
Chapter 8
Finite Element Implementation

8.1 Elements

Elements and Conditions are the main extension points of Kratos. New formulations can be
introduced into Kratos by implementing a new Element and its corresponding Conditions. This
makes the Element an special object in our design.

8.1.1 Element’s Requirements

An Element is used to introduce a new formulation to Kratos. To guarantee the extendibility of
Kratos, adding an Element must be an easy task and without large modifications in the code.
Encapsulating all data and procedures necessary to calculate local matrices and results in one
object and using a clear interface is required to achieve this objective.

A user may use different Elements for different parts of the model and then assemble them
separately or together. For example in modeling a multi floor structure, the user would use beam
elements for frames and shell elements for floors. So these Elements must be compatible to be
solved together as a complex system. For this reason the ability to use any Element in any part,
or even mix them, is another requirement to be considered in the Kratos design.

Element has to have a very flexible interface due to the wide variety of formulations and different
requirement they have. For example, some formulations need to calculate the stiffness matrix and
also the righthand side vector in each solution step. Some others just need to calculate the stiffness
matrix once and right hand side for each step. Sometimes having the damping matrix separately is
needed to handle different time dependent strategies. These formulations are not only different in
their local matrices, but also they need different data for their calculations. For example some need
time and time step, some other the number of nonlinear iterations, or other parameters depending
on the strategy chosen for analysis.

Easy to implement is another requirement for an Element. Finite element developers are usually
less familiar with advanced programming language features and they would like to focus more on
their finite element developing tasks. For this reason the main intention in designing Kratos is
to isolate this parts from working with memory or an excessive use of templates. The idea is to
provide a clear and simple structure for an Element to be implemented by finite element developers
wishing to introduce a new formulation to Kratos.

179

180 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

Performance is a very important point to be considered at the time of designing an Element. In
a finite element code Elements methods are called in nearly most inner loops of code. This means
that any small fault in Element’s performance can cause great overhead in the program execution
time. It is obvious that performance of a new Element is highly depended on its implementations,
but sometimes a weak design can lead to serious bottlenecks in the performance of all Elements.
We will see later how an elegant but not optimized interface can highly decrease the performance
of Elements.

Memory efficiency is also important for Elements. Modeling a real problem with the FEM
usually needs a large number of Elements to be created. For this reason any unnecessary overhead
in memory used by each Element can cause a significant overhead in the whole memory used
by program. This overhead, by the way, can restrict the maximum size of the model that can
be analyzed in a machine. So efficiency in memory is considered to be very important and less
important features must be reduced to keep Element as small as possible.

8.1.2 Designing Element

After reviewing the Element’s requirements, the next step is to design it. In Kratos an Element
is an object which holds its data and calculates elemental matrices and vectors to be assembled
and also can be used to calculate local results after the analysis. For example a thermal element
calculates the local stiffness matrix and the mass matrix (if necessary) and give it to Kratos for
assembly process. Also it can be used to calculate thermal flow after solving the problem. This
definition provides a good isolation for Element related to rest of the code which is helpful for the
proper encapsulation of Element.

Elements must be designed to be implemented independently and added easily to Kratos in
order to guarantee the extendibility of Kratos. Also they must be compatible with each other in
order to let users interchange them or even mix them together in a complex model. According to
these two requirements the strategy pattern described in section 3.4.1 is what we are looking for.
Applying this pattern to our problem results in the Elements’ structure shown in Figure 8.1.

Figure 8.1: Elements’ structure using strategy pattern.

Using this pattern each Element encapsulates one algorithm separately and also make them
interchangeable as we want. User keeps a pointer to Element class which may point to any member
of Element’s family and use the interface of Element to call different procedures.

The next concept in Elements design is its relation with the geometry. As described in section
5.3 a geometry holds a set points or Nodes and provides a set of common operations to ease the
implementation of Elements and Conditions. Each Element has to work with geometry and from

8.1. ELEMENTS 181

many points of view its an extended geometry with a finite element formulation as it is extension
part. This relation can be translated in an object oriented philosophy as a parent and derived class
relationship as can be seen in figure 8.2.

Figure 8.2: Deriving Element from geometry requires several Elements with same formulation but
different geometries to be created.

This structure has the advantage that Elements access to geometry data is fast and increases
the performance of elemental procedures. Beside this advantage there are two main disadvantages
that make this structure unsuitable for our purpose. The first disadvantage is that applying a
formulation to different geometries, requires several Elements to be implemented. The second
drawback is that Elements with different formulation cannot share a geometry in memory.

In this structure each Element can be implemented to add a formulation to the geometry which
is derived from. So different Elements must be implemented to extend a formulation to different
geometries. For example a triangular plane stress element is derived from a triangle and has a plane
stress formulation. Applying the same formulation to a quadrilateral requires another Element,

182 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

with nearly the same structure but derived from a quadrilateral to be written. This results in a
significant overhead in the implementation and also in maintenance of Elements.

