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Abstract

This chapter presents some simulations concerning the dynamics of crustal

magma reservoirs during the course of volcanic eruptions. Despite its

simplifications, the physical model proposed allows to simulate “any kind”

of eruptive process. The chapter is organised as follows. Firstly, some

previous considerations such as geometries or boundary and initial

conditions for the different problems considered are discussed. Section 5.2

presents some simulations of withdrawal from closed magma chambers

(eruptions driven by oversaturation of volatiles) considering both a constant

and a variable volatile content. Section 5.3 shows examples concerning the

withdrawal from open magma chambers (eruptions driven by injection of

fresh magma) in both the chemically homogeneous and the chemically

heterogeneous cases. Finally, section 5.4 presents a couple of examples of

caldera-forming eruptions. The simulations of such eruptions involve fluid-

structure coupling. The results obtained generalise all the previous

analytical and numerical approaches and, in general, have an “acceptable”

qualitative agreement with field observations.
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5.1 Previous Considerations

5.1.1 Objectives

A major objective of this thesis is to develop an algorithm to study numerically the

dynamics of magma withdrawal from crustal reservoirs. A classification of the possible

numerical simulations which can be carried out is show in figure 5.1.1. Some particular

frameworks –mainly central vent eruptions triggered by inflow of fresh magma into the

chamber- have been already considered by other authors (see section 2.4.1.2 for major

explanation). The rest of (numerical) possibilities are original contributions of this work. It can

be observed form the figure how any imaginable situation can, at least theoretically, be

contemplated by the model.

Central vent
   eruptions

      Open chamber

Triggering mechanism :
magma replenishment

Section 5.3

       Closed chamber

Triggering mechanism:
volatile oversaturation

Section 5.2

Volatile content :
      constant

Volatile content :
      variable

   [ Folch  et al., 1998 ]
   [ Folch  et al., 1999 ]
This work. Section  5.2.1  

This work. Section 5.2.2

      Chemically
   homogeneous
( only  1  magma )

        Chemically
     heterogeneous
( 2 or more magmas )

Volatiles :
     NO

Volatiles :
    YES

[ Spera, 1984 ]
This work. Section 5.3.1

This work. Section 5.3.1

[ Spera et al., 1986  ]
[ Greer, 1986 ]
[ Trial et al., 1992 ]
This work. Section 5.3.2

  Possible but not 
considered by now

Caldera forming
     eruptions

Presence of volatiles : NO

Presence of volatiles : YES

[ Spera, 1984 ] (with limitations)
This work. Section 5.4

This work. Section 5.4

Volatiles :
     NO

Volatiles :
    YES

Figure 5.1.1. Classification of different possible simulations . Previous studies concerning to

numerical modelling within the magma chamber as well as original contributions of this

work are also shown.
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Many simulations have been performed considering several geometries, different

values for the parameters involved and multiple physical frameworks. Rather than an

exhaustive compilation, the objective of this chapter is to present some examples of each

particular case. Despite the model is not applied here to any specific real case, the examples

stress general behaviours and, generally speaking, asses qualitative dependencies of the

parameters involved. Simulations include both central vent eruptions (section 5.2 for the case of

eruptions from closed chambers, section 5.3 for open chambers) and caldera forming eruptions

(section 5.4). In the former case, the emphasis is mainly focussed to closed magma chambers

because it constitutes an important contribution of this work1. In this case, the aim is to

characterise some quantities of interest2 such as pressure evolution, position of the exsolution

level, mass discharge rate or amount of extruded material. These relevant quantities are

computed over time as the simulation of the eruption proceeds. The eruption rate Q  (erupted

mass per unit of time) and the total erupted mass eM  are obtained, respectively, by computing

the integrals

∫ ⋅=
cS

dQ su  ρ
(5.1.1)

∫=
t

e dttM
0

 )( Q (5.1.2)

where cS  is the section of the volcanic conduit. The position of the exsolution level is

determined equalling the pressure to the critical pressure cp  which, for a given volatile content,

is given by the equation (3.2.8).

5.1.2 Geometry and Boundary Conditions

The geometries contemplated are those sketched in figure 5.1.2. Whichever the

simulation considered, the computational domain is always axisymmetric3 and comprises a

chamber (an ellipsoid or a cylinder) with radial extension a2 , vertical extension b2  and a

                                                          

1 Eruptions from open chambers where the resident magma is volatile undersaturated are, probably, more

common in nature. However, from a numerical point of view, its simulation is easier and has been already

treated in previous works.

2 The interesting variables are those which can be related, either by direct or by indirect measurements, to

field observables performing geological or geochemical studies.

3 In addition to its reasonability, the assumption of symmetry is very interesting from a computational

point of view because allows to solve a three-dimensional problem like a two-dimensional one by using

cylindrical coordinates.
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Figure 5.1.2. Top: sketch of the geometry for a generic central vent eruption with axial

symmetry. An elliptical magma chamber with horizontal extension 2a and vertical extension

2b is located at depth Hcha  below the Earth’s surface. Magma flows through a conduit of

radius rc that coincides with the symmetry axis z. Computational domain is cut at a distance

Hc from the top of the chamber. Cylindrical magma chambers (not shown in the figure) are

also considered. Bottom: same for caldera forming eruptions. In this case, magma flows

through a ring fault located at distance ac from the symmetry axis.
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vertical conduit with radius cr . In central vent eruptions the conduit runs along the symmetry

axis ( 0=r ), while in caldera forming eruptions it is located at a distance ca  from the axis in

order to simulate the flow of magma through a ring fault1. The conduit is deliberately cut at a

distance cH  from the top of the chamber and, therefore, the computational outlet does not

coincide with the physical one (the vent). Apparently, it might seem more reasonable to extend

the conduit to the Earth’s surface, i.e. consider the magma chamber and the conduit processes

simultaneously, because the processes that occur in any of these domains affect the dynamics of

the other. However, this would present three main numerical inconveniences:

•  The state law (3.2.13) has been deduced assuming the hypothesis of homogeneity between

liquid and gas phases. This hypothesis is justified as long as the bubbly flow regime can be

sustained and, in consequence, becomes unacceptable at the uppermost parts of the conduit

(near and above the fragmentation level). An adequate physical treatment in this region would

require the solution of a non-homogeneous problem, for which governing equations for liquid

and gas phases should be considered separately.

•  As discussed in section 2.2.2, chemically evolved magmas show a smooth dependence of the

viscosity on the amount of dissolved volatiles at high to moderate volatile content (greater than

1-2 wt.%) but, in contrast, the dependence becomes strongly non-linear at low volatile content.

For practical purposes, it implies that magma viscosity can be approximated to a constant

within the chamber and at the lowermost parts of the conduit but not at shallower levels, where

the continuos exsolution of volatiles related to magma decompression produce a sudden

increase of the viscosity by several orders of magnitude. The numerical inconveniences

associated with the treatment of flows with such huge spectrum of variations in the viscosity

are evident.

•  The dependence of the state law on temperature becomes appreciable at low pressures, i.e. at

the uppermost parts of the conduit (see figure 3.2.5). It implies that the coupling between

thermal and mechanical problems should be considered at shallower levels.

All these drawbacks can be avoided limiting the computational domain. Unfortunately,

one has to pay for this simplification because the boundary condition at the computational

outlet becomes now an unknown of the problem. Boundary and initial conditions for both types

of problems (central vent and caldera collapse) are schematically illustrated in figure 5.1.3. For

central vent eruptions, the no-slip condition ( 0u = ) is imposed at the chamber walls while only

the horizontal component of the velocity is set to zero at the symmetry axis ( 0=ru  at 0=r ).

                                                          

1 Note that only circular calderas can be simulated under the assumption of axial symmetry. However, this

geometrical simplification should not affect the conclusions drawn here substantially.
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Figure 5.1.3. Schematic cartoon showing boundary and initial conditions for central

vent eruptions (top) and caldera forming eruptions (bottom).

Magma inside the chamber is always in a subsonic regime [Spera, 1984]. Under these

circumstances, either pressure or density must be prescribed as a boundary condition at the

computational outlet [Hirsch, 1991]. As discussed previously, this outlet is set at a distance cH

above the top of chamber, where pressure is prescribed to a constant value. As a first approach,

this value can be assimilated to the lithostatic despite the fact that some of the existing conduit

models predict a pressure drop within the conduit below the lithostatic value [Papale and

Dobran, 1993; Papale and Dobran, 1994]. This assumption can be justified a grosso modo because

the average stress field within the conduit can not be too far from lithostatic in order to keep it
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open against compression of the country rocks1. Initial values are assigned to velocity and

pressure. Magma is assumed to be at rest before the eruption. The initial pressure distribution is

assumed to be hydrostatic (magmastatic) with an overpressure P∆  inside the chamber equal to

the tensile strength of the host rock. The conduit has an initial overpressure that decreases

linearly from a value equal to the tensile strength of the rock, at the inlet, to zero at the outlet. It

should be pointed out that the flow is induced by a pressure gradient inside the conduit and,

therefore, is not a departure from a state of equilibrium unstable as would, for example, be the

case of thermal convection. The magnitude of the pressure gradient at the beginning of the

conduit depends on how the overpressure in the chamber is dissipated along the conduit. It has

been assumed that this overpressure is dissipated across cH  meters. It might be thought that

the initial pressure gradient is balanced by a porosity-like force with a small porosity coefficient

and a negligible initial velocity. It is in this state that the sudden (instantaneous) opening of the

conduit takes place. A constant overpressure within the conduit with a sudden drop to zero at

the computational outlet has been also contemplated. However, in this case, the high-pressure

gradient at t = 0  gives rise to numerical instabilities. Concerning to caldera forming eruptions,

boundary conditions are like those of central vent eruptions but having also into account the

velocity of the falling block bu . Obviously, the non-slip condition at the walls of the block is, in

this case, buu = .

A final remark. To avoid the coupling with the mechanical problem, the chamber and

the conduit walls are assumed to be rigid and, in consequence, effects such as conduit erosion

or possible contractions/expansions of the chamber/conduit walls during the eruptive process

are not contemplated by the model. This hypothesis is not so restrictive as might apparently

seem. Despite the rheological behaviour of the crust in areas of volcanic activity is not well

established yet, it seems reasonable to assume that the only “instantaneous” deformation could

come from an elastic response (viscous, plastic and other more than plausible deformations are

given in a time scale much longer than the duration of an eruption), for which indirect

evidences suggest constrains to its magnitude.

                                                          

1 If the whole conduit were considered there would not be any “problem” concerning to this outflow

condition: pressure should be set to atmospheric. However, when the conduit is cut this condition

becomes, in fact, time-dependent and unknown. In consequence, some approximated value must be used.

Note that this approximation is very common when different parts of the domain (chamber or conduit) are

considered separately. Thus, for instance, most of the conduit models available in literature assume also a

constant pressure at the entrance when, in fact, it is a time dependent value which depends on the

dynamics of the chamber withdrawal.
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5.1.3 A Relation between W  and P∆

In eruptions from closed magma chambers the volatile mass fraction W  cannot be

arbitrary because one must ensure that the chamber is, at least partially, oversaturated in

volatiles in order to produce the overpressure P∆  required to trigger the eruption. On the other

hand, once magma is oversaturated, there must be some relationship between the amount of

volatiles and the overpressure within the chamber exerted by them. In other words, once one

parameter (W  or P∆ ) is fixed the other is, at least theoretically, automatically determined. This

relationship is, in general, complex. However, and as a first approach, a simple relation can be

determined assuming some simplifications. Consider an initial situation in which a chamber of

volume cV  at pressure 0P  is filled with undersaturated magma with a volatile content iW  (i.e.

sic VV = ). Gradients on pressure and volatile content are neglected for simplicity. On further

fractional crystallisation this chamber evolves into a stage in which the volatile mass fraction

rises to fW  and, eventually, gas bubbles are exsolved at the top of the chamber, where the

ambient pressure is lower. In order to fit into the available space, these bubbles compress the

pre-existing magma and rise the pressure of the chamber to PP ∆+0 . The chamber is now

occupied by the volume of the gas gV  plus the volume of the remainder magma sfV  (i.e.

gsfc VVV += ). This situation is illustrated in figure 5.1.4.

Pl + ∆∆PPl

Vc = Vsi

      Chamber
Undersaturated

Wi

O
ve

rs
at

u
ra

te
d

   
   

  L
ay

er
U

n
d

er
sa

tu
ra

te
d

   
   

   
L

ay
er

W f

V c = Vsf + Vg

time

W 

T

Figure 5.1.4.Schemmatic illustration of the fractional crystallisation process. Initially, a

chamber at lithostatic pressure P0 is filled with magma undersaturated in volatiles. The

whole chamber volume Vc is occupied by liquid magma with a volatile mass fraction Wi

( m
i sPW 0< ). After some period of time the chamber cools, some crystalline components are

removed form the melt and the volatile mass fraction increases to fW . Eventually, the

uppermost parts of the chamber (where pressure is lower) become oversaturated in volatiles

and gas bubbles are exsolved. These bubbles compress the pre-existing magma and rise the

chamber pressure to PP ∆+0 .
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If one assumes that the chamber has rigid walls then

gsfsic VVVV +== (5.1.3)

The compression of the melt can be related to pressure variations considering

β
P

sisf eVV
∆

−

=  (5.1.4)

so that

ββ
β P

VV
P

VeVVV sigsi

P

sisisf

∆
≅⇒

∆
−≅−=−

∆
−

             )  () 1 ( (5.1.5)

where β  is the compressibility modulus. On the other hand, mass conservation implies

g
sfsi n

mm
−

=
1

1
 (5.1.6)

g

g
sfgsfsi

V
mmmm

ρ
+=+= (5.1.7)

where sm  is the mass of the melt (liquid plus dissolved volatiles within), gm  is the mass of the

gas and gn  is the mass fraction of gas (see 3.2.5). Equalling the above expressions, using (5.1.5)

and assuming a perfect gas behaviour for the bubbles one has

TQ

PPP
V

n

n
m si

g

g
sf  

)(
 

1
0 ∆+∆

=
− β (5.1.8)

and, finally, considering that sisfsisil VmVm ≅=ρ  and using (3.2.6) and (3.2.7) one obtains

( )
TQ

PPP

W

PPsW

l

m
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βρ (5.1.9)

or, equivalently
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βρ

+∆+∆
∆++∆+∆

= (5.1.10)
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Figure 5.1.5. Chamber overpressure (in MPa) as a function of volatile mass fraction W  (in

weight %) according to equation 5.1.10. Results for rhyolite-water (top) and basalt-carbon

dioxide (bottom) for different lithostatic pressures 0P  of 100, 150 and 200 MPa respectively

and assuming standard values for the rest of parameters.
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Equation (5.1.10) proportionates an approximate relation between W  and P∆  ( 0≥ ).

Note that, in particular, when 0=∆P  (i.e. when the overpressure starts) the condition of melt

saturation msPW 0=  is recovered. The values of W  and P∆  in any numerical simulation of

closed systems should be consistent with this expression1. Obviously, this condition is not a

necessary requirement in the case of open systems, where part (if not all) of the critical

overpressure is induced by injection of fresh magma into the chamber. Figure 5.1.5 shows the

results predicted by (5.1.10) for a rhyolite (assuming H2O as the only volatile) and for a basalt

(assuming CO2 as the only volatile) assuming standard values for the rest of parameters

involved. Note how, in general, once the chamber is oversaturated, a relative small increase in

the volatile mass fraction is able to induce a high overpressure due to the low compressibility of

the undersaturated magma.

