.

The main objective of this numerical simulation is to observe the behavior of

the flow in a continuous casting nozzle while a magnetic field is applied. The

blocking is particularly problematic when low carbon steels are casted because

some deoxidation products e.g. alumina, get attached to the walls of the nozzle

forming buildups. These buildups can eventually prevent the flow of steel through

the nozzle. This can lead to a decrease in the quality of the steel or even to stop

the continuous casting operation and diminish the productivity, [53].

The origin of the buildups in the nozzle is associated to the appearance of a

recirculation zone in the entry of the nozzle. This recirculation zone is originated

by a deattachment of the flow. Although the nozzle can be designed to prevent

recirculation, even a small misalignment can originate a de–attachment. In order to

prevent the recirculation of the flow, the use of a magnetic field has been proposed,

[35] and [42]. The magnetic field used to suppress the recirculation is produced by

a coil oriented coaxially with the flow. The general effect of the magnetic field is to

produce a radial force over the fluid and therefore it tends to attach to the walls of

the nozzle. The domain of the nozzle in a continuous casting process is presented

in figure 5.70. This numerical simulation is bi–dimensional in its nature.

The boundary conditions used for this numerical simulation are presented in

figure 5.70. Basically these boundary conditions consist of a fixed value for the

radial component of the magnetic field for all the wall, the non-slip boundary

condition for the velocity and finally an applied acceleration due to the gravity.

These boundary conditions basically represent the conditions in the tundish and
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Figure 5.70 Domain and Boundary Conditions for Nozzle Clogging

the nozzle, as they are represented in figure 2.1. The following Hartmann numbers

have been considered: Ha = 1, 10, 50 and 120. The Reynolds number that has

been taken is Re ≈ 20000 and the magnetic Reynolds number is Rm = 0.03632

The mesh used in this example is shown in figures 5.71 and 5.72. Basically, it

is a symmetrical mesh of 18282 triangular elements with 9335 nodes. This degree

of detail was needed in order to capture the behavior of the fluid in the nozzle, i.e.

the recirculation.

Figure 5.71 Mesh used for Nozzle Clogging

The nature of this example is purely qualitative because there is no numerical

benchmark to compare. The dimensions and general setting of this example were

taken from [42], where the approach to tackle this problem is purely analytical.

Due to the dynamic nature of this example the Hartmann number used in order to

get a uniform velocity field for the fluid is really high.

As can be seen in figures 5.73 to 5.77 the use of magnetic fields in the nozzle

reduces the magnitude of the recirculation zone. The velocity of the fluid tends to
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Figure 5.72 Detail of the Mesh used for Nozzle Clogging

Figure 5.73 Detail of Velocity for Ha=0
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Figure 5.74 Detail of Velocity for Ha=1

Figure 5.75 Detail of Velocity for Ha=10
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Figure 5.76 Detail of Velocity for Ha=50

Figure 5.77 Detail of Velocity for Ha=120
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get uniform and stabilizes the flow making less likely the occurrence of buildups.

Eventually these effects of the magnetic fields applied to the nozzle provide an

effective mean to improve the quality of the steel made by the continuous casting

process.

5.5 Crystal Growth

The Czochralski process for the growth of semiconductor crystals is extensively

used in the semiconductor industry today. It is named after Jan Czochralski, a

polish scientist who discovered it in 1916. The main objective of this process is

to get a mono–crystal. To perform this task a crystal seed is slowly pulled out of

the crucible, where the semiconductor is melt. This action provides the melt with

a unique direction for the solidification. In order to produce a cylindrical crystal,

the seed is subject to a rotation while it is pulled out of the crucible. Czochralski

process is mainly used to produce crystals of Si and Ge for the semiconductor

industry, but it can also be used with metals and salts.

The technological importance of this process is justified, because it provides

high purity semiconductor wafers. This wafers are used for the manufacture of

semiconductor devices such as solar cells and integrated circuits. The degree of

precision required by this kind of manufacture is made obvious given the fact that

the wafers are cut with a thickness of 0.2 mm or even less. Therefore any impurity

or imperfection in the crystal must be avoided.