In a multi-disciplinary problem there are some situations when two interacting domains use the
same mesh. In order to implement this possibility, different Elements should be able to share the
same geometry. In this way the data transfer is minimized and the interpolation cost is eliminated.
A simple example is a thermal and structural interaction. Mesh is used to create thermal elements
and calculate the temperature over the domain. Then the same mesh is used to create structural
elements and calculate the stresses and deformations in domain using the previously calculated
temperature for temperature dependent materials. Without sharing geometries, a copy of all
geometries must be created so that each set of geometries can be assigned to one domain. This
increases the memory used by the application that can be avoided easily by sharing the geometries
in mesh.

The alternative design is to use a bridge pattern. Introducing this pattern to our Element’s
structure design results in the structure shown in Figure 8.3.

Figure 8.3: Element’s structure using the bridge pattern.

This pattern allows each Element to combine its formulation with any geometry. In this way
less implementation is needed. Also having a pointer to geometry allows an Element to share its
geometry with other ones. The only drawback of this structure is the time overhead comes from
pointer redirection in memory. Having a pointer to geometry beside deriving from it creates a small
overhead in accessing geometries’ data respect to a direct derived Element. Though the efficiency
in Element is crucial the complexity of the first approach imposes accepting the small different
in performance and therefore we have implemented this second approach. A better solution is to

8.1. ELEMENTS 183

make Element a template of its geometry. Using templates provides good performance and also
enough flexibility but it was considered to be too complex to be used by finite element users. As
mentioned earlier an Element has to be easy to program with the less possible advanced feature
of programming language. So finally the current structure with bridge pattern was selected.

There are some designs in which different Elements can be composed to create a more complex
Element [70]. This approach can be simulated here using a Composite pattern. However this
structure is not implemented yet in Kratos.

After designing the global structure now it is time to define interfaces. Here the finite element
methodology helps in designing a generic interface. According to the finite element procedure,
the strategy asks Element to provide its local matrices and vectors, its connectivity in form of
equation id, and after solving also calls Element to calculate the elemental results. So Element
has to provide three set of methods:

Calculate Local System The first set of methods are required to calculate local matrices and
vectors.

Assembling Information These methods give information about the position of each row and
column of the local system in the global system. This information comes from dof and
Element provide it by giving its dofs or just their equation id.

Calculate It is used to calculate any variable related to an Element which usually are the results
depending on gradients within the element.

An important issue here is the efficiency of these methods. An attractive form is to make these
methods take their necessary parameters as their arguments and return their results as their return
values:

Matrix CalculateLeftHandSide(ProcessInfo& rCurrentProcessInfo)

{

// calculating stiffness matrix

return stiffness_matrix;

}

// Assembling

for(int i = 0 ; i < number_of_elements ; i++)

Assemble(elements[i]. CalculateLeftHandSide(process_info));

It can be seen that this design is very natural and easy to use, but in practice produces a
significant overhead in performance. Calling each method consists in creating a new matrix or
vector, fill it an finally pass it by value as result. Creating a dynamic matrix or vector is a very
slow process and passing them by value needs temporaries to be created which is time consuming.
All these steps make this design very slow and therefore unacceptable. A better idea is passing the
result matrix or vector by reference to these methods as additional arguments. In this way there
are no temporaries for passing by value and there is no need to create a variable for the result
inside each calculation method. A performance issue for this new design is the resizing of result
matrices and vectors. In practice resizing dynamic matrices and vectors results to be very slow. A
simple control of a given matrix or vector size before resize it can reduce the resizing overhead for
cases that the given size is correct.

A set of methods are necessary for calculating local system matrices and vectors. Different
procedures in finite element methods require different information in different analysis points from
Element. For example a simple linear strategy requires the local matrices and vectors once to

184 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

assemble the global system. So a method which calculates local system components is enough
to handle this strategy. But for a non-linear analysis, the strategy needs to get also the right
hand side to calculate convergence. For these cases a method to calculate this right hand side
component is necessary. Also there are some cases that the right hand side is not changing during
the analysis and strategy only needs to update its left hand side component which requires a
method for calculating only left hand side components.

Implementing only the first method to calculate local system components results in a calculation
overhead for non-linear cases. For example calculating the convergence of the solution with a
residual criteria, only needs the right hand side components to be updated and calculating all
components can apply an unacceptable overhead to this procedure. Keeping only the interface for
the left and right hand side components also produces calculation overhead. Usually for calculating
each part of, local system the jacobian of the elements must be calculated which is a time consuming
operation. Calculating right and left hand side components separately implies that jacobian must
be calculated twice. So an optimum design is to keep both interfaces in parallel.

