On the design and implementation of flexible
software platforms to facilitate the development
of advanced graphics applications

Marta Fairén

June, 2000

PhD Thests
Supervised by Dr. Alvar Vinacua

Software PhD program
LiSI Department,
UPC

T od / 15 §
» _ JNDO2= S06T
Bibhioteca Rector Gabriel Ferrate
UNIVERSITAT POLITECKICA DE CATALUNYA

-~

URW LRSVIAT P HLITECH (Ck
'!‘-‘l" AT AU_}H‘{A

Als meus pares,

T,

it e,

{;; VI
5\@};& Dg CATALU?;".’.‘?\ |

Acknowledgements

First of all I what to thank Alvar Vinacua for his undoubtedly excellent supervi-
sion. This thesis would not have been a reality without his ideas, inspiration and
guidance. I give my gratitude to him for his constant dedication, his generous
support and his patience as well during these years.

I would also like to thank those people who have been involved in the work
of the thesis in some way. Thanks then to Ignacio Ruiz, for implementing
the first version of the Input Subsystem and the utility processes “demandes”
and “entrades”; to Daniel Sdnchez-Crespo, for implementing the mechanisms
involved in the multiplatform features; and more specially to Manuel Vivé,
who not only implemented the automatic code generator but also has been an
unconditional friend and encouraged me to feel more confident about myself.

I am also grateful to Eva Monchis, David Corbalan, Alex Sanchez, Jordi
Martin, Oscar Soriano and Oscar Sanjuan, who where the beta-testers for the
initial versions of ATLAS. They helped me a lot in finding and fixing errors by
developing big applications over it.

My gratitude to all members of the Computer Graphics Section (SIG) of
the LSI department at the UPC, for providing me with more than adequate
resources and a nice working environment. Thanks also to the computing lab-
oratory (specially to José Luis Montero) for their help on the technical aspects
of the equipment. I would also like to acknowledge support of a Spanish MEC
grant for this work.

I give acknowledgements as well to the group of Computer Graphics of the
University of Girona, to the Institute of Robotics and Industrial Informatics of
the UPC, and to the Computer Graphics groups of the Universities of Granada
and Zaragoza for trusting in ATLAS to be used as a platform for some of their
projects.

Special mention in these acknowledgements is deserved by Isabel Navazo and
Pere Brunet for their unconditional support, encouragement and sympathy.

Finally the biggest gratitude is to my family and more specially to my parents
without whom none of this would have been even possible.

ii

‘.,

S
[

iv

Contents

1 Introduction
1.1 Objectives e e e e e
1.2 Otherrelated work

2 Interactive Computer Graphics applications

2.1 On the specific problems of ICGA
2.1.1 Volatilereferences
2.1.2 Sharing Information
2.2 ATLAS’datalabels oo oo
3 The ATLAS components
3.1 Centralized vs. symmetric architecture
3.2 The failure resistance (crash fault-tolerance) in ATLAS
3.3 Abirdseyeviewof ATLAS
4 The ATL language, its compilation and interpretation
4.1 Language description: Syntax and semantics
4.1.1 Modularity [
4.1.2 Constants and basictypes
413 Types i e e e e
414 Variables e e
4.1.5 Expression evaluation. Operators.
4.1.6 Sentences i i i e e e e
4.1.7 Procedures and functionsin ATL
4.1.8 External functions and procedures

419 Comments. v v v i it e e e e e

11
11
13
13

4.1.10 Other constructions, 33
4.2 The ATrLas Command Subsystem L. L., 33
4.2.1 The Command Subsystemdriver 34
42.2 The ATLcompiler 34
4.2.3 The Virtual Machine 36
4.3 The “dirty” variables mechanism for the ATLAS asynchronous calls 50
4.3.1 Generaldescription. 50
4.3.2 The asynchronous call asasentence 52
4.3.3 The asynchronous call as the right side of an assignment . 53
4.3.4 On differences between external and internal asynchronous
calls L 54
4.3.5 Accessing toa dirty variable 60
4.3.6 Possible deadlocks dealing with “dirty” variables 60
5 The Input Subsystem 63
5.1 Generic Input Subsystem, 63
5.2 Design and implementation of the ATLAS Input Subsystem 64
5.2.1 Basicinputdata, 64
52.2 X-eventscontrol 65
523 Extended Tcl/Tk. 67
53 Extensionproposal i 69
6 The distr process 71
6.1 Processesmanagement e e et e e e e e 71
6.1.1 Distribution in ATLAS 71
6.1.2 The heartbeat mechanism 88
6.1.3 Killingaprocess 88
6.1.4 Recoveringaprocess 89
6.2 Communications management, 89
6.3 Input datamanagement 89
6.4 Theeventsmechanism 92
6.5 Journaling management, 93

vi

7 Communications and drivers 95

7.1 The ATLAS communications protocols 95
72 Thesetofmessagesused., 104
7.3 Some implementation details 106
7.4 Transparent data transfer: Variables 107
7.4.1 Wrapper structure for data and types 107

7.4.2 Making this design transparent to the developer 110

7.5 Processdriver. 111
7.5.1 Automatic code generation 112

7.5.2 Handling of ATLASevents 122
7.5.3 Requesting input data e e e e e e e e 122

8 Journaling 125
8.1 The journal and its functionalities 126
811 Design...... ... i e 126
8.1.2 Some implementation details 131
8.1.3 The journal functionalities. 134

8.2 Meta-journal e e 142
8.2.1 Translation Meta-journal = journal 143
8.2.2 Consistency checking 144
8.2.3 The journal API offered by distr 146
8.24 TheMJIEditor v, 146

9 Using the system 149
9.1 Design process of an ATLAS application 149
9.1.1 The processinterface. 149
9.1.2 The process implementation 149

9.2 TheAPllibrary i 151
9.2.1 Miscelaneous oo e 159

9.3 Utility processes i i i it e e e 160
9.3.1 Process “processos” e 160
9.3.2 Process “demandes” 161
9.3.3 Process “entrades” 164

9.4 Atoyexample 166
9.4.1 Description of the esferes application. 166

vii

942 Tinyusermanual 166

9.4.3 Technical documentation andcode 167

9.5 Applications using ATLAS o v v v i it 188
9.5.1 VolAtlas: a volume modeling application. 188

9.5.2 Octrees: asolid modeling application using extended octrees189

9.5.3 NewDMI: a BRep modeling application 190

9.5.4 Motlles: a CAD system for plastic injection moulds . . . 190

9.6 Evaluation of the system. The developers opinions 191

10 Extensions 195

10.1 Synchronous requests of input data from application processes . 195

10.2 Overloadingin ATL, 196
" 10.3 Extending the GETDATA command to accept timeouts for its

FEQUESES .« v v v e v v e e e e e e e e e e e e e e e 196

10.4 The Command Substitution possibility 197
10.5 Miscellaneous« o v v i e e e e 198

11 Conclusions and future work 201
A ATL Grammar Description 209
B Intermediate code instructions 213

viii

Chapter 1

Introduction

-

New technologies are introduced for the construction of computer programs
at a fast pace. Usually they carry with them coveted performance or quality
enhancements. Developers are thus interested in using these technologies and
also in combining several of them to take profit of different aspects addressed
by them. But the use of this technologies requires a fair amount of specific
knowledge by both the designers and programmers of the application.

This is true for example, for aspects like application distribution in different
processes running in different architectures, fault-tolerance with respect to the
network, reusability or extensibility.

We are also interested in aspects more specifically related to computer graph-
ics applications like the possibility of keeping a history of an execution (strongly
needed in most CAD systems), the use of symbolic data (to define object families
in parametric design) or finding a solution to the problem of graphical input data
which normally are based on volatile references, and this makes their portability
difficult. :

The problem then consists in making some of these technologies available
to an application developer without the burden of a steep learning curve. To
do this, this thesis offers some tools and methods to greatly simplify the con-
struction of fairly sophisticated applications. Therefore it deals with the design
and implementation of a software support platform (ATLAS) to facilitate the de-
velopment of advanced applications, specially for computer graphics, inasmuch
as the aspects mentioned above are included in the design. The more concrete
objectives of ATLAS will be explained in the next section.

This thesis is thus geared to offer to developers the possibility of using new
techniques (like those named before) without requiring any special skill on them,
i.e. as transparently as possible, and to find the solutions that best fit the
conjunction of those techniques.

1.1 Objectives

The first priority in the design of ATLAS has been to make its inner workings
as transparent to the user as possible. To this end, some aspects may not have
the intrinsically best or most powerful or most flexible solution, but users can
build applications on ATLAS without almost any concern about it, yet getting
substantial benefits from its presence.

In terms of functionality, ATLAS has these objectives:

o Low level of parallelism. ATLAS applications feature several distinct pro-
cesses running concurrently in the same or different machines in a net-
work; processes encapsulate ATLAS components or user modules. The
user implements routines that are accessible to other processes as remote
procedures. ATLAS is able to find out which processes are available on
each machine and decide the best machine to execute a process in terms-
of capability and load.

e Interprocess communication. Since the application is split in several pro-
cesses, these need to communicate over the network and exchange data
between possibly different architectures. This gives rise to many different
issues that need to be addressed [1].

s Standardized input model. A great deal of effort in an application’s de-
velopment is spent in its user interface. ATLAS provides a uniform but
flexible view of inputs that allows many different dialogue modes in a
uniform way, somewhat related to Abstract Data Views [2].

e Configuration and macro language. A flexible way must be provided for a
programmer to describe what is in each of his modules, and how it should
relate to others, and also to define the dialogues of the application and its
behaviour in a simple way.

o Flexible journaling mechanism. This mechanism records the actions of
the work session in order to be able to repeat this work session at any
other time. This is needed in incremental design applications (in partic-
ular CAD-applications). The mechanism supports undo’s and redo’s and
enforces the consistency of data recorded in the journal after editions or
modifications of it.

e Fault tolerance. Since the application is spread out among several hosts,
it becomes more exposed to transient or permanent failures {(of the com-
munications or of any of the hosts involved). Fault tolerance for these
failures is transparently provided based on the journaling mechanism and
on heartbeat messages sent by all processes so that their status can be
assessed.

¢ Reusability. Each user module is completely isolated from others (in a
separate process) except through a well defined interface described in AT-
LAS’s programming language. Thus new components can incorporate and
use reliably old ones. Another important issue for reusability, specially
in computer graphics applications, is the use of a general data format

to describe complex scenes. Different processes require to use the same
data format to read and write graphical information in order that other
processes can also access these data. This issue is not directly covered
by ATLAS, but is being solved with the MDTL project [3] also developed
within our group.

¢ Support to processes of constraints solving and parametric design. AT-
LAS also includes a global identification mechanism which helps check the
consistency of the journal, and solves the problem caused by volatile ref-
erences in graphical input data and the use of symbolic data required by
processes of constraints solving.

At this point, we have repeatedly used the word flezible to describe some
aspects of ATLAS. With this we mean that these aspects are not rigid, i.e. they
offer different ways to do something, or offer the possibility to change some be-
haviour of the system. In other words, since the ATLAS main objective is to offer
the maximum transparency to the applications developer, ATLAS automatically
manages a lot of applications aspects by using a predefined behaviour by de-
fault. This would have made the system too rigid to be used for a large number
of applications, even in computer graphics. To avoid this rigidity, ATLAS adds
flexibility so that applications can change this default behaviour if they want.

1.2 Other related work

There are several systems that can be considered related work since they ad-
dress some problems that ATLAS also addresses. Distributed Object Computing
environments (CORBA [4, 5, 6], DCOM [7] or Java RMI [8]) are some of these
systems, which combine object-oriented concepts with client/server technology
to produce a framework for building modular and scalable distributed applica-
tions at a relatively high level of abstraction.

Giving more emphasis to the fault-tolerance topic there are the Isis toolkit [9],
Horus [10], Transis [11] or Totem [12] which combine process group with other
facilities like the virtual synchrony communication model [13] in order to achieve
fault-tolerance of distributed applications. In the same way but using a metaob-
ject architecture is the FRIENDS system [14], which is also oriented to make
these facilities as transparent as possible for the applications. The Arjuna
object-oriented programming system [15] addresses the fault-tolerance prob-
lem as well by providing the programmer with classes that implement atomic
transactions, object level recovery, concurrency control and persistence.

There are also other systems focusing their objectives on the network pro-
cesses communications and the parallel capabilities (PVM [16], Linda [17], D-
Memo [18]). Most of them simulate a virtual machine covering the intricacies
of the network communications.

All of these systems are addressing some of the issues enumerated in sec-
tion 1.1, but none of them is designed to achieve all of ATLAS’s objectives.
Moreover, as they concentrate only on the problems they are addressing, they

don’t take into account the others. This causes that if you try to combine so-
lutions to different problems from these different systems, the results are often
intricate and inefficient because the solutions are not designed to work together.
(As an example it would be quite complicated to mix CORBA communications
with the process group solution to the fault-tolerance problem because they are
using very different designs for their architectures). At any rate to afford these
solutions, the programmer is required to master all the techniques involved.

ATLAS is an evolution of a system described in [19]. ATLAS inherits some
aspects of the architecture of the previous one, and adds robust and fault-
tolerant network distribution transparently, a meta-journaling system, a much
more flexible control language and an orthogonal design which affords much
more flexibility to the applications built with it.

Table 1.1 shows a comparison with those systems closest to the ATLAS re-
quirements. The different columns are the most relevant issues related to the-
ATLAS objectives.

Transparency, indicates the system hides its intricacies to the developer.
This column should have been evaluated with more values than yes/no, but
it is almost impossible to say how transparent one system is, with respect to
another. Because of this we decided to say yes in cases where the system is
hiding totally the communications mechanism, the location of the object to
reference and is also easy to use in case the developer must know he is using a
distributed system.

All systems in the table favour the Reusability and implement Interprocess
communications. Only one of them still does not support an Heterogeneous
network.

The Fault-tolerance is only fully supported by Arjuna and FRIENDS. CORBA
has specified it but no implementation supports it yet. In ATLAS it is also con-
sidered but only in terms of failures of machines or communications.

By Persistent data we mean the system offers persistence without any work
required by the developer.

Journaling is an objective for ATLAS but not for any other system.

The support for multiple language implementation is only given by CORBA
and DCOM. In ATLAS it is possible because it can have, like CORBA, different
automatic code generators for the different languages, but this is not an ATLAS"
objective by itself so it will remain as an extension possibility.

Since Linda is a parallel language and D-Memo an extension of it, this issue
and the next two, IDL and Command language, are not applicable for these two
systems, so they are not evaluated for them.

Having an IDL (Interface Definition Language) to describe the interface of
objects or processes is not necessarily a positive characteristic but just a char-
acteristic. Some systems not offering an IDL extract the interface description
from the implementation itself, which can be even easier.

The extension of the IDL to be also a Command language is also an ATLAS
specification requirement so it is not offered by the others. This is also the same
for the GUI facilities but in this case Java/RMI and DCOM have intrinsic

(++2)
ON ON ON ON ON [SAA SHA | SHA | STA | SAA SdA SUNHTIA

ON VIN VIN V/IN ON ON ON | S3A [SdX | SAA SAA ous |-
ON V/IN VIN V/N ON ON ON | SJA | SHA | S3A .OZ vpury
19K
SdA | ON [SdA | SdA ON ON ON ION | SHA | SAA ON HWooa
(++D)
ON ON ON ON ON | S4A SJA [SJA | SHA | SAA SAA YNQALYY

(eae[)
SdA | ON ON ON ON ON ON | SIA | SAX | SAA S4A INY/VAVT

134
ON ON | S3JA | SIA ON ON 1ON | SHJA | SHA | SAA SdA VAN0D
(++)) suoned .
SAA | SHA | STA | 2assed | SHA ON ._.s_h:n..__s SdA | SHA | SAA SAA SVILY
Q &0 ~ ~nN ~ > 22 & ..N« [e I 2 ~
e §&/5 8§ g & & /£ 5 & 5
L XL S H [F S 5 § & % /58 £ &
& RIS /ES)) &) & /&) ¢/ &
2 & s £ S g /§ <

Swa)sAs pupaajad 3sout ay3 03 2anpanduio)

Table 1.1: Comparison table with several systems

facilities for designing GUI, therefore they also offer it even though it is not one
of their objectives.

This comparison shows that no other system covers all of the ATLAS’ objec-
tives; more specifically none of them addresses the standardized input model, the
configuration and macro language, the journaling mechanism and the support
to processes of constraints solving and parametric design. ATLAS has thus been
designed to fill up this void in the manner most fitting for the development of
interactive (computer graphics) applications in a research environment.

Chapter 2

Interactive Computer
Graphics applications

2.1 On the specific problems of ICGA

We want our system to take special care with some particular irks of Com-
puter Graphics applications, especially when they are interactive. Applications
of this kind include of course all sorts of Computer Aided Design or Styling sys-
tems, but also applications used in Computer Aided Animation, Digital Effects,
Medical Imaging, Virtual Reality, Enhanced Reality and Surgery Planning and
Assistance. This list does not intend to be exhaustive. It does intend to make
‘the point that although these applications may seem a narrow niche, they en-
compass a large variety of problems and software, making more sense to search
for solutions addressing their specific problems.

These problems, from the point of view of ATLAS, are mainly two:

e Volatile references for data values.

o Sharing information between a constraint solving system and a user ap-
plication

We shall next consider each of these two briefly, and then discuss the way in
which ATLAS addresses these problems.

2.1.1 Volatile refergnces

In a Computer Graphics application, not surprisingly, a great deal of user input
comes in the form of geometric entities and coordinates. To make the system
user friendly, systems universally adopt, to as large and extent as possible, a
direct manipulation paradigm, whereby the user picks items with the mouse,
then moves the mouse to express his intent. Several modifiers may be used to
add expressiveness to this simple scheme.

ATLAS needs to deal with all the data representing these user actions for its
journaling service to the application, and must be able to replay these “acts” in
a meaningful way to a user module when attempting to recover from a network
or machine failure.

A problem arises because the input data (essentially positions of the mouse
together with buttons pressed and other modifiers) are given in device coordi-
nates: they represent coordinates in pixels with respect to a standard corner of
the window (typically the upper left-hand corner). Applications however deal
with models that use their own coordinate systems, usually called world coordi-
nates. For example in medical imaging the coordinates may be associated with
real physical dimensions, or with the sampling frequency. In CAD applications
they will almost always represent the real coordinates of the points of the part
if it had been manufactured and placed in a standard position, in a set of units
specified by the user. The relation between these world coordinates and the
device coordinates is computed by the application when needed. This relation
changes during the execution for diverse reasons. For example if we zoom in we
are really changing the scaling from world coordinates into device coordinates
(see [20], for example, for a more detailed discussion on this).

Since the conversion happens under control of the application, and may be
changed by events out of ATLAS’ control, simply playing back pixel coordinates
may fail. For instance replaying the journal on a different workstation with
different screen resolution may produce different window sizes, and different
world-to-device transformations, resulting in different meaning for the same
pixel coordinates! (see figure 2.1).

(40,20)
/

(40,20)
/

/

Figure 2.1: Example of a possible different meaning for the same input pixel if
the window is resized.

2.1.2 Sharing Information

It is not really so much about sharing information but about sharing the mean-
ing of information. Each user module in an ATLAS application will have its
own data structures representing the models it handles. Asking it to export
even part of the semantics of its data would require complicated procedures (in
order to achieve some generality) and would require especial attention by the
programmer, who would have to arrange for his code to export this information
in the scheme adopted. It is likely that any such mechanism would also establish
limitations to what can be expressed, and the least limitations would come at
the cost of expensive parsing and analysis of this information.

Nonetheless, user modules need to be able to exchange information about
their data in a way that is simple (i.e. places a small burden on the developer
and on the application), yet it is able to support, for instance, the specification
of a geometric constraint problem to a generic tool available in the system, in
such a way that the tools answer (its solution to the constraint problem) can
again be mapped into the module’s own data in a simple and robust manner.