The main objective of this numerical simulation is to observe the behavior of

the molten semiconductor inside a crucible, in the Czochralski process. This nu-

merical simulation was proposed by Bückle and Schäfer [7], in 1993. The numerical

simulation of this crystal growth process is quite complex because it involves a heat

transfer problem together with the MHD problem. In the Czochralski process, the

convection gives rise to fluid movements which can be harmful for the crystalline

structure of the silicon. Basically, the convection movements can introduce struc-

tural defects in the crystal. By applying an intense magnetic field, the convection

movements are damped inside the crucible and the defects are diminished if not

completely eliminated. For this numerical simulation cylindrical coordinates were

used, and due to the symmetry conditions over the domain only half of a cross sec-

tion of the domain was used. A simplified geometry for this problem is presented

in figure 5.78. As can be seen in the previously mentioned figure, a crystal seed

is been pulled out from a crucible and at the same time a rotational movement is

being applied to the seed in order to obtain a cylindrical crystal.

The section under study presented at figure 5.78 is explained in detail in figure

5.79. Basically, figure 5.79 depicts the general situation of a Czochralski process

presented for this numerical benchmark. As can be seen the problem consists in

a vertical cylindrical crucible filled with a molted semiconductor to a height H ,

which is rotating with angular velocity ΩC . The coaxial crystal on the top of the

crucible is also rotating, but at the opposite direction of the crucible with angular

velocity ΩX . It is assumed that the crystal and the crucible are isothermal with

temperature TX and TC respectively.
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Figure 5.78 Section Under Study for the Czochralski Process

Figure 5.79 General Depiction of Czochralski Process
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The boundary conditions for this numerical simulation are presented in fig-

ure 5.80. The nature of this numerical simulation makes necessary to introduce

boundary conditions for velocity, temperature and magnetic field. The first kind

of boundary conditions is imposed over the velocity. Non slip boundary conditions

are imposed in the crucible walls, the bottom of the crucible and at the interface

between the crystal and the molten semiconductor. Also, it must be considered

that the crystal and the crucible are rotating in opposite directions, therefore the

velocity for the liquid silicon at those interfaces is determinated by the rotational

speed of the crystal and the crucible, respectively. The velocity of the fluid at the

crucible walls is the same velocity of the walls, therefore this velocity is given by

the product ΩCRC , where RC is the radius of the crucible. The velocity of the

fluid at the crystal is given by ΩXRX where RX is the radius of the crystal. In

the case of the space between the crystal and the crucible walls, the velocity is not

subject to any constrain but to remain as a free surface.

The second kind of boundary condition is imposed over the temperature,which

is represented by letter T in this example. For the crucible walls, the temperature

of the molten silicon is fixed to TC and for the molten silicon in contact with the

crystal, the temperature is fixed to TX . For the molten silicon in contact with the

bottom of the crucible a zero heat flux boundary condition is imposed, the same

condition is applied to the symmetry line. The space between the crystal and the

walls of the crucible is subject to a linear variation of temperature between the

temperature of the crystal and the temperature of the crucible walls.

The third boundary conditions are for the magnetic field. For this numerical

simulation all interfaces are assumed to be insulating walls. Finally, it is worthy of

mention the fact that in figure 5.80, radial coordinate r is normalized by RC , i.e.

r = 1 in the right border of the domain.