The drawback of this decision is the need for implementing duplicated methods. This problem
can be solved by a more carefully implementation. One can create two private auxiliary methods:
LeftHandSide and RightHandSide to calculate left hand side and right hand side matrices and
vectors with the calculated jacobian as their input. Then CalculateLocalSystem can calculate
the jacobian once and call these methods with this jacobian to calculate local system components.
Also CalculateLeftHandSide and CalculateRightHandSide would calculate the jacobian and call
their related method to calculate the local contribution. Here is an example of this implementation:

class MyElement

{

public:

virtual void

CalculateLocalSystem(MatrixType& rLeftHandSideMatrix ,

VectorType& rRightHandSideVector ,

ProcessInfo& rCurrentProcessInfo)

{

Matrix jacobian;

Jacobian(jacobian);

LeftHandSide(rLeftHandSideMatrix , jacobian ,

rCurrentProcessInfo);

RightHandSide(rRightHandSideVector , jacobian ,

rCurrentProcessInfo);

}

virtual void

CalculateLeftHandSide(MatrixType& rLeftHandSideMatrix ,

ProcessInfo& rCurrentProcessInfo)

{

Matrix jacobian;

Jacobian(jacobian);

LeftHandSide(rLeftHandSideMatrix , jacobian ,

rCurrentProcessInfo);

}

virtual void

8.1. ELEMENTS 185

CalculateRightHandSide(VectorType& rRightHandSideVector ,

ProcessInfo& rCurrentProcessInfo)

{

Matrix jacobian;

Jacobian(jacobian);

RightHandSide(rRightHandSideVector , jacobian ,

rCurrentProcessInfo);

}

private:

void LeftHandSide(MatrixType& rLeftHandSideMatrix ,

Matrix& rJacobian ,

ProcessInfo& rCurrentProcessInfo)

{

// Calculating left hand side matrix using given jacobian.

}

void RightHandSide(VectorType& rRightHandSideVector ,

Matrix& rJacobian ,

ProcessInfo& rCurrentProcessInfo)

{

// Calculating right hand side vector using given jacobian.

}

};

Also it is important to mention that Elements not necessarily have to implement all these
interfaces and they can be compatible with just one way and not providing the other. By the way,
calling two separate methods in CalculateLocalSystem method of Element class can keep more
compatible the Elements which are not providing the CalculateLocalSystem method and just
provide CalculateLeftHandSide and CalculateRightHandSide methods.

Another issue is optimizing for symmetric or diagonal matrices. In Kratos local system matrices
are defined as dense matrices in order to be more general. Elements with symmetric formulation
also have to fill this dense matrix. The optimization can be done at the strategy level by assembling
only half of this matrix in a symmetric global matrix to reduce memory usage and also assembling
time. However the redundant time of filling all components of the dense matrix is unavoidable
in order to keep Elements compatible with nonsymmetric strategies. Diagonal matrices can be
treated as symmetric ones by keeping the optimization level in strategy and not in Element.

This interface is designed to be generic but its flexibility to support new algorithms also depends
on its ability in passing different parameters necessary for different formulations. For this reason
a variable base container is used to enable users pass any parameter to an Element using the
VBI described before. ProcessInfo can be used to pass any parameter which is necessary for
calculating local systems in an Element. The usual parameters are time, time increment, time
step, non-linear iteration number, some global norms which are calculated over the domain, etc.
Using ProcessInfo guarantees the flexibility which is necessary for the Element to be an extension
point of Kratos.

According to the previous comments the following methods are designed:

CalculateLocalSystem This method calculates all local system components. It takes a left hand
side matrix and a right hand side vector to put its result in them. ProcessInfo is passed to

186 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

provide the analysis parameters.

CalculateLeftHandSide This method calculates only the left hand side matrix. It takes a ma-
trix to put its result in it. ProcessInfo is passed to provide the analysis parameters.
ProcessInfo which provides analysis parameters.

CalculateRightHandSide Calculates right hand side component of local system. It takes a vector
to put its result in it. ProcessInfo is passed to provide the analysis parameters.

Element also has to provide assembling information for Strategy. It has to provide the corre-
sponding position of each local system row and column in the global equation system. Strategy
then uses this information to properly assemble the local matrices and vectors in global equation
system. This information comes from the Dof associated with each row or column of local system.
Strategy by itself cannot find these equation because each Element may have different dofs and
also may arrange them in different order. For example an structural element can define a local
system with all displacement’s components for the first Node then second Node and so on. Another
structural element can arrange its local system by placing first the displacement’s x component of
all Nodes, then the y components and their z components. So an Element’s task is to give its local
system arrangement to Strategy.

Element can give an array of Dofs with the same order that local system is constructed, or
get their associated equation ids and give them to Strategy as an array of indices. Strategy
uses these indices to assemble a given local system into the global equation system. This part of
Element’s interface consists of two methods:

EquationIdVector This method is used to directly give the global equation id related to each row
or column of local system matrices and vectors. For example giving a vector i = {24, 5, 9}
means that the first element of the right hand side vector must be added to the 24th row of
global system’s right hand side or component k23 of the local stiffness matrix must be added
to the component K59 of the global left hand side matrix. A ProcessInfo is passed to this
method to provide any addition parameter needs for this procedure.

GetDofList This method gives Element’s Dofs in the same order as local system is defined.
Strategy can use this list to extract the equation id related to each local position and
then use them to assemble the Element’s local system components correctly. Like the previ-
ous method, it takes a ProcessInfo object as its argument which can be used to pass any
additional information needed for this procedure.