2.2 ATLAS’ data labels

To address the issues just discussed, ATLAS uses a simple device. It features
a ticket dispenser that can issue a unique system-wide identifier to anybody
who asks for one. When user input is processed within ATLAS, each datum is
attached a fresh ticket. This association is stored in the journal, and is also sent
to the user process along with the datum. -

User processes themselves may require from ATLAS as many tickets as they
deem necessary through an API call (atl_get_ticket —explained in detail in
chapter 9). To get the full benefit of the system, they will usually use plenty
of them, and store them in association with relevant data that the user may
interact with. A polyhedra modeler, for instance, might have one such ticket
associated with each vertex, edge or face of each polyhedron in its database.
Furthermore, user processes may instruct ATLAS about the “true meaning” of a
user input through a call to atl_substitute ticket(t1,t2). This tells ATLAS
that the datum that had ticket t1 has been interpreted by the application to
mean the entity to which it has attached ticket t2. In future instances where
it is needed, as when recovering a process or replaying the journal, ATLAS will
send at the point where it originally sent ti, a special input message with
no data but the ticket t2, which the application will understand to mean the
entity it has attached that ticket to. From the application point of view the
handling of the special inputs can be easily done using overloading, providing
one implementation for, say, a point in device coordinates, and another for a
ticket.

Likewise, when posing a problem to an external geometric constraint solver,
an ATLAS application needs only send the present coordinates/components of
the entities involved, paired with their tickets (that it has previously obtained
from the centralized server). The solver then returns its result in the form of
instructions: “set item whose ticket is t1 to these new coordinates...”. This
road has not been pursued further because solvers being developed by other
groups in our lab have not been available until recently. We would expect to be
able to integrate them into ATLAS in the form of generic services in the future.

These aspects of ATLAS have been considered in this thesis as a journal-
ing functionality (Global data identification) discussed in section 8.1.3, where a
somewhat lengthier and detailed discussion, along with some examples, may be
found.

10

Chapter 3

The ATLAS components

ATLAS is a multi-process platform. It can be seen as a collection of processes,
running in several machines in a (local area) network. As such, its own com-
ponents may be (and actually are) spread out in several distinct processes.
Several decisions had to be made early on, therefore, as to the way in which
ATLAS processes would interoperate and the way in which the ATLAS kernel’s
responsibilities would be spread among different processes. Some of these issues
might have required some experimentation to assess exactly their virtues and
downsides, but the cost of the project as a whole had to be kept in mind too: we
wanted to be able to construct a solid system, or at least a reasonably mature
prototype within the scope of this work. Therefore, and because that was not
the focus of our work, we admittedly have made decisions in these areas without
complete or exhaustive experimentation, but based on reasonable assumptions
and considerations. In this brief chapter we intend to present some of these
design issues and decisions, together with a first, bird’s eye, view of the system.

3.1 Centralized vs. symmetric architecture

At a very first step, the alternative presented in figure 3.1 had to be resolved. We
could conceive of ATLAS as an egalitarian system, with all processes having an
equal standing and knowing about the whole network of processes (figure 3.1(a)),
or we could choose to have some central hub managing all communications
between processes (figure 3.1(b)). Both options had pluses and minuses, and
there were of course other mid-way solutions that one could imagine.

The symmetric architecture {figure 3.1(a)}), where all processes have identical
standing with respect to the system, has the attractive of its orthogonality,
and allows for very resilient fauit-tolerance mechanisms to be devised: since all
processes share some form of vision of the whole application, any one can take
it upon itself to trigger the recovery from failure of a part of the system that it
detects is not working.

However, the complications emanating from this idea are also severe. The
problem of consensus among the processes is an example. If the view of the state

11

P el et -
fscrver@hosty
~NO .~‘r§§¢

:Constraints
Solver \

(a) Symmetric architecture (b) Centralized architecture

Figure 3.1: Two different alternatives for the ATLAS architecture

.

of the system is not reliably shared by the component processes, a very complex
set of cases arises, and system behaviour may soon be all but predictable. This
problem has been studied on its own in the literature (for a good survey see [21]).
At any rate, any conceivable solution of it would load each ATLAS process with
heavy machinery just to maintain the state of consensus. Other difficulties
would include establishing who manages each of ATLAS’ services, and how much
information related to each service has to be placed in a common pool (probably
meaning replicated for all processes in the application) in order to achieve our
goals.

Preliminary study of all these issues made us quickly bend towards the other
extreme: the architecture depicted on the other side of the figure 3.1 (3.1(b)).
Here a central process acts as a communications hub, maintaining open channels
of communication with each and every ATLAS process in the application. This
central process, dubbed distr, should be kept as simple as possible, and extra
care should be placed on its development, in order to make it robust. It will
be the place were all information relevant to the application recovery in case
of failure resides, and therefore failures of distr itself cannot be recovered.
This relaxation of the failure-resistance objective seems reasonable given the
enormous impact in the system’s weight that it has: many subsystems become
a lot simpler to devise once this view is adopted. Moreover, being a standard-
component on which one can spend extra efforts to ensure its stability, the
impact on system’s recovery should be small.

In fact ATLAS failure resistance is mainly focused on failures of the commu-
nications or the systems in which the processes are being run. When a user
wants to start an ATLAS session, he really starts distr and it starts up the rest
of the system; typically distr is run in the user’s workstation, and therefore
failures of the kind mentioned above make it pointless to recover the session

anyway.

12

3.2 The failure resistance (crash fault-tolerance)
in ATLAS

Once decided for the centralized architecture, the decisions and managements
of ATLAS fault-tolerance lay on the distr central process. The fault-tolerance
problem has been studied in the literature at length. A recent survey can be
seen in {22] which summarizes the necessity of two important steps for a system
being fault-tolerant: the “detection” of faults and the “correction” of them when
detected.

In the ATLAS fault-tolerance, which is only for crashes of processes or com-
munications, the detection (or maybe better called suspicion) is performed by
a heartbeat mechanism (explained in chapter 6). This mechanism allows distr
to detect {or suspect} when a process or its communication with distr crashed.
The correction relies on the information kept in the journal and is performed
by the processes recovery which is an ATLAS journaling functionality (explained
in chapter 8).

From now on, these two parts of the ATLAS fault-tolerance will be treated
independently in the thesis. So this concept of fault-tolerance containing both
parts is not going to be discussed again.

3.3 A bird’s eye view of ATLAS

Because we have decided for a centralized architecture {figure 3.1(b)), the central
process distr is the most crucial component in the architecture. It acts as
a communications center for the duration of the application execution and is
charged with starting the system, relying messages, keeping tabs on the status
of all processes in the application at a given time, requesting the addition of
new processes or mandating the finalization of running processes, keeping the
journal and managing re-executions when needed.

Each process connected in an application needs a communications driver to
be able to manage the interchange of messages with the rest of the application.
The execution of processes relies on a paradigm similar to the remote procedure
call paradigm, therefore a process is considered as a set of routines to do the
process related work plus a communications driver. Taking information of the
processes interface defined in the ATL control language (see below), the ATLAS
automatic code generator is able to generate the necessary code to implement
the communications driver for the process. Therefore, it gives the desired trans-
parency to the developer who does not have to know about the communications
mechanism for his application processes.

A direct communication between two processes is also considered in the ar-
chitecture (as shown in figure 3.1(b) between the B-rep process and the Octree
Machine process). It allows the interchange of big volumes of data between pro-
cesses. About this special communication, distr will only know the times of its
creation and destruction, in order to be aware of the possible “domino effect”
in case one of the processes taking part in this communication crashes. When a

13

process or its communication with distr crashes, the processes recovery man-
agement can determine whether this process at the moment of the crash had an
opened direct communication or not. In the affirmative case the other process
involved in the direct communication has to be also recovered in order to reach
again the right status of both processes. However, this kind of communications
has not been included yet in the present prototype, so its management is not
explained in detail in this thesis except for the description of its protocols with .
distr {chapter 7).

The ATL language is a modular language which is used by the developer
for different purposes: to configure the application; to describe the interface
of a process; to define the interaction among processes and the dialogues of
the application; and also to facilitate the developer a rapid improvement and
debugging of his ATL code because it can be modified and recompiled at run
time. It can be used also as a powerful macro language by the final user to
control the execution or customize the environment.

The interpreter of the ATL language is the Command Subsystem, and it al-
lows interactivity and is able to manage both synchronous and asynchronous
routine calls, offering to the user a certain level of parallelism.

Another important aspect of ATLAS is the separation between computing
processes and data input processes. Although it is not compulsory —some mod-
ules may incorporate their own interface if needed-, it favours the reusability
and allows the developer to build his application without taking care of the user
interface because he can reuse another one available.

To this end, distr is also in charge of matching the input data coming
from a user interface process with the corresponding data requests coming from
the computing processes when they need input data. This matching is done
asynchronously by distr, who also registers this match in the journal in order
to be able to reproduce it if needed. :

The last fundamental ATLAS component is the generic Input Subsystem.
It defines a general user interface and may be charged with managing inter-
action with other windows created by the application (both X-windows and
Tcl/Tk [23] interface windows). It is implemented as a user process simplifying
its replacement by a new one if required.

Other utilities are also included, but are more anecdotical (i.e. not strictly
necessary to run an application). However, in some cases they can be used to
allow the advanced developers to overrule some defaults or use ATLAS at a lower
level to gain control of how things are handled. They also show that the handles
offered to interact with distr allow for enough extensibility.

The following chapters explain in detail all of these ATLAS components and
also the connections existing among them to build the whole system.

14

Chapter 4

The ATL language, its
compilation and
interpretation

The controlling device that orchestrates the collaboration between all the appli-
cation processes is the Command Subsystem which is an interpreter for the ATL

language.

ATL is an imperative, modular language used by the developer for several
different purposes: to configure the application —stating which processes belong
to it; to describe the interface of a process indicating the public routines that
can be called by other modules; to define the interaction among processes and
the dialogues of the application; and also to facilitate the developer a rapid im-
provement and debugging of his ATL code because at run time the developer can
modify and recompile modules and the changes become effective immediately.

As the ATL language is used to define the process interface, it is similar in
some sense to the Interface Definition Language (IDL) in the OMG CORBA
specification. But ATL is also a programming language that allows the definition
of commands to configure the interaction among processes or make some easy
calculations with data to be used as a parameter, for example.

To the final user the ATL language is also useful because he can use it as
a powerful macro language to better control the execution, or customize the
environment.

Although this role could have been relayed to an existing scripting language
(Guile [24], Perl [25], Python [26], Tcl [23], ...) it was deemed not appropriate as
we wanted a great deal of control on the semantics of user scripts. Furthermore
the close intertwining of this scripting engine with other components of ATLAS
made it unclear to which extent the use of an external scripting language would
save work. It is true however that using a more standard scripting engine would
have saved (some) users the need of learning yet one more. For this reason, in
our implementation we have used Tcl/Tk to add widgets to the user interface
(see Chapter 5: The ATLAS Input Subsystem).

15

4.1 Language description: Syntax and seman-
tics

As an example, figure 4.1 shows a portion of an ATL module. This example is
included here as a first illustration of the flavour of ATLAS, but does not include
very aspects of the language, that we shall now discuss in detail.

USE se, demandes;
// Type definitions
#deftype ::esferes_Button_pressed_event se::Button_pressed_event;
EXPORT #deftype Point STRUCT
px -> real; py -> real; pz -> real;
ENDSTRUCT;
EXPORT #deftype ColorRGB STRUCT
r -> real; g -> real; b -> real;
ENDSTRUCT;
EXPORT #deftype Sphere STRUCT
center ~> Point; rad -> real; color -> ColorRGB;
ENDSTRUCT;

PROT

EXTERN FUNCTION GetWindowId () RETURNS integer;
, EXTERN PROCEDURE AddSphere (Sphere sph);

EXTERN FUNCTION GetColor (::esferes_Button_pressed_event ev) RETURNS ColorRGE;

EXTERN PROCEDURE RemoveSphere (::esferes_Button_pressed_event ev);

EXTERN FUNCTION GetSphere (::esferes_Button_pressed_event ev) RETURNS Sphere;

EXTERN PROCEDURE ChangeColorSphere (::esferes_Button_pressed_event ev, ColorRGB c);
ENDPROT

EXPORT PROCEDURE AddDefault () IS
Sphere sph;
sph.center.px = 0; sph.center.py = 0; sph.center.pz = 0;
sph.rad = 1;
sph.color.r = .5; sph.color.g = .5; sph.color.b = {;
AddSphere (sph);

ENDPROCEDURE

EXPORT PROCEDURE Remove () IS
RemoveSphere (GETDATA("Select the sphere")});
ENDPROCEDURE

EXPORT PROCEDURE ChangeToColor (real r, real g, real b) IS

ColorRGB col;

col.r = r; col.g = g; col.b = b;

ChangeColorSphere (GETDATA ("Select the sphere to change color"), col);
ENDPROCEDURE

EXPORT PROCEDURE Distance () IS
Sphere sphl, sph2;
esferes_Button_pressed_event bpl, bp2;
sphl = GetSphere (GETDATA ("Select the first sphere"));
sph2 = GetSphere (GETDATA ("Select the second sphere"));
real dcent, dsurf;
dcent = sqrt{fabs((sphi.center.px-sph2.center.px)*(sphl.center.px~sph2.center.px)
+(sphl.center.py-sph2.center.py)*(sphl.center.py-sph2.center.py)
+(sphl.center.pz-sph2.center.pz)*(sphl.center.pz-sph2.center.pz)));
dsurf = dcent - sphl.rad - sph2.rad;
PRINT ("Distance between centers = }f", dcent);
PRINT ("Distance between surfaces = %f", dsurf);
ENDPROCEDURE

Figure 4.1: Portion of the “esferes.atl” file, the ATL module of the toy applica-
tion explained in chapter 9.

The grammar of the ATL language is described in appendix A.

16

4.1.1 Modularity

The ATL command language defined in ATLAS is a modular language where
a module is a file written in this language. The name of this file must have
an extension .atl and the file name without this extension is considered the
module name. Each module can be compiled individually if it does not depend
on any other module. The sentence USE is used in the language to control the
inter-modules dependences. This sentence used in a module tells the compiler
this module will use exported areas from the modules indicated in the sentence.

%)

Syntax: “USE” module.name (“,” module_.name)*

This sentence causes the automatic compilation of the indicated modules
if these modules have not been compiled yet. Every compilation of a mod-
ule provokes the automatic execution of the procedure “main” at the end of
the compilation if this procedure has been defined in the module (see subsec-
tion 4.1.7).

The module name (the name of the file containing it) must be a correct
identifier for the language itself. In case the module includes the interface
declaration of a process of the application, this name must be also the name
of the process. The range of identifiers which are accepted by the language is
represented by the following regular expression:

[a-zA-Z][a-zA-Z0-9] *

Every entity (type, variable, function or procedure) defined inside a module
belongs by default to the module scope (it is only visible inside the module).
But inside a module, it is also possible to define entities belonging to a global
scope {with a global name), or exported by the module (visible also on the
global scope). The name of the entities exported by the module will be prefixed
with the module name and two colons (as in C++ classes). As both of them
(global and exported entities) are visible on the global scope, any other module
can access to them.

In order to make a global definition the syntax to be used is to prefix the
name with “::”, indicating to the compiler that this definition is to be included
in the global scope and visible for everybody. A module can access to a global
entity either by using its simple name —if there isn’t any other more internal

@,

definition with the same name— or using the name prefixed by “::” as in the
definition.

Using global definitions a lot is not recommended, because it can provoke
many cases of collision among different modules because of the use of equal
names.

Those entities belonging to the module (defined into it and not global) are
introduced into the symbol table with their name prefixed by the module name
followed by “::”. To make them public, their definition must be preceded
by the keyword “EXPORT”. This tells the compiler they must be visible in
the global scope. Therefore any other module can access them using “mod-
ule_name::name”.

Scope management: There are three different scope levels, the global
scope, the module scope and local scopes. In the global scope there are those

17

entities defined explicitly as global entities and those exported by the module.
In the module scope there are those entities defined in the module but outside
any block (function or procedure). Those entities defined inside functions or
procedures describe local scopes (one for each block).

When an access is done inside a local scope, the compiler looks for it in the
symbol table and if there is more than one entity with the same name it uses
the one belonging to the most internal scope visible from there.

Example: file “modulel.atl”.
definitions:

#deftype typel integer

#deftype ::type2 VECTOR[3]

OF real
PROCEDURE procl () IS

{ sentences }

ENDPROCEDURE
type2 varl;

EXPORT FUNCTION fncl ()

RETURNS integer IS
{ sentences }

ENDFUNCTION

[

Defines the type ’'modulel::typel’ -
in the module scope.

Defines the type ’type2’ in the
global scope.

Defines the ’modulel::proc!’ func-
tion in the module scope.
Everything defined inside a block
belongs to local scope.

— Defines the 'modulel::varl’ vari-

able with type ’type2’ (global) in
the module scope.

— Defines the ’modulel::fncl’

function in the global scope.

EXPORT #deftype type3 string —— Defines the ’modulel::type3’

access:

PROCEDURE examp () IS

sitype2 vard,

moduln::proc3 ();

ENDPROCEDURE

l

!

l

l

i8

type in the global scope.

Assigns a value to the module variable
‘modulel::varl’.

Assigns a value to the global variable
'vard’. It must be global because it has
not been defined in the module.

Access to the global type type2’ to de-
fine the local variable 'module!::vard’.
Attempt to access to a procedure
'proc3’ which must be exported by
the module ’moduln’ and which is in
the global scope with the name 'mod-
uln:iprocd’.

Analogous to the “USE” sentence, there are also an “UNUSE” sentence and
a “REUSE” sentence (not allowed to be used inside procedures or functions).

%
3

Syntax: “UNUSE” module.name (“,” module_name)=
“REUSE” module_name (“,” modulename)* “”

The “UNUSE” sentence is useful to undo the compilation done by the “USE”
sentence, therefore its effect is to eliminate every symbol of the symbol table
that had been added by the corresponding module compilation (symbols defined
or declared in that module).

The “REUSE” sentence is useful to recompile modules, because it allows to
redefine all the internal definitions on the module. Its effect is to eliminate every
symbol of the symbol table except those being prototypes of external routines
(see section 4.1.8) and after the elimination it recompiles the ATL module. This
allows the developer to recompile modules interactively.

As the “UNUSE” and “REUSE” sentences are causing the undefinition of
the symbols defined in this module, they must be carefully used because other
modules can have references to these symbols in their commands that can pro-
voke an error on the application execution.

The sentences “USE” and “UNUSE” are also ordering an automatic execu-
tion or killing of the process whose module is being used (in case the module is
representing an external process). Therefore it must be noticed that an “UN-
USE” of a module which is representing a process will cause the ending of that
process. It doesn’t happen with the “REUSE” sentence, but on the other hand
if the “REUSE” sentence has an error and doesn’t finish correctly the module
will not be recompiled and it can cause execution errors if the other modules
are using some entities declared in this module.

The “REUSE” sentence will finish with error if the prototype of the external
routines (in case it is a module representing a process) have been changed. This
is because since the process was being executed before the “REUSE” sentence,
it has the external routine prototypes as defined by the first “USE” sentence.
Any change on these prototypes cannot thus be accepted by the compiler.

4.1.2 Constants and basic types

There are four basic types recognized by the language:

integer — It has an integer value and its internal representation is a long in
C++. The syntax accepted is a sequence of digits [0..9]. All the arithmetic
and comparison operators are valid for integers.

real — It has a real value and its internal representation is a float in C++.
The syntax accepted for a constant of this type is digits.digits where digits
is a sequence of digits [0..9] which can be empty for one of the two cases.
The same as with integers, all the arithmetic and comparison operands
are valid for reals.