5.1.4 Time Step

It should be mentioned that a serious numerical limitation due to the critical time step

has been found, in general, when using the magma state law (3.2.13). This limitation comes

from the fact that one must use a very small critical time step to simulate a process which

typically lasts several hours2. As exposed in section 4.1.7, the critical time step for the Navier-

Stokes equations is3

µ
ρ

ρ
µ  4

  
  

 2

 

4
 

2

2

hF

hh

F
t ss ≤

+
≤∆

u (5.1.11)

where µ  is viscosity, ρ  is density, h  is the element size and sF  is a safety factor. In general, if

one is interested only on the steady solution, a common procedure to accelerate the

convergence of the solution is to use local time steps. It allows to use different time steps for

each node of the mesh and, in consequence, accelerates convergence and reduces notably the

computational cost required to reach the steady state. This strategy can not be applied here

                                                          

1 This expression is approximated due to the mumerous oversimplifications. It means that, given an

overpressure, the value of W  proportionated by (5.1.10) should be considered only as a rough guide.

Hence, “small” variations of this W  do not necessary imply loose of physical meaning.

2 Note that, although this problem can be reduced improving the efficiency of the source code, it exists

independently of it.

3 Strictly, this value is for the momentum equation and considering linear elements. For higher-degree

elements the value of t∆  is much lower.
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because the interest focuses on the description of a transient evolution. It implies that one must

consider a global time step equal to the minimum elemental time step of the mesh. The problem

in the case of the simulations shown along this chapter can be illustrated considering typical

magma values: Pa.s 105=µ  and 3m / Kg 2500=ρ . Assuming 1=sF  and using these values one

has 23  106 minht −×≤∆ . Obviously the t∆  value depends on the elemental size which, for the

geometries considered, is constrained by the radius of the conduit m 5025 −=cr . Taking

m 10=minh  as an upper value, one has s 6.0≤∆t  ( 1=sF ). The problem is that, using time steps

of the order or lower than 0.5s, on has to deal with a transient process which starts far away

from the steady state and that typically takes several hours to reach it (i.e. tens/hundreds of

thousands of iterations are necessary for each specific simulation). In principle, one has two

main strategies to face this inconvenience. The first would be to use the fully explicit version of

the algorithm with lumped matrixes. Obviously, this choice it the one with less computational

cost (CPU time) for iteration but, in contrast, stability criteria demands for safety factors lower

than one. The second option would be to use the fully implicit version which, despite having

the higher computational cost per iteration, seems a better choice because, a priori, the safety

factor can be notably increased. Unfortunately, it has been found that the characteristics of the

state law do not permit, for most of the simulations performed, safety factors greater than 0.1-

0.5 in the fully explicit version and than 2-5 in the fully implicit1. All in all, the final result is that

both strategies require similar CPU times but, in general, the fully implicit version of the

algorithm is preferable because is a bit faster and more stable. All the strategies considered to

increase stability (to use higher safety factors) such, for instance, the pressure gradient

projection or different treatments of the state law in the continuity equation (see table 4.1.2),

have failed. It implies that, lamentably, the only remainder possibility to have “reasonable”

CPU times seems to be a constriction on the size of the mesh2. Meshes with sizes greater than

10.000-15.000 elements have been rejected. Using these relatively coarse meshes, a simulation

takes typically about 24h of CPU (100.000 iterations)3.

                                                          

1 This fact is a characteristic of the state law. When other types of flow (incompressible, barotropic, perfect

gas, etc.) are considered the safety factor can be considerably higher. Thus, for instance, a driven cavity

flow with the fully implicit option can perfectly hold safety factors higher than 1000.

2 The program runs under a SGI Origin 2000 (8 CPU R10000). CPU times greater than 48h are considered

unacceptable.

3 Obviously this value depends on the critical time step which, in turn, is also dependent on magma

density and viscosity.
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5.2 Withdrawal from Closed Magma Chambers

This section presents some numerical examples of withdrawal from closed magma

chambers (volatile oversaturation driven eruptions). Generally speaking, the simulations allow

to characterise the temporal evolution of some relevant parameters such as the evolution of

pressure and exsolution level, the mass discharge rate or the amount of extruded material

during the course of explosive volcanic eruptions. Simulations are not applied to any specific

case. However, some relevant conclusions concerning qualitative behaviours and parametrical

dependencies can be envisaged.

5.2.1 Constant Volatile Content

Several simulations have been performed considering different geometries, different

magma properties and different values of the physical parameters involved. Obviously, the

quantitative results depend on each specific case but, nevertheless, the qualitative tendencies

are common to all the simulations.

5.2.1.1  General Overview

As an example, consider the case of the withdrawal from an imaginary cylindrical

chamber filled with chemically evolved magma (rhyolite). Despite a cylindrical geometry may

not be very realistic from a physical point of view, the shape of the chamber is not a relevant

aspect if one aims only to stress those qualitative characteristics which have been found in all

the simulations. This imaginary chamber has an horizontal extension of 2Km ( Km1=a ) and a

vertical extension of 1Km (i.e. 3.14 Km3 of volume). The radius of the conduit is m50=cr  and

the computational outlet has been cut 250m above the chamber top. At the outlet, pressure is

fixed to an arbitrary lithostatic value of 100MPa. Note that this value does not imply any

particular depth for the chamber because the relation between depth and lithostatic pressure

depends on the host rock mean density. The initial overpressure is MPa 10=∆P , a typical value

for the tensile strength of the host rocks [Touloukian et al., 1981]. Figure 5.2.1 shows the spatial

discretisation, for which a relatively coarse (but sufficient) mesh made up with 6036 triangular

elements and 3149 nodal points has been employed. The chamber is filled with a rhyolitic

magma having density 3Kg/m 2400=lρ , temperature C850º=T , viscosity Pa.s105=µ  and a

(constant) water content of 045.0=W  (4.5% in weight)1. Note that, in this case, it is assumed

                                                          

1 This water content is “relatively consistent” with the relationship between W  and P∆  deduced in

section 5.1.3.
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that the overpressure which allows to trigger the eruption is achieved by oversaturation of

volatiles and, in consequence, the amount of volatiles (water) can not be arbitrary: one must

have a value of W  for which magma vesiculates at pressures greater than 100+ P∆  MPa. Under

these conditions, the volume of the chamber initially vesiculated is 6.6%, i.e. the exsolution level

is located 66m below the top of the chamber.
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Figure 5.2.1. Geometry and space discretisation.

Numerical results show that the initial overpressure decreases exponentially as the

eruption proceeds until it becomes zero and the eruption ceases. In other words, eruption ends

once the lithostatic (magmastatic) pressure profile is achieved, i.e. when the initial overpressure

has been dissipated. Since the model assumes that solubility depends only on pressure (Henry

law) this decrease on pressure produces a drop in the exsolution level so that deeper parts of

the chamber become progressively oversaturated in volatiles as the eruption proceeds. The

upper oversaturated magma layer becomes thus progressively thicker and less dense. Figure

5.2.2 shows the temporal evolution of the exsolution level as well as the pressure at the entrance

of the conduit for this particular simulation. The duration of the eruption is, in this case, less

than 1h and the exsolution level presents a total shift of about 550m. Figure 5.2.3 shows the

initial and final density and pressure profiles inside the chamber. Figure 5.2.4 shows the

temporal evolution of the eruption rate at the computational outlet1 and the velocity at the

entrance of the conduit. The eruption rate reaches a peak immediately after the onset of the

eruption and then decreases also exponentially.

                                                          

1 As noted previously, the computational domain is not extended to the surface. In consequence, and due

to the compressibility of the magma at the uppermost parts of the conduit, the eruptive rate at the conduit

entrance must not necessarily coincide with that observed at the Earth’s surface. However, both intensities

should not differ substantially.
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Figure 5.2.2. Top: position of the exsolution level (in m) plotted versus time (in hours). In

this graphic, the vertical axis has its origin at the top of the chamber and is positive

downwards. Bottom: pressure (in MPa) at the conduit entrance plotted versus time (in

hours). Eruption ends when the lithostatic pressure profile is recovered, i.e. when the initial

overpressure (10MPa) is dissipated.
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Figure 5.2.3. Density (kg/m3) and pressure (MPa) profiles inside the chamber. Left: results at

the onset of the eruption when only the uppermost part of the chamber is vesiculated. Right:

results at the end of the eruption (t = 1h). Note the drop in the exsolution level due to the

decrease in pressure.

This behaviour seems not to be very realistic because many Plinian eruptions present phases in

which the eruption rate decreases progressively and then reaches a new peak of intensity. This

apparent discrepancy could be explained by two main reasons. Firstly because the hypothesis of

closed system and, secondly, due to the assumption of homogeneity (these Plinian phases are

commonly associated with tapping effects [Dobran, 1992], where the magma that reach the

conduit changes its properties -viscosity, volatile content, etc.- as a consequence of pre-eruptive

heterogeneities). Finally, figure 5.2.5 shows the total erupted mass and the erupted mass

fraction (erupted mass divided by the initial mass) as a function of time. It can be observed how

the total erupted mass is only about 0.9% of the original mass. This result is in good agreement

with the analytical time-independent results of [Bower and Woods, 1997], who found that in close

volatile-saturated magma chambers only a mass fraction in the range of 0.1%-1% of the initial

mass is erupted. In addition, numerical simulations allow to predict not only the total mass

erupted but also its temporal variation for any given chamber geometry and set of magma

properties. Obviously, these values are particular of this simulation (other chamber and conduit

geometries, volatile content, magma viscosity, etc. produce quantitative results substantially

different) but the qualitative behaviour does not.
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Figure 5.2.4. Top: eruption rate (Kg/s) at the computational outlet versus time (in hours).

Bottom: velocity (m/s) at the conduit entrance versus time.
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Figure 5.2.5. Erupted mass and erupted mass fraction plotted versus time. Note that only a

small mass fraction (around 1%) is erupted.
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5.2.1.2  A Parametrical Study

Many parameters such viscosity, gas content, magma chamber geometry or initial

overpressure appear in the model and their influence on the solution is not always clear.

Among them, the most relevant is probably the geometry of the chamber. In order to assess its

importance, three different magma chambers with a similar volume of ≅ 14 km3 have been

considered. Chamber 1 is oblate (sill-like), chamber 2 is spherical and chamber 3 is prolate

(dike-like). The dimensions of these chambers are of the same order of magnitude as natural

shallow magma chambers but do not represent any particular volcanic system. Figure 5.2.6

shows its geometries as well as the spatial discretisations performed. In all cases, the FEM

meshes are non-structured and made up with linear triangular elements (4482, 7732 and 9724

elements for sill-like, sphere and dike-like, respectively). The conduit has a radius of m 25=cr

and is terminated at m 250=cH above the chamber. Again, the chamber is filled with rhyolitic

magma with density 3Kg/m 2400=lρ , temperature C850º=T , viscosity Pa.s105=µ  and water

content  045.0=W  (4.5% in weight). Lithostatic pressure and initial overpressure are,

respectively, 100 and 10 MPa.

Figure 5.2.7 shows the temporal evolution of pressure and eruption rate at the entrance

of the conduit. The position of the exsolution level as well as the erupted mass fraction are

depicted in figure 5.2.8. It can be observed from these figures how, for chambers of equal

volume and magma properties, the qualitative behaviour is insensitive to the chamber

geometry. However, from a quantitative point of view, the flatter the chamber the slower the

decompression process. This implies that the exsolution level evolves faster in dike-like

chambers than in sill-like reservoirs. Obviously, its final position is the same for all the cases

since the amount of volatiles is identical (4.5% in weight) in all the simulations. Another

important result is that, although shapes of the curves are similar in all three cases, the total

mass erupted (i.e. also the erupted mass fraction) increases as the chamber becomes flatter. This

is explained by the fact that magma is nearly incompressible below the exsolution level (fully

incompressible in our model) but above this level the mixture, containing exsolved gas,

becomes much more compressible. Thus, the total mass erupted corresponds only to the

volume change in the upper compressible layer as a response to the pressure variation. In

consequence, those chambers containing more magma in the upper oversaturated layer (i.e.

horizontally flattened chambers) will erupt a greater amount of material for a given pressure

decrease. In this particular example, the erupted mass fractions found are about 0.8%, 0.1% and

0.04% for sill-like, spherical and dike-like chambers respectively. This is in excellent agreement

with the predictions of analytical models available in literature (e.g. [Bower and Woods, 1997;

Martí et al., 2000]).
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Figure 5.2.6. Geometries and space discretisations (at different scales). Close up views

around the entrance of the conduit are also shown.
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Figure 5.2.7. Eruption rate (top) and pressure at the entrance of the conduit (bottom) plotted

versus time for three different geometries of the chamber.
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Figure 5.2.8. Position of the exsolution level (top) and erupted mass fraction (bottom)

plotted versus time for three different geometries.
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The influence of other parameters different from geometry has been also envisaged. To

simplify, only some examples restricted to the sill-like chamber are presented here. Figures 5.2.9

and 5.2.10 illustrate the effect of varying viscosity on several quantities of interest. It can be seen

how, the less viscous the magma, the faster the chamber becomes depressurised. In

consequence, the position of the exsolution level changes faster in chambers filled with less

viscous magmas despite the fact that its initial and final positions are, for a given pressure

decrease ( ∆P = 10 MPa  in this case), independent of the magma viscosity. Although the total

erupted mass is also independent on viscosity, this parameter plays a major role in controlling

the duration of the eruption. As expected, the more viscous the magma, the longer the duration

of the eruption and the lower the peak of the eruption rate. That is, chambers containing a less

viscous magma are more rapidly withdrawn and have a higher intensity peak.

The influence of volatile content on the eruption rate and on pressure variations is now

considered. Again, the examples are obtained using magma chamber 1 (oblate ellipsoid or sill-

like chamber), an initial overpressure of ∆P = 10 MPa , a viscosity of µ = 105 Pa s, and a density of

ρl = 2400 kg/m3. The effect of varying volatile content is illustrated in figures 5.2.11 and 5.2.12.

As observed from these figures, a small change on volatile content has an important effect on

the position of the exsolution level. Its total displacement is not much sensitive to the amount of

volatiles (for a given pressure decrease), but its initial and final positions vary notably : a small

increase in volatile content produces a substantial deepening of the exsolution level (thus, in

this particular example, if the amount of volatiles –water- is 4.7% in weight the whole chamber

vesiculates before the end of the eruption). As a consequence, the duration of the eruption and

the amount of extruded material also increases because there is more magma in the

compressible layer (above the exsolution level). Table 5.2.1 summarises some qualitative results

of the parametrical study
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Figure 5.2.9. Eruption rate (top) and pressure at the conduit entrance (bottom) plotted

versus time for the sill-like chamber with a volatile content of 4.5% in weight and

considering three different viscosities of 104, 5 × 104 and 105 Pa.s respectively.
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Figure 5.2.10. Position of the exsolution level (top) and erupted mass fraction (bottom)

plotted versus time for the sill-like chamber with a volatile content of 4.5% in weight and

considering three different viscosities of 104, 5 × 104 and 105 Pa.s respectively.