It can be seen that both methods take ProcessInfo as their argument. This argument seems
to be redundant but in practice there are situations that is really necessary. For example in solving
a fluid using a fractional steps method [26], Element must know which is the current fractional
step for providing the corresponding list of dofs or equation ids. Passing a ProcessInfo to these
methods provides these additional parameters and guarantees the generality of the design.

Here is an example of EquationIdVector implemented for a generic structural element which
can be used with different geometries in 2D and 3D spaces:

virtual void EquationIdVector(EquationIdVectorType& rResult ,

ProcessInfo& rCurrentProcessInfo)

{

unsigned int number_of_nodes = GetGeometry (). size ();

unsigned int dimension = GetGeometry (). WorkingSpaceDimension ();

8.1. ELEMENTS 187

unsigned int number_of_dofs = number_of_nodes * dimension;

if(rResult.size ()!= number_of_dofs)

rResult.resize(number_of_dofs);

for (int i = 0 ; i < number_of_nodes ; i++)

{

unsigned int index = i * dimension;

rResult[index] =

GetGeometry ()[i]. GetDof(DISPLACEMENT_X). EquationId ();

rResult[index + 1] =

GetGeometry ()[i]. GetDof(DISPLACEMENT_Y). EquationId ();

if(dim == 3)

rResult[index + 2] =

GetGeometry ()[i]. GetDof(DISPLACEMENT_Z). EquationId ();

}

}

The third category of methods are devoted to calculating elemental variable which are used
mainly for calculating post-analysis results. A simple example is calculating stresses in structural
elements after obtaining the displacements in the domain. Users can ask Element to calculate
additional results using its internal information and solving results. A flexible interface here is
very important and can increase the generality of the code. A VBI can be used to provide a
clear but flexible interface for these methods. Element developers can define a set of methods to
calculate variables related to its Element and users can use them for specifying the variable they
wants to calculate. Similarly to methods for calculating the local system, the result is passed as
an additional argument in order to increase the performance and eliminate the redundant time
necessary to create temporaries. Two sets of methods are defined for this task:

Calculate Can be used to calculate elemental variables. These methods are overloaded to sup-
port different types of variables to be calculated. Element developer can override them to
implement the procedure necessary to calculate each elemental variable. They take the vari-
able which a user wants to be calculated as their argument. If the variable is supported by
Element it will give the result and it will do nothing if the variable is not related to this
Element. The result also is passed as an additional argument to increase the performance
and eliminate the overhead produced by creating temporary objects. Passing ProcessInfo
to these methods provides a generic way to pass additional calculation parameters.

CalculateOnIntegrationPoints This set of methods calculate variables not for the whole Element
but specifically at each integration point. The interface is the same as for previous methods.
The variable to be calculated is given as an argument and the results as another argument.
ProcessInfo provides any additional information necessary for calculation procedure.

Providing an standard way to access neighbors of Elements can be very useful for some al-
gorithms. The problem is that for the rest of algorithms keeping the list of neighbors results in
large overhead in total memory used. Keeping in mind the importance of memory efficiency in
Elements these features are considered to be optional. So the first solution was to have arrays for
neighbor Nodes and neighbor Elements which are empty and fill them when they are necessary.
This implementation was good but still the empty containers was producing memory overhead for
simple Elements. In the current implementation these containers are omitted and neighbor Nodes

188 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

and Elements are stored inside the elemental data container. In this way the overhead of empty
containers are eliminated and the existing container is reused to hold this information. This solu-
tion can be used for any other feature that must be provided optionally but without any overhead
for other Elements.

8.2 Conditions

Condition is defined to represent the conditions applied to boundaries or to the domain itself.
In many codes conditions or specially boundary conditions are represented by an element with a
formulation modified for boundary conditions. In Kratos also Conditions are designed very similar
to Elements. They interact with Strategy in the same way as Elements. Strategy ask their local
system components and also information for assembling process. The reason of using a different
type and not Element itself is to clarify the different purpose of these two objects. In a usual finite
element model, there are much more Elements than Conditions. For this reason some features
that are considered to be too expensive in performance or memory consuming for Elements can be
used for Conditions. Making Element and Condition two independent types allows additional
features to be added to Condition without affecting Element.

8.2.1 Condition’s Requirements

Condition like an Element is used to introduce new formulations into Kratos. So adding a new
Condition must be an easy task and without great modification in code. Encapsulating all data
and procedures necessary to calculate local matrices and results in one object and using a clear
interface is required to achieve this objective.

A complex model usually has different type of Conditions in its boundary or domain. This
requires Conditions to be compatible with each other in order to be assembled and solved together
in a complex system. Another design point is to let users change Conditions or mix them in the
model without problem.

Like Element, Condition has to have a very flexible interface due to the wide variety of al-
gorithms and their different requirement. For example, most Conditions are applied to the right
hand side component of the system but in some cases, like thermal radiation, they affect also the
left hand side matrix of equation system. For this reason creating the interface only for right
hand side component results in sever restriction in adding some Conditions. Conditions are not
only different in local components, but also they need different data for they calculations. Hence
a generic interface is necessary to guarantee the flexibility required for implementing different
Conditions.

