Chapter

Background

The history of object-oriented design for finite element programs turns back to the early 90’s
or even earlier. In 1990, Forde, et al. [44] published one of the first detailed descriptions of
applying object-oriented design to finite element programs. They used the essential components
of finite element method to design the main objects. Their structure consists of Node, Element,
DispBC, ForcedBC, Material, and Dof as finite element components and some additional objects
like Gauss, and ShapeFunction for assisting in numerical analysis. They also introduced the
element group and the list of nodes and elements for managing the mesh and constructing system.
Their approach has been reused by several authors in organizing their object-oriented finite element
program structures. This approach was focused on structural domain and the objects’ interfaces
reflect this dependency.

In those years other authors started to write about the object-oriented paradigm and its applica-
tions in finite element programming. Filho and Devloo [43] made an introduction to object oriented
design applying it to element design. Mackie [64] gave another introduction to the object-oriented
design of finite element programs by designing a brief hierarchial element. Later he published a
more detailed structure for finite element program providing a data structure for entities and also
introduced the use of iterators [65]. Pidaparti and Hudli [80] published a more detailed object ori-
ented structure with objects for different algorithms in dynamic analysis of structures. Raphael and
Krishnamoorthy [82] also made an introduction to object-oriented programming and provided a
sophisticated hierarchy of elements for structural applications. They also designed some numerical
expressions for handling the common numerical operations in finite element method. The common
point of all these authors was their awareness about the advantages of object oriented programming
with respect to traditional Fortran approaches and their intention to use these advantages in their
finite element codes.

Miller [70, 71, 72] published an object-oriented structure for a nonlinear dynamic finite element
program. He introduced a coordinate free approach to his design by defining the geometry class
which handles all transformations from local to global coordinates. The principal objects in his
design are Dof, Joint, and Element. TimeDependentLoad and Constrain are added to them in
order to handle boundary conditions. He also defines a Material class with ability to handle both
linear and nonlinear materials. The Assemblage class holds all these components and encapsulates
the time history modeling of structure.

Zimmermann, et al. [106, 35, 34] have designed a structure for linear dynamic finite ele-
ment analysis. Their structure consists of three categories of objects. First the finite element
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method objects which are: Node, Element, Load, LoadTimeFunction, Material, Dof, Domain, and
LinearSolver. The second category are some tools like GaussPoint, and Polynomial. The third
category are the collection classes like: Array, Matrix, String, etc. They implemented first a pro-
totype of this structure in Smalltalk and after that an efficient one in C++, which latter version
provides a comparable performance respect to a Fortran code.

In their structure Element calculates the stiffness matrix K¢, the mass matrix M€, and the load
vector f€ in global coordinates. It also assembles its components in the global system of equations
and update itself after solving. Node holds its position and manages dofs. It also computes and
assembles its load vector and finally update the time dependent data after solving. Dof holds
the unknown information and also its value. It stores also its position in the global system. and
provides information about boundary conditions. TimeStep implements the time discretization.
Domain is a general manager which manages the components like nodes and elements and also
manages the solving process. It also provides the input-output features for reading the data and
writing the results. Finally LinearSystem holds the system of equation components: left hand
side, right hand side and solution. It also performs the equation numbering and implements the
solver for solving the global system of equations.

They also developed a nonlinear extension to their structure which made them redefined some
of their original classes like Domain, Element, Material, and some LinearSystems [69)].

Lu, et al. [61, 62] presented a different structure in their finite element code FE++. Their
structure consists of small number of finite element components like Node, Element, Material,
and Assemble designed over a sophisticated numerical library. In their design the Assemble is
the central object and not only implements the normal assembling procedure but also is in charge
of coordinate transformation which in other approaches was one of the element’s responsibilities.
It also assigns the equation numbers. The Element is their extension point to new formulations.
Their effort in implementing the numerical part lead to an object-oriented linear algebra library
equivalent to LAPACK [15]. This library provides a high level interface using the object-oriented
language features.

Archer, et al. [17, 18] presented another object-oriented structure for a finite element program
dedicated to simulate linear and nonlinear, static and dynamic structures. They reviewed features
provided by different other designs on that time and combined them in a new structure adding
also some new concepts.

Their design consists of two level of abstractions. In the top level, the Analysis encapsulates
the algorithms and the Model represents the finite element components. Map relates the dofs in
the model, to unknowns in the analysis and removes the dependency between these objects. It
also transforms the stiffness matrix from the element’s local coordinate to the global one and
calculates the responses. Additional to these three objects, different handlers are used to handle
model dependent parts of algorithm. The ReorderHandler optimizes the order of the unknowns.
The MatrixHandler provides different matrices and construct them over given model. Finally
ConstraintHandler provides the initial mapping between the unknowns of analysis and the dofs
in the model.

In another level there are different finite element components representing the model. Node en-
capsulates a usual finite element node which holds its position, and dofs. ScalarDof and VectorDof
are derived from the Dof class and represent the different degree of freedom’s types. Element uses
the ConstitutiveModel and ElementLoad to calculate stiffness matrix K¢, mass matrix M€, damp
matrix C° in local coordinate system. LoadCase consists of loads, prescribed displacements, and
initial element state objects and calculates the load vector in the local coordinate system.

Cardona, et al. [25, 53, 54] developed the Object Oriented Finite Elements method Led by
Interactive Executor (OOFELIE) [77]. They designed a high level language and also implemented
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an interpreter to execute inputs given in that language. This approach enabled them to develop
a very flexible tool to deal with different finite element problems. In their structure a Domain
class holds data sets like: Nodeset, Elemset, Fixaset, Loadset, Materset, and Dofset. Element
provides methods to calculate the stiffness matrix K¢, the mass matrix M€, etc. Fixaset and
Loadset which hold Fixations and Loads handl the boundary conditions and loads.