5.2 Withdrawal from Closed Magma Chambers

5-27

0 1 2 3 4 5 6 7 8 9 10 11

Time ( h )

0.0E+000

1.0E+007

2.0E+007

3.0E+007

4.0E+007

5.0E+007

6.0E+007

7.0E+007

8.0E+007

9.0E+007

1.0E+008

1.1E+008

1.2E+008

1.3E+008

E
ru

p
ti

on
 R

at
e 

( 
K

g/
s 

)

W = 0.044
W = 0.045

W = 0.047

0 1 2 3 4 5 6 7 8 9 10 11

Time ( h )

105

106

107

108

109

110

111

112

113

114

115

116

P
re

ss
u

re
 (

 M
P

a 
)

W = 0.044
W = 0.045

W = 0.047

Figure 5.2.11. Eruption rate (top) and pressure at the conduit entrance (bottom) plotted

versus time for the sill-like chamber with magma viscosity 105 Pa.s and considering three

different water contents of 4.4, 4.5 and 4.7% in weight respectively.
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Figure 5.2.12. Position of the exsolution level (top) and erupted mass fraction (bottom)

plotted versus time for the sill-like chamber with magma viscosity 105 Pa.s and considering

three different water contents of 4.4, 4.5 and 4.7% in weight respectively.



Parameter Effect on the Eruption Rate Effect on the Exsolution Level Effect on the Erupted Mass

Geometry

(chambers with equal volume, at the

same depth and filled with the same

magma).

• Flattened chambers (sill-like)

present a higher peak of intensity

and a smoother eruption rate.

• Shifts more slowly in flattened (sill-like)

cambers.

• Initial and final positions do not

depend on geometry.

• Flattened chambers (sill-like)

erupt more mass since have a

greater fraction of oversaturated

magma.

Viscosity

(magmas in the same chamber and

having the same volatile content).

• More viscous magmas show a

lower intensity peak and a

smoother eruption rate.

• Shifts faster for less viscous magmas.

• Initial and final positions do not

depend on viscosity.

• Independent.

Volatile content

(magmas in the same chamber and

having the same viscosity).

• The higher the amount of

volatiles the smoother the

eruption rate.

• Shifts faster for lower volatile contents.

• Initial and final positions depend on

volatile content but the total shifting is

not much sensitive to it.

• Chambers containing higher

volatile content erupt more mass

since have a greater fraction of

oversaturated magma.

Table 5.2.1. Summary of the parametrical study. Some of the conclusions are intuitively expected and can be deduced from time-independent analytical models.

However, numerical simulations allow to introduce also time dependencies.



5.2 Withdrawal from Closed Magma Chambers

5-30

5.2.2 Variable Volatile Content

The possibility of having a variable volatile content can also be contemplated. In this

case, the Navier-Stokes equations must be complemented with the convective transport

equation (4.2.1), the solution of which proportionates the volatile mass fraction W  at each

spatial point and for any time instant1. The initial value of the function W  reflects the initial

amount of volatiles inside the chamber. Note that the critical (exsolution) pressure cp  is still

given by equation (3.2.8) but, since W  is now variable, it must be computed at each numerical

integration point every time that the use of the magma state law (3.2.13) is required.
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Figure 5.2.13. Initial distribution of volatiles for the cases A (constant volatile content), B

(three layers) and C (linear variation). Whichever the case, the chamber is filled with

rhyolitic magma with ρl= 2400 Kg/m3 and viscosity µ=105 Pa.s.

Three different cases (named A, B and C respectively) are considered as example. These

cases are illustrated in figure 5.2.13 and have the initial distribution of volatiles as follows: case

A is the simulation already considered in section 5.2.1.1, i.e. a rhyolitic magma with a constant

volatile content of 045.0=W  (4.5% in weight); case B is a three layered chamber with water

contents of 5.5% (upper layer), 4.5% (middle layer) and 3.5% (lower layer) in weight

respectively; and, finally, case C represents a chamber with a linear variation from 5.5% at the

top of the chamber to 3.5% at the bottom2. The rest of parameters (density of the non-

vesiculated magma, temperature, viscosity, etc.) are exactly the same in all the simulations.

                            

1 It can be shown that equation (4.2.1) for the mass fraction of volatiles W  results from the imposition of

mass conservation for the volatile species.

2 Normally, the lower the amount of volatiles the higher the density of the magma. In consequence,

buoyancy effects will tend to produce a pre-eruptive zonation from higher volatile mass fractions at the
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Figure 5.2.14 plots the temporal variation of pressure at the entrance of the conduit and reflects

how the process of decompression is rather similar in all the cases. The only appreciable

discrepancy seems to be the value of the pressure at the entrance of the conduit once the final

equilibrium has been established. Note that the pressure at the computational outlet is the same

for all the cases (100MPa) but, in contrast, it differs at the entrance of the conduit (located 250m

below the computational outlet) as a consequence of the different hydrostatic (magmastatic)

loads resulting from the different density profiles (from the different volatile contents).
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Figure 5.2.14. Pressure at the entrance of the conduit plotted versus time for the cases A

(constant volatile content), B (three layers) and C (continuous stratification).

Figure 5.2.15 illustrates the initial and the final distributions of density inside the

chamber as well as the position of the exsolution level. The initial depth of the exsolution level

is 66, 333 and 445m for the cases A, B and C respectively (origin at the top of the chamber). In

case A, the amount of volatiles (i.e. the exsolution pressure) is constant and, therefore, the

position of the exsolution level shifts downwards only in response to the pressure variations

which occur during the course of the eruption. In case B, the initial ambient conditions allow the

upper layer (where 055.0=W ) to be vesiculated but prevent the exsolution of volatiles within

the intermediate and the lower layers (where 045.0=W  and 035.0=W , respectively). This

initial distribution of volatiles produces a strong initial gradient in density at the interface

between the upper and the intermediate layers. However, as the eruption proceeds, the

                                                                                                                                                                         

chamber top to lower volatile mass fractions at the bottom. The (unlikely) cases of reverse zonations are

not contemplated here.
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subsequent depressurisation of the chamber reduces the pressure in the intermediate layer

below its critical value and, in consequence, part of the magma within this layer vesiculates and

the exsolution level can shift downwards. The final position of the exsolution level is very

similar to that obtained in case A. Finally, in case C, the exsolution level can shift only few

meters because the linear decrease in the amount of volatiles almost compensates the effect of

the depressurisation. The erupted mass fraction as well as the total erupted mass are depicted in

figure 5.2.16.
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Figure 5.2.15 Initial and final distributions of density (in kg/m3) inside the chamber for the

cases A (constant volatile content of 4.5% in weight), B (three layers with volatile contents of

5.5, 4.5 and 3.5% in weight) and C (continuous stratification in volatiles form 5.5% at the top
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to 3.5% at the bottom). The position of the exsolution level, where ρ=ρl=2400 Kg/m3, is also

shown.
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Figure 5.2.16. Erupted mass fraction (top) and total erupted mass (bottom) plotted versus

time for the cases A, B and C respectively.
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5.3 Withdrawal from Open Magma Chambers

This section presents some numerical examples concerning the withdrawal from open

magma chambers (eruptions driven by magma replenishment).

5.3.1 Chemically Homogeneous Chambers

Consider first the simplest case of an eruption from a chemically homogeneous magma

chamber triggered by injection of fresh magma having the same properties than the resident

magma1. Two possible scenarios can be contemplated. The first, and the simplest, is that the

host magma is not saturated in volatiles. Note that, in this case, the whole overpressure

required to trigger the eruption must be induced by the injection itself. This situation was

considered in [Spera, 1984] and its numerical simulation is “trivial” in the sense that involves

only a single incompressible flow with uniform properties. The second possibility is more

interesting and contemplates the possibility of having the host magma partially vesiculated

prior to the injection. Note that, in this case, the chamber has some degree of pressurisation

before the injection due to the previous presence of exsolved gas and that the effect of the

injection –and secondary effect(s) associated to it- is just to bring the chamber to the critical

condition of rupture.

As an example, consider the same case analysed in section 5.2.1.1 (cylindrical chamber

with a lithostatic pressure at the outlet of 100MPa and a water content of 4.5% in weight) but

now with an additional uniform vertical inflow velocity iu  at the bottom face of the chamber.

Figure 5.3.1 shows the evolution of the exsolution level and the pressure at the conduit entrance

for three different inflow velocities of 1, 5 and 10 cm/s. These inflow velocities are arbitrary but

characteristic of natural systems (e.g. [Shaw, 1985]). As observed from the figure, the initial

overpressure decreases rapidly until it becomes stabilised to a steady value. The grater the

inflow velocity, the higher the confining pressure associated to the injection and, in

consequence, the lower the decrease in the chamber overpressure. Thus, for instance, for

1 =iu cm/s the decrease in pressure once the steady state has been reached is almost 10MPa

while, in the case of 10  =iu cm/s, is only 4MPa. Some degree of chamber depressurisation is

always observed unless very high inflow velocities (physically unrealistic) are considered.

                                                          

1 It should be said that this situation is not very realistic, at least for explosive volcanism. Typically,

magmas injected from the mantle (or lower crust) are of basic composition while the resident magmas are

more chemically evolved. More realistic simulations involving two –or more- magmas of contrasted

chemical (i.e. physical) properties are considered later, in section 5.3.2.
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Figure 5.3.1. Position of the exsolution level (top) and pressure at the entrance of the conduit

(bottom) plotted versus time for an open chamber with bottom inflow velocities of 1, 5 and

10 cm/s. In all the cases water content is 4.5% in weigh. The injection is switched off

(arbitrarily) at t = 1.5 h, once the steady state has been reached. After the injection the

evolution is analogous to that of a closed chamber with the same volatile content.
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Obviously, the position of the exsolution level follows a similar trend: the greater the

inflow velocity the lower the total shifting and the thickness of the upper oversaturated magma

layer. This effect can be also observed from figure 5.3.2, which presents the streamlines and the

density profile inside the chamber once the steady state has been achieved. The steady phase

continues as long as the injection is maintained. In order to illustrate the final phases of the

process, the inflow of magma has been arbitrarily switched off at t =1.5h1. After the injection the

system evolves to a final situation analogous to that of the closed chamber.
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Figure 5.3.2. Density (Kg/m3) and streamlines inside the chamber once the steady state has

been reached for inflow velocities of 1 cm/s (left) and 10 cm/s (right). Water content is 4.5%

in weight. An increase in the inflow velocity increases the confining pressure and shifts

upwards the position of the exsolution level.

The evolution of the eruption rate is depicted in figure 5.3.3. It should be said that most of

the eruptive intensity curves observed in historical explosive (Plinian) eruptions as well as those

                                                          

1 Remind that these examples aim to illustrate only a qualitative behaviour. A more physically realistic

situation would probably show the same trends but in a much longer time-scale.
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inferred from eruptive products, in the case of non-historical events, present eruption rates with

a shape more similar to those of figure 5.3.3 than that of figure 5.2.4. This is an important result

because might suggest that magmatic injection is probably the most common mechanism for

triggering such eruptions. Figure 5.3.4 shows the total erupted mass and the erupted mass

fraction and reflect that, during the stationary phase, the amount of extruded mass is

proportional to time. Note that in open systems, and in contrast with the results obtained for

closed chambers, the erupted mass fraction is not constrained. It implies that, even for small

chambers, the amount of extruded material can grow indefinitely provided, of course, that the

opening of the conduit and the inflow conditions are maintained.
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Figure 5.3.3. Eruption rate (Kg/s) versus time (in h) for an open chamber with

bottom inflow velocities of 1, 5 and 10 cm/s. The injection is arbitrarily switched off

at t = 1.5 h.

In the previous simulations, the amount of volatiles has been set to 4.5% in weight. In

fact, and for these specific simulations of open chambers, this value should be regarded as an

upper and “physically unnecessary” value. Any other lower value is, in principle, physically

admissible. Thus, in this particular case, if %4.4%1.4 ≤≤ W  the chamber is totally non-

vesiculated at t=0 but, as soon as the eruption starts, the pressure at the top of the chamber

drops to the nucleation pressure. This is an isochore transformation of the magma without any

generation of exsolved gas inside the chamber: during this “instantaneous” stage, no emission

of mass occurs but just a sharp drop in pressure (and exsolution level).



5.3 Withdrawal from Open Magma Chambers

5-38

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Time ( h )

0.0E+000

5.0E+011

1.0E+012

1.5E+012

2.0E+012

2.5E+012

3.0E+012

3.5E+012

4.0E+012

4.5E+012

E
ru

p
te

d
 M

as
s 

( 
K

g 
)

Arbitrary end of the
   injection ( ui=0 )

ui = 10 cm/s

ui = 5 cm/s

ui = 1 cm/s

Steady
 state

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Time ( h )

0

5

10

15

20

25

30

35

40

45

50

55

E
ru

p
te

d
 M

as
s 

F
ra

ct
io

n
 (

 in
 %

 )

Arbitrary end of the
   injection ( ui=0 )

Steady
 state

ui = 10 cm/s

ui = 5 cm/s

ui = 1 cm/s

Figure 5.3.4. Total erupted mass and erupted mass fraction as a function of time for an open

chamber with bottom inflow velocities of 1, 5 and 10 cm/s. Water content is 4.5% in weight

and the injection is arbitrarily switched off at t = 1.5 h.
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Once the chamber is vesiculated the system evolves as if %4.4≥W  but, of course, the

final position of the exsolution level depends on the specific value of W . This is illustrated in

figure 5.3.5, where the position of the exsolution level for the cases %5.4=W  and %35.4=W  is

plotted versus time. Finally, if %1.4≤W , the computational domain (chamber and lowermost

part of the conduit) never vesiculates. This case can perfectly be common in many natural

eruptions but, as previously discussed, is not very interesting from a numerical point of view

because the problem reduces to solve an incompressible flow with a given set of standard

boundary conditions (velocity at inflow, pressure at outlet).
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Figure 5.3.5. Exsolution level depth versus time for on open system considering an injection

velocity of 5cm/s and two different volatile contents of 4.35 and 4.5% in weight. The

injection is arbitrarily switched off at t = 1.5h.
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5.3.2 Chemically Heterogeneous Chambers

The previous section has illustrated some examples of withdrawal from chemically

homogeneous chambers during eruptions driven by magma replenishment. The assumption of

chemical homogeneity simplifies notably the simulation of the process but, from a physical

point of view, is rather unlikely1. This section considers a much more realistic example in which

the injected magma (a basalt) has physical properties which markedly differ from those of the

resident magma(s). The problem has been already faced in [Greer, 1986; Spera et al., 1986; Trial et

al., 1992] and, for this reason, will not be treated here in detail. To deal with chemical

heterogeneities it is commonly assumed that physical properties (density and viscosity) are

functions of the composition field C ( [ ]1,0∈ )

12 )1( ρρρ CC −+=

12 )1( µµµ CC −+=
(5.3.1)

where C  represents the volume fraction of the component 2 which, in our case, is the injected

basaltic magma. This procedure allows to reproduce any initial compositional profile inside the

chamber (e.g. two-layered, three-layered, continuos, etc.) between two extreme members

named 1, with properties 1ρ  and 1µ , and 2, with properties 2ρ  and 2µ . The physical meaning

ascribed to the compositional field C  is the averaged composition of a magma parcel and, if

chemical diffusion is neglected, it is solution of the purely convective transport equation (4.2.1)

which must be solved together with the Navier-Stokes equations2. The compositional transport

problem is well posed when C  is prescribed (to 1 in our case) at the inflow part of the domain

(see figure 5.3.6). The rest of boundary and initial conditions do not vary with respect to the

homogeneous case.

The interest of these simulations is mainly to characterise the temporal evolution of the

composition of the magma reservoir as well as to analyse how the dynamics of the magma

withdrawal process may affect the geochemistry of the resulting volcanic deposits. For this

purpose it is interesting to determine the averaged magma composition at the conduit entrance

C  by computing the integral

                                                          

1 In fact, many mineralogical and geochemical studies of volcanic deposits point out that, in most of the

cases, chemical heterogeneities exist within the chamber.