Figure 5.80 Boundary Conditions Used for Czochralski Process

In order to completely characterize this numerical simulation some non dimen-

sional parameters must be defined. These parameters are the Reynolds number

for the crucible and the crystal, the Prandtl and Grashof numbers and the aspect
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Problem Gr ReX ReC

A1 0 102 0

A2 0 103 0

B1 0 102 −2.5× 101

B2 0 103 −2.5× 102

C1 104 0 0

C2 105 0 0

D1 104 101 0

D2 105 101 0

Table 5.3 Parameters and their values for the different cases in the Czochralski Process

ratios of the crucible. These parameters are defined as:

ReC =
R

2
C
|ΩC |

ν
(5.5.1)

ReX =
R

2
C
|ΩX |

ν
(5.5.2)

Pr =
ν

κ
(5.5.3)

Gr =
gβ̂ (TC − TX)R3

C

ν2
(5.5.4)

α =
H

RC

(5.5.5)

β =
RX

RC

(5.5.6)

To limit the number of possible combinations of these non–dimensional param-

eters eight combinations were analyzed during this research. These combinations

are based on those proposed by Bückle and Schäfer in their original paper [7].

These cases are representative of the posible situations to be present in the actual

Czochralski process. The values for Reynolds and Grashof numbers are presented

in table 5.3 for all the cases. For all the cases proposed the aspect ratios and the

Prandtl number are fixed at α = 1.0, β = 0.4 and Pr = 0.05.

In this research, the cases presented in table 5.3, were performed increasing

the Hartmann number. For each case listed, the Hartmann number used were

Ha = 0.0, 5.0 and 10.0.

For the sake of clarity and brevity, in this document only the most important

results of cases A2, B2, C2 and D2 cases are presented. This is done in order to

not overwhelm the reader with several figures.

The domain for this simulation was meshed with GiD and the mesh is presented

in figure 5.81. This mesh consists of 5408 linear triangular elements and 2809 nodes.

As can be seen in the figure the mesh is coarse in the center of the domain and
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more refined near the boundaries in order to capture any boundary layer present

in the simulation.

Figure 5.81 Mesh Used for Czochralski Process

5.5.1 Case A2

In this case, the crystal is provided with a constant rotational speed and the crucible

is stationary, therefore the liquid semiconductor in contact with the crystal has a

velocity proportional to the rotational speed of the crystal. In the other hand, the

liquid semiconductor in contact with the crucible has zero velocity. This situation

describes the basic setting that is possible to find in a real Czochralski process.

There is no temperature imposed over the crucible and therefore there are not

convection induced movements in the liquid semiconductor.

For Hartmann Ha = 0.0 the velocity norm is shown in figure 5.82. The vec-

tor field for the velocity is shown in figure 5.83, this figure is presented using an

isometric perspective in order to visualize the velocity vectors. As can be seen in

those figures, the highest velocities are found near the crystal. For this case there

is no magnetic field.

For HartmannHa = 5.0, an homogenization of the flow field can be appreciated.

This effect can be seen in figures 5.84. The radial component of the magnetic field

is presented in figure 5.86

Finally for Hartmann Ha = 10.0, the homogenization of the flow field is quite

evident as can be seen in figure 5.87. It can be said that the effect of the magnetic

field is to get a more uniform flow field in the crucible. The radial component for

the magnetic field is presented in figure 5.89.

One important aspect of any numerical simulation is its convergence properties.

For case A2 and Ha = 10.0 figure 5.90 shows the convergence toward the steady
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Figure 5.82 Velocity norm for Ha=0.0 and case A2

Figure 5.83 Velocity vectors for Ha=0.0 and case A2
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Figure 5.84 Velocity norm for Ha=5.0 and case A2

Figure 5.85 Velocity vectors for Ha=5.0 and case A2
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Figure 5.86 Radial component of the magnetic field for Ha=5.0 and case A2

Figure 5.87 Velocity norm for Ha=10.0 and case A2
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Figure 5.88 Velocity vectors for Ha=10.0 and case A2

Figure 5.89 Radial component of the magnetic field for Ha=10.0 and case A2
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state measured as the norm of δtU in time normalized by δtU in the first time step

and in percentage.
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Figure 5.90 Convergence toward the steady state for Ha=10.0 and case A2

5.5.2 Case B2

In this case, in addition to the conditions described for case A2, the crucible is

provided with constant rotational speed. This movement of the crucible makes the

simulation closer to the real Czochralski process, but also makes the flow pattern

more complex and difficult to understand and analyze. In this case the crucible is

rotating counterclockwise, while the crystal is rotating clockwise.