19

boolean — It has a boolean value (true or false) and its internal representation
is a bool in C++. It only accepts as constant values TRUE, true, FALSE
and false. The operators accepting this type in their operands are the
logic operators and the equal and not equal relation operators ('==" and’
=7,

string — It has a string of characters as its value and its internal representation
is a String of the gnu library of C++. Any set of characters delimited
by quotes is accepted and the quotes itself are also accepted if they are
preceded by the backslash escape. In that case the compiler internally
takes out the backslash escape and builds the C++ String without it. The
accepted operations with strings are the equal and not equal comparison
operators and the add operation (*+’) which concatenates the two strings.

4.1.3 Types

Apart from the basic types just described, the ATL language also accepts pro-
grammer defined types built from other types using the struct, vector or alias
type constructors.

In ATL a “struct” is defined by a set of fields (of equal or different types)
and a “vector” by an array of certain fixed number of elements of the same type.

There is also the possibility of defining types as aliases of _atl_unknown.
These types can be used in the module to define variables which are needed only
to pass information from a routine to another, and the internals of these types
do not need to be known inside the module. These types won’t be accessible by
the compiler nor the Virtual Machine, so they can only be used as parameters
or as return values. The _atl_unknown types cannot be used as part of another
structure or vector type.

The required syntax for the internal description of types is:
type ¢— “STRUCT”
(field identifier “—>” type “”)+
“ENDSTRUCT”

| “VECTOR” (“]” number_elems “]”)+ “OF” type
| predefined_type

where “predefined.type” is the name of a type previously defined (already in
the symbol table} or a basic type.
And the syntax to define a new type is:
“f#tdeftype” type.identifier (type | “.atl.unknown”)

A type definition can be done at any point of the command language code
except inside blocks (functions and procedures) and it will be considered defined
from that point on.

20

As an example, a well defined type could be:

#deftype new_type STRUCT

fieldl —> integer;

field2 —> VECTORJ3}{5] OF STRUCT
fl —> real;
f2 —> string;

ENDSTRUCT;
field3 —> boolean;
ENDSTRUCT

The type checking used by the ATL compiler is a type checking by name,
i.e. two types are equal only if they have the same name. Therefore, when type
checking must be done, the types involved must be defined and have a name.
There is also the possibility of defining variables of a type “without name”.
These are variable definitions where the type is not a name but directly a type
definition. In this situation the compiler generates a new name for this type but
this name is unique and only identifies the type of the variables declared on the
same declaration line.

Since the type checking by name is very strict, ATL also accepts type cast-
ings. Some of these castings (implicit) will be done automatically by the com-
piler and the others (explicit) must be explicitly ordered by the programmer.

First of all, we should define what we will call the “effective type” of a type.
‘The effective type represents the same structure as the type but combining only
primitive types (basic types). When the type has a component which is an alias
of another type, the effective type substitutes this component by the effective
type of the component, so, finally it is just the same structure with basic types
composing it. As an example, if we have the type “usertype” defined as:

#deftype myint integer
#deftype point VECTOR[3] OF real;
#deftype usertype STRUCT
fieldl1 —> myint;
field2 —> point;
field3 —> boolean;
ENDSTRUCT

the effective type for this “usertype” would have the following structure:

STRUCT
fieldl —> integer;
field2 —> VECTOR[3] OF real;
field3 —> boolean;
ENDSTRUCT
¢ Implicit castings:
Type conversions that the compiler can manage automatically when there
are different types in an operation.

The supported implicit castings in ATL are:

~ casting from “integer” to “real”
~ casting from any type whose effective type is a basic type to that
basic type

21

Examples:

Given the following definitions:

#deftype typl integer
#deftype typ?2 integer
#deftype typ3 tipl
integer enter;

typl t1;
typ2 t2;
typ3 t3;
real rr;
we will have:

enter = t1 + 3; OK!

enter = t2 + t1 * t3; oKt

T = t2 + enter; OK!

. t2 = t1; ERROR!

where the last case is an error because t2 is not of a basic type, therefore
typl cannot be implicitly converted to typ2.

e Explicit castings:
Type conversion asked explicitly by the programmer. Its syntax consists

on putting, just before the expression whose type we want to convert, the
name of the type to which it must be converted enclosed in brackets:

“{” type-name “}” expression

This syntax asks the compiler to convert the expression type to the type
“type.name”. The compiler then has to check if this explicit conversion
is possible and this is made by testing if the internal structures of both
types are equal or implicitly convertible (for cases covered in the previous
bullet).

4.1.4 Variables

The ATL command language allows variable declarations of any type described
above. In fact, we can say that a variable is an instantiation of the type definition
tree that defines it whose leafs can contain values.

A variable declaration can be done at any point of the code, but there will
be differences depending on the position of the declaration

- between blocks — it is out of any block (procedure or function). In this case
the variable will belong to the module scope (in case the “EXPORT” or
“.” tokens are not used), or to the global scope otherwise (see subsec-
tion 4.1.1).

A variable declared in global scope will be visible from its declaration to
the end of the execution. A variable declared in module scope will be

22

visible also from its declaration but only to the end of the module where
it has been declared.

Syntax: { “EXPORT" }
type { “z” } varname (¢ { “:” } varname)* "

where 'type’ can be either an already defined type name or a type descrip-
tion “without name” (see subsection 4.1.3).

- inside a block — it is declared inside a block (procedure or function). In
this case the variable will belong to the local scope corresponding to the
block and will be visible from its declaration and only to the end of the
block definition.

Wn @8
’ b

Syntax: type var.name (var.name)*

The syntax used to refer to a field of a struct or an element of a vector is:

variablename (“.” field.name | “[” integer_expression “]”)«

where ’field_name’ is the name of the desired struct field and the ’integer_expression’
can be any expression evaluating to an integer.
Examples:

We can do things like:

#deftype typel STRUCT
field1 —> integer;
field2 —-> VECTORJ3|[5] OF STRUCT

f1 —> real;

f2 —> string;

f3 —> integer;
ENDSTRUCT;

field3 —> boolean;
ENDSTRUCT

typel varl;

PROCEDURE example () IS
varl.fieldl = 34;
integer index;
index = (varl.field1—10)%5;
varl.field2(varl.field1%3](index].f2 = “Myname”;
varl field3 = varl.field1/2 == varl.field2(0][0].f3;

ENDPROCEDURE

23

4.1.5 Expression evaluation. Operators.

An ATL expression can be a constant (of any basic type), a variable, a function
call or any combination of them allowed by the operators which are combining
them. Every expression has an associated type that is the expression evaluation
result type. This type is known at compilation time. Therefore the type checking
needed to know if an expression is correct or not can be done also at compilation
time.

The following table shows, with a decreasing priority order, all the operators
that can be used in an expression and the types allowed for their operands and
result.

| Operator | opnds | Operand types | Return types |

=) 1 integer,real integer,real
n 1 boolean boolean

A 2 integer,real integer,real
%’ 2 integer integer

4’ 2 integer,real,string integer,real,string

- 2 integer,real integer, real
===’ 2 integer,real string,boolean boolean
=) >= 2 integer,real boolean
&&' 1) 2 boolean boolean

Because of the fact that an implicit casting from integer to real is possible,
these two types can be operated together giving a real as a result type (see
subsection 4.1.3).

4.1.6 Sentences

A sentence is an action without any return result. The different sentences
recognized by the language are:

o the empty sentence, with syntax “;”, without any side effect (equivalent
to skip);

e an assignment sentence which allows to assign the result of evaluating an
expression to a variable of a compatible type;

(IR

Syntax: variable “=" expression

where ’variable’ can be the whole variable or the definition of an access to
one of its parts (field or element);

e a conditional sentence which evaluates a boolean expression and depend-
ing on whether it is true or false it executes one of two sets of sentences;

“IF” expression “THEN” sentences
{ “ELSE” sentences }

Syntax:

“ENDIF”

24

where the type of the expression result must be boolean and the branch of
sentences ELSE is optional. The execution effect of this sentence is to ex-
ecute the branch THEN when the expression result is true and the branch
ELSE (if it has been defined) or nothing (if not) when the expression result
is false;

a multiple conditional sentence which evaluates an expression to decide
which branch to execute and compares the expression result with the con-
stant that defines the branch. It executes the first branch that complies
with the condition;

Syntax: “CASE” expression “IS”
{ “WHEN” constant “D0O” sentences)
{ “OTHERWISE” sentences }
“ENDCASE”

It can contain any number of branches WHEN but only one branch OTH-
ERWISE which is optional. The program will execute the sentences of
the OTHERWISE branch only if no other constant of a WHEN branch is
equal to the expression result. If none of the WHEN branches complies
with the condition and there is no OTHERWISE branch this sentence
won’t execute any of its branches;

two iteration sentences which evaluate a condition (boolean expression)
and execute the sentences block repeatedly until the condition becomes
false;

a) WHILE sentence:

Syntax: “WHILE” expression “DO”
sentences
“ENDWHILE”

For each iteration the expression is evaluated (it must be a boolean expres-
sion) and if the evaluation result is true the sentences are executed and
the control goes back to the expression evaluation to repeat the process.
When the evaluation result is false the sentences are not executed and the
iteration finishes.

b) FOR sentence:

Syntax: “FOR” “(” assignment “;” expression “” assignment “)”
“DQO” sentences
“ENDFOR”

First of all, the first assignment sentence is executed and after that the
iteration starts evaluating first the expression (boolean expression) and
executing the sentences if the result is true. In this case, before going
back to the expression evaluation (the following iteration), the second
assignment sentence is executed. The iteration process ends when the
expression result is false.

25

e an output sentence which allows to print data in an input subsystem spe-
cially created output window. This sentence accepts a string as a first
parameter which has a format similar to the C “printf” sentence but al-
lowing only one other parameter, i.e. only one value is accepted into the
specified format.

Syntax: “PRINT” “(” STRING ¢ variable “)”

where STRING is a string constant that only permits one character '%’
inside it which indicates the exact point where the second parameter vari-
able value must be put.

e a grouping sentence which given a module name not corresponding to the
module being compiled, causes local names to be resolved in the scope of
that module if they are not found in the local scope.

Syntax: “WITH” module.name “DO”
sentences
“ENDWITH”

where ‘'module_name’ will be the module name to prefix the unknown call
sentences in this block.

In the following example, the effect produced in a function or procedure
call which is done inside a grouping sentence is shown:

Example: file “mod.atl”
FUNCTION funcl (real i, real j)
RETURNS real IS

'ENDFUNCTION
PROCEDURE example () IS
real varl;

WITH process.ext DO

varl = funcl (ij); — Causes the function call:
‘'mod::funcl(i,j)’.

proc2 (); — Causes the procedure call:
"nrocess-ext::;proc2()’ because
there isn’t a ’mod::proc2()’.

func2 (varl); — Causes the function call:
‘process_ext::func? (varl)’.

varl = ::global func (); — This is not modified because

it is an explicitly global func-
tion call. It causes the func-
tion call: ‘global_func ()’ in
the global scope.
ENDWITH
ENDPROCEDURE

26

A nested use of this grouping sentence is also accepted. In this case the
compiler uses a stack where it pushes and pops the module names depend-
ing on the grouping sentence arriving. The bottom of this stack is always
the module being compiled. Names are prefixed with module names from
this stack from the bottom up until they are found in the symbol table.

There are also other sentences like the procedure or function call sentence
and the return sentence that will be presented in next subsection.

4.1.7 Procedures and functions in ATL

Definition:
Functions and procedures are the execution blocks of the module. Their

definition is different for a function or a procedure:

A procedure is defined with a name, a set of parameters and a block of
sentences:

Syntax: { “EXPORT” } { “ASYNC” }
“PROCEDURE” { “::” } nom_proc “(” paramJlist “)” “IS”
sentences

“ENDPROCEDURE”

where 'param list’ is the set of parameters of the procedure which is composed by
a list of parameter definitions separated by commas. Each parameter definition
has a type name (that must be previously defined) and a given name for the
parameter. An example of a procedure definition can be:

PROCEDURE proc (integer x, typel parl, boolean r) IS
{ sentences }
ENDPROCEDURE

The optional tokens “EXPORT” and “::” are defining the scope where the
procedure will be defined (see scope definition details in subsection 4.1.1).

The “ASYNC” token is also optional and indicates that this procedure can
be called asynchronously (without stopping the execution of the calling routine).

To define a function, in addition to the name, the set of parameters and the
sentences block, a type determining the return value type of this function is also
required:

Syntax: { “EXPORT” } { “ASYNC” }
“FUNCTION” { “” } func.name “(” paramlist “)”
“RETURNS” type.name “IS”
sentences

“ENDFUNCTION”

‘where 'param_list’ is the same as in procedures and ’type_name’ is the required
type for the function return value. As an example we can define:

27

FUNCTION func (} RETURNS boolean IS
{ sentences }

ENDFUNCTION

Call and return sentences:

The call sentence will have the same syntax for both functions and proce-
dures. The effect produced by this sentence is also the same for both cases
because even though a function is returning a result value when this function is
called without getting the result value it is treated as a procedure call and the
return value is lost. The return value of a function will be considered when this
function call is taking part in an expression.

Syntax: { “ASYNC” } routine_name “{” exprdist “)” «”

where ’expr list’ are the expressions used to pass the actual parameters to the
call, and the “ASYNC” token is used to make an asynchronous call (which
requires that the routine was declared with the possibility of being asynchronous
with this token). Of course, a routine defined synchronous cannot be called as
asynchronous, but the reverse is permitted, so the user can call a routine defined
asynchronous to be executed synchronously (by not using the ASYNC token
when calling the routine).

An asynchronous call is only accepted as a sentence itself (without taking
care of the result if it has one) or as the r-value of an assignment.

A function or procedure call is also accepted at the blocks level (out of any
procedure or function body). Its effect is the immediate execution of this call
unless it has not been totally defined yet, which will cause an error.

The return sentence is also different depending on where it is used {function
or procedure). In a procedure the return sentence is only an order to finish the
procedure execution at this point, without any value to return. In a function
this return sentence is also an order to finish the function execution but it must
have also a return expression which evaluates to the value the function must
return. The definition of this return sentence is:

return — “RETURN”
| “RETURN” expression

In a procedure the return sentence is optional and if it doesn’t exist the
procedure execution ends at the end of the sentences block. On the contrary, a
function must have at least one return sentence in order to indicate the function
return value. It is an error for a function to terminate without executing a
return sentence.

Parameters:

With respect to the parameters for these functions and procedures, the lan-
guage accepts these parameters to be passed by reference or by value. The
difference is given in the definition and (as in C++) if the parameter is passed
by reference its name is preceded by the character ’&’. The parameters defini-
tion is then:

28

[

paramlist « { param () param)x } :— the parameters list can be
empty

param < typename { “&” } parmame :— the &’ character is op-
tional

When a parameter is passed by value the sentences block works with a
copy of the variable passed as a parameter, but when a parameter is passed by
reference the sentences block works with a reference to the variable passed as
a parameter, therefore any change made to this variable inside the function or
procedure will be effective also outside the function or procedure block.

When the compiler is looking at a sentence call, it must make type checking
for each parameter passed (comparing with the function or procedure defini-
tion), but it also checks that a parameter defined to be passed by reference is a
variable, because something which is not a variable (constant, expression result
or function call result) can not be referenced with an address. In this case the
compiler will give an error message.

Prototypes:

The language also includes function and procedure prototypes to enable calls
to functions (or procedures) to precede their definition. The most obvious use
of this is for two functions (or procedures) which are cross-recursive (A calls B
which again calls A).

The prototypes must be defined inside a special block used to define proto-
types and its syntax is the head of the function or procedure itself.

Syntax: “PROT”
({ “EXPORT” } { “ASYNC” }
“PROCEDURE” { “” } proc.name “(” paramist “)”
{ INVERSE OF” name } “”
| { “EXPORT” } { “ASYNC” }
“FUNCTION” { “” } func_name “(” param.Jist «)”
“RETURNS” type_name
{ “INVERSE OF” name }

I .9
)

)+
“ENDPROT”

The definition of parameters in a prototype is only used for type checking
when the function or procedure is called. The prototype definition causes the
creation of an entry for the function in the symbol table, allowing this symbol
to be used in a call sentence before the function or procedure called is totally
defined.)

There is also the possibility of declaring that a function or procedure has
an inverse {also a function or procedure). This declaration is only allowed in
the prototype definition and the parser checks, at the end of the prototypes
block, that the prototype of the inverse function or procedure (whose name has
been put after “INVERSE OF”) has also been declared. The two prototypes

29

must be compatible in parameters, i.e. the two prototypes have the same sig-
nature. This is used to optimize the journaling UNDO functionality (explained
in section 8.1.3)

The GETDATA function:

The GETDATA function is a special function known by the compiler which
requests input data of a certain type.

Syntax: “GETDATA” “(” string-expression “)”

where the expression must evaluate to a string and represents a set of characters
shown to the end user to identify the request.

This function is accepted by the compiler only in two places:

¢ at the right side of an assignment sentence which causes a request for an
input data having the same type as the variable to be assigned,

¢ as a parameter of a function or procedure call which causes an input data
‘ request having the type corresponding to this parameter. This case is not
allowed if the parameter is passed by reference.

The execution of this function causes a request of input data to the system
and the corresponding command execution waits until this input data is given
by the system.

In the current version of ATLAS, the GETDATA function sends a request
which does not have expire time {with a -1 as timeout value —see section 6.3). A
possible extension to allow the use of other interaction modes (different timeout
values) in the GETDATA function is presented in chapter 10 (section 10.3).

This GETDATA function is not asynchronous in itself even though it is based
in the asynchronous input data mechanism offered by ATLAS (see section 6.3).
Although it causes the command execution to wait until it gets the input datum
requested, it does not stop the whole system. Other commands can be executed
while this one is waiting for an input datum.

The “main” procedure:

The “main” procedure can be seen as an initialization procedure of the
module because it is only executed once after the successful compilation of
the module. This procedure doesn’t have any parameter and cannot be called
neither from any other function or procedure nor directly from the interactive
Command Subsystem like the other procedures or functions can. Its prototype
is fixed:

PROCEDURE main ();

It can be defined as any other procedure.

There are no restrictions on its internal sentences block because its behaviour
is the same as any other procedure in the module. The only restriction is that
the module cannot define another procedure or function using the same name

“main”) with a different prototype.

30

Other predefined global functions:

There is also the possibility of calling some functions which are defined as
global functions of the system. These functions include some mathematical
functions, translations from integer or real to string and vice-versa, and the
possibility to produce input data directly from an ATL command.

In particular these ATL default global functions are defined with the follow-
ing prototypes:

— Mathematical functions:

real exp (real); real asin (real);

real fabs (real); real acos (real);

real sqrt {real}; real atan (real);

real log (real); real sinh (real);

real log10 (real); real cosh (real);

real sin (real); real tanh (real);

real cos (real); real atan?2 (real, real);
real tan (real); real pow (real, real);

— Translation functions:

integer atol (string); string ltoa (integer);
real atof (string); string ftoa (real);

— Input data functions:

atl_send_input (any.type’);

where ’any_type’ can be any type previously defined. This function assigns
-1 as a timeout value to the input data (see section 6.3).

atl_send_input_tout (Cany.type’, integer);

where the second parameter is the timeout value assigned to the input
data.

Therefore, in order to produce an input data with a non -1 timeout value,
you must use the ’atl_send.input_tout’ call instead of the ’atl_send-input’
call. Except for this difference, the ATLAS ’atl.send_input’ call works ex-
actly as the one with the same name in the ATLAS utility library described
in chapter 9.

4.1.8 External functions and procedures

Usually an important part of any ATL module code consists of calls to functions
or procedures which are defined externally to the Command Subsystem. These
are the functions that constitute the core of the application. They must be
implemented in the application process and declared as external prototypes in
the ATL module.