Condition must be easy to implement. Finite element developers are usually less familiar with
advance programming language features and they like to focus more on their finite element devel-
oping task. For this reason excessive use of templates or other difficult concepts of programming
language cannot be used for the Condition’s implementation. The idea is to provide a clear and
simple structure for a Condition to be filled by finite element developers easily.

For Condition performance is important but not so crucial as for Element. Its performance is
important because it is usually called in very inner loops of global procedure. So any small fault in
Condition’s performance can cause large overhead in the program execution time. However its less
important than the performance of Element because there are less Conditions in the model and
the global overhead is less. So in designing Condition the intention is to avoid features producing
bottleneck in the performance.

8.2. CONDITIONS 189

Memory efficiency is another design point to keep in mind. As mentioned before Elements
have to avoid any redundant memory usage due to their large quantity in a model. Number of
Conditions in a model usually is far less than number of Elements. This lets Conditions to
provide features that are considered too expensive for Elements. However abusing memory by
Condition can also produce a large overhead in memory usage and has to be avoided.

8.2.2 Designing Condition

Condition is very similar to Element, and hence the same methodology is used to design it.
Condition is defined as an object which holds its data and calculates its local matrices and vectors
to be assembled and also can be used to calculate local results after analysis. Defining Condition
in this way isolates it from the rest of the code and helps towards its encapsulation.

Like Elements, Conditions must be designed to be implemented independently and added
easily to Kratos in order to guarantee the extendibility of Kratos. Also they must be compatible
with each other in order to let users mix them together in a complex model. The same strategy
pattern used for Element is reused here. The figure 8.4 shows the structure for Condition applying
the strategy pattern.

Figure 8.4: Condition’s structure using strategy pattern.

In this structure each Condition encapsulates one algorithm separately and also make them
interchangeable as we want. The interface established by the Condition base class also make its
derived class compatible with each other and enable user in mixing them together to model a
multi-disciplinary problem.

Condition has a close relation to geometry. As explained for Element, deriving Condition
from geometry, can increase the performance of geometries’ data access but requires different
Conditions to be implemented for a formulation applied to different geometries and also prevents
Condition to share a geometry with Elements or other Conditions.

This structure reduces the flexibility of geometry and also produces unnecessary implementation
overhead. So this structure is considered to be unsuitable because for Condition the flexibility is
more important than a small increase in performance.

The alternative design is to use the bridge pattern. Introducing this pattern to our design,
results in the structure shown in Figure 8.5.

This pattern allows each Condition to change its geometry and omits the strong relation of
previous design. In this way less implementation is needed. Also having a pointer to geometry
allows Condition to share its geometry with other Conditions or even with Elements without
problem. The only drawback is the time overhead coming from pointer redirection in memory.

190 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

Figure 8.5: Condition’s structure using bridge pattern.

Having a pointer to geometry beside deriving from it produces an overhead in accessing geometries’
data. There are other alternatives in designing Condition’s structure with enough flexibility
and better performance but requires introducing advance features of programming language to
Condition which are not acceptable in our design.

The interface of Condition is similar to the one designed for Element. Again here there are
three categories of methods:

Calculate Local System The first set of methods are required to calculate local matrices and
vectors.

Assembling Information These methods give information about the position of each row and
column of the local system in the global system. This information comes from dof and
Condition provide it by giving its dofs or just their equation id.

Calculate Is used to calculate any variable related to this Condition which usually are the results
depending on gradients in the condition.

As described before in designing the Element interface, passing calculation parameters to
Condition methods and getting the result as their return value produces a significant reduc-
tion the performance. To avoid this problem the result variable is also passed to each method.
Passing the result vector or matrix by reference prevents the program from making temporaries
and increases the performance. Also controlling the size of a given result matrix or vector and
resize them if necessary can optimize the code performance.

8.3. PROCESSES 191

Condition uses the same set of methods as Element to calculate the local system’s matrices
and vectors. ProcessInfo is used to pass any parameter which is necessary for calculating the
local system in Condition. All methods are defined for working with dense matrix and strategies
working with symmetric or other types of matrices must use a dense matrix to communicate with
Condition. This part of the interface is defined by the following methods:

CalculateLocalSystem This method calculates all local system components. It takes a left hand
side matrix and a right hand side vector to store the results and a ProcessInfo which
provides the analysis parameters.

CalculateLeftHandSide This method calculates only the left hand side matrix. It takes a matrix
to store the results and a ProcessInfo which provides the analysis parameters.

CalculateRightHandSide Calculates right hand side component of local system. It takes a vector
to store the result and a ProcessInfo which provides the analysis parameters.

The second set of methods provide assembling information for Strategy which is the corre-
sponding position of each local system row and column in global equation system. Condition can
give an array of Dofs with the same order that local system is constructed, or get their associated
equation ids and give them to strategy as an array of indices. Strategy uses these indices to assem-
ble the local system into the global equation system. This part of Condition’s interface consists
of two methods:

EquationIdVector This method is used to directly give the global equation id related to each row
or column of local system matrices and vectors. A ProcessInfo is passed to this method to
provides any additional parameter needs for this procedure.