For Hartmann Ha = 0.0, figure 5.91 shows the velocity norm, for case B2.

There is no magnetic field imposed an therefore the flow field has no perturbation.

Figure 5.92 presents the vector field for velocity for the same Hartmann number.

For Hartmann Ha = 5.0 there is a noticeable change in the flow field. As can

be seen in figures 5.93 the velocity is again in a homogenization process. This is

particularly important in the upper part of the domain, where the free surface of

the liquid semiconductor is subject to a large change in velocities and therefore it is

likely to be broken and allow the entrance of foreign bodies that can be harmful for

the quality of the crystal. The radial component of the magnetic field is presented

in figure 5.95

Finally, for Hartmann Ha = 10.0, the homogenization of the flow field is quite

evident, as can be seen in figures 5.96. Again the upper boundary of the domain

shows a large section where the velocity gradient in the neighborhood of the crystal

is not as severe as for Ha = 0.0. This favors the quality of the crystal.

Figure 5.99 shows the convergence history toward steady state for case B2 and

Ha = 10.0.
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Figure 5.91 Velocity norm for Ha=0.0 and case B2

Figure 5.92 Velocity vectors for Ha=0.0 and case B2
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Figure 5.93 Velocity norm for Ha=5.0 and case B2

Figure 5.94 Velocity vectors for Ha=5.0 and case B2
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Figure 5.95 Radial component of the magnetic field for Ha=5.0 and case B2

Figure 5.96 Velocity norm for Ha=10.0 and case B2
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Figure 5.97 Velocity vectors for Ha=10.0 and case B2

Figure 5.98 Radial component of the magnetic field for Ha=10.0 and case B2
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Figure 5.99 Convergence toward the steady state for Ha=10.0 and case B2

5.5.3 Case C2

This case is used to analyze the heat transfer phenomena involved in the Czochralski

process. Temperature boundary conditions were imposed over the crucible and the

crystal. In this case, both the crucible and the crystal will be stationary and

therefore no movement in the liquid semiconductor is due to velocity in the crystal

nor in the crucible.

The temperature boundary conditions will be the driving force behind the ad-

vection movements inside the liquid semiconductor. It has been said before that

advection induced movements are harmful for the quality of the semiconductor

crystal, therefore in this numerical simulation, while the Hartmann number is in-

creased, the advection induced movements will be diminished.

For Hartmann Ha = 0.0, this case presents a new component in the simulation,

i.e. advection due to the temperature. The temperature field is presented in figure

5.102. The velocity norm is presented in figure 5.100, it can be observed that the

maximum velocity, for this Harmann number Ha = 0.0, is slightly above 200.0. For

this case as was said before there is no movement induced neither by the crystal

nor by the crucible, therefore there is no azimuthal component in the velocity field,

this can be observed in figure 5.101. It can also be observed that there is now a

temperature field for the simulation as is shown in figure 5.102

For a Harmann number of Ha = 5.0, figure 5.103 shows almost no change in the

flow pattern, but there is a decrement in the maximum velocity, as can be observed

at figure 5.103, where the velocity norm is around 175.0.

For Harmann number Ha = 10.0 there is a noticeable change in the flow patter

and also in the maximum velocity as can be observed in figure 5.107, where the

maximum velocity is around 120.0. This shows that the use of magnetic field in

the presence of advection movements can greatly diminish the intensity of those

movements.
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Figure 5.100 Velocity norm for Ha=0.0 and case C2

Figure 5.101 Velocity vectors for Ha=0.0 and case C2



130 5. Numerical Simulations

Figure 5.102 Temperature for Ha=0.0 and case C2

Figure 5.103 Velocity norm for Ha=5.0 and case C2
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Figure 5.104 Velocity vectors for Ha=5.0 and case C2