31

Module associated to a process:

In order to be able to identify the external functions or procedures, the ATL
compiler must find the needed information in the symbol table. This information
is given in a module associated to the external process. This module must have
the same name than the process and must declare the external functions and
procedures that the corresponding process implements and offers to be public,
this means it should declare the interface of the process. To declare an external
function the keyword “EXTERN” is used and it can be followed by the keyword
“ASYNC” if this function can be called asynchronously. This declaration, as
the others already explained, must be placed inside the prototypes block.

Syntax: “EXTERN” { “ASYNC” }
(“PROCEDURE” proc.name “(” param_ist “)” “”
| “FUNCTION” funcname “(” param list “)”
“RETURNS” type_name “;”
)

Although this associated module is declaring the required external functions
for the external process, it is also an ATL module and can declare anything the
other Command Subsystem modules can. :

This association between an ATL module and an external process allows the
application programmer to encapsulate in modules the processes together with
command language tools that use these processes.

Parameters:

An external function call provokes an execution of this function in the process
that implements it. The parameters of this call must, then, go through the
network because the process can be executed on another machine. In order
to avoid the problem of having different representations of data in different
architectures, ATLAS relies on the external data representation (XDR). This
representation of data is totally managed by the system and the application
developer doesn’t have to be aware of it.

The parameters in this kind of function calls can be also passed by reference,
but in this case it doesn’t make sense to pass to another process a physical
address. The effect of a parameter passed by reference to an external routine
is to use a mechanism of copy and return of the corresponding parameter. The
variable is copied to the process, the function modifies it and it is returned with
the new value to the Command Subsystem to substitute the old value by the
new one. It follows a “copy-in copy-out” paradigm.

4.1.9 Comments

The compiler of the ATL language also accepts comments inside the module.
These comments are like those accepted in C++. A comment can start with
“//” and finish at the end of the line, or start with “/*” and finish with “x/”.
Comments are accepted at any point of the module definition where a space
would be acceptable, and are skipped by the compiler,

32

4.1.10 Other constructions

There is an extra sentence not included as part of the language proper, but
which must be recognized also by the compiler because it is him who interprets
all user commands.

Syntax: ~ “KILLPROC” procname *”

This “KILLPROC” sentence is a sentence of the language more oriented to
the developer than to the final user. This sentence causes the distr process kill
the ’proc_name’ application process, and can be useful at developing time when
a process is inside an infinite loop, for example.

“KILLPROC?” is only allowed as an interactive sentence, i.e. is a sentence
to be introduced interactively by the user (developer), it is not allowed to be
inside a module file.

4.2 The AtLAs Command Subsystem

The Command Subsystem is the ATLAS component charged on interpreting the
ATL language. It is divided in three independent processes connected to each
other (figure 4.2):

Command
Subsystem

Figure 4.2: Command Subsystem internal scheme.

e The communications driver is the one that manages the communication
between the Command Subsystem and the rest of the ATLAS system. Itis
the only part communicating with the master process distr. This driver
has also direct communication with the other two parts of the subsystem.

e The compiler of the ATL language is able to read the ATL code both
interactively from the user (it comes from an Input Subsystem through
the distr process) or from a file written in that language.

33

The compiler compiles the ATL language code and generates an inter-
mediate code that will be interpreted by the Virtual Machine (the third
component).

e The Virtual Machine is the component in charge of the execution of the
ATL code. Its purpose is to interpret the intermediate code generated by
the compiler. Among its functionalities it keeps information on the exter-
nal routine calls which have to wait for return values, generates requests
of input data to the system and is able to manage different command
executions as different execution threads ! (allowing certain level of asyn-
chrony).

It is also able to manage asynchronous calls, by using a mechanism of-
“dirty variables”. It tags all output parameters or return values of an
asynchronous call as “dirty”, and any attempt to use one of them as an r-
value freezes the executing thread. Thus asynchronous calls may be issued
and other portions may properly await their completion in a transparent
manner.

4.2.1 The Command Subsystem driver

The driver for this ATLAS component is like the driver for any other ATLAS
process (explained in chapter 7). In this case the management it does is a
little bit different because it just acts as a message routing process handling the
communications with the compiler and the Virtual Machine processes. When
the driver receives a command message from the distr process it sends it to the
compiler to be compiled and interpreted. Messages coming from distr which are
not commands are directly sent to the Virtual Machine, and messages arriving
from the Virtual Machine are directly sent to the distr process.

The compiler and Virtual Machine also hold a direct connection between
them used to serve executable code to the Virtual Machine (this is explained in
the Virtual Machine subsection below).

4.2.2 The ATL compiler

The ATL compiler is able to receive the orders interactively, and considers any
routine call made out of a block (outside any function or procedure definition)
as an execution order causing its immediate execution by the Virtual Machine.
This facilitates a rapid improvement and debugging of code and also offers the
final user the possibility of using ATL as a macro language.

Parsing the language

The PCCTS package {Purdue Compiler-Construction Tool Set) [27] has been
used to generate the ATL compiler. The parser generator ANTLR (included
in PCCTS) is able to generate C++ output. It has three things that make it

IThey are not low level threads, just different commands being executed concurrently, i.e.
when one of them must wait for any response another one can start its execution and so on.

34

generate strong parsers: k > 1 lookahead, semantic predicates (the ability to
have semantic information direct the parse), and syntactic predicates (selective
backtracking).

Since PCCTS also includes a template for symbol table manager, we just
added the specified fields for the sort of registers that the ATL compiler needs.

Each register of the symbol table has a general description with a field point-
ing to a different object depending on the type of the register and the contents
of it. Figure 4.3 shows schematically the structure of these registers.

Symbols table register

symbol next prev head scope hash token level cont

GENERAL | String | struct _sym * : struet _sym * : struct _sym **: struct _sym * : u_int | it int void *

- = e — e e e me —— —

deftype
TYPE Type
token_type offset
VARIABLE String int
return_type nparams infopars defined ext async
FUNCTION/PROCEDURE String int void * hool hool hool

Figure 4.3: structure of a symbol table register

The contents of the different kinds of registers are:

Type: When a type is defined the compiler only needs to keep the “Type”
object built for it. :

Variable: For a variable declaration, it needs to keep the name of the type of
the variable (for type checking) and the offset to the variable in the stack
in case it is a local variable.

Routine: When a function or procedure is defined the data kept in the symbol
table are: the return type of the routine (it is “_void” for procedures), the
number of parameters, the information of these parameters (type name
and flag indicating whether it is passed by reference or not), a flag saying
whether the routine has been defined or just declared, a flag for being or
not an external routine, and another flag to say whether it is declared
asynchronous (allowed to be called asynchronously).

Intermediate code generation

The intermediate code language has been defined as a finite number of inde-
pendent instructions which can carry none, one, two or three operands. These
instructions can be seen as similar to the byte codes of Java [28, 29] or Basic or

as an assembler language. These instructions will be interpreted by the Virtual
Machine process.

The intermediate code is generated by the compiler from the ATL language.
code in order to be executed sequentially and each instruction independently of
the others. This execution is totally managed by the Virtual Machine (see next
subsection).

As an example, figure 4.4 shows the intermediate code generated from a block
of sentences in ATL. For this example it is assumed that ’sum’ is declared in
the module scope and ’i’ is a local variable of the routine implementing this
code block.

GETN “sum”
sum = 0; — PUSH 0
MOVI1
GETV offset
i=1; — PUSH 1
MOVI
a: GETV offset
PUSH 10
WHILE i < 10 DO — LEQI
BRF b
’ POP
GETV offset
PUSH 2
MOD
IFi%2==0 — PUSH 0
EQI
BRF c
POP
GETN “sumy”
GETN “sum”
GETV offset
THEN sum = sum + i; — ADDI
MOVI
BR d
c: POP
GETN “sum”
GETN “sum”
ELSE sum = sum — i; — GETV offset
SUBI
MOVI
ENDIF
d: GETV offset
GETV offset
i=i+ 1 — PUSH 1
ADDI
MOVI

BR a
ENDWHILE — b: POP

Figure 4.4: Example of the intermediate code generation for a block of ATL
sentences

This intermediate code instructions sequence generated by the compiler is
stored into a code table which will be sent to the Virtual Machine to be executed.
Each function or procedure defined will have its own code table.

4.2.3 The Virtual Machine

The Virtual Machine is the Command Subsystem component which interprets the
intermediate code generated by the compiler. It controls the interaction among

36

‘the application processes, which is programmed by the developer in ATL, and
also has a direct communication with both the compiler of the ATL language
and the Command Subsystem communications driver.

The communications driver of the Virtual Machine listens from both com-
munication channels. The communication with the compiler is only one way,
the compiler sends messages to the Virtual Machine but not the other way. The
communication with the Command Subsystem driver is in both directions, the
Virtual Machine driver receives from and sends to this communication channel.

Information from the compiler

The information the compiler sends to the Virtual Machine is related to two
main tasks:

- compilation task — messages related with this task are those giving
information about the compilation of different el-
ements that must be known at execution time
(global variables declaration, procedures or func-
tion definition, etc),

~ execution task — since the compiler is able to receive orders in-
teractively, it must generate messages requesting
execution which have to be interpreted by the
Virtual Machine.

The structure encapsulating the communication channel with the compiler
can be seen in figure 4.5, where the base class “Comunic_Pipe” is an abstract
class encapsulating the communication channel descriptor and the ATLAS mes-
sages reception management in case of a pipe channel.

class Comunic Comp : public Comunic_Pipe

char missgen; // distinguish between the two kind
// of messages
taula<Instruccio> *coditmp; // pointer to the intermediate code

// table being generated at any moment

void Handle_Message (Message tmiss); // message treatment
friend void interpret (ExecStep kestat); -

public:
Comunic_Comp (int fd) : Comunic_Pipe(fd) {}
};

Figure 4.5: The “Comunic.Comp” class interface

The Virtual Machine symbol table

The messages sent by the compiler during compilation are needed by the
Virtual machine to keep some information only known at compilation time. This
information is stored in the Virtual Machine symbol table, which is smaller than
the compiler’s, and the information stored is different. This symbol table will
also keep information corresponding to those default functions recognized by the
ATL language (more about this in “Default functions management” below).

37

The different registers of this symbol table are for variables and functions or
procedures. The first correspond to global variables and keeps the address where
the variable is stored. The others correspond to functions or procedures that
can be: defined in the ATL language, which keep the address of the intermediate
code table that implements the procedure or the function; or the “default” pro-
cedures or functions which are those known by the language without having to
be defined in any module (mathematical functions, translations from “integer”
or “real” to “string” and vice-versa and procedures to produce input data to
be sent to the distr process). These “default” procedure or function registers
store two integers representing the indices of the tables that store the addresses
of the functions to call (see “Default functions management”). The symbol
table does not need to keep information about external functions because the
compiler includes it in the operands of the intermediate code instruction which

triggers the call.

symbol next prev head scope hash token level cont

----- (il sl il sl
GENERAL truct _sym "‘L‘—\‘trua _sym *:..\'trm‘l _sym ** ::'mu‘r _svm *L u_int void *

.

var

code
ATL FUNCTION/PROCEDURE

generic_ind func_ind

default FUNCTION/PROCEDURE

The field ’level’ of the general register is used to indicate if a variable or a
function/procedure has been temporarily deleted from the symbol table. This
situation can be produced, for example, by an UNUSE of a module, and the
Virtual Machine keeps the same address for the register in order to avoid prob-
lems with other modules referencing this address, because the user can load
again the module afterwards (eg. with USE).

The messages that the compiler sends to generate and update this symbol
table and which are handled by the Handle.Message method of the “Comu-
nic_.Comp” class, are the following:

DECL_FUNC: Function declaration message. This message is sent by the
compiler when a prototype of a function or a procedure internal to the
Command Subsystem is parsed. It contains the name of the function or
procedure.

V.M. behaviour?? First it checks if there is a register in the symbol table
with this name (it can be a repeated prototype or it could have been deleted
because of an UNUSE of the module —see the REMOVE message in the next
section). If it already exists it revalidates its definition (sets its field 'level’
to 1) and points the field ‘code’ to NULL. If it didn't exist, it creates a new

2The implementation behaviour is described changing to the sans serif font in order to
distinguish it from the more abstract explanation level.

38

function type register to the symbol table and initializes its 'level’ field to 1
and its 'code’ field to NULL.

DECL_VAR: Variable declaration message. This message is sent by the com-

piler when a global variable is declared. It contains the name of the
variable, the name of its type and its effective type.
V.M. behaviour: First it checks if there is a register in the symbol table for
this variable. If it already exists it revalidates its definition (sets its field 'level’
to 1) and creates the Type and the Variable assigning its address to the field
'var'. If it didn't exist, it creates a new variable register in the symbol ta-
ble, initializes its 'level’ field to 1 and creates the Type and the Variable and
assigns it to the 'var’ field.

DEF _FUNC: Function definition message. This message is sent by the com-
piler when it detects that the definition of a function or procedure internal
to the Command Subsystem is going to start.- It contains the name of the
function or procedure.

V.M. behaviour: First it checks if there is a register in the symbol table for
this function. If it aiready exists and it is already valid (its 'level’ field is 1) it
just needs to assign the 'code’ field to the intermediate code table where the
corresponding instructions will be stored, if the register was not valid it has
to create also the function part for this register and validate it (set its 'level’
field to 1). On the other hand if the register didn't exist it has to be created
and set with the corresponding values.

Finally the address of the code table created is also assigned to the tempo-
rary code table of the communication wrapper ('coditmp’ field of “Comu-
nic_Comp”), because the instruction messages following this one will be part
of this code table just created for this function. The value of the flag 'missgen’
of "Comunic.Comp” is set also to DEF_FUNC.

INSTRUCT: Intermediate code instruction message. This message is sent by
the compiler each time it generates an intermediate code instruction. It
contains the instruction and its operands.

These instructions always arrive after a function definition message or an

execution message (see “The execution messages” below). In the first case

they are instructions to be stored into the code table of the function and
in the second case they are instructions to be stored into a temporary code
table to be executed.

V.M. behaviour: First of all a preprocessing is needed in order to change the

operand in two cases (see also the intermediate code instructions description

in appendix B):

CINT (code = 42) the compiler sends the name of the function to be called
and the Virtual Machine has to change it depending on
the function to be called. In case the function is defined
in the ATL language the operand must be changed to
have the address to the symbol table for this function;
but in case it is a default function the preprocessing has
to change the instruction to the CDEF instruction {code
= 58) and with the indices for this function (stored in
the symbol table) as operands. This last instruction will
call the corresponding default function when executed.

39

GETN (code = 53) the Virtual Machine changes the name of the global

variable for its address stored in the symbol table
After this preprocessing the instruction is appended to the code table currently
being created.

Dummy: Empty message. This message is sent by the compiler to indicate
that the code table being sent instruction by instruction is finished.
It checks the flag 'missgen’ of “Comunic_Comp” to decide whether it was
defining a code table for a function or it was receiving a code table to be.
executed.
V.M. behaviour: The flag 'missgen’ of “Comunic.Comp" is set to DUMMY
and the 'coditmp’ field is set to NULL.
In case it was receiving a code table to be executed the Virtual Machine also
creates a new “ExecStep” object and the routine interpret is called to execute
this code (see below).

The ezecution messages

The execution messages are those involved in requesting the execution of
some code to the Virtual Machine. They come from the compiler as a result of
commands entered by the user or of the compiler’s own processing.

Besides the already discussed INSTRUCT’ and 'Dummy’ messages, which
can also be execution messages, there are the 'EXECUTE’ and 'REMOVE’
messages which can only happen in connection with an execution.

EXECUTE: Ezxecution order message. This message is sent by the compiler
when it detects that a code table must be executed (function or procedure
call between blocs or execution of the 'main’ procedure). It doesn’t contain
data.

V.M. behaviour: It generates a new code table at the 'coditmp’ field {this
code table will be temporary and is only used for this execution), and updates.
the 'missgen’ flag of "Comunic_.Comp” to EXECUTE.

REMOVE: This message is sent by the compiler in three cases and includes
a flag to distinguish among them. The cases are:

e when it has detected any compilation error and must remove some
entries from the symbol table;

e when an UNUSE or a REUSE for a module is seen and it has to
eliminate an intermediate code table from the symbol table;

¢ when an UNUSE or a KILLPROC for a module is seen and it has to
indicate the Virtual Machine that the process is dead.

In the first two cases, besides the case-selection flag, the message contains
the name of the entity to be removed from the symbol table. In the third
case it contains the name of the process.

V.M. behaviour: In the first two cases the symbol table must be modified. If
it is a compilation error (first case) it removes the register totally from the
symbol table, but in the second case it only removes its contents and marks
the register as not valid ('level’ field set to 0).

40

Besides the necessary changes to the symbol table, in the second and third
cases the possibility of having some executions of this module waiting for
some answers from the system exists, so these stopped executions cannot
continue if the code table being executed is removed from the symbol
table. Same is true for those executions waiting for external returns from
the process associated to the module being UNUSEJ, even if they do not
have to execute any internal code table, because the return may never
come from that process.

V.M. behaviour: This elimination of pending executions is done by the rou-
tines neteja_llistes and neteja.externes.

The first one receives the register of the symbol table to be treated. First
this routine checks if this register is for a function/procedure and otherwise
returns. If it is a definition of a function/procedure —and it is not a default
function— it takes the pointer to the code table to be eliminated and looks for
it at waiting lists comparing it with every code table in each waiting execution.
When it finds a coincidence:

- If it was in the list of executions waiting for input data, it generates a
message of “removing request” with the identifier of the request and
sends it to the distr process. Then it deletes the stacks for this exe-
cution and removes the Waitinginput from the list (see “Data request”
below).

- [If it was into the list of executions waiting for results of external functions
(synchronous) it deletes the stacks for this execution and removes the
ExecStep object from the list (see “The execution” below). The cases
for asynchronous calls are explained in next section (4.3).

After this it checks if the Virtual Machine was waiting to finish and these were
the last executions to manage and in this case it finishes the Virtual Machine
execution.

The neteja_externes routine receives the name of the module and looks for
those executions awaiting results from external routines. If the external routine
it is waiting for is a routine of this eliminated process it removes the ExecStep
from the list (in case the routine was synchronous) and deletes it. The case
for asynchronous calls is treated in section 4.3. This routine also checks if the
Virtual Machine was waiting to finish and acts as the others.

‘The intermediate code structure

The intermediate code language is a finite set of independent instructions that
can use zero, one, two or three operands depending on the instruction. These
instructions are similar to the instructions of an assembler language.

Internally the intermediate code instructions are represented by a class, “In-
struccio”, containing a code indicating the instruction and three operands that
can be instantiated or not depending on the instruction represented. The meth-
ods offered by this class are basically the different constructors (with zero, one,
two, or three operands) and the access methods to the instruction code or to
any of its operands (see figure 4.6).

41

class Instruccio

{

short codi; // instruction code
Operand operl,oper2,oper3; // operands

public:

Instruccio () {}

Instruccio (short cod) : codi(cod) { }

Instruccio (short cod, Operand &opl) : codi(cod), operl(opl) { }

Instruccio (short cod, Operand &opl, Operand &kop2)
: codi(coed), operi(opl), oper2{(op2) { }

Instruccio (short cod, Operand %opl, Operand %op2, Operand &op3)
: codi(cod), operl(opl), oper2(op2), oper3(op3) { }

short Codi () { return codi; }

Operand & Getoper (int i) { switch (i) { case 1: return operl;
case 2: return oper2;
case 3: return oper3; }

};
Figure 4.6: The “Instruccio” class interface

" An operand is represented by another class “Operand” which is a base class
for the classes representing the different types of operands. This base class
contains the name of the operand type, a flag saying whether it is a constant or
not and a union of fields representing the different data types that an operand
can represent (see figure 4.7). Each derived class will access the corresponding
field of the union. '

This class uses two C++ classes “Variable” and “node”, which allow it to
keep a variable into the tree structure of its type. These classes are more ex-
tensively used for the representation of data going through the communications
mechanism because they permit the encapsulation of any type of data (more ex-
tensively explained in chapter 7), but they are also used by the Virtual Machine
to store and access data.

e The “Variable” class contains the name for the variable, a “Type” instance
for its type and a pointer to a “node” object which is the root of the
tree representing the variable. The “Type” class encapsulates the type
definition as well as its effective type which expresses the type in terms of
primitive types.