2 Note that, in practise, the problem is analogous to the filling of a mould. The compositional function

plays the role of the pseudo-concentration function.
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over the conduit (the above expression assumes axial symmetry and a vertical conduit of radius

cr ). This averaged quantity can be measured from stratigraphic sections of any volcanic deposit

using geochemical techniques. However, it should be noted that the relation between the

averaged composition of a magma parcel at the entrance of the conduit C  and that of the final

deposit is not straightforward at all. Different processes that occur within the conduit as well as

the own dynamics of the subaerial transport and subsequent emplacement of these volcanic

products are likely to produce considerable variations in the averaged composition of the final

deposits. It means that the results inferred here should be regarded only as a rough guide.
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Figure 5.3.6. Boundary conditions. A basic magma is injected with a uniform inflow velocity

into a cylindrical chamber containing more evolved magma (rhyolite). The compositional

variable C represents the volume fraction of basalt and, in consequence, is prescribed to 1 at

the bottom of the chamber (inflow). The initial composition of the chamber is characterised

by the function C(z).

Consider first the example of an eruption triggered by the injection of a basalt with

density 3
2 Kg/m 2800=ρ  and viscosity Pa.s 103

2 =µ  into an initially homogeneous cylindrical

chamber (same geometry than in the previous section, lithostatic pressure of 100MPa at the

computational outlet) filled with an evolved magma (rhyolite) having density 3
1 Kg/m 2400=ρ

and viscosity Pa.s 105
1 =µ . Kinematic viscosities of both magmas are, in consequence,
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024.01 =υ  and 8.22 =υ . The inflow velocity is uniform, vertically upwards, and has a value of

10cm/s. The mass flow rate at the inflow ( 2
2      aπρ iu ) is Kg/s 10 8.8 8× . For simplicity it is

assumed that the evolved resident magma is undersaturated in volatiles and, in consequence,

both magmas can be regarded as incompressible flows. Initially, the compositional function C

is a step function ( 1=C  at the inflow, 0=C  on the rest of the domain). Figure 5.3.7 shows the

position of the rhyolite-basalt interface ( 5.0=C ) at different time instants.

t = 0 t = 0.5 h

t = 2 ht = 1.5 h

t = 2.5 h t = 3 h

Rhyolite

Basalt

Rhyolite

Rhyolite

Rhyolite

Rhyolite

Basalt Basalt

Basalt Basalt

Figure 5.3.7. Position of the rhyolite-basalt interface (C=0.5) at different time instants.

Note how at t = 2.5 h both layers begin to be simultaneously erupted.
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As the eruption proceeds, the basalt-rhyolite interface is horizontally shifted and, due to

its higher density, the basaltic layer remains at the bottom of the chamber. However, once the

upper rhyolitic layer becomes thinner than some critical depth the interface tilts and both

magmas are erupted simultaneously. In this particular example it occurs at approximately

t=2.5h. The eruption enters then into a phase of mingling during which the erupted products

progressively evolve from a pure rhyolitic composition to a purely basaltic (see figure 5.3.8).

After this period of mingling (at approximately t = 3h) only basalt is erupted. Some residual

rhyolitic magma is, however, left in the uppermost part of the chamber. The possibility of

simultaneous eruption was already predicted in a series of laboratory experiments [Blake and

Ivey, 1986a; Blake and Ivey, 1986b; Blake and Fink, 1987]. Working with experimental tanks

containing two glycerol solutions with different kinematic viscosities, the authors investigated

the conditions under which buoyancy force is overcome, allowing the more dense lower fluid to

be drawn into the outlet. They came out with the conclusion that there exists a minimum

thickness for the upper lighter layer required to prevent the withdrawal of the lower denser

layer. In other words, if the upper layer is thinner than some critical depth, both layers are

simultaneously erupted. Extrapolating these experimental results to magmas, the authors

predicted draw-up depths in the range of 100m. This is in good agreement with the results

obtained in the numerical simulations.
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Figure 5.3.8. Averaged value of C at the entrance of the conduit plotted versus time. The

values C=0 and C=1 correspond, respectively, to pure rhyolite and basalt compositions.
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Observation  The eruptive process may finish at any stage if the injection is switched off or if the

conditions for conduit closure are achieved. If it would happen before the mingling phase there

would not be neither mineralogical nor geochemical evidences of the triggering mechanism

(magma injection) in the resulting deposits. In consequence, the non-existence of mingling in

the volcanic products does not necessarily imply an eruption triggered by volatile

oversaturation (closed system) from a chemically homogeneous chamber. Note also that the

basic magma would remain initially at the bottom of the chamber where it would cool and

crystallise. Chemical diffusion, overturning of the mafic layer [Huppert et al., 1982; Turner and

Campbell, 1986] or convective entrainment due to viscous coupling [Snyder and Tait, 1996] may

lead to large-scale magma mixing. It implies that, if new injections or further exsolution of

volatiles due to fractional crystallization in the felsic magma are, after some period of time, able

to trigger a new eruption, the observed mixed products may correspond to previous

replenishment events.

To illustrate the differences between several initial chemical compositions of the

chamber three different initial functions C  have been considered (see figure 5.3.9).
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Figure 5.3.9. Initial value of the compositional function for the cases A (two discontinuous

layers), B (three discontinuous layers) and C (continuous stratification).
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Case A is a two layered system in which the upper half of the chamber contains rhyolite

and the lower half basalt. Case B is a three layered system with 5.0=C  in the middle layer (its

physical properties are 3Kg/m 2600=ρ  and Pa.s 104=µ  which approximately correspond to a

magma of intermediate composition such as, for instance, an andesite). Finally, case C reflects a

continuous stratified composition ranging from a rhyolite at the top to a basalt at the bottom.

Figure 5.3.10 illustrates how the averaged composition of the extruded material evolves

with time and points out the possibility (already suggested in [Spera et al., 1986]) of

distinguishing, at least theoretically, between the different initial distributions by accurate

volcanological sampling. Figure 5.3.11 shows how the composition of the chamber evolves with

time. The main conclusion is that the same trends observed in the case of an initially

homogeneous chamber (horizontal displacement of the interfaces and posterior tilt and

simultaneous eruption of magmas once a critical thickness is reached) are observed now for the

different layers.
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Figure 5.3.10. Averaged value of C at the entrance of the conduit plotted versus time for the

cases A (two-layered chamber), B (three-layered chamber) and C (continuous stratification).

The values C=0 and C=1 correspond, respectively, to rhyolitic and basaltic compositions.
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Figure 5.3.11. Composition of the chamber at different time instants for the cases A (left

column), B (central column) and C (right column).
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5.4 Caldera-Forming Eruptions

This section presents some numerical examples concerning caldera-forming eruptions1.

The reader is referred to section 2.3.3 for major details concerning to this kind of eruptions.

Boundary and initial conditions are illustrated in figure 5.1.3. In the examples it is assumed that

the eruption starts once the ring fault is already open2 and that the subsiding block behaves as a

coherent rigid solid (i.e. without holding deformations or splitting into secondary blocks). The

driving mechanism of the eruption is the density contrast between the magma and the block

(i.e. the pressure differences), which induces the movement of the block downwards and

squeezes magma out of the chamber through the ring fault. Two different magma chamber

geometries (elliptical and cylindrical) are contemplated in the examples. In both cases, the

chambers have an horizontal extension Km4=a , a vertical extension Km5.0=b , are located at

depth Km4=chaH  below the surface of the Earth, the ring fault is placed at a distance

Km5.3=ca  from the symmetry axis and the volcanic conduit has a thickness of m50=cr .

Figure 5.4.1 summarises the geometrical properties.
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Figure 5.4.1. Geometries at the onset of the eruption for the elliptical and the cylindrical chambers.

                                                          

1 The only previous attempt to model such kind of eruptions can be found in [Spera, 1984], where the

process is modelled in a 2D domain, considering that magma beheaves as an incompressible flow and

without mechanical coupling, that is, imposing the velocity of subsidence of the block arbitrarily.

2 Typically, a caldera-forming eruption is preceded by a central vent eruption which decompresses the

magma chamber and, under certain favourable conditions, allows the formation of ring faults and,

eventually, the closure of the primary central fissure [Martí et al., 2000]. In consequence, these eruptions

are the culmination of previous complex processes which are neglected in the numerical simulations,

partly to simplify the problem and partly because are not well determined yet.
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Again, geometries and magma properties considered are arbitrary but perfectly

compatible with natural cases1. The mean density of the host rock is assumed to be

3Kg/m2600=rρ  (implying masses for the subsiding blocks of Kg1011.4 14×  and Kg1000.4 14×

for the elliptical and the cylindrical geometries respectively), whereas the non-vesiculated

magma has a density 3Kg/m2400=lρ  and a viscosity Pa.s104=µ .

Observation  Only “explosive” caldera-forming eruptions (associated to evolved magmas) are

simulated here. However, calderas can also result from lateral migration of magma and, in

consequence, can be produced without the extrusion of magma through the ring faults. This

second possibility, normally associated to magmas of more primitive compositions (basalts), is

not considered in this thesis.

Modelling of caldera-forming eruptions involves the solution of a fluid-structure

interaction problem in which the fluid (magma) can be either incompressible (when non-

vesiculated) or compressible (when vesiculated). The general procedure and the staggered

algorithm proposed here to solve such kind of problems have already been widely discussed in

section 4.3. Three different meshes (fluid, block and background) are required in the

simulations. The (moveable) mesh of the fluid is used to solve the ALE Navier-Stokes equations

while the other two, which do not vary and can be as coarse as desired, are auxiliary. The mesh

of the fluid is considered to be unacceptable when any of its linear triangular elements has an

angle lower than 10º or greater than 160º. Every time that this critical condition of distortion is

attained a new mesh is automatically generated by the program and the interpolation of nodal

variables onto the new mesh is performed. The mesh of the block defines its geometry and,

obviously, moves with a velocity bu . This mesh is used every time that a remeshing is

performed to check whether a node of the new generated mesh of the fluid belongs to the

fluid/structure interface or not. Finally, the purpose of the fixed background mesh is just to

check whether the points of the structure belong to some element of the background mesh in

order to detect shocks of the block against the walls of the chamber and, in consequence, to

determine the end of the simulation.

                                                          

1 Recent studies [Gudmundsson et al., 1997; Gudmundsson, 1998] on stress field generating ring faults in

volcanoes have suggested that horizontally elongated (sill-like) chambers offer the most suitable stress

configuration for the initiation of ring faults. The geometries considered here have an horizontal to vertical

aspect ratio in agreement with those suggested by these previous studies.
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5.4.1 Non-Vesiculated Magma

Consider first, as a first approach, the simplest case in which the magma within the

chamber is non-vesiculated and, therefore, behaves as an incompressible fluid1. Results for the

elliptical chamber are shown in figures 5.4.2 to 5.4.7. The whole simulation requires up to 6

different meshes for the fluid (i.e. 5 remeshings). Figure 5.4.2 illustrates the different domains

(fluid, block and background) as well as its meshes at three different time instants. Figure 5.4.3

shows views of 5 different meshes for the fluid. Figures 5.4.4 to 5.4.6 present some numerical

results (pressure contours, streamlines, contours of mesh velocity norm and contours of velocity

norm) at different time instants. A characteristic feature of the process is that, as the eruption

proceeds, a big central vortex (and secondary small ones) develops at the outermost part of the

chamber, just below the entrance of the conduit. This phenomena is illustrated in figure 5.4.7.

The vortex is formed because the non-slip condition at the fluid/structure interface induces a

tangential slide2. Results for the cylindrical chamber are qualitatively equal to those of the

elliptical one and are presented in figures 5.4.8 to 5.4.13. In this case, the simulation requires 9

different meshes for the fluid (i.e. 8 remeshings).

Figure 5.4.14 shows the subsidence of the block and the eruption rate plotted versus

time. As soon as the caldera collapse starts, the velocity of the subsiding block increases rapidly

downwards due to buoyancy effects. However, viscous forces and as well as the pressure

exerted by the magma over the block rapidly compensate the density differences and, in

consequence, the net force acting over the block becomes nearly zero. The result is that the block

subsides at an approximately constant “terminal” velocity3. In the particular cases considered,

these “nearly steady” velocities are 0.55 m/s for the elliptic geometry and 0.7 m/s for the

cylindrical one. The nearly constant velocity of subsidence is maintained during most of the

eruptive process and only ceases during the last phase of the eruption, when the block begins to

stop before shocking against the walls of the chamber. A consequence of this kinematic

behaviour is that the eruption rate presents a rapid increase, a plateau which corresponds to the

“constant fall velocity” phase and, finally, a relatively sudden decrease. This numerical

prediction is in excellent qualitative agreement with the eruptive intensities observed (or

indirectly inferred) during caldera-forming eruptions.

                                                          

1 The much more realistic situation in which part of the magma chamber is vesiculated at the onset of the

collapse (or vesiculates during it) is considered later, in section 5.4.2. However, note that the absence of gas

within the chamber does not necessarily imply that the caldera-forming eruption is non-explosive.

2 Note the similarities with the driven cavity flow. See section 4.4.1.

3 The kinematic behaviour is, in fact, quite similar to that of the Stokes problem. See section 4.4.5.
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Figure 5.4.2. Geometry and space discretisation for the elliptical chamber at three different time

instants. Left column: illustration of the different domains: fluid (dark grey), block (grey) and

background (white). Right column: space discretisations (3 different non-matching meshes at any

time instant). The corresponding time instants are, form top to bottom, t=0, t= 8min and t=16min.
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Figure 5.4.3. From top to bottom: views of the fluid’s meshes 1, 2, 3, 4 and 6. The corresponding

time instants at which these meshed are generated are t=0, t=4.5min, t=8min, t=11min and t=16min

respectively.
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Figure 5.4.4. Numerical results at t= 2min. Results shown are, form top to bottom, pressure

contours, streamlines, contours of mesh velocity norm and contours of velocity norm.
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Figure 5.4.5. Numerical results at t= 9min. results shown are, from top to bottom, pressure

contours, streamlines, contours of mesh velocity norm and contours of velocity norm.
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Figure 5.4.6. Numerical results at t= 16min. Results shown are, from top to bottom, pressure

contours, streamlines, contours of mesh velocity norm and contours of velocity norm.



5.4 Caldera-Forming Eruptions

5-55

  

  

Figure 5.4.7. Zoom of the streamlines at the external (rightmost) part of the chamber to

illustrate the development of a big central vortex as the eruption proceeds. The

corresponding time instants are t= 2min (top left), t= 7min (top right), t= 12min (bottom left)

and t=16min (bottom right). Pictures are not on the same scale.