Figure 5.105 Radial component of the magnetic field for Ha=5.0 and case C2
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Figure 5.106 Temperature for Ha=5.0 and case C2

Figure 5.107 Velocity norm for Ha=10.0 and case C2
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Figure 5.108 Velocity vectors for Ha=10.0 and case C2

Figure 5.109 Radial component of the magnetic field for Ha=10.0 and case C2
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Figure 5.110 Temperature for Ha=10.0 and case C2

Finally figure 5.111 shows the convergence history toward steady state for case

C2 and Ha = 10.0.
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Figure 5.111 Convergence toward the steady state for Ha=10.0 and case C2

5.5.4 Case D2

This last case introduces a complete coupled Czochralski process, where the liquid

in contact with the crystal has an imposed velocity and the crystal and the crucible

have boundary conditions imposed over the temperature. Although the crucible is

stationary, this case makes noticeable the quite complex flow patters that arise

when advection movements are added to movements due to velocity in the crystal

or in the crucible.
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For Hartmann number Ha = 0.0 the flow pattern is quite similar to the pattern

for case C2 at Ha = 0.0. This is due to the fact that the imposed velocity in

the liquid by the crystal is overshadowed by the velocity induced by advection. In

order to observe the velocity induced by the crystal movement only the azimuthal

component of the velocity vector is shown in figure 5.114.

Figure 5.112 Velocity norm for Ha=0.0 and case D2

Figure 5.113 Velocity vectors for Ha=0.0 and case D2

For the next Hartmann number Ha = 5.0 the flow pattern shows similar be-

havior to the case C2 for the same Hartmann number. The flow patter is the same

and the maximum velocity norm has the same value as in the case C2 for the same

Hartmann number. But if the azimuthal component of the velocity is analyzed, a

clear change in the flow pattern is observed, as is presented in figure 5.118.

For the last value of the Hartmann number Ha = 10.0, the overall flow patter
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Figure 5.114 Azimuthal velocity vectors for Ha=0.0 and case D2

Figure 5.115 Temperature for Ha=0.0 and case D2
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Figure 5.116 Velocity norm for Ha=5.0 and case D2

Figure 5.117 Velocity vectors for Ha=5.0 and case D2
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Figure 5.118 Azimuthal velocity vectors for Ha=5.0 and case D2

Figure 5.119 Radial component of the magnetic field for Ha=5.0 and case D2
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Figure 5.120 Temperature for Ha=5.0 and case D2

shows the same behavior as in case C2 for the same Hartmann number. The

analysis of the azimuthal component of the velocity vector shows that for this

Hartmann number the velocity field shows the characteristic homogenization of

velocity, already observed in previous cases. The maximum value for the azimuthal

component of velocity does not change but the flow patter is quite different from

the pattern observed for Ha = 0.0 as can be seen in figure 5.123.

Figure 5.121 Velocity norm for Ha=10.0 and case D2

Finally figure 5.99 shows the convergence history toward steady state for case

D2 and Ha = 10.0.
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Figure 5.122 Velocity vectors for Ha=10.0 and case D2

Figure 5.123 Azimuthal velocity vectors for Ha=10.0 and case D2
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Figure 5.124 Radial component of the magnetic field for Ha=10.0 and case D2

Figure 5.125 Temperature for Ha=10.0 and case D2
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Figure 5.126 Convergence toward the steady state for Ha=10.0 and case D2



Chapter 6

Conclusions

The main objective of this thesis, namely the development of an efficient finite

element algorithm for the incompressible Magnetohydrodynamics equations, has

been accomplished. The development of such algorithm is an important addition

to the tools available for the research of phenomena where liquid conductors under

magnetic fields are present. Although this effort was limited to incompressible

fluids, it can be used as the first step towards more complex phenomena where

compressible fluids are involved.

The enforcement of the inf–sup condition and the suppression of the spurious

oscillations in the magnetic field posed as the main problems to develop the algo-

rithm. Such problems were tackled using strategies of proved effectiveness such as

the Variational Multiscale approach and the use of a Lagrange multiplier.