An important method in this class is the creation of the tree that mimics
the type’s structure, made up of objects of the class “node”.

¢ The “node” class is an abstract class with different kind of nodes derived
from it. They are a node for a structure having a set of node pointers
for its fields, a node for a vector having an array of node pointers for
its elements, and four nodes for the basic types (integer, real, string and
boolean) containing the values of the atomic components of the variable.

The classes derived from Operand are the following:

“Operand_int” — Operand containing an integer constant.

“Operand_float” — Operand containing a float constant.

42

class Operand

{
protected:
String tipus; // type name of the operand
int switch_t; // constant/pointer to a node/pointer to a Variable

union { Variable *ptrvar;
void *punter;
io_abstract *varbl; // can contain an io<node *> or just an io_base if it
// is only a tag (atl_ticket)
long enter;
float real;
char #*string;
bool boolea;
} contingut;

public:
Operand () { tipus = ""; }
Operand (const Operand %op); // make a copy of the operand

Operand &operator = (const Operand &op); // reserving space in case
// it is a ’char »*

String Gettipus () const { return tipus; }
int Switch_t () const { return switch_t; }
bool Isconst () { return (switch_t==0); } // the operand is a constant
bool Isnode () { return (switch_t==1); } // the operand is an io_base pointer
bool IsVariable () { return (switch_t==2); } // the operand is a Variable pointer
void Buida (); // removes the content of the operand, when it is a "string"

// it deletes the ’char %’ and vhen it is an jo_abstract pointer

// it decreases its references (also for the node if needed)
“Operand () { if ((switch_t==0) && (tipus=="string") &&

(contingut.string!=NULL))
delete [] contingut.string; }

friend ostreamy operator << (ostreamk s, const Operand &op);

i

Figure 4.7: The “Operand” class interface

“Operand_string” — Operand containing a string constant.
“Operand_bool” — Operand containing a boolean constant.

“Operand_var” —+ Operand containing a pointer to the wrapper structure
defined to deal with global data identifiers (see “Global
data identification” in chapter 8). In this case it wraps
a “node” pointer.

“Operand_punter” — Operand containing a void pointer. This kind of
operand is used to keep the pointer to the intermedi-
ate code table at the activation blocs in the execution
stack (see subsection “Stacks management” below).

“Operand_ptvar” — Operand containing a pointer to a Variable.

This Operand structure is also used in the stacks management of the execu-
tion (see next subsection).

The intermediate code that the compiler generates and that must be ex-
ecuted by the Virtual Machine is structured as a set of code tables (one for
each procedure or function) which are tables of instructions of this intermediate
language.

43

The execution

When a ’'Dummy’ message arrives after a code table has been received for an
execution, an FzecStep object is created and passed to the interpret routine
to be executed. This “FzecStep” class encapsulates an execution status in the
Virtual Machine. It keeps pointers to the code tables that become part of this
execution (i.e. they have been called from this execution) and pointers to the
execution and temporary stacks. It also keeps the index of the code table where
the execution is at the moment and the base pointer to the execution stack
(lenght of the stack once the activation bloc is stored). The definition for this
class is shown in figure 4.8:

class ExecStep
{
DLList<taula<Instruccio> *> 1l_code; // code tables in the execution
VStack<Operand> stmpstack;
VStack<0Operand> *execstack;
int base_ptr;
int index;

// Atributes to manage internal asynchronous calls

bool async; // flag for the first call in this thread
int callscount; // counts the nested calls in the thread
bool justnew; // this thread has been just created

int code_call;

// Atributes to maintain the execution thread number for the journaling
unfourbytes thread;

// Atridbutes to preserve some aspects of the execution environment that can be
// used after a stop in this execution

OpenedCall stowait_actiu;

DirtyVar #*pervalidar;

void actualize (int b, int i) // update the status with the new data.
{ base_ptr = b; index = i; }
void add_table (taula<Instruccio> #t) { l_code.prepend(t); }
void sub_table () { Pix i = 1_code.first(); 1_code.del(i); }
// functions that need a direct access to the structure
friend void interpret(ExecStep &estat);
friend void interp_tracta_dades (AnswerData dades);
friend void interp_tracta_ret_valor (ReturnValue &dades);
friend void interp_tracta_mort (String nomproc);
friend void neteja_llistes (Sym *a);
friend void neteja_externes (String nom);
friend void interp_tracta_ret_void (ReturnVoid dades);
friend void interp_tracta_ret_param (ReturnParam kdades);
public:
ExecStep (taula<Instruccio> *t, int code, unfourbytes th);
// initializes a status from a code table to be executed.
ExecStep (taula<Instruccio> *t, int code, VStack<Operand> &tmp, unfourbytes th);
// initializes a status copying the temporary stack (for asynchronous calls)
OpenedCall *Towait_actiu () const { return towait_actiu; }
void Activa_towait_actin (OpenedCall *oc) { towait_actiu = oc; }
“ExecStep {(); // deletes all pointers different of NULL.
|

Figure 4.8: Interface for the “EzecStep” class

The interpret routine receiving a reference to an EzecStep object interprets
(executes) the intermediate code. To start an execution the EzecStep is initial-
ized (empty stacks and index and base pointer 0). An execution can be stopped
waiting for some data coming from elsewhere, so in these cases it sets the execu-
tion status (encapsulated in an EzecStep) to be able to continue the execution
later at the same point. Only the ’base_ptr’ and ’index’ values need to be

44

set, as the rest are references.

The implementation of this routine is just a loop ending when it finds the
instruction END and executing each instruction in the code table being inter-
preted (see appendix B). When there is an instruction that has to stop the
execution, the treatment for this instruction updates the ErecStep with the
information needed to know where it will have to restart the execution (see sub-
section “Communications with the Command Subsystem driver”) and returns
from the routine.

This implementation of the interpreter allows for different commands to be
concurrently executed. At each point in time, one will be active, while the
others are suspended awaiting input or external routines.

Stacks management

The Virtual Machine uses two different stacks in the execution of the inter-
mediate code. One of them, the “ternporary stack”, is used for the intermediate
computations and assignments, and the other, the “execution stack”, is used
to store all the activation blocs of the execution and the parameters and local
variables of the functions or procedures called as well. The order in which the
parameters are going to be stored into the execution stack is the same order as
they appear in the calling sentence, or the function declaration. So, the order is:
first the param_1, then the param_2, and so on until the paramn. The scheme
in figure 4.9 shows how data are stored into the execution stack.

]
local variables of B
m
parametres of B ; activation bloc of B
base-pointer -- B —w—»] base-pointer - A
return @ to A index - A
. code table @ -- A
local variables of A
n
parametres of A 1 activation bloc of A
base-pointer -- A —m—>>| base-pointer -- X
index -- X
return @ to X code table @ -- X

Figure 4.9: Scheme of the use of the execution stack

In appendix B the description of all intermediate code instructions that the
Virtual Machine accepts is explained. For each instruction it explains also its
operands and the effect of its execution.

45

Default functions management

The ATL language offers the possibility of using some mathematical func-
tions inside the function or procedure definitions so that they are directly ex-
ecuted by the Virtual Machine. It also offers functions to translate from “in-
teger” or “real” to “string” and vice-versa (which will be useful to send nu-
merical data to the Tcl interpreter, for example), and the ATLAS API routine
“atl send input” that allows the user to produce input data from the language.

All of these will be generically referred to as the ATL default functions.

The prototypes of the predefined functions in the language have been already
described in “Other predefined global functions” in section 4.1.7.

Since all these functions do not have the same parameters, and the param-
eters must be taken from the temporary stack, the treatment needed for each
function will be different depending on the number and type of the parameters.
To manage these differences a table is used to store generic functions. These
generic functions are those that the interpreter of the Virtual Machine actually
calls, and they all use two parameters: an index into a table of functions and
a reference to the temporary stack. All functions called through one generic
function share the same prototype.

The second table of functions is initialized with the above standard library
functions, plus two specific functions to generate input data to ATLAS. These
functions will create an InputDate message from the Variable received as a
parameter and will send it to the distr process producing an input data with
the appropriate timeout.

This method can be easily extended to provide other utility functions to the
interpreter.

Communication with the Command Subsystem driver

The communication between the Virtual Machine and the Command Subsystem
driver channels the communication between the Virtual Machine and the ATLAS
distr process. Therefore all the messages going from the Virtual Machine to the
Command Subsystem driver are finally sent by the driver to the distr process,
and when the Command Subsystem driver receives a message from the distr
process which has to go to the Virtual Machine it just redirects the message to it.
So in fact the communication between the Virtual Machine and the Command
Subsystem driver is used as a bridge for a communication between the Virtual
Machine and the distr process.

This communication channel is implemented physically by a stream socket
(the ACE-wrappers library is used for this implementation), and the “Com.sc_int”
class encapsulates the stream socket and the messages reception management
used by ATLAS for its socket communications. It also contains a stream associ-
ated to the channel descriptor at creation time (see figure 4.10).

The messages sent by the Virtual Machine to the distr process are:

RequestData: Produced by the execution of the instruction '/REQD’. It causes
a request of input data to the system.

46

class Com_sc_int : public MyEventHandler
{
ACE_SOCK_Stream canal; // communication socket
Receiver_socket rebuts; // main object for the reception of messages
// used by the ATLAS communications
FILE *fd_stream; // stream associated to the file descriptor

void Handle_Message (Message *miss); // management of the message
public:
Com_sc_int () : rebuts(this} { fd_stream = NULL; }
Com_sc_int (ACE_SOCK_Stream c)} : rebuts(this), canal{c)
{ fd_stream = NULL; }
void set_fd (int fd); // assigns the fd to the channel and
// opens the fd_stream
int envia (Message *miss); // management to send messages to ATLAS
ACE_HANDLE get_handle () const { return canal.get_handle(); }
int handle_input (ACE_HANDLE fd); // implements the use of the
// messages reception management

};
Figure 4.10: Interface of the “Com.sc_int” class

CallRoutine: Produced by the execution of the instruction "CEXT’ and the
instruction 'PRINT’ (which calls to the Sortide routine of the Input Sub-
system). It calls a routine external to the Command Subsystem.

Parameter: Produced by the execution of the instructions 'PEXV’ and 'PEXR’,
and also by the instruction "PRINT’ (which sends the needed parameters
for the Sortida routine call). It sends a parameter of a previous external
call.

Error: Produced when an execution error occurs in the intermediate code. It
can be any of:

- Vector index out of range

- Undefined function

- Function without return value

- Function removed from the symbol table
- Variable removed from the symbol table
- Invalid operator for empty variables 3

- Attempt to access an empty variable

- Empty variables cannot be dirtied.

DelDemand: Produced when an order to remove a module (UNUSE) is sent
by the compiler and there was an execution waiting for an input data. It
causes the request be removed from the system.

InputData: Produced when the default function “atlsend.input” has been
called to send an input data to the system (see subsection “Default func-
tions management”).

In case of error messages, input data being sent to the system or a remove
of a request, the Virtual Machine does not have to do anything except sending
the message. But on the other cases sending the message is not enough, the
Virtual Machine needs also a specific management in order to be able to receive
answers to these messages.

3 An empty variable is a variable which only contains an atl_ticket (see also section 8.1.3)

47

Data request

The effect of a request of input data to the Virtual Machine is that the
execution producing the request stops waiting for the data it has asked for.

In order to manage this wait and allow the Virtual Machine driver to know
what to do when the data arrive, the Virtual Machine uses an object class
“WhaitingInput” which encapsulates the request identifier (to recognize the data
when they arrive) and a reference to the EzecStep object which keeps the ex-
ecution status when the request was produced, in order to be able to continue
this execution.

The Virtual Machine keeps a list of these WaitingInput objects where all
executions waiting for input data are appended. One of the messages the Virtual
Machine will receive from the distr process is then:

AnswerData: Answer data to a request message. This message is sent by the
distr process when it has an input datum agreeing in type name with the
request produced by the Virtual Machine. It contains the identifier of the
input datum, the identifier of the request and the Variable encapsulating
the input datum.

V.M. behaviour: The treatment routine for this message (interp_tracta.dades)
receives the message as a parameter, searches into the Waitinginput objects-
list and generates an Operand_var setting its node pointer to the tree of the
Variable (incrementing its reference count). It also pushes this operand onto
the corresponding temporary stack (ExecStep.tmpstack), and executes the
interpret routine passing it the execution status (ExecStep).

When the interpret routine returns, it removes the Waitinginput because it
has been already treated and checks if the Virtual Machine was waiting to
finish and this was the last execution to manage and in this case it finishes
the Virtual Machine execution.

External routine calls

In order to produce a correct external routine call the compiler generates
intermediate code first to produce the routine call, ’'CEXT’, and then to produce
the code for each parameter 'PEXV’ and 'PEXR’ instructions depending on the
case. Finally (in case it is non an asynchronous call) it generates a "WAIT’
instruction which causes the execution to stop waiting for the results of this
external call.

The OpenedCall object encapsulates the name of the routine called, the
identifier assigned to it and a list of Varieble pointers where the parameters
passed by reference must store their values when they return. This class also
has methods to add parameters to the list, to remove a parameter from the
list (when the result for it has arrived) and methods to iterate through the.
parameters list.

In case the call is synchronous the execution must stop {(with the WAIT
instruction) and the EzecStep has the pointer to the OpenedCall corresponding
to this call. The Virtual Machine then keeps a list of EzecStep which contains
all executions waiting for results of external calls (synchronous).

48

In case the call is asynchronous, the execution calling the external routine
does not need to stop, so a list containing all the OpenedCall objects corre-
sponding to the external asynchronous routines which have not returned yet is
also kept by the Virtual Machine (see also section 4.3).

ReturnVoid: Void return message. This message is produced by the return
of a void function which does not have paramecters passed by reference. It
contains the identifier of the routine called.

V.M. behaviour: The routine to treat this message (interp_tracta_ret_void)
receives the message as a parameter and searches the ExecStep (for syn-
chronous call} or OpenedCalf object (for asynchronous call) for this routine.
If it was in the synchronous calls it executes the interpret routine passing to
it the adequate execution status (ExecStep).

If it was in the asynchronous calls list it just removes the OpenedCall from
the list. ’

After this it checks if the Virtual Machine was waiting to finish and this was
the last execution to manage and in this case it finishes the Virtual Machine
execution.

ReturnValue: Value returning message. This message is produced by the re-
turn value of an external function called. It contains the identifier of the
routine called and a pointer to the Variable containing the value returned.
V.M. behaviour: The routine to treat this message (interp_tracta_ret_valor)
receives the message as a parameter and searches the ExecStep (for syn-
chronous call) or OpenedCall object (for asynchronous call) for this routine.
If it was in the synchronous calls list it generates an Operand_var setting its
node pointer to the Variable (incrementing also its reference count), pushes
the operand to the temporary stack of the corresponding execution (Exec-
Step.tmpstack), removes the Variable from the message and if there are no
parameters to wait for (parameters passed by reference to this routine cail)
executes the interpret routine passing it the execution status (ExecStep).

In case there were parameters to wait for, it waits until all the expected values
have arrived, before calling interpret.

When the interpret routine returns it removes the WaitingCall because it has
been already treated and checks if the Virtual Machine was waiting to finish
and this was the last execution to manage and in this case it finishes the
Virtual Machine execution.

The explanation for the asynchronous call return value is included in the
“dirty variables” mechanism explained in next section.

ReturnParam: Parameter return message. This message is returned by each
parameter passed by reference to the external routine call. It contains the
identifier of the routine call and a pointer to the Variable containing the
result for the parameter.

V.M. behaviour: The routine to treat this message {interp_tracta.ret_param)
receives the message as a parameter and searches the ExecStep (for syn-
chronous call) or OpenedCall object (for asynchronous call) for this routine.
If it was a synchronous call it sets the first pointer on the parameters list of the
OpenedCall in the ExecStep to the Variable, then it removes the parameter
from the list and if there are no more parameters to wait for, it executes the

49

interpret routine passing to it the execution status {ExecStep).

When the interpret routine returns it removes the WaitingCall because it has
been aiready treated and checks if the Virtual Machine was waiting to finish
and this was the last execution to manage and in this case it finishes the
Virtual Machine execution.

In case there were more parameters to wait for, it waits until all the expected
values have arrived.

The explanation for the asynchronous call is included in the “dirty vari-
ables” mechanism explained in next section.

Other messages from the distr process

The messages seen above are those the Virtual Machine receives as a response .
to other messages sent to the system before. But there are also other messages
the Virtual Machine can receive from the Command Subsystem driver without
being caused by the execution of the intermediate code. These messages are:

Dummy: Empty message. This message is the message sent to signal the
completion of an XDR encoding of a variable. This message has no effect
on the Virtual Machine execution but is used instead by its communication
driver to complete the construction of the corresponding variable.

ExitExec: Order to finish message. This message is sent by the Command

Subsystem driver to the Virtual Machine when it receives the command
“quit”.
V.M. behaviour: The routine to treat this message {interp_cal.acabar}) checks
if there are any executions waiting on the lists (for data or for returns). If
the lists are empty the Virtual Machine execution finishes, but if they are not
empty this routine sets a flag which indicates the execution should finish when
the results or data waited for have arrived. The flag will be checked by the
routines managing these results or data arrivals.

4.3 The “dirty” variables mechanism for the At-
LAS asynchronous calls

4.3.1 General description

The general design for this mechanism is based on these main ideas:

¢ An asynchronous call implies the Virtual Machine does not have to wait
for this call to finish.

o If the asynchronous call has parameters passed by reference or a return
result assigned to a variable, all these variables are tagged as “dirty”
variables when the routine is called.

e A “dirty” variable cannot be used as an r-value until it is cleaned. There-
fore any other “parallel” execution of the Virtual Machine willing to use

one of these variables as an r-value is going to be frozen until the variable
is again clean.

»

But if it is used as an l-value, even if it is still “dirty”, it becomes “clean
at this point.

e On the other side, when the asynchronous call is finished the variables
“dirtied” by it are cleaned and executions waiting for these variables be-
come ready to continue their work.

In this design an asynchronous call is only allowed as a sentence by itself or
as the right side part in an assignment. Note that an asynchronous call in the
middle of an expression is not accepted.

Having in mind this general design the mechanism can be described in more
detail by dividing it into the different possible situations:

e Dealing with the asynchronous call;

— this call alone as a sentence — no return result is needed
— this call as the right side of an assignment
— different implementations for external or internal asynchronous calls

o Dealing with the possibly “dirty” variable:

— the variable as an l-value — used at the left side of an assignment

— the variable as an r-value — inside an expression

In order to better understand the management done with variables in this
-mechanism, first we must clarify some ideas and define some concepts to be
used in the explanation below:

e The ATL management of scopes (see section 4.1.1) considers three different
scopes: global scope, visible from any routine in any module; module
scope, visible from any routine in the same module; and local scope, visible
only inside the routine owning this scope. There is then only one global
scope, a module scope for each module and a local scope for each execution
of a routine. The local and module scopes do not interfere each other.

e The entities marked dirty, in fact, are not the variables themselves, but
the containers of the variables, i.e. the operand kept in the execution
stack in case it is a variable in a local scope, or the variable register in the
symbols table in case the variable is in global or module scope.

e A parameter, even though passed by reference, is considered belonging
to the local scope inside the routine receiving it (see figure 4.11 as an
example).

o We define the calling level scope as the scope of a variable when it is used
as a parameter of a call. In figure 4.11, param in A is in this calling level
scope. The calling level scope can be any of the three scopes depending
on the own scope of the variable param.

o1

PROCEDURE A () IS PROCEDURE B (integer &par) IS

B (param); par = par+l-par*par; // ’par’ is in the
- ... // local scope
ENDPROCEDURE ENDPROCEDURE // of B

Figure 4.11: Different scopes for a parameter

o We define the called local scope as the scope of a variable inside a routine
when it has been received as a parameter. In figure 4.11, par inside B is
in the called local scope. The called local scope is always a local scope.