5.4 Caldera-Forming Eruptions

5-56

 

  

 

  

Figure 5.4.8. Geometry and space discretisation for the cylindrical chamber at three different time

instants. Left column: illustration of the different domains: fluid (dark grey), block (grey) and

background (white). Right column: space discretisations (3 different non-matching meshes at any

time instant). The corresponding time instants are, form top to bottom, t=0, t= 12min and t=23min.
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Figure 5.4.9. From top to bottom: views of the fluid’s meshes 1, 2, 5, 7 and 9. The

corresponding time instants at which these meshes are generated are t= 0, t= 3.5min, t=

11.5min, t =17.5min and t= 24min respectively.
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Figure 5.4.10. Numerical results at t= 2min. Results shown are, form top to bottom, pressure

contours, streamlines, contours of mesh velocity norm and contours of velocity norm.
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Figure 5.4.11. Numerical results at t= 15min. Results shown are, form top to bottom,

pressure contours, streamlines, contours of mesh velocity norm and contours of velocity

norm.
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Figure 5.4.12. Numerical results at t= 24min. Results shown are, form top to bottom,

pressure contours, streamlines, contours of mesh velocity norm and contours of velocity

norm.
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Figure 5.4.13. Zoom of the streamlines at the external (rightmost) part of the chamber to

illustrate the development of a big central vortex as the eruption proceeds. The

corresponding time instants are t= 2min (top left), t= 10min (top right), t= 19min (bottom

left) and t=24min (bottom right).
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Figure 5.4.14. Top: subsidence (displacement) of the block plotted versus time for the elliptical and

cylindrical chambers. The maximum subsidence allowed is indicated by discontinuous lines.

Bottom: eruption rate plotted versus time. Numerical simulations predict an initial rapid increase

of the eruptive intensity, a plateau and a rapid decrease at the final stages. Oscillations during the

plateau phase are a numerical effect originated by the remeshings.
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Figure 5.4.15 shows the total erupted mass and the erupted mass fraction plotted versus

time for the elliptical and cylindrical chambers. Simulations suggest that once caldera collapse

has started it will tend to empty most of the chamber. However, it is important to point out that,

in the simulations, the end of the eruption is given only by a geometrical criteria, that is, the

process stops when the subsiding block shocks against the bottom walls of the chamber1. It

represents an extreme (but not unrealistic) case in which the subsidence is the maximum

allowed, most of the magma is extruded, and the original magma chamber is completely

destroyed. In natural systems, however, the process may stop at any previous instant by two

main reasons. Firstly, it has been assumed that the chamber is filled with a chemically

homogeneous magma lighter than the environment. Nevertheless, one could perfectly imagine

a chemically heterogeneous chamber (stratified in density) having a magma, at its bottom,

denser than the subsiding block. Such a framework would result in a withdrawal of the

uppermost parts of the chamber (those filled with lighter magma) and a subsequent stop of the

eruption once the denser magma, initially placed at the bottom of the chamber, begins to be

extruded, i.e. when the weight of the magma column within the ring fault and the viscous

forces could overcome the weight and the inertia of the subsiding block which, at the end of the

eruption, would float over the denser remainder magma2. The second possibility to stop the

process could be a closure of the conduit originated either by a change in the surrounding stress

field or because the ring faults are not, in fact, completely vertical fissures. In fact, the

inclination of dipping inwards faults could perfectly result in a closure of the fault induced by

the subsidence of the block downwards.

A final remark. Some results of the simulations (velocity of subsidence, eruption rate,

formation of vortexes, etc.) are, obviously, very dependent on the magma viscosity. To envisage

this dependency, other simulations considering different magma viscosities of 103, 104 and 105

Pa.s have been also carried out. Some interesting results, only for the case of the elliptical

geometry, are illustrated in figures 5.4.16 to 5.4.18. As expected, the higher is the magma

density the lower is the “terminal” velocity of subsidence and, therefore, the longer is the

duration of the eruption. However, it can be observed from these figures how the cases with

viscosities 103 and 104 are very similar. This non-intuitive result is explained because the term

which accounts for the forces of the fluid over the structure has two contributions, one due to

pressure and another due to viscous forces (traction) which are proportional to viscosity (see

equation (4.3.4) ).

                                                          

1 For the particular geometries considered, it occurs when the subsidence is 475m for the elliptical chamber

and 1000m (the whole initial chamber thickness) for the cylindrical.

2 In fact, field evidences show that, in many cases, caldera-forming eruptions end with the emplacement of

rhyolitic non-vesiculated (i.e. denser) lava domes along the ring fault.
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Figure 5.4.15. Total erupted mass (top) and erupted mass fraction plotted versus time for the

elliptical and cylindrical chambers.
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Figure 5.4.16. Results for the elliptical chamber considering different magma viscosities of

103, 104 and 105 Pa.s. Top: subsidence (displacement) of the block plotted versus time.

Bottom: eruption rate plotted versus time.
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Figure 5.4.17. Total erupted mass (top) and erupted mass fraction (bottom) plotted versus

time for the elliptical chamber and considering different magma viscosities of 103, 104 and

105 Pa.s.
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Figure 5.4.18. Zoom of the streamlines at the external part of the chamber, just below the

entrance of the conduit. Results are for different magma viscosities of 103 Pa.s (top), 104 Pa.s

(middle) and 105 Pa.s (bottom). Assuming that ub is 0.5 m/s, the corresponding Reynolds

numbers are 60, 6 and 0.6 respectively. The cases with viscosities 103 Pa.s and 104 Pa.s are

very similar. However, no vortex is formed when the viscosity is 105 Pa.s.

For viscosities in the range or lower than 104 the pressure contribution dominates over the

viscous one and, therefore, variations of viscosity within this range produce only minor

corrections to the force which acts over the block. In contrast, for viscosities in the range or

greater than 105 the viscous contribution becomes comparable (or greater) than that due to

pressure and the terminal velocity (i.e. the eruption rate) reduces substantially. It should be

noted that all the simulations performed underestimate the force that acts over the falling block

due to the cutting of the computational domain (remind that only the lowermost part of the

conduit is considered). The viscous contribution at the uppermost part of the conduit, where

magma viscosity increases notably due to volatile exsolution, would lead to a lower terminal



5.4 Caldera-Forming Eruptions

5-68

velocity and, hence, to a longer eruption. The results obtained here still apply but, in a real case,

would probably be observed in a much longer time scale.

5.4.2 Partially Vesiculated Magma

Consider now the more realistic case in which magma is partially vesiculated. Only

results for the elliptical chamber geometry are presented here as example. Pressure at the

computational outlet is set to lithostatic (90 MPa for this particular geometry and host rock

density). Under these conditions and, for a rhyolitic magma composition, the minimum volatile

(water) content required to ensure vesiculation is 3.9% in weight. Two cases, named A and B,

will be contemplated. In case A the amount of volatiles is 4% in weight ( 04.0=W ). This value is

close to the minimum so that only part of the conduit is vesiculated at the beginning of the

eruption. The exsolution level is initially located about 300m above the top of the chamber1. In

case B the amount of volatiles is 4.25% in weight ( 0425.0=W ) and the exsolution level is placed

initially at about 200m below the chamber top (23% of the chamber volume is initially

vesiculated). In both cases the whole simulation of the eruption requires up to 6 different

meshes for the fluid (i.e. 5 remeshings). Figures 5.4.19 and 5.4.20 present some results (contours

of density and streamlines) for case A at different time instants. Same results for case B are

illustrated in figures 5.4.21 and 5.4.22. In general, the behaviours (erupted mass, kinematics of

the block, etc.) are quite similar to the case presented in the previous section, where magma is

assumed to be non-vesiculated. Figure 5.4.23 plots the subsidence of the block and the temporal

evolution of the exsolution level for cases A and B. Finally, the total erupted mass and the

erupted mass fraction is depicted in figure 5.4.24. A characteristic feature of the simulations is

that the exsolution level deepens (shifts downwards) with a velocity similar to that of the

subsiding block. This phenomena is illustrated in figure 5.4.23 (see also figures 5.4.19 to 5.4.22).

Note that when the chamber is vesiculated, as it occurs in case B, the exsolution surface2 is not

horizontal because the movement of subsidence causes a pressure gradient so that pressure is

greater “below the block” and lower at the “outermost part of the chamber”, below the entrance

of the conduit. In consequence, and as reflected in figure 5.4.22, the level of exsolution (i.e. the

exsolution surface) is not horizontal at all.

                                                          

1 The top of the chamber is, by definition, the point which at t = 0 is closer to the Earth’s surface. Note that

for elliptical chambers this point is located at a radial coordinate r = 0 (i.e. at the symmetry axis). Note also

that, in caldera-forming eruptions, the vertical coordinate of this point varies due to the subsidence of the

block.

2 The exsolution surface is determined by the condition cPP =
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Non-vesiculated (incompressible) magma

Figure 5.4.19. Case A. Results at t = 15min. Top: contours of density. Bottom: streamlines

Non-vesiculated (incompressible) magma

Exsolution level
        position

Figure 5.4.20. Case A. Results at t = 30min. Top: contours of density. Bottom: streamlines.



5.4 Caldera-Forming Eruptions

5-70

Non-vesiculated (incompressible) magma

Exsolution level
        position

Figure 5.4.21. Case B. Results at t = 10min. Top: contours of density. Bottom: streamlines.

Non-vesiculated (incompressible) magma

Exsolution level
        position

  Equal
pressure

Figure 5.4.22. Case B. Results at t = 22.5min. Top: contours of density. Middle: streamlines.

Bottom: pressure contours.
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Figure 5.4.23. Top: subsidence (displacement) of the block plotted versus time for cases A

and B. The final subsidence is the maximum allowed. Bottom: position of the exsolution

level. The origin is the position of the chamber top at t = 0. The (variable) position of the

chamber top is also indicated by discontinuous lines.
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Figure 5.4.24. Total erupted mass (top) and erupted mass fraction (bottom) for the cases A

and B respectively.
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Abstract

This chapter contents some examples to illustrate the applicability of the

numerical model developed in order to compute viscoelastic ground

deformations in volcanic areas. Firstly, the general procedure for an

axisymmetrical problem is outlined. Secondly, a parametric comparison

between the analytical (point source) and the numerical (extended source)

versions of the method is performed. The assimilation of the pressure source

with a point source is a necessary requirement to derive analytical solutions,

and thus, analytical methods have always an implicit error. The comparison

allows to quantify this error and constrains quantitatively the range of

applicability of these widely used analytical procedures. In section 6.3, the

model is used to simulate the 1982-1984 uplift episode of the Campi Flegrei

volcanic field. Finally, a 3D application to Tenerife island is done in order to

predict which would be the effect of a hypothetical pressurisation of the

present shallow magmatic system. Due to the numerous simplifying

hypothesis, this practical example should be regarded only as a first

approach but, however, gives some insights to improve the design of the

monitoring system. It also points out how, at least for this particular case,

the use of a 2D (axisymmetric) model with an approximated conical

topography proportionates also similar deformation values.
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6.1 The Axisymmetrical Problem

This section considers an axisymmetrical example to illustrate the application of the

numerical model herein proposed in order to compute viscoelastic ground deformations in

volcanic areas. The numerical procedure as well as the different rheological models, named 1, 2,

and 3, been already exposed in section 4.5.2 (table 4.5.1 summarises the properties of these three

viscoelastic rheologies commonly assumed for the crust). Figure 6.1.1 illustrates schematically

the general axisymmetric problem in which an ellipsoidal magma chamber of semi axis a  and

b  is buried at depth chaH  below the Earth’s surface. Obviously, topographic effects such as, for

instance, the presence of a volcanic edifice, can be also considered. The media is characterised

by the elastic Lamé parameters λ  and µ  as well as by the type of viscoelastic relaxation.

Hcon
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 b
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Volcanic Ediffice

Free Surface

Computational
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  0

Figure 6.1.1. Schematic illustration of a general axisymmetrical problem. An ellipsoidal magma

chamber with semi-axis a  and b  is located at depth chaH  below the Earth’s surface. The size to

depth ratio is defined as ccha hbHbb =+≡ )(ε . Optionally, a volcano with height conH  and

average slope of the flanks α  can be also considered (in particular, if 0=α  the topographic effects

are neglected). The chamber has an overpressure P∆  and the crust is characterised by the Lamé

parameters λ  and µ  that, optionally, may vary with depth. Symmetry axis is located at 0=r .

Boundary conditions are as follows. Radial displacement along the symmetry axis is set to zero.

The surface of the Earth is a free surface whereas displacements are fixed at both basal and lateral

boundaries. These boundaries are located far away from the chamber in order to diminish the

influence of boundary conditions on the solution.
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Boundary conditions are always imposed in terms of the pressure increase inside the

chamber P∆ 1. Displacements are prescribed to zero in both basal and lateral faces of the

domain while only the radial component is fixed to zero along the symmetry axis. The solution

of this general problem allows to determine viscoelastic displacements and stresses within the

domain at any time instant.

To illustrate the effect of the kind of relaxation consider first the case of a spherical

magma chamber with Km1== ba  and placed at 3Km below the surface. For simplicity,

topography is neglected and the Lamé parameters are constant and equal to GPa== µλ

GPa75=E  and 25.0=ν ). Despite in this example all the parameters are arbitrarily chosen and,

hence, do not represent any specific real situation, their values are close to those commonly

found in nature. Two different rheological responses are considered in a media composed by a

layer of thickness 10 Km overlying a half-space.

Figure 6.1.2. Spatial discretisation of the problem. The mesh is composed of 21457 triangular

elements (11032 nodal points) and refined near the chamber and at the surface. Boundaries

with prescribed displacements are located 25Km away from the chamber in order to make

negligible the influence of boundary conditions on the solution.

                                                          

1 For simplicity, only constant overpressures will be considered here. However, if overpressures are time-

dependent, the only change that must be taken into account is to take the Laplace transform of this

boundary condition accordingly.
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In case A the layer undergoes relaxation type 2 (i.e. the upper crust behaves as a

Maxwell solid in both the deviatoric and the normal stresses) while in case B the layer follows

relaxation type 3 (i.e. the upper crust behaves as a Maxwell solid in the deviatoric stresses and

as a SLS in the normal ones). The underlying half-space simulates the lower crust and is always

considered to relax following relaxation type 1 (i.e. behaves as a Maxwell solid in the deviatoric

stresses and as an elastic material in the normal ones).

Figure 6.1.2 shows the spatial discretisation of the problem. The mesh is made up with

21457 triangular linear elements (11032 nodal points) and refined both near the Earth’s surface

and at the vicinity of the magma chamber.

Figures 6.1.3 and 6.1.4 show the obtained displacements around the chamber and at the

Earth’s surface respectively for different time instants. Time is given in terms of the

characteristic time τ 1. Note from these figures how relaxation 2 induces higher deformations

than relaxation 3. However, the type of relaxation does not change significantly the deformation

pattern. Figure 6.1.5 shows the components of the stress tensor around the chamber at t=0

(elastic stresses) and after a characteristic time. Despite stresses are time dependent, it is

difficult to appreciate these changes from this figure. Nevertheless, these changes can be

appreciated from figure 6.1.6, where the stress component Srr is plotted (at the Earth’s surface)

versus radial distance. The rest of the stress components show a similar trend at the surface

except, of course, Srz which is always zero (free surface).

                                                          

1 The relation between this characteristic time and the physical time depends on the viscosity of the media.

See equation (4.5.22).
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6.2 A Comparison between Point and Extended Sources.
Constrains on the Analytical Solutions

So far, all the models available in the literature to compute viscoelastic ground

deformations in volcanic areas are analytical, i.e. they assume both a point source of pressure

and a flat surface. Despite the advantages of these models, it is well known from the purely

elastic case that the assimilation of the magma chamber with a point of dilatation implicitly

assumes that the dimension of the body is small compared to its depth. In other words, the

applicability of these analytical solutions is constrained to those cases where 0→ε , being

chb /≡ε  the chamber size to depth ratio (see figure 6.1.1). The objective of this section is to

compare analytical (point source) and numerical (extended source) solutions at surface in order

to constrain and quantify the error produced by the point source hypothesis. Surface

displacements produced by the viscoelastic response depend on several parameters such as

size, depth and shape of the chamber. As in [Folch et al., 2000], different tests have been

performed in order to evaluate the influence of these parameters on the viscoelastic solution as

well as the validity of the point source hypothesis. In each test, all the parameters except the one

which is under study are fixed to the “standard” values in order to analyse the effect of the

changing parameter on the solution. Whichever the case, the elastic Young modulus is 75GPa,

the Poisson ratio is 0.25 (then both Lamé parameters are 30GPa), the overpressure inside the

magma chamber is 10MPa and the relaxation is of type 2. The standard values employed in the

tests are summarised in table 6.2.1. Viscoelastic solutions are given in terms of the characteristic

time τ, so that some value for the viscosity of the crust must be necessarily assumed for practical

applications.