GetDofList This method gives Condition’s Dofs in the same order as the local system is defined.
Strategy can use this list to extract the equation id related to each local position and then
use them to assemble the Condition’s local system components correctly. Like the previous
method, it takes a ProcessInfo object as its argument which can be used to pass any
additional information needed for this procedure.

Like Element, Condition uses its data container to store references to its neighbor Nodes,
Elements, or Conditions. This solution also can be extended to store the references to nearest
Element or Condition in contact problems or other similar information.

8.3 Processes

Creating a finite element application consists of implementing several algorithms for solving dif-
ferent problems. In practice, each set of problems has their own solving algorithms. For example
an steady state analysis algorithm is not the same as a transient algorithm. A one domain process
is also different from a multi domain one and so on. While these algorithms are the heart of the
code and flexibility and power of the code is depended on them, a good design to handle them in
a generic way becomes very important.

A possible approach to handle algorithms in a finite element code is to provide some high level
classes to handle different tasks in the code [33]. In Kratos, the Process class and its derived classes
are defined to implement different algorithms and handle different tasks. Different processes may
be used to handle a very small task like setting a nodal value to some complex one like solving
a fluid structure interaction problem. Grouping some processes in a bigger one is also helpful
specially to make a pack of small processes in order to handle a complex algorithm.

192 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

8.3.1 Designing Process

Process can be considered as a function class. Process is created and executed just like a function
is called. The strategy pattern is used to design the family of processes. Figure 8.6 shows this
pattern applied to Process structure.

Figure 8.6: Process structure using strategy pattern.

Applying this pattern lets a Process to encapsulate an algorithm independently and also pro-
vide an standard interface which makes them to be replaceable with each other. Encapsulating
each algorithm in one Process without modifying other parts of the code makes adding a new
Process very easy and increases the extendibility of the library to new algorithms. The compati-
bility of processes with each other helps to customize the program flow and is useful in cases when
user wants to interchange some algorithms.

Another feature to be provided by Process is the ability to combine different processes in one
and use the resulting Process like a normal one. The composite pattern can be used to achieve
this requirement. Applying this pattern to Process results in the extended structure shown in
figure 8.7.

Figure 8.7: Applying composite pattern to the Process structure.

This structure allows users to merge different process in one and use it like an ordinary process.

8.4. SOLVING STRATEGIES 193

In practice this structure is considered to be too sophisticated for our purpose. The composite
pattern provides an interface for changing the children of each composite object. In order to
simplify the implementation of new processes and the total implementation of the structure, the
interface for changing sub-processes has been removed and CompositeProcess must get all its
sub-processes with their other parameters at creation time. However this interface can be added
in the future. Figure 8.8 shows the reduce structure.

Figure 8.8: The reduced composite structure for Process.

The process interface is relatively simple. Execute method is used to execute the Process
algorithms. While the parameters of this method can be very different from one Process to other
there is no way to create enough overridden versions of it. For this reason this method takes no
argument and all Process parameters must be passed at construction time. The reason is that
each constructor can take different set of argument without any dependency to other processes or
the base Process class.

8.4 Solving Strategies

After designing Process and its derived classes, we will focus in an important family of processes
which are dedicated to manage the solving task in the program.

The SolvingStrategy is the object demanded to implement the “order of the calls” to the
different solution phases. All the system matrices and vectors will be stored in the strategy, which
allows to deal with multiple LHS and RHS. Trivial examples of these strategies are the linear
strategy and the Newton Raphson strategy.

SolvingStrategy is derived from Process and use the same structure as shown in figure 8.9.
Deriving SolvingStrategy from Process lets users to combine them with some other processes
using composition in order to create a more complex Process. The strategy pattern used in this
structure lets users to implement a new Strategy and add it to Kratos easily which increases the
extendability of Kratos. Also lets them selecting an strategy and use it instead of another one in
order to change the solving algorithm, which increases the flexibility of Kratos.

Composite pattern is used to let users combining different strategies in one. For example a
fractional step strategy can be implemented by combining different strategies used for each step in

194 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

Figure 8.9: SolvingStrategy uses the structure designed for Process.

one composite strategy. Like for Process, the interface for changing the children of the composite
strategy is considered to be too sophisticated and is removed from the Strategy. So a composite
structure can be constructed by giving all its components at the constructing time and then it can
be used but without changing its sub algorithms.

The interface of SolvingStrategy reflects the general steps in usual finite element algorithms
like prediction, solving, convergence control and calculating results. This design results in the
following interface:

Predict A method to predict the solution. If it is not called, a trivial predictor is used and the
values of the solution step of interest are assumed equal to the old values.

Solve This method implements the solving procedure. This means building the equation system
by assembling local components, solving them using a given linear solver and updating the
results.

IsConverged It is a post-solution convergence check. It can be used for example in coupled
problems to see if the solution is converged or not.

CalculateOutputData Calculates non trivial results like stresses in structural analysis.