4.3.2 The asynchronous call as a sentence

A routine is called as a sentence, in both synchronous and asynchronous cases,
usually when the routine is a procedure and does not have a return result. But
in ATL it can be done also with functions having a result and in this case it
means the return is not needed.

ATL example: ASYNC routine (paraml, ..., paramN);

The only special treatment required then for an asynchronous call as a sen-
tence is for those parameters passed by reference. Each variable being used as
the actual parameter in a routine in association with a formal parameter that
is passed by reference must be marked dirty in the calling level scope until the
asynchronous call is finished. This parameter, however, will not be marked dirty
in the called local scope.

When the asynchronous routine finishes, the variables can be cleaned in the
calling level scope and any exccution stopped waiting for these variables to be
clean becomes ready to continue.

Some information should be kept when a variable becomes dirty. This infor-
mation includes the variable that must be changed by the routine, the identifier
of the asynchronous routine responsible of cleaning the variable and a list of
executions that are stopped waiting for this variable. Therefore we keep a list
of objects encapsulating this information.

Information about the asynchronous routines active at any time is also kept;
this information is different whether the routine is external (belonging to an
external process) or internal (implemented in an ATL module to be executed
by the Virtual Machine) —see implementation details below, section 4.3.4—.

The use as a sentence of a function call, which therefore has to discard the
return value, is usually done by adding a POP instruction after the call in order
to take the result out of the temporary stack where it is pushed by the function.
But in case of an asynchronous function call the same treatment wouldn’t worlk,
because the routine calling the asynchronous function can continue its execution
without waiting for the result of it. In this case then the compiler uses a specific
intermediate code instruction which indicates that the result of the function
must be discarded.

4.3.3 The asynchronous call as the right side of an assign-
ment

Let us consider the following ATL statement:
var = ASYNC function (parami, ..., paramN);

Besides the treatment for the parameters passed by reference, which is the
same as described in the section above, an asynchronous assignment also requires
a special treatment for the return of the function and for the variable to be
assigned with this return.

The intermediate code generated by the compiler when it parses an asyn-
chronous call in an assignment can be seen in figure 4.12 (with an internal call
~CINT-, it is similar for an external one).

ATL code Intermediate code

GET k
GET i
generates GET j

k=ASYNC f (ij); — | CINT f async =

POP i
POP j
MASS

Figure 4.12: Intermediate code generation for an asynchronous internal call

The first four operands shown in figure 4.12 are the same as in the syn-
chronous call case. The three GET instructions are just preparing the l-value
of the assignment and the two parameters (i,j) for the function call (CINT).
The preparation puts them into the temporary stack, where the CINT or the
function called can access them. After the CINT instruction in a synchronous
call there would be a MOV instruction because when the call finishes it pushes
the result into the stack, then the MOV instruction just have to assign the first
value on the top of the stack to the second value from the top, which is the
l-value pushed before the call.

But for the asynchronous assignment the treatment must be a little bit
different. The compiler thus inserts some additional information for the Virtual
Machine:

o Although the Virtual Machine is able to distinguish between an l-value and
an r-value (when it accesses to the value or assigns a value to the variable},
it does this distinction at a low level of the computation. In order to have
this information before, it is given with the access instruction by adding
an operand to the GET instruction.

o After the asynchronous call the intermediate instruction to make the as-
signment (move instruction) must be also special, because it may not yet

53

have the value available. The compiler then generates a specific interme-
diate code instruction for this asynchronous move {(MASS instruction).

The Virtual Machine is not doing anything special with the GET instruction
if the variable was clean, but if it was dirty it acts differently depending on the
flag “l-value/r-value”. These effects will be explained below in section 4.3.5.

In the execution of the MASS intermediate code instruction, if the variable
to be assigned was clean it becomes dirty and a dirty variable object is created
where the result of the asynchronous call will be copied when it finishes. But
if the variable was already dirty the only work to do is to change the identifier
of the routine that is responsible of cleaning the variable to the identifier of the
new asynchronous function called. The last asynchronous function called thus
is now responsible of cleaning the variable when the function finishes.

4.3.4 On differences between external and internal asyn-
chronous calls

External call

An external call is produced when a routine belonging to an application process
and implemented in the code of the process (not in the ATL module) is called
from the ATL code. The execution of this external call is not performed by the
Virtual Machine but by the application process itself.

The only work done in this case by the Virtual Machine is the preparation
of messages being sent to the process for the call and its parameters and the
storing of the returned values in the corresponding places.

The preparation of messages has no difference from the synchronous external
call, the difference is only for the WAIT intermediate code instruction which is
used in synchronous calls to stop the execution after sending the messages and
therefore waiting for the results.

The most important difference in external asynchronous calls is in the mech-
anism to store the results of the routine into the right place. It is necessary to
keep some information about the routine called that must be accessible when
the call is finished. This information includes the identifier given to the routine
that identifies also the parameters, a list of pointers to variables where the pa-
rameters passed by reference should be stored at the return, and also a pointer
to the variable where the return value should be stored (if it is the case), and
a boolean flag indicating if the call is asynchronous. The variable into which it
stores the return value is created from the value of the operand pushed into the
temporary stack when the l-value of the assignment is accessed. We will call it
the return site (place to put the return).

The Virtual Machine keeps a list of objects having this information for each
external asynchronous call that is being executed (by the corresponding process)
at any time.

When the returning messages arrive at the Virtual Machine communications
driver, it looks for the corresponding object at the list of external asynchronous

54

calls and stores the result {either return or parameter) into the correct place. If
there was no place for the return of a function and the Virtual Machine receives
this return it will be deleted without using it, because it means the function
was used as a sentence (see section 4.3.2).

Checks are also made to see if the variable being stored is a dirty variable
(it would be at the list of dirty variable objects) and in this case it cleans the
variable if the routine is the one responsible of it. This seems to contradict the
“third main idea” listed in subsection 4.3.1). However, if the variable is marked
as being owned by another asynchronous call, it means that an assignment to
the variable with the result of that call has happened at a later point in time,
and in accordance to that “main idea” the second assignment prevails.

Once the variable has been cleaned it has to be removed from the list of dirty
variables and those executions waiting for this variable to be cleaned become
ready to continue their work. This last part is implemented by appending these
executions to a list and starting a loop to execute all of them at the end of this
cleanup procedure.

Internal call

An internal call is defined as a call to a routine (procedure or function) im-
plemented in an ATL module. Therefore an internal call will be executed by
the Virtual Machine itself. It means the asynchrony in this case is designed as
a concurrency of different executions that we will call EzecSteps (as the C++
class that stores its state —see section 4.2.3 The ezecution). Although these exe-
cutions are similar to threads they are not implemented using low level threads
and no mechanism is provided to control access to shared memory (variables in
the global scope).

The ATLAS Virtual Machine always acts as a concurrent program because
any command arriving to it is considered an independent execution (an Ezec-
Step). An FzecStep is then an execution which is independent from the others
except for global variables which are the same for all executions.

When an internal call is asynchronous and called asynchronously it must be
considered as a new ErecStep, i.e. as an independent concurrent execution.

The general idea for the asynchronous internal call management can be de-
scribed as follows (figure 4.13 shows the idea by using an example):

e it generates a new EzecStep for the execution of the internal call;

¢ it marks the variables used as actual parameters passed by reference and
the one used to assign the return (if it is the case) as dirty. They are
marked dirty in the calling level scope but not in the called local scope
where they (the parameters) must be used;

e it cleans this variables when the routine call is finished.
The idea is very similar to the external call but there are a lot of intricacies
in this management because the same interpreter code is executing both syn-

chronous and asynchronous calls, therefore some information must be available
for each EzecStep and also to communicate them in some situations.

55

ExecStep A . ExecStep B
I 7
| O
k = ASYNC f (i,)); —>-| creates a new ExecStep B].

|
|
| k, i become "dirty” |
L t
I

r=k-i: if k not "dirty” --> keep on
SXB e g "dirty" --> stop until k clean

1 RETURN (x);
] Cleans k and i if they |4~

i still wait to be cleaned

{'f is internal and 'i’ is passed by reference]

Figure 4.13: An example of asynchronous internal call

" The additional information needed in the EzecStep to manage asynchronous
calls includes: the identifier given to the execution {(to the EzecStep) in order to
be able to recognize it as the execution that should clean some dirty variables;
a boolean indicating if the EzecStep belongs to an asynchronous call; and an
integer counting the number of nested synchronous calls (a CINT increments it
and a RET decrements it).

But besides the EzecStep information the Virtual Machine also needs to
keep some information about the internal asynchronous call like it did for the
external call (see section 4.3.4). We will call this object OpenedCall in order
to be able to refer to it in the text below. This object is also stored in a
list and the information includes the return site for the return value if it is
required, a pointer to the EzecStep that executes this routine, and a boolean
flag to coordinate the destruction of this information between the calling and
the called routine (which is discussed below).

In order to make this general idea work there are several details to be added
to the normal execution of the interpreter of the intermediate code:

o First of all the new EzecStep stores a copy of the stack of temporary
variables because the actual values for the parameters are in this stack
and should be there in order that the code of the routine acts the same
way than for synchronous calls. The calling routine eliminates these values
from its own stack of temporary variables because it is not going to use
them (this is the reason for those POP instructions in figure 4.12).

e The parameters need to know about the variable which has been used as
the actual parameter in the calling routine, i.e. they have to know about
their origin (see figure 4.14). This is because the management to clean
and dirty this variable acts differently for different scopes (calling level
scopes and called local scopes).

Upon entering the routine the origin of the parameter becomes dirty (in
the calling level scope), not the parameter itself, because it has to be usable

56

PRCCEDURE A (...}
typel varil;

IS

ASYNC B (x, varl, y); - PROCEDURE B (tl x, typel &v, t2 y);

ENDPROCEDURE

execution stack execution stack
ExecStep X ExecStep B
TOS —= :

-

local variable var3

local variable var2 local variables of B

param3 of B

activation of A

Tocal variabl 1 3
ocal variable varl ™% \°:fg!,,

n ~

~ param2of B

parameters of A

1 param] of B

base-pointer -- A

base-pointer -- X

index — X

return @ to X ['\

code-table @ -- X

.
.

Figure 4.14: Links to the original variables for parameters passed by reference

inside the routine (in the called local scope). In the example of figure 4.14,
'varl’ is dirtied in the ErecStep X.

At the end of the routine the parameter (in the called local scope) must be
deleted, and this is done by interpreting the intermediate code instruction
RMYV. Since the intermediate code interpreter (in the Virtual Machine) is
the same for both synchronous and asynchronous calls, the execution of
the RMYV instruction will act differently depending on whether the routine
is asynchronous or not:

— In case it is an asynchronous call, when the variable to remove is a
parameter passed by reference, there are two possible cases that must

be treated:

* the variable in the called local scope (inside B in the example of

figure 4.14) is not dirty = the origin becomes clean if this call
is the one responsible of cleaning it (case a in figure 4.15)

the variable in the called local scope is dirty (it has been dirtied
by another asynchronous call inside this one) = if the origin is -
also dirty (the most common case because if not it means it has
been cleaned by another assignment), the origin variable changes
the identifier of the routine responsible of cleaning it to the one
responsible of cleaning the parameter in the called local scope
(case b in figure 4.15). The dirty veriable object corresponding
to this parameter in the called local scope is removed from the
list. If the origin is not dirty nothing must be done (case c¢ in
figure 4.15).

57

— In case it is a synchronous call and the variable to remove is a pa-
rameter passed by reference, if the parameter in the called local scope
(inside this synchronous call) is dirty the origin of this parameter
must become dirty (case d in figure 4.15), and the dirty variable ob-
ject, created for the parameter marked dirty inside the synchronous
call, must be changed to point to the origin of the parameter.

If the entity to be removed is dirty and it is not a parameter passed by
reference but a variable only visible in the local scope (parameters passed
by value or local variables), the dirty variable object must be removed
from the list in both cases, synchronous or asynchronous.

{F is internal and *1” is passed by reference for all cases}

ExecStep A ExecStep B ExecStep A ExecStep B
exceuting f(ph.p2) i executing Rpl,p2)
; v ! v
AYNC 3y — e [B] | ARG 63— [ramimew s} |
! pl = 230; ' Pl = ASYNC kO
,
‘ e L ' !
1 RETURN: ! RETURN.
-~ P ~g~-.. | k becomes responsible -
of “cleaning” i when finish
case (a) case (b)
ExecStep A ExecStep B ExecStep A
executing Kpl.p2)
i (l t executing fipl.p2)
: N syncheall | <o |
ASYNC{(ijy; —P [createsnew ExecStep B |+° | Gy |
n —— - ..
! pl= ASYNC K0: 1 : Pl = ASYNC KO
[iy
! i ! I
i =25 550; RETURN; ' *+. RETURN;
l B Yy
— case @

case (¢)

Figure 4.15: Different cases when removing a passed by reference parameter

¢ Since the instructions order in an assignment of an asynchronous inter-
nal call is that the real call is done before the MASS instruction (see
figure 4.12), the possibility that the routine called ends before the call-
ing routine has prepared the return place for the result exists. In other
words, the EzecStep of the internal asynchronous call may end its execu-
tion before the calling one executes the MASS instruction. A coordination
between the two EzecSteps is needed so that the return value is still avail-
able until the last one uses the OpenedCall, i.e. independently of which
one arrives first to use the OpenedCall (where the return site will be
stored), the OpenedCall must persist until the second EzecStep uses it.
The two intermediate code instructions that implement this coordination
are: MASS in the calling routine, which decides where the return of the
asynchronous function is going to be assigned; END in the called routine
(the asynchronous function), which is the last instruction in each EzecStep
executed by the Virtual Machine (this END thus indicates the end of the

58

function execution). These two instructions then use a flag kept in the
OpenedCall object to coordinate with each other:

END: In case of an asynchronous call, if it is a function (it has a return
value), it checks if there is a return site on the OpenedCall: if there
is one it means the MASS of the calling routine has been executed
before and the return site is the place to put the return value. After
this the OpenedCall can be removed and the variable waiting for this
return must be cleaned. If not, it checks if the flag indicating whether
the OpenedCall can be removed is true and in this case the return
value is not needed. It can be deleted and the OpenedCall of the
asynchronous call can also be removed. If the flag says the Opened-
Call cannot be removed yet, it means the MASS of the calling routine
has not been executed yet, so the routine doesn’t know whether the
result will be needed or not. In this case the return value is stored in
a new variable pointed from the return site and the decision is left
to the calling routine. In this case it also activates the flag which in-
dicates the OpenedCall can be removed in order to communicate the
calling routine it has finished, and it doesn’t remove the OpenedCall
object.

MASS: In this case it just checks the flag indicating if the OpenedCall
can be removed and in case it is true it already has the return value
in the OpenedCall object. It copies this value to the right place and
removes the OpenedCall. In case it is false it puts the right place for
the return into the OpenedCall and activates the flag in order that
the END instruction of the asynchronous call does the rest of the
work.

The last aspect related to the asynchronous internal call is for the global
treatment to eliminate those active executions that are related to a de-
stroyed process. A process can be destroyed because of an UNUSE or a
KILLPROC sentence ordered by the developer. In these cases any exe-
cution being done by the Virtual Machine that includes some command
defined into the process’ ATL module should be aborted. This treatment
is done for each intermediate code table that the process defined in its
ATL module.

Of course the elimination of EzecSteps in this treatment needs to be also
done for synchronous calls. This has been explained in section 4.2.3 —Other
messages from the distr process.

Moreover, in the case of asynchronous calls, this elimination has to do the
following;:

— For each asynchronous ErecStep to be eliminated, if it has some dirty
variables waiting for it, these variables should be cleaned.

— For each dirty variable object it has to check if any EzecStep waiting
for it to be cleaned has to execute an intermediate code table of
the process being eliminated, and in this case it must remove this
EzecStep from the list in the dirty variaeble object.

59

4.3.5 Accessing to a dir.ty variable
As an l-value

The access to a variable as an l-value is produced when the variable is used
as the left side of an assignment. Since the use of assigning to this variable
an asynchronous call has been covered in section 4.3.3, now we focus on the
assignment of an expression.

As explained in section 4.3.3 the GET intermediate code instruction receives
a flag saying whether the variable is being accessed as an l-value or as an r-value.
When the flag says it is an I-value and the variable is dirty, the GET instruction
still does not know if the right side of the assignment will be an expression or
an asynchronous call. Therefore it just stores the dirty variable object in order
that the following move instruction will decide.

In the case of an expression assignment the following move intermediate code
instruction will not be a MASS (asynchronous move), therefore the variable will
be cleaned, the dirty variable object removed from the list and those executions
waiting for this variable become ready to continue.

This behaviour designed for an expression assignment to a dirty variable
causes the variable to become clean at this point, but it does not assure it will
be consistent from this point because the routine having dirtied the variable can
be still running and it may change the value.

As an r-value

When a variable is accessed as an r-value it means that something should be
done with its value. It is used inside an expression.

As has been discussed above, any execution (ErecStep) trying to access a
dirty variable as an r-value will be frozen until the variable is cleaned.

In the implementation this is directly done by the GET intermediate code
instruction because it is the one actually accessing the variable and knowing
also if it is an r-value or not. The action then when this instruction finds out it
has to access a dirty variable as an r-value is to stop the current execution (the
EzecStep) and append it to the list of ExecSteps waiting for the cleaning of this
variable into the dirty veriable object. The execution will be ready to keep on
with its work again when the variable is cleaned.

In case the access is to a global variable, before stopping the execution, the
GET instruction checks if the routine responsible of cleaning the variable is
itself (see the example in figure 4.16). In this case the execution is not stopped
(allowing the access to the variable) in order to avoid this kind of deadlock.

4.3.6 Possible deadlocks dealing with “dirty” variables

It is clear that this mechanism is not fool-proof. In fact it can lead to deadlocks
when asynchronous functions or procedures use global variables that happen to

60

ExecStep A ExecStep B -

1 71
I S

k= ASYNCf (i,j); —>[creates a new ExecStep B l !
I k becomes "dirty” tmp = ik - 25;

1 / '

: since k is dirty this would be I

a deadlock |

{k is a global variable for both A and B}

Figure 4.16: Example of an avoided deadlock

become dirty by other asynchronous calls (also using global variables!). Mech-
anisms to avoid these situations yield costly algorithms, and their usefulness is
questionable. At this stage we have thus opted to make ATLAS programmers
aware of this and responsible for avoiding this kind of deadlocks, instead of
providing automatic watchdogs.

61

62

Chapter 5

The Input Subsystem

The ATLAS architecture encourages the developer to think in terms of separate
tasks of computing from tasks of data input or user interface. This separation
facilitates the reusability of the different modules (a developer may develop his
application without taking care of the user interface because he can use another
one previously designed, for example).

This separation helps also in the design of the crash recovery system, as
ATLAS is (transparently) aware of data pertinent to each process. How distr
does this is discussed in chapter 8.

Although in ATLAS an input subsystem is a process like the others, and there
can be more than one, at least one is needed to give the final user the possibility
of entering data or commands to guide the execution of the application. It is
the designer’s choice also if he wants his application to handle input by itself.

5.1 Generic Input Subsystem

A generic input subsystem is an input subsystem complete enough to be useful
for most applications, i.e. an input subsystem allowing to input data of any
type in order that the developer does not have to implement another specific
one for his application.

The usefulness is clear because a lot of time is spent by application developers
designing and implementing a user interface for their applications. Most of the
applications nowadays require a non-trivial user interface to work properly.