Parameter Standard value

Chamber depth )( bHh chac += 3 Km

Major axis a 1 Km

Minor axis b 1 Km

Slope of the volcano edifice α 0º

Table 6.2.1. Standard values used in the tests. In all the cases, the Lamé

parameters are 30GPa, the chamber overpressure is 10MPa and the relaxation

is type 2.

Numerical solutions are obtained as exposed in section 4.5.2. The meshes used in the

tests, quite similar to that shown on figure 6.1.2, are made up with bilinear triangular elements

and, on average, are composed of 20000 elements (10000 nodal points). Analytical solutions are
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obtained using the method originally proposed by Dr. J.B. Rundle [Rundle, 1980; Rundle, 1982]

and successively refined by his co-workers (e.g. [Fernández and Rundle, 1994; Fernández et al.,

1997; Fernández et al., 1998]). Present versions of this method are, doubtless, the most complete

analytical methods to compute gravity changes and viscoelastic deformations due to a

magmatic intrusion in a multilayered crust. Viscoelastic solutions are obtained from the elastic

ones employing the correspondence principle together with the Prony series method1. In turn,

elastic solutions (at surface) for the case of a stratified half-space composed by homogeneous

layers are derived using the dislocation theory and the propagator matrix technique (see the

above references for a major description). Analytical results have been obtained using vis2vis, a

program developed and written by Dr. J. Fernández. It has been checked that numerical errors

in the elastic solution at surface are in the range, or lower than, 1/1000 by performing a

remeshing and moving aside the margins of the computational domain. This is an important

point because, as the objective is to quantify the errors in the point source hypothesis by

comparing analytical and numerical results, one must be sure that numerical solutions are

“error free”. With this margin of tolerance, the only numerical errors in the viscoelastic solution

will come from the procedure employed to perform the Laplace inversion (the Prony series

method). However, note that this errors are, in principle, the same for both analytical and

numerical procedures. In summary, assuming that the obtained numerical results are “exact”,

the difference numerical-analytical provides in a straightforward way the absolute error of the

point source hypothesis.

6.2.1 Influence of the Size to Depth Ratio

Firstly, the effect of the size to depth ratio ε has been analysed considering two series of

tests in which the size of a spherical chamber as well as its depth are respectively varied2. The

rest of the parameters involved are held constant. Figures 6.2.1 and 6.2.2 show, respectively,

vertical and radial numerical (i.e. extended source) and analytical (i.e. point source)

displacements at surface for chambers with radius of 0.5, 1.0, 1.5 and 2 Km. Since in all the cases

chamber depth is hc=3Km, the corresponding values of ε are 0.16, 0.33, 0.50 and 0.66.

Analogously, figures 6.2.3 and 6.2.4 show the same results but for chambers with a constant

radius b=a=1Km and located at changing depths of 3.0, 6.0 and 9.0 Km. The point to point

difference between numerical and analytical results (i.e. the absolute error of the analytical

                                                          

1 Note that, in fact, the method developed in this work is nothing but a “numerical version” of this

analytical procedure.

2 Analytical solutions depend on the intensity of the source which, in turn, can be related to the chamber

size. In consequence, and despite the point source hypothesis, these analytical solutions are, in fact,

dependent on the size of the chamber.
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procedure) is reflected on figures 6.2.5 and 6.2.6. It can be observed from these figures how, as

in the elastic case (e.g. [Dieterich and Decker, 1975]), analytical and numerical solutions tend to

converge for small values of ε but, in contrast, when ε increases appreciable discrepancies

appear. For small ε values ( 25.0≤ε ), the differences are negligible (in the millimetric range or

even lower), for medium ε values ( 5.025.0 ≤≤ ε ) fall in the centimetric range, being 5-20% of

the maximum displacement in both radial and vertical components and, finally, for large ε

values ( 5.0≥ε ) the discrepancies are greater than 30% and can have, in some cases, an absolute

value in the metric range. However, it should be pointed out that, in nature, such large values

of ε are uncommon (if not unexistent) so that, for most practical cases, the point source

hypothesis is likely to induce relative errors in the range or lower than 20%. When ε is small, the

absolute value of the difference between both solutions is very similar to that of the elastic case

(the solution at t=0) but, as ε approaches to 1, this absolute value increases with time.

Nevertheless, it can be observed how, whichever the ε value, the relative error decreases for

long values of the characteristic time despite the absolute difference between both solutions

may increase.
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Figure 6.2.1. Comparison between numerical (extended source) and analytical (point source) vertical displacements plotted versus radial distance to the symmetry axis. Results

for spherical chambers with hc=3Km and different radius of 0.5, 1.0, 1.5 and 2 Km from left to right respectively. Note the different predictions of both procedures as ε increases.
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Figure 6.2.2. Comparison between numerical (extended source) and analytical (point source) radial displacements plotted versus radial distance to the symmetry axis. Results

for spherical chambers with hc=3Km and different radius of 0.5, 1.0, 1.5 and 2 Km from left to right respectively. Note the different predictions of both procedures as ε increases.
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Figure 6.2.3. Comparison between numerical (extended source) and analytical (point source)

vertical displacements uz plotted versus radial distance. Results for chambers with a=b=1Km and

located at different depths of hc=3, 6 and 9 Km from top to bottom respectively.
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Figure 6.2.4. Comparison between numerical (extended source) and analytical (point source) radial

displacements ur plotted versus radial distance. Results for chambers with a=b=1Km and located at

different depths of hc=3, 6 and 9 Km from top to bottom respectively.
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Figure 6.2.5. Top: numerical (extended source) minus analytical (point source) vertical displacements uz plotted versus radial distance and for different characteristic times.

Results for spherical chambers with hc=3Km and different radius of 0.5, 1.0, 1.5 and 2.0 from left to right respectively. Bottom: the same for radial displacements ur.
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Figure 6.2.6. Left: numerical (extended source) minus analytical (point source) vertical

displacements uz plotted versus radial distance for different characteristic times. Results for

spherical chambers with a=b=1Km placed at different depths of hc=3, 6 and 9 Km from top to

bottom respectively. Right: the same for radial displacements ur.
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6.2.2 Influence of the Topography

Next series of tests consider the effect of the topography. Obviously, topographic

features are an exclusive characteristic of each particular volcanic complex but, as a first

approximation, one can assume axisymmetrical volcanoes with different average slopes of the

flanks. To date, analytical solutions are constrained to flat surfaces so that, in order to estimate

the error produced when topography is neglected, numerical results should be compared with

the case º0=α  (in this case, if ε is “sufficiently small”, both solutions coincide). Figure 6.2.7

shows numerical vertical and radial displacements at surface considering different volcanic

edifices with an average slope of 0º (flat surface), 10º, 20º and 30º (the heights of these volcanic

edifices are, respectively, 0m, 1000m, 2000m and 3000m). In all cases, ε=0.33.

[Cayol and Cornet, 1998] have recently pointed out that, in the case of an elastic rheology,

the interpretation of ground-surface displacements with half-space models (flat surface) can

lead to erroneous estimations and that the steeper is the volcano, the flatter is the vertical

displacement field. As observed from figure 6.2.7, these results are dramatically emphasised in

the case of viscoelastic rheologies, where topography changes in a very important way both the

magnitude and the pattern of the displacement field. Thus, neglecting the topographic effects

may, in many cases, introduce an error greater than the one implicit in the point source

hypothesis.

Observation  The results shown in figure 6.2.7 are obtained using a constant value hc=3Km, i.e.

measuring the depth of the chamber from the “sea level”. This is the standard procedure when

topographic effects are considered. Another possibility could be to measure the depth of the

chamber from the tip of the conical volcanic edifice, i.e. considering a constant value

hc+Hcon=3Km (see figure 6.1.1). Despite being less common, this possibility has been also

considered. Results are shown in figure 6.2.8.
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Figure 6.2.7. Numerical vertical displacements uz (upper row) and radial displacements ur (lower row) versus radial distance considering topographic effects. In all the cases,

the chamber is spherical with a=1Km and hc=3Km but considering a volcanic edifice with average slope of the flanks of 0º, 10º, 20º and 30º from left to right respectively.
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Figure 6.2.8. Numerical vertical displacements uz (upper row) and radial displacements ur (lower row) versus radial distance considering topographic effects. In all the cases,

the chamber is spherical with a=1Km and hc+Hcon=3Km. Volcanic edifices with average slope of the flanks of 0º, 10º, 20º and 30º are considered.
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6.2.3 Influence of the Chamber Shape

The last aspect tackled concerns the effect of chamber shape. In these series of tests,

magma chambers are ellipsoidal, placed at 3Km depth and have a variable major axis a (the

minor axis is always b=0.5Km). Note that, whichever the case, the value of ε is always the same

(ε=0.16). Figures 6.2.9 and 6.2.10 show, respectively, vertical and radial displacements at surface

for both numerical and analytical procedures and for chambers with major axis of 0.5, 1.0, 1.5

and 2Km (the corresponding eccentricities of the ellipsoids are 0, 0.86, 0.94 and 0.96). Finally,

figure 6.2.11 reflects the differences between analytical and numerical results. In each case,

analytical solutions have been obtained considering spherical sources with an equal volume

(the equivalent radius are 0.5, 0.8, 1.04, and 1.26 respectively). For spherical chambers, analytical

and numerical solutions give approximately the same result since ε is small. However,

important discrepancies are observed when the eccentricity increases. As observed from the

figures, differences higher than 100% can appear when the eccentricity of the chamber is

neglected.
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Figure 6.2.9. Top: numerical vertical displacement at surface plotted versus radial distance. Results for ellipsoidal chambers with hc=3Km, minor axis b=0.5Km and different

major axis a of 0.5, 1.0, 1.5 and 2.0 Km from left to right respectively. Bottom: same results using the analytical method but considering spherical sources with equal volume.
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Figure 6.2.10. Top: numerical radial displacement at surface plotted versus radial distance. Results for ellipsoidal chambers with hc=3Km, minor axis b=0.5Km and different

major axis a of 0.5, 1.0, 1.5 and 2.0 Km from left to right respectively. Bottom: same results using the analytical method but considering spherical sources with equal volume.
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Figure 6.2.11. Top: numerical (extended source) minus analytical (point source) vertical displacements uz plotted versus radial distance. Numerical results are for ellipsoidal

chambers with hc=3Km, minor axis b=0.5 and different major axis a of 0.5, 1.0, 1.5 and 2.0 from left to right respectively. For each case, analytical results assume spherical

sources with and equal volume. Bottom: the same but for radial displacements ur.
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6.3 The 1982-1984 Campi Flegrei Uplift

The Campi Flegrei volcanic field is a roughly circular caldera complex of about 12 Km

in diameter which is located near Naples, southern Italy. This caldera was formed about 35000

years ago after the Ignimbrite Campana eruption. Since then, the subsequent volcanic activity

has been explosive and intracaldera, being the 1538 Monte Nuovo eruption the last eruptive

event. Observations suggest that vertical ground movements have been operating at least

during the last 2000 years [Luongo et al., 1991]. During the period January 1982-September 1984

the area experimented a continuous uplift accompanied with seismic activity characterised by

earthquakes of magnitudes up to 4.0. The average vertical growing rate during this period was

2 mm/day and the displacement reached a maximum value of 160 cm at the town of Pozzuoli,

located at the centre of the caldera. The uplift profile decreased smoothly outwards from

Pozzuoli and practically vanished at about 6 Km, at the edge of the caldera [Berrino et al., 1984].

This dynamic evolution of the area was precisely monitored by a network of apparatus that

measures ground deformations in Campi Flegrei since 1970 (see figure 6.3.1).

Figure 6.3.1. General view of the area of Campi Flegrei. The caldera is about 12 Km in

diameter, nearly circular and with the centre located at the town of Pozzuoli. Dots indicate

the monitoring system which measured the 1982-1984 ground uplift episode. Extracted from

[Berrino et al., 1984].
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Figure 6.3.2 shows the measured vertical displacements versus distance during this

uplift episode. This uplift episode pointed out that modelling of ground deformations

considering elastic properties for the crust cannot always reproduce the observed uplifts unless

unrealistic high pressures are assumed, and gave rise to a series of models with viscoelastic

rheologies (see section 2.4.2 for major details).

Figure 6.3.2. Measured vertical displacements (in cm) versus distance along the coastline (in

Km) during the January 1982-June 1984 uplift episode. The reference level is January 1982.

The point of maximum uplift centres on the town of Pozzuoli, and the uplift virtually

vanishes at the edge of the caldera, about 6-7 Km away from its centre. Extracted from

[Berrino et al., 1984].

To illustrate the applicability of the model herein proposed with a real natural example,

this section models the 1982-1984 uplift event following the original work of [Bonafede et al.,

1986; Bonafede, 1990]. It is important to keep in mind that, due to the assumptions and

simplifications of the model (axial symmetry, depth independent properties, neglection of faults

and discontinuities, etc.) one can expect only to reproduce the measured data qualitatively.

Geological evidence in the Campi Flegrei area suggests a very shallow, nearly spherical

magma chamber having 1Km of radius and with its top located at 2Km depth beneath the town

of Pozzuoli [Bonafede et al., 1986]. Thus, the geometry has been discretised considering a mesh

very similar to that shown on figure 6.1.2. On the other hand, drillings and a variety of

geophysical investigations have provided information on the properties of rocks underneath the
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area to a depth of about 4Km [Berrino et al., 1984]. These properties are summarised in table

6.3.1.

Parameter Value

Lamé parameter λ ( a ) 7 GPa

Lamé parameter µ ( a ) 5 GPa

Poisson ratio ν ( a ) 0.3

Young modulus E ( a ) 12.9 GPa

Viscosity of the crust η ( b ) 1016 Pa.s

Characteristic time ( c ) 46 days

Table 6.3.1. Values used in the analysis. (a) Extracted from [Berrino et al., 1984]. (b)

Extracted from [Bonafede et al., 1986]. (c) Estimated using equation (4.5.22).

Migration of magma from depth is believed to be the triggering mechanism of the

Campi Flegrei inflation1. Following [Bonafede et al., 1986] a pressure increase of 5MPa has been

assumed here. In the model, this increase of pressure is assumed to be instantaneous and

produced in January 1982. The best fit has been obtained considering a rheology with relaxation

type 2 (the crust behaves as a Maxwell solid in both normal and deviatoric stresses). The

characteristic time of the process has been estimated to be 46 days. Figure 6.3.3 shows the

obtained vertical uplift versus distance for different time instants. Finally, table 6.3.2 compiles

the differences between measured data and results of the model at the point of maximum uplift

(Pozzuoli). These results reflect how, at least qualitatively, a viscoelastic response of the media

can account for the 1982-1984 Campi Flegrei ground deformation event.