Strategies sometimes are very different from each other but usually the global algorithm is the
same and only some local steps are different. The template method pattern helps to implement
these cases in a more reusable form. As mentioned before, this pattern defines the skeleton of an
algorithm separately and defers some steps to subclasses. In this way the template method pattern
lets subclasses redefine certain steps of an algorithm without changing the algorithm’s structure.
Applying this pattern to SolvingStrategy results in the structure shown in figure 8.10.

This structure is suitable when the algorithm is not changing at all but in our case the algorithm
varies from one category of strategies to another. For this reason in order to reduce the dependency
of the algorithm and its steps a modified form of the bridge pattern is applied to this structure.
Different steps for solving template methods are deferred to two other objects which are not derived
from Strategy: BuilderAndSolver and Scheme. Figure 8.11 shows this structure.

The main idea of using these two additional set of objects was to increase the reusability of
the code and prevent users from implementing a new Strategy from scratch. In practice this

8.4. SOLVING STRATEGIES 195

Figure 8.10: Template Method pattern applied to solving strategy.

Figure 8.11: Deferring different parts of the algorithm to BuilderAndSolver and Scheme.

structure can support usual cases in finite element methodology but still advanced developers have
to configure their own Strategy without using BuilderAndSolver or Scheme. For this reason in
the current structure both approaches can be used to implement a solving algorithm.

8.4.1 BuilderAndSolver

The BuilderAndSolver is the object demanded to perform all of the building operations and the
inversion of the resulting linear system of equations. The choice of grouping together the solution
and the building step is not necessarily univocal. This choice was made in order to allow a future
parallelization of the code, which should involve both the linear system solution and the Building
Phase.

Due to its features BuilderAndSolver covers the most computational intensive phases of the
overall solution process. This will clearly require low level tuning in order to ensure high per-
formance. A typical user is not required to understand the implementation details for this class.
Nevertheless the comprehension of the role of this object is necessary.

BuilderAndSolver needs a linear solver to solve its constructed equation system. In order to

196 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

give the possibility of assigning any linear solver to any BuilderAndSolver a bridge pattern is
used to connect these two sets of classes. In this way BuilderAndSolver can use any linear solver
available.

The interface of BuilderAndSolver provides a complete set of methods to build the global
equation system or its components separately. It also provides methods for building the system
and solving it or rebuilding just the left hand side or the right hand side and solve the updated
equation system. This interface consists of the following methods:

BuildLHS Calculate the left hand side matrix of the global equation system.

BuildLHS CompleteOnFreeRows Builds the rectangular matrix related to all free dofs, adding also
the columns related to fixed dofs.

BuildLHS Complete Gives the complete left hand side matrix regardless to fixed dofs.

BuildRHS Calculates and gives the right hand side vector of the global equation system. This
method is useful in cases that left hand side matrix is the same for different solution steps
but the right hand side is changing.

Build Builds the whole equation system. This method gives the possibility to calculate both sides
at the same time and avoids duplicated calculation that must be done when calculating each
component separately.

ApplyDirichletConditions In some strategies, for example for standard linear solutions, the
Dirichlet condition can be applied efficiently by some operation over Dirichlet partition of
the equations system. This can be done by this method.

SystemSolve Uses the linear solver to solve the prepared equation system.

BuildAndSolve Calling this method is equivalent to calling Build and then SystemSolve for most
algorithms. It can be also used to implement algorithms that build the system while solving
it, like the advancing front solution method.

BuildRHSAndSolve This methods is useful for updating just the right hand side and solve the
equation system.

CalculateReactions Calculates the reaction at fixed degrees of freedom.

There are also several methods for initializing the internal system matrices and vectors and
also to remove them from memory if it is necessary. Strategy can use this interface to implement
its algorithm using any of the procedures defined above.

8.4.2 Scheme

Scheme is designed to be the configurable part of Strategy. It encapsulates all operations over the
local system components before assembling and updating of results after solution. This definition
is compatible with time integration schemes, so Scheme can be used for example to encapsulate
the Newmark scheme. By the way definition is more general and can be used to encapsulate other
similar operation over solution component.

According to the template method pattern the important steps of the solving procedure in
usual finite element strategies is used to design the interface of scheme. Usually a finite element
solving strategy consists of several steps like: initializing, initializing and finalizing solution steps,
initializing and finalizing non linear iterations, prediction, update and calculating output data.
Considering the steps mentioned before, the interface of Scheme is designed as follows:

8.5. ELEMENTAL EXPRESSIONS 197

Initialize This method is used for initializing Scheme. This method is intended to be called just
once when Strategy is initializing.

InitializeElements Is used to initialize the Element by calling its Initialize method when
Strategy is initializing.

InitializeSolutionStep Strategy calls this method at the beginning of each solution step.
This method can be used to manage variables that are constant over time step. For example
time-scheme constants depending on the actual time step.

FinalizeSolutionStep This method is called by Strategy at the end of a solution step.

InitializeNonLinIteration It is designed to be called at the beginning of each non linear iter-
ation.

FinalizeNonLinIteration This method is called at the end of each non linear iteration.