What would be required then for a generic input subsystem is:

¢ input data of any type, and transparently if it is possible (without having
to say which type it is),

¢ manage input data from windows created by other processes. In computer
graphics applications there usually exist one or more windows where the
scene is represented (drawn) and where the final user is allowed to input
data by direct manipulation or selection.

63

But it should also be flexible in order to allow the developer to change some
of its behaviours or to extend the interface.

5.2 Design and implementation of the ATLAS In-
put Subsystem

Presently the Input Subsystem offered with ATLAS provides a window in which
all the textual interactions occur (issuing commands or entering numerical data),
but can also be instructed to capture events from other windows (owned by the
rest of the processes in the application), and it is also an interface between
ATLAS and an extended Tcl/Tk [23] engine, so scripts in Tcl can be sent to it
to instantiate new interface components.

Furthermore, it provides a small textual window for the output messages
of the system. Figure 5.1 shows these two windows that the ATLAS Input
Subsystem loads by default (5.1(a) the textual interactions window and 5.1(b)
the output messages window).

B UL ———————)

Command Window

(a) Input window (b) Output window

Figure 5.1: Snapshot of the Input Subsystem windows

Using this ATLAS component the developer can prepare the user interface
for his application almost trivially, and dedicate most of his time to the proper
subject of his application.

5.2.1 Basic input data

The window provided for textual interactions accepts commands and input data
of basic types. Commands will be sent to the Command Subsystem to be

64

compiled and executed, and input data of basic types (integer, float or string
data) will be sent to the distr process to be treated as user input data. Input
data of basic types are automatically distinguished from each other because of
their format (an integer is a set of digits, a float is a set of digits having also a
decimal point and a string is a set of characters).

Moreover the following conventions are adopted:

o If you want to enter a string (chain of characters) containing the represen-
tation of an integer or a float, you have to put the special character '#’
before the chain you want to enter as a string. Only the first character
*#’ will be interpreted.

¢ If you want to enter an integer to be treated as a float, it must have the
decimal point.

The textual input window also offers a small help if you press the F1 key
while the window is active.

5.2.2 X-events 'control

The ATLAS Input Subsystem can also be instructed to capture events from other
windows, owned by other application processes, and consider them input data
to be channeled to those processes. This is done by offering a routine that
makes possible that given a window identifier and an events mask, the Input
Subsystem will receive input events from that window and will produce user
input data to the distr process with those events.’

Since the ATLAS matching mechanism between input data and requests is
based on the type name, we need a mechanism to rename the events input
data over a window so that these data match only with requests done by the
appropriate process. The Input Subsystem keeps information of the processes
asking for the events in a window and when an event is produced in that window,
it knows which process asked for it.

The Input Subsystem defines special types for the window events and ex-
ports them for other processes to use them. These types have the necessary
information for each window event type. The rename mechanism uses these
type names to prefix them with the name of the process which asked for the
corresponding event in that window followed by the character ’.’. The process
must therefore redefine the type defined by the Input Subsystem prefixing its
name with the name of the process followed by '.". The matching mechanism
will then send these events only to that process.

As an example, the Input Subsystem defines the type Key_pressed_event.
The user process must redefine it in its ATL module:
#deftype ::process-name.Key pressed_event se::Key.pressed.event
(se is the name of the ATLAS Input Subsystem module.)

It is also necessary to define this type globally to produce the same type name
as that attached by the input subsystem to the event input data messages.

The special types defined by the ATLAS Input Subsystem in its ATL module
are:

65

EXPORT #deftype Key_pressed_event
STRUCT
window -> integer;
keycode -> integer;
ENDSTRUCT

EXPORT #deftype Key_release_event
STRUCT
window -> integer;
keycode -> integer;
ENDSTRUCT

EXPORT #deftype Button_pressed_event
STRUCT
window -> integer;
pos_x -> integer;
. pos_y -> integer;
button -> integer;
ENDSTRUCT

EXPORT #deftype Button_release_event
STRUCT
window -> integer;
pos_x -> integer;
pos_y -> integer;
button -> integer;
ENDSTRUCT

EXPORT #deftype Motion_event
STRUCT
window -> integer;
pos_x -> integer;
pos_y -> integer;
ENDSTRUCT

and the command offered by the se module to give the events control of a
window to the Input Subsystem is:

FUNCTION X_Control (string opcio, integer window, string mask,
‘ string proc)
RETURNS integer;

This command can be called by a process to ask the Input Subsystem to
take control over that window of the indicated events (mask). The Input Sub-
system will produce input data to ATLAS when these events are produced in
that window.

The parameters for this command are:

¢ string opcio — this string indicates the operation to be done with the
specified window control. The possible options are:

66

~ “a” : adds the events control in the mask over the window for this
process, if these events control already exists it returns error. Create
the control.

— “b” : removes the control of all events over the window for this
process, the parameter 'mask’ is not effective. Remove the control.

— %¢” : change the events mask, removing the old one and using the
new one from this moment, if there was not a control over this window
from the process it returns error. Change the events.

— “m” : modifies the mask adding to it new events to be controlled over
the same window for the same process. Add new events to control.

» integer window — this is the identifier of the X window to be controlled.

¢ string mask — this string contains the name of the events mask to be used
(using the X masks), or more than one of these names with the character
’|’ between them if notification of several kinds of events is desired.

¢ string proc — this is the name of the process which asks for this control,
it is used by the Input Subsystem to construct the type name for the input
data.

The function returns an integer indicating if the operation has completed
correctly.

These input data generated by the Input Subsystem from X events produced
over windows owned by other processes are sent to the distr process as “im-
mediate” input data, i.e. if a datum of this type is produced but no process
has made a request for it (the datum has not been requested) the datum is not

considered and it is lost (see section 6.3).

5.2.3 Extended Tcl/Tk

Besides giving the possibility to input basic type data and control X events
over windows owned by other processes, the ATLAS Input Subsystem is also
extensible. In fact it is also an interface between ATLAS and an extended Tcl/Tk
engine, so scripts in Tcl can be sent to it to instantiate new interface components.

The extension made to Tcl/Tk adds some commands to the Tcl/Tk inter-
preter that produce input data of either a basic type or X events recognized by
ATLAS, or commands to be sent to the Command Subsystem.

e Tcl/Tk commands to send basic type data to the system:

~— SendIntAtl integer

~ SendRealAtl real

~ SendStringAtl string

~ SendCommandAtl command

~ SendDataAtl basic.type.datum
where 'basic_type_datum’ can be any datum of one of the basic types.

67

e Tcl/Tk commands to send X events of Tcl/Tk windows to the system:

— SendXEvents tcl.window name mask process_.name
the events produced over the window ’tcl.window_name’ will be sent
to the process ’process_-name’ following the X mask 'mask’ (only one
mask name or more than one with '}’ between them). It is also
possible to do several calls using different masks.

— EndSendXEvents tcl.window_name process_name
Since this command is called the process ’process.name’ will not re-
ceive more events input data from the window ’tcl_window_name’.

This mechanism with these two commands allows an interface with Tel/Tk
to send X events to a process in the application through the Input Sub-
system.

The developer must pay attention to the fact that these Tcl/Tk commands
have been created specially for the Tcl/Tk interpreter used by the ATLAS Input
Subsystem, therefore they will be only recognized by this interpreter; they will
not be valid in another interpreter.

In order to make useful the interface with the Tcl/Tk interpreter offered by
our Input Subsystem, it includes in its ATL module some command definitions
related to the use of the Tcl/Tk interface. These commands (or procedures)
offered are:

¢ “PROCEDURE Envia_fitxer (string file, string dest_file, string proc)”
Gives the order to execute the Tcl/Tk seript ’file’. This command also
needs another parameter 'dest_file’ which is the file name containing the
script to destroy what was created with ’file’ and finally the name of the
process ordering this command ’'proc’, that will own the script.

s “PROCEDURE Envia_ordre_Tk (string cmd)”
Allows to execute a Tcl/Tk command interactively, i.e. this command
causes the Input Subsystem to send the Tcl/Tk order ’cmd’ directly to
the Tcl/Tk interpreter.

¢ “PROCEDURE Sortida (string miss, string level)”
This command uses the Tcl/Tk interpreter to produce error messages.
The parameter 'msg’ is the message to be shown as an error message and
the ’level’ parameter indicates if the message must be treated as an error,
a warning or simply as an output message.

There is also the possibility to change the textual input window offered by
default with another designed by the developer. This window is just a script
written in Tcl, so if the developer writes a script defining a window to enter
textual data he only has to call the following command also offered by the
ATvrAs Input Subsystem:

“PROCEDURE Change_InputWindow (string s, string d)”

where the two parameters are the names of the files which are scripts written in
Tcl for the creation and management of the new desired window (s) and for the
destruction of this window (d). This Change_Input Window command destroys
the default window and sends the new one to the Tcl interpreter.

68

5.3 Extension proposal

In order to extend the present Input Subsystem in ATLAS it is necessary to add
an engine which allows to input not only basic data but also structured data.

The current Input Subsystem also lacks the possibility of giving timeout
values to the user input data (see section 6.3). This extension proposes also to
include this possibility.

It would be also desirable to offer the possibility of changing each default
window {now it is not possible for the output window).

Another important goal would be adding also to the Input Subsystem a
menu manager engine to be able to define menus at run time.

69

70

Chapter 6

The distr process

The distr process is the ATLAS communications center. Its main role is to
control the execution of the application, so it manages the information of each
process being executed on the application and the creation and destruction of
these processes as well; it takes part on the communications among processes by
redirecting incoming messages to the right process; it also manages the input
data produced in the application; and is also responsible for the journaling
mechanism and its facilities. In this chapter we will explain these tasks in detail
except those related to journaling, which is discussed in chapter 8.

6.1 Processes management
The processes management done by distr consists of the following tasks:

making the decision of where a process must be executed (in which ma-
chine on the LAN) and ordering its execution as well;

s controlling the status of each process during the application execution,;

o killing a process;

starting and managing the recovery of a process if it was dead because of
a crash on its machine or of its commmunication with distr.

Each one of these tasks will be described in the following subsections.

6.1.1 Distribution in ATLAS

As ATLAS is a multi-platform environment, supporting features that ease the
execution of processes over heterogeneous local area networks, one important
feature is transparent execution of processes, which allows a user to run a process
in the network by simply knowing its name, regardless of:

71

— which machine(s) have the desired process available
~ which machine is the user connected to

ATLAS selects from the different machines that can execute the program the
most suitable one. In fact, although not fully implemented yet, ATLAS does a
load balancing of processes among the network. The user’s view will be that of
a virtual machine he talks to (the ATLAS system) which encapsulates and hides
all the complexity, but also offers all the power, of the network.

Global architecture managing the distribution

The ATLAS processes distribution requires a component to be used on a per-host
basis, which defines that host as an ATLAS-capable machine. This component
is the server (the server_atlas process). Servers do not communicate between
them, but only with the distr processes, which give them orders to execute
specific processes for the applications.

" Besides the servers and the distr process there are also some configuration
files which are important to several mechanisms ATLAS uses for the distribution.
These are:

AtlasSettings This is a user’s configuration file. It must be located in the
user’s home directory, under the name SHOME/.AtlasSettings. This
file configures two things, the directories where a process can find shared
libraries and the hosts allowed by the user to be used by ATLAS for his
applications. We will see its structure in more-detail later.

AtlasConfig This is an ATLAS internal configuration file. It should be located
in the ATLAS installation directory, under the name bin/AtlasConfig.
It contains the port numbers used for the communications between distr
and the servers and optionally the minimum and maximum time to wait
for the broadcast responses (see “The broadcast mechanism” below). This
file must be changed only under special circumstances, and always by the
ATLAS system administrator. It is used by both the server.atlas and
also the distr processes.

ATLuserid Each ATLAS user has a unique identifier. This identifier is con-
tained in the file $HOME /.ATLuserid, and is a 32-byte hash of random
information from the system at the time of creation (essentially 32 random
bytes) that ATLAS will use for all user identification. The file is used by
both the server_atlas and the distr processes. It must be generated
before the user runs any ATLAS application by using the “genid” utility
also included in ATLAS. This identifier is only as secure as the file system,
but that seems reasonable. Presently ATLAS communications are not en-
crypted, so this identifier is not protected against network eavesdropping.

The server_atlas process is a daemon which should be running in each
of the hosts willing to provide ATLAS execution services. Its role is to accept
connections from the distr process and run the application process requested
by it. But it also implements a handshake with distr giving it information

72

about the architecture where it is running and the processes available on this
machine. This information will allow the distr process to decide dynamically
which is the best host to connect to ask for the execution of a certain process.

The server_atlas process is connected to the distr process by a connec-
tionless protocol (meaning each command is self-contained and there are no
command sequences) and it is running with root privileges. The server im-
plements as of today two main functions, a broadcast response and a process
execution. We will see them later when discussing the corresponding mecha-
nisms.

The server_atlas process is stateless, which means that it does not keep
internal data structures permanently. In other words, each command processed
by the server is independent, and it implies starting from zero, performing some
tasks, and returning to the starting point.

The distr work for the distribution task is to manage the broadcast mech-
anism, to keep the needed information of each process available for the appli-
cation and to decide the host where a process must be executed depending on
availability of the process in the host. How this is done will be seen later.

The ATLAS “Sysid” to recognize architectures

To make ATLAS able to find a process across the network and execute it,
obviously it is required some setup work and following certain guidelines.

First of all, ATLAS does not scan whole hard disks looking for processes to
execute. Whenever a user wants to execute a file with ATLAS, he or she must
put it in a special directory. The key items to access this feature are System
Identifiers, Sysid.

An ATLAS Sysld {System Identifier) is an ASCII string used by ATLAS to
group together several binary-compatible machines in a local network. This
means that all computers sharing a unique SysIld must be able to execute the
same binary files. For example, two PCs can execute exactly the same files,
because they share the same processor architecture. Thus, their SysId should
be the same.

The Sysld is therefore not a computer identifier, but a “binary architecture”
code. It is built automatically by the ATLAS system, and has the following
format:

sysname~release-machine

where each substring {(sysname, release and machine) are derived from the uname
system call. In fact, writing on a system shell the command uname -srm, it
will print the three members, and in the desired order. Sysname identifies
the family of computers your system belongs to. For example, "Sun0S" would
identify Suns, as "Linux" would identify Linux based machines. The second
term, release, is used to identify what version of the OS is the system running,.
The uname call will return a full version number, such as 5.5.1

As far as ATLAS is concerned, only the major release number is required,
so any minor version number or additional information will be stripped away.
Finally, the machine identifier is a vendor-dependent code which identifies the

73

hardware implementation. For example, some Silicon Graphics systems have
machine code IP25, and some others have the IP32 code.

There are, however, some observations to be made. First, some machines
have sysnames that are mixed-case. "Sun0S", for example, would be such case.
The ATLAS Sysld, following the naming convention of Unix, is case-sensitive.

Second, there are some machines with OS release numbers containing non-
numerical information. Some HP machines exhibit this behavior, having release
numbers such as B.10.10. In these cases, ATLAS will consider that the major
release number is the first number found scanning the release number from left
to right. This means that in our example “B” will be dropped and the version
number would thus be 10.

Last, but not least, sysnames and machines can contain some special char-
-acters, such as slashes, points, or other printable characters. ATLAS strips these
characters away from the names, and so machine names such as '"9000/735"
will be converted to "9000735".

To avoid problems deciding which is the correct ATLAS Sysid for a given
architecture, ATLAS comes with a handy utility which will tell you the SysId of
any machine. This program is called gensysid, and may be invoked at any time
from the shell command line by writing:

gensysid <CR>

and its output will be a message telling you the desired string identifier.

When the Sysid is used by the developer to identify binary-compatible ar-
chitecture directories, this ATLAS Sysids can be also wildcarded, thus allowing
a unique identifier to be shared by different architectures. This adds flexibility
to the system. For example, a Sun machine could have Sysid "Sun0S-5-~sun4u"
which would mean a Sun UltraSparc with Solaris and a different machine could
have the Sysid "Sun0S-5-sun4m" which would mean an older Sun machine, but
also with the Solaris Operating System. Now, there is no need to use two dif-
ferent identifiers, as both machines are binary compatible. Thus, it would be
useful to allow Sysids to define which of the three fields (vendor, os, and ma-
chine) should be taken into consideration, and which should be simply ignored.
The way to achieve this results is by using the wildcard "any"” as a substitute
of the undesired field. For example, the two Sun machines described earlier
in this section had Sysids "Sun08~5-sun4u” and "Sun0S-5-sun4m". So, a well-
constructed global Sysid for them both would be "Sun0S-5-any" as we consider
the machine field to be irrelevant.

In case the ATLAS daemon (server_atlas) is also working in a not binary
compatible machine also working with Solaris (Sun0S-5), for example a SunOS-
5-X86, the distinction should be done for this machine in order to avoid a process
compiled for the others to be sent to this machine.

The broadcast mechanism

Every time a distr process is started somewhere in the network, it issues a
broadcast message to the network where some servers will be in turn listening

74

to these kind of messages. This message is thus called Distr Broadcast Message,
and has the following structure:

— length of the message (network formatted int)

— user identifier of the user executing ATLAS (net formatted int)
— group identifier of the user executing ATLAS (net formatted int)
— Sysid for distr. Variable length string

— Execution path for distr. Variable length string

— ATLuserid of the user executing ATLAS

This broadcast message tells the servers who (uid and gid) is running the
newly-created distr process, which machine architecture (Sysid) is the distr
using, where (absolute pathname) has been the distr started, and finally the
ATLuserid of the user who started ATLAS. :

distr sending the message

When the distr process is started up it must send the broadcast message
in order to find out the information of the hosts available to execute ATLAS
processes. Before sending the message it must do some initializations. These
are:

¢ Port customization: ATLAS does not require specific ports to work.
In fact, the ATLAS system manager may specify which ports (two are
required) will be used throughout the execution by changing the contents
of the AtlasConfig file. This file may only be changed by the ATLAS system
manager, and specifies vital information for ATLAS. It can be found in
the bin directory of your ATLAS distribution. The only lines needed to
customize the ports are:

$PORTS
stream = 5021
datagram = 5023

Here you can change the values of any two ports (not hecessarily contigu-
ous). The only requirement is that both ports must be free.

This port customization, of course, is also done by each server.atlas
process when they are started.

¢ Process—Host Table initialization: Before receiving any server re-
sponse to the broadcast message, the Process—Host Table is created. First
the AtlasSettings file is scanned in order to find the allowed host list. This
list is a part of the .AtlasSettings file (located in the user’s home directory)
and is not mandatory. It is useful for those users that want to “ban” hosts
from the network. Presently the syntax is:

$HOSTS

75

If the ATLAS distr process finds a record like this it will only treat those
responses sent by servers running over the hosts in the list. As we said
previously, this node of the .AtlasSettings file is optional. So, if not present
distr will process all messages from servers that respond to the broadcast
message, without further filtering.

After these initializations, the distr process is ready to send the broadcast
message to the network. Thus, the message is sent, and also a handler is attached
to the “ACE Reactor” object [30] to easily detect the responses coming from the
servers. A timer is also added into the Reactor so that we give some minimum
and maximum time for the servers to respond. distr then waits until either
there are a certain number of hosts offering a Command Subsystem (e.g. 3 —in
order to be able to choose a good one) and an Input Subsystem (this process
“does not require much CPU time) or the minimum time is passed and some hosts
have offered a Command Subsystem and an Input Subsystem. In any of these
two cases distr will keep on its execution by starting the Command Subsystem
process and loading the default ATL module. Otherwise distr keeps waiting
until a Command Subsystem and an Input Subsystem are offered or until the
maximum time registered to the “ACE Reactor” has passed. In this last case
distr will stop its execution notifying the user none of the hosts answering has
offered the minimum processes to work.