                                                          

1 In fact, there is an open debate on whether the source of pressure is an injection of magma or a refilling of

the shallow hydrothermal system. However, this distinction is not important for our purposes because

both effects produce a similar effect: an increase of pressure at certain depth.
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Figure 6.3.3. Numerical results considering a relaxation type 2. Vertical uplift at surface (in

cm) versus distance to Pozzuoli (in Km) for different characteristic times τ. Temporal origin

(i.e. t=0) is January 1982 and the estimated characteristic time is 46 days. Note how results

reasonably agree with the measured data (see figure 6.3.2 for comparison).

Measured data Model results

Date Days after

January 82

Time after

January 82

Maximum

uplift (cm)

Time after

t=0

Maximum

uplift (cm)

January 83 365 7.9 τ 34.6 8 τ 54.0

June 83 515 11.1 τ 65.4 11 τ 81.1

September 83 605 13.1 τ 89.2 13 τ 97.6

December 83 695 15.1 τ 113.3 15 τ 112.0

March 84 785 17.0 τ 145.8 17 τ 124.5

June 84 875 19.0 τ 163.7 19 τ 135.0

Table 6.3.2. Comparison between measured data and predictions of the model at the surface

point of maximum uplift (at r=0). Temporal reference is January 1982. The assumed

characteristic time is τ=46 days. Measured data are obtained from [Berrino et al., 1984].
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6.4 A 3D Application to Tenerife Island

Tenerife is the largest island of the Canary archipelago, where volcanism has occurred

over the last 20Ma. The island was originally constructed by fissure eruptions of basic magmas

[Fuster et al., 1968; Ancochea et al., 1990] but the posterior development of shallower magma

reservoirs led to eruptions of more evolved magmas and brought to the formation of a large

central volcanic complex (Las Cañadas edifice). At present, the central part of the island is

formed by a shield structure which culminates in a large depression1, known as Las Cañadas

Caldera, within which the most recent volcanic activity has built the Teide Pico-Viejo

stratovolcanoes [Martí et al., 1994]. The presence of a shallow magmatic system, including

phonolitic chambers, is inferred from the products of the most recent eruptions in the Teide

Pico-Viejo complex [Ablay et al., 1995; Ablay et al., 1998]. Figure 6.4.1 shows a location map for

Tenerife together with some relevant morphological aspects of the island.

Nowadays, the Teide Pico-Viejo volcanic complex is at rest and the only surface

manifestations of volcanic activity are fumaroles and thermal anomalies. The geodetic network

currently operating in Las Cañadas during the last years has not recorded neither gravity nor

deformation changes [Fernández et al., 1999]. The objective of this section is to use the

deformation model to estimate which deformation would undergo the island if an hypothetical

overpressurisation of the shallow magmatic system beneath Teide would take place. This

application may be interesting in terms of volcanic surveillance since can provide insights to

improve the present geodetic monitoring system. However, predictions of the model should be

considered only as a first approach to the real complex case because many of the parameters

involved are approximated in the model by indirect measurements (e.g. chamber shape and

depth, crustal rheology, etc.) or simply ignored (batimetry, presence of faults, etc.).

The media is assumed to be viscoelastic and to relax following relaxation type 2 (see

section 4.5.2). An important aspect concerns to crustal properties. In the case of Tenerife,

[Bosshard and MacFarlane, 1970] determined by means of seismic and gravity data that the

central part of the island is made up with three layers overlaying the mantle. Following this

idea and fitting the increasing amount of more modern data, [Fernández et al., 1999] have

recently obtained values for the elastic Lamé parameters and the thickness of the layers. A slight

variation of this model, shown in figure 6.4.2, is used here for computations.

                                                          

1 There is still an open debate concerning the origin of this depression. The most widely accepted theory

explains it as a consequence of a collapse caldera which partially destroyed the ancient volcanic edifice.

However, some authors support an alternative version according to which the depression was originated

by a series of huge landslides.
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Figure 6.4.1. Top: location map for Tenerife island. Topographic contour levels are shown

every 500 m starting from zero and both longitude and latitude are given in UTM

coordinates. Bottom: zoom of the central part of the island (Cañadas Caldera). Some

morphologic aspects of the island with specific names are also shown using abbreviations:

Icod Valley (IV), Orotava Valley (OV), Las Cañadas Caldera (LCC), Teide (T) and Pico-Viejo (PV)

volcanic shields, Diego Hernández (DH), Guajara (G), Ucanca (U) and the Lower Group (LG).

DH, G, U and LG are different parts of the caldera(s) wall.
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Figure 6.4.2. Schematic illustration (not on scale) of the crustal model used in computations.

Four horizontal layers with different elastic Lamé parameters are assumed. The mantle is

extended downwards to a distance zmin=-30Km, where no deformation is assumed to occur.

All the distances are given in m.

The 3D computational domain is a brick with the x and y axis orientated along the WE

and SN directions respectively. The z axis runs in the vertical direction (positive upwards) and

the origin of coordinates has been placed at the sea level, just below the peak of the Teide. The

1/100.000 scale topography of the island has been added over the uppermost face of the brick.

For simplicity, magma chamber is assumed to be a sphere with a radius of 1Km and with its top

located at 4Km below the peak of the Teide (i.e. at approximately 300m below the sea level). The

shape of the chamber is rather arbitrary, but its depth is deduced from petrological studies

[Wolf, 1987; Ablay et al., 1998]. Boundary conditions are imposed fixing to zero the displacement

field at the bottom and at the lateral boundaries. In order to make negligible the contribution of

these boundary conditions to the final solution, computational boundaries have been extended

far enough from the pressure source. Thus, the domain has lengths of 70, 60 and 30 Km in the x,

y and z directions respectively and almost the whole Tenerife island is covered. Figure 6.4.3

shows the topography of the area selected for computations. The uppermost part of the domain

is considered as a free surface1. Finally, an overpressure of 10MPa is considered within the

magma chamber.

                                                          

1 In fact, this face includes the island but also part of the sea. Since batimetry is not included, the sea is

treated as a solid material. However, this approach is not so bad as could apparently seem since is done

only at the most external parts of the domain, far away from the pressure source.
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Figure 6.4.3. Top: map showing the topography (height in m) of the area selected for computations.

Axis x and y are orientated WE and SN respectively, while axis z (not visible in the figure) runs

vertically. The origin of coordinates is located just below the peak of the Teide, at the see level.

Computational domain has a length of 70 Km in the x direction and 60 Km in the y direction so that

almost the whole island is covered. Bottom: zoom of the topography in Las Cañadas caldera area.
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Figures 6.4.4 to 6.4.7 show different views of the mesh. Some morphological features

visible in these figures are indicated using the abbreviations defined in figure 6.4.1. This mesh is

made up with 99699 tetrahedral elements, is locally refined through the vicinity of the chamber

and near the Earth’s surface and takes into account the most important morphologic features of

the island.

X

Figure 6.4.4. View of upper face of the mesh.
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Figure 6.4.5. Lateral views of the mesh. Top: lateral view from the N-NW faces. Bottom:

lateral view from the S face.
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Figure 6.4.6. Close up views of the mesh around LCC area. Top: View from the W face.

Different parts of the caldera wall as well as the Teide Pico-Viejo complex are appreciable.

Bottom: View from the E face.
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T
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Figure 6.4.7. Close up view of the mesh from the E face around LCC area and without

rendering in order to appreciate the magma chamber geometry. Magma chamber is

assumed to be spherical (1Km radius) and located 4 Km depth just below the peak of the

Teide (i.e. at approximately 300m below the sea level).

The program has been run using a SGI Origin 2000 (8 CPU R10000, 2 GB RAM). The

mean required CPU time1 is about 30-50 min. Part of the results are illustrated in figures 6.4.8 to

6.4.10 which show, respectively, the components of the displacement vector at surface for

different characteristic times of t = 0, τ , 3τ and 5τ. As observed from these figures, most of the

surface deformation is restricted to the vicinity of the Teide (little deformation occurs at

distances greater than 5-7Km from the peak of the Teide), that is, the deformation field lies

inside the caldera walls. The greater component of the displacement field is vertical (uz) and has

maximum values of about 3.75, 13.75, 21.5 and 34.5 cm for t = 0 (elastic displacement), τ, 3τ and

5τ respectively. This vertical deformation pattern is elongated through the NS direction and

slightly shifted to the NW of the Teide’s peak. In other words, the maximum vertical

displacement is predicted to occur (at any time instant) at the NW flank of the volcano. It

suggests this part of the volcano as the most suitable place to detect future possible vertical

displacements. Another interesting result is the flattening of the vertical displacement field due

to topographic effects. This is illustrated in figure 6.4.11.

                                                          

1 Obviously, this depends on the number of relaxation times considered. These values correspond to the

standard case of 6+1 relaxation times, that is, includes the construction and solution of 7 elastic problems

using a conjugate gradient solver and the subsequent Laplace inversion at each nodal point.
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Figure 6.4.8. Vertical displacement uz (cm) at surface for different time

instants: t = 0 (elastic), t = τ , t = 3τ and t = 5τ.
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Figure 6.4.8. (cont.).
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Figure 6.4.9. Horizontal displacement ux (cm) at surface for different time

instants: t = 0 (elastic), t = τ , t = 3τ and t = 5τ.
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Figure 6.4.9. (cont.).
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Figure 6.4.10. Horizontal displacement uy (cm) at surface for different time

instants: t = 0 (elastic), t = τ , t = 3τ and t = 5τ.
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Figure 6.4.10. (cont.).
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Figure 6.4.11. Tree dimensional representation of the surface vertical displacement (plotted

in the vertical axis, in cm). Top: results at t = 0. Bottom: results at t = 5τ. Note the flattening

of the deformation pattern due to topographic effects. Asymmetries of the results are not

well appreciated from these figures.
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It has been demonstrated previously (see section 6.2.2) how the neglection of topographic

effects may, in some cases, induce to considerable errors on elastic/viscoelastic solutions. It

means that topography is, generally speaking, a “first order” parameter like, for instance, the

depth or the position of the pressure source. Nevertheless, in many cases, topographic effects

can also be roughly taken into account by means of 2D models with axial symmetry, i.e. without

need of solving 3D problems. Once the 3D case has been solved, one could ask himself a

posteriori whether the approximate 2D solutions would give comparable results. Clearly, the

answer to this question depends on each specific problem. It is also evident that, if one is

interested not only in the values of uplift but also on the asymmetries of the deformation

patterns, the 3D models must necessarily used. However, what about the qualitative and semi-

quantitative results?. To answer this question (at least for this specific case), a 2D

axisymmetrical problem with an approximate topography1 has been also run. In this case, the

mesh (not shown) is made up with 26394 triangular elements and 13971 nodal points. The

obtained results are reflected in figure 6.4.12. The comparison between this figure and the 3D

results (see figures 6.4.8 to 6.4.10) points out how both results are rather similar (relative

differences are in the range, or lower than 10%), with the obvious difference that the 2D model

predicts axisymmetrical deformation patterns. In consequence, the use of a “real” topography

produces only “minor” changes on the solution and can be regarded as a second order effect.

For practical applications, it might imply that the errors induced on the solutions due to the

uncertainty in the “first order” parameters may well be greater than the minor corrections given

by the use of a 3D model.

                                                          

1 In this case, the island is assumed to be cone with a height equal to that of the Teide and with an average

slope of the flanks of 16.5º. The rest of the parameters involved (size of the computational domain, magma

chamber, properties and thickness of the crustal layers, etc.) are exactly equal to those of the 3D case.
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Figure 6.4.12. Results using the 2D axisymmetrical approximation. Top: vertical

displacement uz at surface (in cm) plotted versus radial distance at different time instants.

Bottom: the same for radial displacement ur.



6.5 References

6-54

6.5 References

Ablay, G., G. Ernst, J. Martí, and R.S.J. Sparks, The 2ka subplinian eruption of Montaña Blanca,

Tenerife, Bull. Volcanol., 57, 337-355, 1995.

Ablay, G., M. R. Carroll, M. R. Palmer, J. Martí, and R. S. J. Sparks, Basanite-phonolite lineages

of the Teide-Pico Viejo volcanic complex, Tenerife, Canary Islands, J. Petrol., 39, 905-936,

1998.

Ancochea, E., J. M. Fuster, E. Ibarrola, A. Cendrero, J. Coello, F. Hernan, J. M. Cantagrel, and C.

Jamond, Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new

K-Ar data, J. Volcanol. Geotherm. Res., 44, 231-249, 1990.

Berrino, G., G. Corrado, G. Luongo, and B. Toro, Ground deformation and gravity changes

accompanying the 1982 Pozzuoli uplift, Bull. Volcanol., 44, 187-200, 1984.

Bonafede, M., M. Dragoni, and M. Quareni, Displacement and stress fields produced by a centre

of dilation and by a pressure source in a viscoelastic half-space: application to the study

of ground deformation and seismic activity at Campi Flegrei, Italy, Geophys. J. Royal

Astr. Soc., 87, 455-485, 1986.

Bosshard, E., and D. J. MacFarlane, Crustal structure of the western Canary Island from seismic

refraction and gravity data, J. Geophys. Res., 75, 4901-4918, 1970.

Bonafede, M., Axi-symmetric deformation of a thermo-poro-elestic half-space: inflation of a

magma chamber, Geophys. J. Int., 103, 289-299, 1990.

Cayol, V., and F. H. Cornet, Effects of topography on the interpretation of the deformation field

of prominent volcanoes. Application to Etna, Geophys. Res. Lett., 25, 1979-1982, 1998.

Dieterich, J. H., and R. W. Decker, Finite element modelling of surface deformation associated

with volcanism, J. Geophys. Res., 80, 4094-4102, 1975.

Fernández, J., and J. B. Rundle, Gravity changes and deformation due to a magmatic intrusion

in a two-layered crustal model, J. Geophys. Res., 99, 2737-2746, 1994.

Fernández, J., J. B. Rundle, R. Granell, and T.-T. Yu, Programs to compute deformation due

magma intrusion in a elastic-gravitational layered Earth model, Computers &

Geosciences, 23, 231-249, 1997.

Fernández, J., K. Tiampo, J. B. Rundle, T. T. Yu, A. Alonso-Medina, and J. Carrasco, Modelling

deformation, potential and gravity changes caused by a magmatic intrusion, Ann.

Geophisicae, Supplement I, 16, 1998.

Fernández, J., J. M. Carrasco, J. B. Rundle, and V. Araña, Geodetic methods for detecting

volcanic unrest. A theoretical approach, Bull. Volcanol., 60, 534-544, 1999.

Folch, A., J. Fernández, J. B. Rundle, and J. Martí, Ground deformation in a viscoelastic medium

composed of a layer overlaying a half-space. A comparison between point and extended

sources, Geophys. J. Int., 140, 37-50, 2000.



6.5 References

6-55

Fuster, J. M., V. Araña, J. L. Brandle, J. M. Navarro, U. Alonso, and A. Aparicio, Geologia y

volcanologia de las Islas Canarias, Tenerife, Spec. Pub. Instituto Lucas Mallada, CSIC,

218pp., 1968.

Luongo, G., E. Cubellis, F. Obrizzo, and S. M. Petrazzuoli, The mechanics of the Campi Flegrei

resurgent caldera-a model, J. Volcanol. Geotherm. Res., 45, 161-172, 1991.

Martí, J., J. Mitjavila, and V. Araña, Stratigraphy, structure and geochronology of the Las

Cañadas caldera (Tenerife, Canary Islands), Geol. Mag., 6, 715-727, 1994.

Rundle, J. B., Static elastic-gravitational deformation of a layered half space by point couple

sources, J. Geophys. Res., 85, 5355-5363, 1980.