They used this flexible tool also for solving coupled problems where their high level language
interpreting mechanism provides an extra flexibility in handling different algorithms in coupled
problems. They also added Partition and Connection classes to their structure in order to
increase the functionality of their code in handling and organizing data for coupled problems.
Partition is defined to handle a part of domain and Connection provides the graph of degrees of
freedom and also sorts them.

Touzani [96] developed the Object Finite Element Library (OFELI) [95]. This library has an in-
tuitive structure based on finite element methodology and can be used for developing finite element
programs in different fields like heat transfer, fluid flow, solid mechanics, and electromagnetic.

Node, Element, Side, Material, Shape and Mesh are the main components of its structure
and different problem solver classes implement the algorithms. This library also provides different
classes derived form FEEqua class which implement formulations in different fields of analysis. It
uses a static Material class in which each parameter is stored as a member variable. The Element
only provides the geometrical information and finite element implementation is encapsulated via
FEEqua classes. The Element provides several features which make it useful for even complex
formulations but keeping all these members data makes it too heavy for standard industrial im-
plementations.

Bangerth, et al. [22, 19, 21] created a library for implementing adaptive meshing finite element
solution of partial differential equations called Differential Equations Analysis Library (DEAL) II
[20]. They were concerned with flexibility, efficiency and type-safety of the library and also wanted
to implement a high level of abstraction. All these requirements made them to use advanced
features of C++ language to achieve all their objectives together.

Their methodology is to solve a partial differential equation over a domain. Triangulation,
FiniteElement, DoFHandler, Quadrature, Mapping, and FEValues are the main classes in this
structure. Triangulation despite its name is a mesh generator which can create line segments,
quadrilaterals and hexahedra depending on given dimensions as its template parameter. It also pro-
vides a regular refinement of cells and keeps the hierarchical history of mesh. The FiniteElement
encapsulates the shape function space. It computes the shape function values for FEValues.
Quadrature provides different orders of quadratures over cells. Mapping is in charge of the co-
ordinate transformation. DoFHandler manages the layout of degrees of freedoms and also their
numbering in a triangulation. FEValues encapsulates the formulation to be used over the domain.
It uses FiniteElement, Quadrature, and Mapping to perform its calculation and provides the local
components to be assembled into the global solver.

Extensive use of templates and other advanced features of C++ programming language in-
creases the flexibility of this library without sacrificing its performance. They created abstract
classes in order to handle uniformly geometries with different dimensions. In this way they let
users create their formulation in a dimension independent way. Their approach also consists of
implementing the formulation and algorithms and sometimes the model itself in C++. In this way
the library configures itself better to the problem and gains better performance but reduces the
flexibility of the program by requiring it to be used as a closed package. In their structure there is
no trace of usual finite element components like node, element, condition, etc. This makes it less
familiar for developers with usual finite element background.

Patzdk, et al. [79] published an structure used in the Object Oriented Finite Element Modeling
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(OOFEM) [78] program. In this structure Domain contains the complete problem description
which can be divided into several Engineering Models which prepare the system of equations for
solving. Numerical Method encapsulates the solution algorithm. Node, Element, DOF, Boundary
condition, Initial condition, and Material are other main object of this structure. This
program is oriented to structural analysis.

2.1 Discussion

A large effort has been done to organize the finite element codes trying to increase their flexibility
and reducing the maintenance cost. Two classes of designing finite element program can be traced
in literature. One consists of using the finite element methodology for the design which leads
to objects like element, node, mesh, etc. Another approach is to deal with partial differential
equations which results in object functions working with matrices and vectors over domains.

The work of Zimmermann, et al. [106, 35, 34] is one of the classical approaches in designing
the code structure considering finite element methodology. However there is no geometry in their
design and new components like processes, command interpreter etc. are not addressed.

The effort of Miller, et al. in order to encapsulate the coordinate transformation in geometry
is useful for relaxing the dependency of elemental formulation to the specific geometry.

Cardona, et al. [25, 53, 54] added an interpreter to manage the global flow of the code in a
very flexible way. The interpreter was used for introducing new solving algorithms to the program
without changing it internally. This code is also extended to solve coupled problems using the
interpreter for introducing interaction algorithms which gives a great flexibility to it. The drawback
of their approach is the implementation of a new interpreter with a newly defined language beside
binding to an existing one. This implies the maintenance cost of the interpreter itself and prevent
them from using other libraries which may have interfaces to chosen script languages.

Touzani [96] designed an structure for multi-disciplinary finite element programs. His design
is clear and easy to understand but uses field specific interfaces for its component which are not
uniform for all fields. This reduces the reusability of the algorithm from one field to the other.

The approach of Lu, et al. [61, 62] is on the line of designing a partial differential solver
with emphasizes on numerical components. Archer, et al. [17, 18] extended this approach to a
more flexible and extendible point and more recently Bangerth, et al. used the same approach in
designing their code. However the structure results from this design can be unfamiliar to usual
finite element programmers. For instance in the latter design there are no objects to represents
nodes and elements, which are the usual components for finite element programmers.

In this work the standard finite element objects like nodes, elements, conditions, etc. are reused
from previous designs but modified and adapted to the multi-disciplinary perspective. There are
also some new components like model part, process, kernel and application are added to cover new
concepts mainly arising in multi-disciplinary problems. A new variable base interface is designed
providing a uniform interface between fields and increasing the reusability of the code. The idea of
using an interpreter is applied by using an existing interpreter. A large effort is also done to design
and implement a fast and very flexible data structure enable to store any type of data coming from
different fields and guarantee the uniform transformation of data. An extendible IO is also created
to complete the tools for dealing with the usual bottlenecks when working with multi-disciplinary
problems.