Predict Performs the prediction of the solution.

Update Updates the results value in the data structure.

CalculateOutputData This method calculates the non trivial results.

8.5 Elemental Expressions

Finite element methodology usually consists of first converting the governing differential equation
to its weak form, then its discretization over an appropriate approximation space, and finally the
derivation of matrix forms as elemental contributions. Zimmermann and Eyheramendy [107, 39,
40, 38] have developed an environment for automatic symbolic derivation from the variational form
to matrix form and integrate it into a unified environment with modeling tools [105]. Nowadays
several computer algebra systems like Matlab [68], Mathematica [103], and Maple [66] can do this
type of symbolic derivations. In Kratos the first part of changing the variational equation to weak
form is dedicated to previous tools and only a set of tools is designed and implemented to help
users converting their weak form to matrix form as elemental contributions.

Elemental expressions are designed and implemented to help users in writing their weak form
expressions in Element. The main idea is to create a set of classes and overloaded operator to
understand a weak form formulation and calculate the local matrices and vectors according to it.

For example in a simple heat conduction problem the governing equation is:

−∇T k∇T + Q = 0

where T is the temperature over domain and Q is the heat sources over domain. Converting
this equation to its weak form results in the following equation [104]:

ST + f = 0

where the elemental matrix S is:

Sij =
∫

Ω

(∇Ni)T k∇NjdΩ

and the elemental right hand side vector f is defined as follows:

198 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

fi =
∫

Ω

NiQdΩ +
∫

Γq

Niq̄dΓ

For an isotropic material the conductivity k can be extracted from the integral and the resulting
equation is:

Sij = k

∫
Ω

(∇Ni)T I∇NjdΩ

or:

Sij = k(∇iNl,∇jNl)

This equation can be implemented in Element by the following code:

for(int i=0 ; i < nodes_number ; i++)

for(int j=0 ; j < nodes_number ; j++)

for(int l=0 ; l < integration_points_number ; l++)

{

Matrix const& g_n = shape_functions_gradients[l];

for(int d=0 ; d < dimension ; d++)

rLeftHandSideMatrix(i,j) += k * g_n(i,d)*g_n(j,d) * w_dj;

}

Using elemental expressions the same formulation can be written in a simpler form as:

KRATOS_ELEMENTAL_GRAD_N(i,l) grad_Nil(expression_data);

KRATOS_ELEMENTAL_GRAD_N(j,l) grad_Njl(expression_data);

noalias(rLeftHandSideMatrix) = k * (grad_Nil , grad_Njl) * w_dj ;

It can be seen that the later form is conforming with the symbolic notation of equations which
makes it much easier to implement. The overloading operators provided in C++ is the start point
for implementing the code necessary to understand this notation, but simple overloading results,
poor performance due to the redundant temporary objects that creates. Expression template
technique described in section 3.4.2 can be used to convert above expression to previous hand
written form automatically. Template metaprogramming described in section 3.4.2 also is used to
impose the tensorial notation. All these techniques are used to evaluate the symbolic notation and
generate an specialized code for each case. Here are examples of vector ”,” overloaded operators:

template <unsigned int TIndex1 ,

unsigned int TIndex2 ,

class TExpression1 ,

class TExpression2 ,

class TVectorType1 ,

class TVectorType2 >

typename result_type

operator ,(Elemental1DExpression <TIndex1 ,

TExpression1 ,

TVectorType1 > const& rVector1 ,

Elemental1DExpression <TIndex2 ,

TExpression2 ,

TVectorType2 > const& rVector2)

{

return outer_prod(rVector1 ()(), rVector2 ()());

8.6. FORMULATIONS 199

}

template <unsigned int TIndex1 ,

class TExpression1 ,

class TExpression2 ,

class TVectorType1 ,

class TVectorType2 >

double

operator ,(Elemental1DExpression <TIndex1 ,

TExpression1 ,

TVectorType1 > const& rVector1 ,

Elemental1DExpression <TIndex1 ,

TExpression2 ,

TVectorType2 > const& rVector2)

{

return inner_prod(rVector1 ()(), rVector2 ()());

}

The first overloaded version will be used in cases when two vectors have different indices and
implements an outer product of these two vectors. While the second version will be used when
two given expressions have a same index and implements an inner product of these two vector. It
is important to mention that the first version returns the expression and not the calculated matrix
and uses the expression template technique to optimize its efficiency.

There are similar operators implemented to handle different cases of matrix operations de-
pending on their indices. Also the integration over domain is added for simplifying the elemental
expressions even further.

In the current version of Kratos, elemental expressions are still in experimental phase. However
some benchmarks have shown that their efficiency is comparable with hand coded Elements as
supposed to be.

8.6 Formulations

Kratos was designed to support elemental approaches in finite element methods. For some prob-
lems elemental approach results to be less suitable than other approaches like nodal formulations.
Formulation is defined as a place for implementing all these approaches. Formulation is not
implemented yet, but is considered to be one of the future features of Kratos.

200 CHAPTER 8. FINITE ELEMENT IMPLEMENTATION