An algorithm for the incompressible Magnetohydrodynamics equations is also

an important tool for the study of some important technological applications. Most

of those applications lie on the field of processing liquid semi–conductors like the

silicon in order to build semiconductor crystals used in the electronic industry.

The second main application where the algorithm developed in this thesis is

useful is the processing of liquid metals. In modern metallurgy, the handling of

liquid metals with minimum or no contamination is one of the most important

issues. MHD provides a way to do this effectively, but the precise mechanism

under the magnetic forces that affects the behavior of the liquid metals must be

studied before implementing any kind of solution. The algorithm developed at this

work provides an efficient way to tackle this task.

6.1 Achievements

This thesis presents a stabilized finite element approximation for the incompressible

Magnetohydrodynamics equations. This stabilized finite element approximation

uses the algebraic version of the Variational Multiscale approach and a fictitious

variable that plays the role of a Lagrangianmultiplier. By using these two numerical

resources, the main problems in finite element applied to MHD are addressed.

143
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Namely:

1. Avoiding the need to satisfy the the inf–sup conditions.

2. The suppression of spurious solutions in the magnetic field due to equation

(3.3.4) being neglected.

3. The suppression of spurious oscillations (in the magnetic field and the veloc-

ity) due to dominant first order terms.

First, the inf–sup conditions over the fluid velocity and the pressure in one hand

and the magnetic field and the fictitious variable in the other hand are handled

with the Variational Multiscale approach. This approach allows to overcome the

compatibility problems between interpolating spaces.

Second, the spurious solutions in the magnetic field are handled with the ficti-

tious variable r playing the role of a Lagrange multiplier. It was shown by Jiang et.

al. [34] that those spurious solutions arise due to the zero divergence condition not

being properly enforced. In order to address this enforcement the fictitious variable

r is introduced and it plays the role of a Lagrange multiplier.

This is the first time these two numerical approaches are combined together to

build a numerical scheme for MHD equations. It is also the first time a completely

stabilized finite element scheme for MHD has been developed. Previous efforts

were limited to stabilize only one variable and for this research all variables were

stabilized.

The use of these two numerical resources within the frame of MHD equations

opens the door to more complex simulations to gain insight in the particular nature

of the phenomena involved and their possible applications to industrial processes.

In the field of industrial applications, the numerical scheme developed in this

research has been applied to two industrial situations where MHD phenomena is

present. First the clogging in continuous casting of steel and second the Czochralski

process for the growth of semiconductor crystals. These industrial processes are

quite relevant at industry today and justify, from a technological point of view, the

development of numerical schemes for the MHD equations.

6.2 Possible Future Research Lines

There is a bright future for numerical simulations for MHD equations. The increase

of possible applications in energy generation and semi–conductors process lights the

path of the possible research lines to be followed:

1. Compressible flows interacting with Magnetic Fields.

2. Turbulence incorporated in MHD models.

The first research line arises from the future applications due to the plasma con-

finement required in order to develop a useful nuclear fusion reactor. The possible

benefits from such a massive source of energy as nuclear fusion drives the efforts to

develop more efficient numerical schemes in MHD for compressible flows.
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This line of future research is not only important due to its technological appli-

cations but also because the behavior of compressible fluids in MHD poses a major

numerical challenge that must be addressed. Also the strong non linearities that

are present in the compressible case of MHD increase the difficulty involved in the

numerical simulation of such phenomena.

The need to incorporate turbulence in MHD models arises from the processing of

liquid metals and semiconductors and from liquid metal cooling of nuclear reactors.

The current efforts in these technological areas provide the drive to keep developing

better numerical schemes where turbulence is incorporated.

This line of research also involves major numerical challenges, such as the ad-

equate modeling of the dynamo effect. This area involves a major component of

fundamental research because the mechanism behind the dynamo effect is not fully

understood and therefore its numerical modeling poses major difficulties.
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