Rundle, J. B., Deformation, gravity, and potential changes due to volcanic loading of the crust, J.

Geophys. Res., 87, 10729-10744, 1982.

Wolf, J. A., Crystallization of nepheline syenite in a subvolcanic magma chamber system:

Tenerife, Canary islands, Lithos, 20, 207-223, 1987.



__________________________________________

Chapter 7

Conclusion

__________________________________________



7.1 Summary and Conclusions

7-1

7.1 Summary and Conclusions

An algorithm to solve the Navier-Stokes equations considering mechanical coupling has

been developed and implemented in the context of a Finite Element Method. Depending on

several parameters, the convective term, the viscous term, and the whole energy equation can

be discretised in time using implicit/explicit treatments up to second order of accuracy. The

algorithm uses a fractional step method, that is, computes first the momentum equation without

the implicit contribution of the gradient of pressure and adds this subtracted term later, once

the continuity equation has been calculated. Depending on a numerical parameter γ , the

fractional step method can be a total fractional step method (the whole gradient of pressure is

extracted from the momentum equation) or an incremental fractional step method (the explicit

contribution of the pressure gradient remains in the momentum equation). The total fractional

step method introduces always (at least in the viscous terms) an splitting error of order O(∆t)

when the implicit versions of the algorithm are considered, whereas the incremental fractional

step method allows the possibility of implicit schemes with an error O(∆t2). However, the

stability of the pressure field is, in this second case, extremely weak. To correct this drawback

(i.e. to have a second order implicit scheme with more stability in the pressure filed) the pressure

gradient projection stabilisation technique has been introduced. The idea, initially developed in the

context of monolithic velocity-pressure formulations, is to add the difference between the

Laplacian of pressure and the divergence of the projection of the pressure gradient onto the

space of velocities to the continuity equation. It produces the required stabilising effect on the

pressure field. The use of a fractional step method introduces a new unknown to the system

(the fractional momentum) but, in contrast, allows to use the same interpolation spaces for all

the unknowns and deals equally well with both compressible and incompressible flows. This

last property is indispensable to simulate the flow dynamics inside magma chambers during

the course of some particular volcanic eruptions and, in consequence, fully justifies the choice of

this algorithm1.

The Navier-Stokes equations are considered in the frame of an Arbitrary Lagrangian-

Eulerian (ALE) formulation which is specially suitable to treat fluid-structure interaction

problems. The goal of the ALE description in the treatment of fluids is to keep the advantages of

the Eulerian formulation and, simultaneously, to provide accuracy in the description of the

                                                          

1 The state law proposed for the magmatic mixture presents two differentiated domains because the flow

is incompressible when pressure is greater than the exsolution pressure and compressible (a gas-liquid

compressible mixture) when pressure is lower than this critical value. This implies that, in those volcanic

eruptions in which the magma chamber is partially vesiculated, one must deal with a flow that is

incompressible in part of the domain and compressible at the rest of it.
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moving boundaries. From a computational point of view, the only difference between the ALE

Navier-Stokes equations and its “standard” Eulerian formulation is the introduction of a new

convective-like term that accounts for the relative movement between the mesh and the spatial

frame of reference1. Fluid-structure interaction problems are solved by means of a staggered

procedure in which the fluid and the structural equations are alternatively integrated in time by

using separate solvers. The interaction is taken into account by means of the boundary

conditions. The main advantage of such a procedure is that it preserves software modularity

and simplicity of the codes. Each time step of the staggered procedure is solved as follows. First,

the structural equations are solved using the constant average acceleration method, which is the

optimal case of a Newmark method2. The displacement of the boundary of the structure is then

transmitted to the ALE mesh of the fluid imposing continuity of displacements at the fluid-

structure interface. It allows to compute the nodal displacements of the ALE dynamic mesh in

the whole domain by using the quasi-Laplacian method, a variation of the Laplacian smoothing

technique that has little element distortion and keeps the quality of the mesh. Second, the ALE

mesh velocity is determined. The best choice to minimise the time lag between geometry and

nodal variables in the weak forms of the ALE Navier-Stokes equations is to use the second

order implicit version of the algorithm and, simultaneously, evaluate the ALE mesh velocity at

21+nt . Note that, in fact, it implies that the weak form is imposed at the same time instant at

which the continuous differential equations are verified when the time discretisation is

performed3. On the other hand, the evaluation of the ALE mesh velocity at 21+nt  combined with

the constant average acceleration method guarantees the continuity (at a discrete level) between

the velocity of the mesh and that of the structure at the fluid-structure interface. Finally, the

ALE Navier-Stokes equations are solved and the forces of the fluid over the structure are

computed. An automatic remeshing strategy has been also incorporated to the code. Whenever

the ALE mesh becomes unacceptably distortioned, the program automatically generates a new

mesh and performs the interpolation of nodal variables onto the new mesh. This interpolation is

performed with constrains that impose the conservation of global quantities such as mass,

momentum or forces and allows a compromise between the continuity of a variable and the

global information it carries.

                                                          

1 If the problem does not involve fluid-structure interaction this term vanishes and the Eulerian

description is recovered.

2 Only the simplest structural behaviour (rigid solid) is considered in the applications of this thesis.

However, due to the staggered procedure, other structural rheologies can be easily incorporated in future

applications by introducing minor modifications to the source code.

3 There are other procedures without time lag between geometry and nodal variables. However, the

evaluation of the ALE mesh velocity is, in these cases, more complex and computationally expensive if one

wishes to verity the Geometric Conservation Law.
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The validity of the algorithm as well as its implementation for both fluid and fluid-

structure interaction problems has been widely tested in a series of classical benchmark

problems. Clearly, an algorithm of such characteristics is interesting by itself because can be

used to solve a huge variety of problems arising from several scientific disciplines.

Particular applications are addressed into a better knowledge of one of the problems of

physical volcanology that has received less attention: the dynamics of magma withdrawal from

crustal reservoirs. A physical model has been proposed. It includes some (necessary)

assumptions and a state law for the magmatic mixture under the homogeneous approach

(bubbly flow regime). Natural systems are extremely complex and involve many variables

which are difficult to measure or that simply are not yet well constrained. It means that the

predictions of the model should be taken with caution and should be regarded only as a tool to

complement and suggest new possibilities to the traditional geological, geophysical and

geochemical approaches. Nevertheless, the important point is that, at least as a first order

approach, the combination “physical model developed + algorithm to solve it” allows to

simulate “any kind” of volcanic eruption1. Different simulations that contemplate a wide

spectrum of possibilities have been performed. The quantitative results obtained depend,

obviously, on each particular case. Only those qualitative general behaviours for

axisymmetrical solutions are stressed here. In fact, some of these results were already predicted

by previous time-independent analytical approaches. However, numerical simulations recover

all these previous results, allow to envisage new possibilities and, in addition, introduce a new

key factor: time dependencies. Relevant general results are:

Eruptions from closed magma chambers

• The initial overpressure decreases exponentially with time until the magmastatic pressure

profile is recovered. It produces a drop in the exsolution level (which decreases also

exponentially) so that deeper parts of the chamber become progressively oversaturated in

volatiles as the eruption proceeds.

• The eruption rate presents a peak of intensity and a posterior exponential decrease.

• The erupted mass fractions in such eruptions are, in general, only a small fraction of the initial

mass of the chamber (typically 0.1%-1%).

• Chamber/conduit geometries and volatile content have a major influence on the eruption rate,

position of the exsolution level and erupted mass. Being the rest of parameters equal, flattened

                                                          

1 Volcanic eruptions have been classified in three groups according to its triggering mechanism: eruptions

from closed systems (driven by oversaturation of volatiles), eruptions from open systems (driven by

injection of fresh, more primitive, magma into the chamber) and, finally, caldera-forming eruptions.
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(sill-like) chambers and chambers with greater volatile content erupt more mass because have a

greater fraction of oversaturated compressible magma.

Eruptions from open magma chambers

• The initial overpressure descends very rapidly until it becomes stabilised to a steady value

(the confining pressure) which depends of the inflow rate. Obviously the position of the

exsolution level reflects this fact and also becomes stabilised at a depth which depends on the

inflow rate. Once the injection is switched off, the system evolves as in the closed case.

• The eruption rate presents a peak of intensity, an exponential decrease, a plateau and, finally,

another exponential decrease once the injection is switched off. This behaviour is, in fact, in

good agreement with field observations of many explosive eruptions and might suggest that, as

it occurs in the case of primitive magmas, magmatic injection is a common triggering

mechanism. However, this suggestion should be taken with caution because this observed

behaviour could be also reproduced in closed systems if some effects neglected by the model

(chamber deflation, conduit erosion, etc.) were considered.

• Simulations of withdrawal from chemically heterogeneous chambers (with an initial

horizontal stratification) suggest that the compositional interface(s) shifts initially upwards until

some critical depth is achieved. At this point, the interface tilts and different magmas are

erupted simultaneously. From a geochemical point of view, it implies an initial phase in which

the evolved (lighter) magma is erupted, a mingling phase and, finally, if the injection is still

maintained, a phase in which the injected primitive (denser) magma is extruded. Numerical

simulations predict critical depths in good agreement with some previous experimental results

and, in addition, point out the possibility of distinguishing between different initial chemical

distributions by an accurate sampling of the final volcanic deposits.

Caldera-forming eruptions

• The velocity of the subsiding block increases rapidly to a nearly steady “terminal value”

which strongly depends on magma viscosity.

• The eruption rate presents a rapid increase, a plateau phase (corresponding to the steady fall

velocity) and, finally a sudden decrease.

• Once initiated, the process of collapse stops when most of the chamber has been destroyed.

• Depending on magma viscosity, a big vortex can be eventually developed at the most external

parts of the chambers, below the ring fault. Again, this phenomena is susceptible to generate

mingling of magmas initially placed at different depth.

• The exsolution level deepens (shifts downwards) with a velocity similar to that of the

subsiding block. However, the exsolution surface is not horizontal at all because the movement

of the block causes a lateral gradient of pressure. Most of the exsolution takes place below the
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ring fault. It suggests that exsolution of volatiles is an efficient mechanism to sustain such kind

of eruptions.

A second objective has been to develop an algorithm which is the “numerical version”

of some analytical procedures widely used to compute ground deformations in volcanic areas

considering some simple viscoelastic rheologies for the crust1. The algorithm has been also

implemented in the context of a Finite Element Method and is based on the correspondence

principle combined with the Laplace transform inversion by means of the Prony series method.

One of its characteristics is that it is extremely cost-effective because (approximate) viscoelastic

solutions can be computed at any time instant with the only computational cost of solving few

(normally 7) standard linear elastic problems. Another interesting property is that it generalises

the present analytical solutions in the sense that can contemplate a wider spectrum of

possibilities such as, for instance, extended sources, topographic effects or any kind of crust’s

anisotropies. Particular applications and relevant results have been:

• Quantification of the validity of the point source hypothesis by comparing analytical and

numerical solutions. In general, for small values of ε ( 25.0≤ε ) the differences between the

viscoelastic displacements obtained by both procedures are in the millimetric range, for

medium values of ε ( 5.025.0 ≤≤ ε ) are in the centimetric range and, finally, for large values of ε

( 5.0≥ε ) are greater than 30% and can have, in some cases, an absolute value in the metric

range.

• Quantification of the topographic effects. It has been found that, for the most common

situations (a volcanic shield above the overpressurized chamber), topography is a first order

effect. Its neglection can, in many cases, induce an error greater than the one implicit in the

source point hypothesis.

• Modelling the 1982-1984 Campi Flegrei uplift. As suggested by previous authors, and despite

the simplicity of the model, a viscoelastic response can, at least qualitatively, account for the

measured deformation pattern.

• Determination of the effect of a hypothetical pressurisation of the shallow magmatic system

beneath Teide volcano. Using a horizontally layered crustal model and assuming relaxation 2,

numerical results predict a surface deformation pattern elongated through the NS direction and

slightly shifted to the NW of the peak of the Teide. It suggests this part of the volcano as the

most suitable place to detect future possible vertical displacements.

                                                          

1 These rheological models, basically generalisations of the 1D Maxwell solid, have been named relaxation

1, relaxation 2 and relaxation 3.
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A summary of the most relevant contributions of this thesis includes:

� A numerical procedure to solve the Navier-Stokes equations using a stabilised fractional step

method.

� The use of the quasi-Laplacian method to compute the ALE mesh displacements (i.e. the ALE

mesh velocity) in fluid-structure interaction problems.

� The introduction of a conservative interpolation strategy to deal properly the remeshings in

fluid-structure interaction problems.

� A physical model for the dynamics of magma withdrawal from crustal reservoirs during the

course of the most common kinds of (explosive) volcanic eruptions. It includes the development

of a state law for the magmatic mixture under the homogeneous approach.

� A qualitative characterisation of relevant physical parameters during the course of eruptive

events.

� A numerical procedure that, using the correspondence principle combined with the Laplace

transform inversion by means of the Prony series method, allows to compute viscoelastic

displacements in a cost-effective manner.
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7.2 Future Lines of Research

Generally speaking and, from a numerical point of view, future lines of research should

include mainly the following points:

� Improve the implementation of the algorithm introducing parallelism and a better

optimisation of the source code. The improving of the efficiency is a question of crucial

importance in the case of simulations of volcanic eruptions, specially if one aims to model 3D

real cases. In this case, moreover, future lines of research should address the developing of a

better temporal integrator for the magmatic state law in order to increase the time step sizes

without problems of stability.

� Generalisation of the fluid-structure interaction problems that can be solved. It includes the

implementation of other different structural rheological behaviours as well as the inclusion of

rotational degrees of freedom.

On the other hand, there is no doubt that the fast development of physical volcanology

during the last decades has allowed to answer many fundamental questions and has lead to a

better global understanding of the volcanic phenomena. However, many important questions

still remain open. Its major limitations come not only from the intrinsic complexity and variety

of the volcanic phenomena but also from the difficulties of the in situ measurements which

partially impede the accuracy and refinement of the physical models. Obviously, the feasibility

of numerical simulations within this field present serious drawbacks that, in fact, reflect the

limitations of the physical knowledge. Nowadays, numerical simulations in volcanology are

constrained to simulate specific parts of a global phenomena. In the concrete case of the

eruptive process, it is clear that future lines of research should address two main directions:

� The consideration of a global volcanic simulation in which the whole volcanic system

(chamber, conduit and Earth’s surface) is modelled. This juxtaposition of domains is important

because the processes that occur in each region affect the dynamics of the others and would

overcome the imposition of approximated boundary conditions.

� The coupling with the structural behaviour of the host rock. It is also a key issue to determine

not only the formation, the propagation and the closure of fractures (i.e. the beginning/ending

of an eruption or its possible evolution into a caldera-forming eruption) but also the responses

and influences of the environment to the pressure changes during the eruptive process.
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Another important question remains, which is the testing of the physical volcanological

models or, equivalently, the answer to the following difficult general question: “how do

numerical simulations fit with reality?”. Clearly, their degree of accuracy is strongly dependent on

the physical knowledge of the problem and, in consequence, their degree of success is partially

conditioned by future development in other scientific disciplines. In particular, some crucial

points are a better estimation of the rheologies (for both magmas and crust) and a better

knowledge of the pre-eruptive “ambient” conditions (e.g. chamber geometries, characteristics of

the environment, properties and composition of the magmas inside the chamber, etc.). In

consequence, future lines necessarily imply a parallel advance, an interaction and a mutual

benefit among different scientific fields. By now, numerical simulations within this field should

be regarded only as a first approach which is, by far, much better than nothing.