The minimum and maximum time to wait can be customized by the ATLAS
system manager by changing a parameter in the AtlasConfig file. The node to
be changed is:

$BRO'ADCAST
timeout_min = 2
timeout_max = b

and the substitution must be on the number of seconds of both timeouts. If the
default 1-second and 3-second delay are enough, there is no need to have this
node on the AtlasConfig file.

To sum up, the distr process generates the broadcast message, sends it,
and waits for responses until it can start the ATLAS execution.

Response construction in server.atlas

We can see the broadcast processing divided in four steps:

1. Message reception. Servers keep two sockets open throughout their
execution cycle. One of them is a datagram socket, and is used only
to process broadcasts and send responses to them. The read function
(BCastRcv: :ReceiveBCast) peeks at the socket when it is notified that
there is data available to read, and then consumes it. Then, the different
fields of the message are extracted (function BCastRcv: :DecodeBCast).

2. User authentication. Servers must be available all the time to process
requests (either other broadcasts or execution requests). So, it is manda-
tory that steps two (user authentication) three (response generation) and

76

four (response emission) do not block the server. Thus, a sub-process is
created, and all processing is performed concurrently by the main and
secondary threads: one taking care of the sockets and waiting for other
requests, and the other performing steps 2, 3 and 4 of the broadcast pro-
cessing. After message reception, comes the second part, which is the user
authentication. ATLAS attempts to prevent situations such as:

— faked identity by the poster of the message
— non-registered user

by performing simple verifications. These verifications consist of:

o First, the broadcast message contains the uid and gid of the user. It
also contains an ATLuserid code, which is filled by the distr process
with the code for that user. An illegal request could probably fake
the uid and gid of a certain user, but faking also the ATLuserid would
be more difficult, as this information is contained in a file readable
only by its owner.

¢ Second, when the request arrives (with a nid, gid and ATLuserid) the
server will access the information on the ATLuserid for the received
uid and gid, and check if that ATLuserid is the same we were sent
through the socket. The way to do this is to access the /etc/passwd
file with the command getpwuid. This file contains (among other
information) the home directory for every user. So, given the uid and
gid we can access his home directory, perform a setgid and setuid and
read his .ATLuserid file. This way we perform the verification of all
data sent being correct.

This provides user authentication as secure as the user’s file system and
network. The network security could be improved using cryptographic
protocols, which is not done at present. It seems however unnecessary to
provide stronger security than the user’s file system under any circum-
stances.

Once this step is completed, the server knows the request is valid, and is
thus ready for the central step, which is the response generation.

. Response generation. The response of a broadcast message is a list
containing the following information:

— Host name (server which generated the response)
— Server’s Sysid

— Normalized load coefficient

— Available process list

The first two fields are straightforward: the distr process needs to know
who is answering the broadcast message and what architecture does the
responder have.

The normalized load coefficient is calculated by dividing the maximum
of the two more recent load averages (from the responses given by the
operating system) over a capacity level given for this host. This capacity
level can be configured by the ATLAS system manager at installation time
and is an integer higher than 0 (higher number, higher capacity). There
is also a default value for it (1).

77

This normalized load coefficient is, of course, an heuristic solution and
must be extensively tested in order to achieve the maximum efficiency.

The fourth element of the response of a broadcast message is a list contain-
ing all the files that the responding server found on its directory scan. We
will now explain the exact contents of this list, and its creation algorithm.

Whenever a server replies to a broadcast message, it scans certain areas
of the file system searching for executable files. Once done, it returns
that file list to the distr process. This way when the user asks distr to
execute a file, it is easy to check which hosts have that process available
for execution.

This list is priority-ordered. This is useful whenever a process in avail-
able in two different places of the disk. For example, with the following
structure:

$HOME
Atlas
bin
Sun0S-5-~any
processl
IRIX~6~any
process2
any
processl
C...)
¢...)

we have the process "process1" available at two different locations: the
specific SunOS-5-any and a generic one located at “any”. Logically, the
first instance should be prioritized, as it refers to a more specific loca-
tion. Thus, in the executable file list which will be returned to the distr
process the process $HOME/Atlas/bin/Sun0S-5-any/processi should be
before the same name process located at “any”. The way to build such a
list is scanning the selected areas of the disk in importance order: most
important ones first, secondary after. So, the algorithm for scanning the
disk is:

e Scan the area of the disk around the path where distr has been
started. If that path is inside an architecture directory (such as the
path $HOME/process/bin/Sun(S-5-any), we will first locate the di-
rectory corresponding with the server’s Sysid, and then scan it. After
we have scanned that directory, we will scan the several wildcarded
versions (first wildcarding machine, then OS release, and finally sys-
name). Finally, we will scan the “any” directory and also the base
directory. So, the order in which directories are checked is: (assuming
the Sysid is in the form S-R-M)

i) /S-R-M
ii)/S-R-any
iii)/S-any-M

78

iv)/S-any-any
v)/any
vi) .../

¢ Scan the $HOME/Atlas/bin area, including the architecture directo-
ries for the server. Again, the order of checking is:

i) $HOME/Atlas/bin/S-R-M

ii) $HOME/Atlas/bin/S-R-any
iii) $HOME/Atlas/bin/S~any-M
iv) $HOME/Atlas/bin/S-any-any
v) $HOME/Atlas/bin/any

vi) $HOME/Atlas/bin/

Note how we scan this Atlas/bin section after we scanned the region
around the distr boot path. This behavior is intentional. As we said
in preceding sections, placing executable files in the same path where
we start the distr process is a convenient way of working with ATLAS
while developing and testing new code. Thus, in case we have the
same process in the starting path and in one of the $HOME/Atlas/bin
sections, we wish to use the first one as the preferred.

e Third and last, we will scan the installation directories of ATLAS.
These directories should contain only binaries related to the ATLAS
distribution, such as server_atlas, distr, and several utilities. So,
it makes sense to make this the last (less priority) location for ex-
ecutable files. Here again we will scan directories using the Sysid
wildcarding feature as described in the two preceding steps.

For every file and directory we encounter during this phase, some tests are
made to ensure proper execution. Then, for every FILE, it is considered
executable if, and only if:

a) It is a file and has execution permission by its owner, or

b) It is a symlink, and the file linked by it satisfies a) step.
And for every DIRECTORY, it will be expanded if, and only if:

a) The process of scanning determines that directory as a possible loca-

tion of files (a matching architecture directory, “any”, etc.), and
b) The user has read and execution rights over that directory.
4. Response emission. Once the scanning process is complete, we have a

list of files, along with the Sysid and domain name address of the server
which performed the scanning. Thus, it is now time to format this list into

a network packet, and send it through the network to the distr process.
So, we build a message with the structure:

address + own Sysid + normalized load coefficient + 1{process name}N

(where i{x}j means repeat {x} from i to j)

79

Albeit redundant, the message is preceded by a network—formatted integer
value which contains the total length (this is, the four bytes for the integer
and all the message data) of the message which is used by the driver to
simplify the processing of datagrams.

Whenever the distr process receives a server response, it wakes up (specif-
ically, the routine BCast: :handle_input is woken up by the Reactor). This
routine is fairly simple. First, it decodes the broadcast response which is re-
ceived through the datagram socket and then the message is passed to the PHT
(Process-Host Table), where it will be divided into its main elements, and in-
serted into the structure (if and only if the host that responded is allowed by
the AtlasSettings file).

This broadcast messages will be sent periodically by distr during the appli-
_cation execution in order to update the PHT information. The user may decide
to disallow these periodical broadcast messages. In this case the information
obtained with the first broadcast will be fixed for the duration of the execution.

Process—Host Table

During normal distr operation, one of the main tasks to be carried out is
to decide, each time the user wants to execute a process, which server is best
suited (in terms of process availability and also performance) to execute it. The
distr process has a data structure specially designed to aid in this complex
decision, the Process-Host Table (PHT). The PHT is a variation of a multi-list,
as can be seen in the following scheme:

Host 1 X X X
Host 2 X X
Process1 Process 2 Process 3

The above drawing tells us that Host 1 has Processes 1, 2 and 3 available,
and that Host 2 only has processes 2 and 3. The above drawing would depict
the classical multi-list as found in countless data structures and algorithms
textbooks. Our PHT works in a similar way, but adding priorities. In sections
“The ATLAS Sysid to recognize architectures” and “Response construction in
server.atlas” we said users are allowed to store their binary files in different
locations, and that ATLAS will scan the disk in order so more priority areas are
searched before less relevant ones. So, we will use the following data structure,
which is just a variation of the one explained previously:

Host 1 1{path}N 1{path}M 1{path}N
Host 2 1{path}O 1{path}P
Process 1 Process 2 Process 3

Here, each Host-Process node keeps a list of all instances of the process in
the host’s file system. The list is priority-sorted, so the first element has the
most priority, and so on.

This data structure (HostProc) has two main operations: inserting a new
list of processes available in a particular host, and finding the most suitable host
for executing a process.

80

The insertion routine has the disadvantage {(due in part to the nature of the
broadcast system) that it does not insert host—process pairs, but lists in the
form:

hostname sysid normalized-load process0 processl process?2 ...

Process(i) are the processes available at that host. So, our routine reads the
first three elements in the list (host name, Sysid and normalized load coefficient),
builds the Host Information block (named “InfoHost”), and thus opens a new
“row” in our multi-list, which is really a hash table to speed-up access. Now, for
every process in the list, it appends it to the corresponding list. As the initial
list is priority-sorted, we can ensure that the lists created will also be sorted.

A process execution

Deciding which host

Once the broadcast interval has ended, the PHT now has information about
the processes and hosts available. It is time then to start the execution of
ATLAS. The distr process has to start then the Command Subsystem process
and send to it the ATL file having the initialization of the application.

Whenever a certain process must be executed the distr process uses the
information contained in the PHT to locate the best server to execute this
process, and will then try to communicate with it. The core routine here is
QuinHost which, given a process name, scans the PHT to find the best possible
host.

While the insertion routine (in the PHT) is row-wise, or horizontal, the
selection routine (used by QuinHost) will be vertical, or column-wise. What we
will do is scan from top to bottom each host in the host list, and keep track
of the last normalized load coefficient at each one. Then, for each host, we
seek the process we want to execute, selecting it from the first position of the
corresponding list. Now, as we scan top to bottom, we will select a new host
as the executor if and only if it has less current normalized load coefficient, but
has the desired process available.

It is important to note some behaviors which may seem strange at first sight,
but are fully normal:

For example, two hosts (say H1 and H2) have the desired process, and H1
has less current normalized load coefficient (thus making it a best candidate
than H2). Then, H1 will be chosen as the executor, regardless of where the
process resides. For example, if H1 is best-suited, but has a process in a low-
priority location, but H2 is a bit more occupied, but has a high-priority location
process, H1 will be chosen. So, host choice is considered more important than
location choice.

The actual exzecution

To execute a process, distr, having decided which is the best host to use,
generates a message to be sent to the server on that host, requesting the execu-
tion of the process.

81

This message includes information about the environment that must be set
to execute the process. But this information is the same for every process during
the application execution, so distr stores it during its initialization.

The environment information is a list which includes the following informa-

tion:

— User identifier (result of a getuid call)

— Group identifier (result of a getgid call

— ATLuserid value (from the .ATLuserid file)

— DISPLAY environment variable

— HOME environment variable

— PATH environment variable

— PWD environment variable

— ATLAS_ROOT environment variable (only if it is defined)
— LD_LIBRARY.PATH environment variable (only if defined)

. All this information is kept throughout the execution cycle.

The message sent to the server then has the fields corresponding to the list
above having the ATLAS_ROOT and the LD_.LIBRARY_PATH as optional.

We will now focus on the events following the reception of this execution
message by a given server, explaining the algorithm and tests it performs. This
function can be subdivided in the following steps:

¢ Message reception. First of all, the server’s “MessRcv” object is noti-

fied (via the handle_input method of the ACE library [31]) of the avail-
ability of data in the stream socket. Datagram sockets are used for broad-
casting purposes only, and stream sockets are used for execution messages.

Fields in the ATLAS process execution message can be optional and there
is no order in the sequencing of the fields. As long as the message contains
the required information, this data can be ordered in many different ways.

Once the message is read into a list of buffers, we reconstruct the several
fields and create a list of parameters.

¢ User authentication. Before processing an execution request we must

be sure that the sender of the message is really allowed to execute the
process, and that no security violations can arise. So, we re-check the
ATLuserid using the /etc/passwd file exactly the same way we explained
in the broadcast section (“Response construction in server_atlas).

Environment setting. Before executing the process, we must set its
environment. The reason is simple. Remember we said the server pro-
cess starts when the machine boots, and is always under execution as a
daemon. So, it has the environment set at boot time. To ensure security,
the process spawns a child process whenever operations are needed, thus
keeping always an eye on the sockets. This child then performs a setgid
and a setuid command, releasing its root privileges. Still, it lacks envi-
ronment, which should be set in a per-command basis. Every time we
want to execute a process, we will set some environment variables (PATH,

82

LD_LIBRARY.PATH, etc.) accordingly, and then execute the process
with the exec command. This way we ensure that processes are executed
within their right environment and as user processes.

The environment variables that are set are (in the following order):
First, we set the variables received within the execution message.

Second, we set the ATL_LOCAL_EXECUTION_PATH with the path to
the executable file. As ATLAS executes processes with the exec call and it
wants that the PWD environment variable sent by distr be inherited, the
child process will not have access to the path where its binary file resides.
So ATLAS must allow for an alternate mechanism to let child processes
access their directory structure. This is particularly useful whenever our
binary file must access some data files in its installation tree (see also
subsection “How a process knows its relative path”).

Third, we set LD.LIBRARY_PATH adding to its value the libraries spec-
ified in the “ AtlasSettings” file. This file (located in the home directory
of every ATLAS user) contains which library paths should be considered
when executing under any of the available platforms. For example, a file
containing:

$LIBRARIES

Sun0S-5-sun4u = /homes/husersi0/atlas/danis/Atlas/Atlas/\
1ib/Sunb: \
/usr/usuaris/sig/mfairen/proves_Atlas/ACE-4.5/\
ACE_wrappers/build-Sun5/ace/:\
/usr/local/tcl-tk8.0/Solaris/1lib: \
/homes/hsoftsol2/Atlas/ACE-4.4/ACE_wrappers/ace/ \
/usr/usuaris/sig/mdt1l/nq/libbonsai/:\
/usr/local/mesa2.4/SOLARIS/1ib:\
/usr/usuaris/sig/newdmi/nq/oscarsan/newdmi/1lib

IRIX-6-IP25=/usr/usuaris/sig/mfairen/vonsai/Atlas/\
build-IRIX6/1ib:/homes/hsoftsol2/Atlas/ACE-4.4 \
/ACE_wrappers/build~IRIX6/ace/

Sun0S-5-sun4m=/usr/usuaris/sig/danis/atlas/Atlas/Atlas/\
1lib/Sunb: \
/usr/local/tcl-tk8.0/Solaris/1lib:/homes/hsoftsol2/ \
Atlas/ACE-4.4/ACE_wrappers/ace/

HPUX-10-9000735 = /usr/usuaris/sig/danis/atlas/Atlas/\
Atlas/1ib/HP10: \
/usr/local/tcl-8.0/1ib:/usr/local/tk-8.0/1ib

tells ATLAS that hosts with the Sysid "Sun0S-5-sun4m" should check the
following directories for libraries:

/usr/usuaris/sig/danis/atlas/Atlas/Atlas/1ib/Sun5

/usr/local/tcl-tk8.0/Solaris/1ib
/homes/hsoftsol2/Atlas/ACE-4.4/ACE_wrappers/ace

83

So, these three entries will be prepended (added at the beginning) of
the LD_.LIBRARY_PATH we received through the network. As processes
executed by calling exec inherit the environment of the caller, we can be
sure that the process being executed will be able to access its libraries
correctly.

» Sub-process execution. Once all three steps have been completed, and
no error has occurred, it is finally time to execute the binary file. ATLAS
will only perform one final step: it will redirect the process’ standard error
and output channels to two files. This is only for logging and maintenance
purposes. These two files are called (if the process is called “A”): “A.err”
and “A.out”, and will be in the same path the distr process has been
started. As interaction with the ATLAS environment should be through
the built-in graphical interface, these files are mainly used as log or debug
info files of the process “A”.

After these have been opened, ATLAS will only execute the process with
a call to exec, passing the following command line arguments into argv:

argv[0]: full name (absolute path included) of the process
argv[1]: process name (executable file name)

argv[2]): OOB_Hack info. Used to prevent the Out_Of Band Data error
in Solaris 2.5 1.

And the execution will then overwrite the server’s child process logical
space with that of the desired process, and begin its execution.

Errors, in the execv system call or in the communication from distr to the
chosen server, should be bypassed by distr trying to start the process in the
same host with a lower priority version or in another host depending on the
error. This error management is not included in the current prototype, but it is
briefly described in the miscellaneous section of the extensions chapter (10.5).

What the ATLAS user must be aware of

In order to group in this subsection all information the user must know, some
aspects we have already explained before are also briefly mentioned here.

Directories structure

As said in section “The ATLAS Sysid to recognize architectures”, Sysids are
used to refer to compatible machine groups. So, two binaries are compatible if
they were generated in machines which share a common Sysid. The idea then
is to organize binaries in a directory structure, using Sysids as their names.
Sun machines will keep their binaries in a directory named with their Sysid, for
example. This will prevent architectures from trying to execute code other than
their own.

11n Solaris 2.5 the select call does not wake up with only a 1 byte OOB data, so we adapt
ATLAS communications to send in this case 2 bytes with the OOB data, this problem has been
corrected in 2.7 (we have not checked 2.6).

84

So, it seems now clear that users need to follow some directories structure
guidelines in order to use the ATLAS multi-platform feature. To begin with,
they should provide a directory called Atlas in their account’s HOME. This
directory can be used to store everything related to the ATLAS system. Then,
this directory must have a subdirectory called bin, which will be the storage for
ATLAS binaries.

This Atlas/bin directory can be organized in turn in a multi-platform struc-
ture, to allow the storage of binaries for several architectures. For example, a
possible directory layout would be:

$HOME
Atlas
bin
Sun0S-5-any
IRIX-6-any
any
...)

This structure would provide a place to store Solaris (Sun 5) files, and a
different place to keep IRIX 6 files. These two folders do not need to check
the machine member of the Sysid, as all possible variations can be considered
compatible, so this part can be substituted by the wildcard “any”.

Finally, the user has a directory called any, which will be useful to store
generic binary files; shell scripts, for example.

The above explanation may suffice for most applications. Some situations,
however, may require a higher level of customization. For such uses ATLAS
provides an extended mechanism, which allows you to keep your executables in
different places of your disk. For example, you may have a “stable” version of
an executable file under a certain path, and a different copy (for example, a
debug version) somewhere else. The guidelines to follow in this case are:

o Place the stable binary files under $H0ME/Atlas/bin, as explained above

o Then, place yourself in a directory of your choice, and place binaries there.
You may do so directly, or using a directory structure such as the one found
around the Atlas/bin area. Now, start the distr process from this same
directory. If you do so, distr will scan as the most-priority area the path
you placed these new binaries in. For example:

$HOME
Atlas
bin
Sun0S-5-any
procl
debug
Sun0S-5-any
procl
IRIX-6-any

85

With the file structure described above, you can execute distr from the
path $HOME/debug (this pathname is arbitrary). If you do so, the first exe-
cutables it will scan for are the ones placed in that path in the correspond-
ing architecture directory. So, if you ask ATLAS to execute the file proci, it
will always take as a first guess the file $HOME/debug/Sun0S-5-any/procl,
assuming it has more priority than the version stored at the directories
tree $HOME/Atlas/bin/... This criterion is intentional: Atlas/binis a
place to store stable files, whereas placing them in the distr initial path
is a useful mechanism for debugging. However, if you still wish to give
higher priority to the file stored at Atlas/bin, you just have to execute
distr from a different path than the one containing the debug version.

The “AtlasSettings” file

As we have already seen in subsection “The actual erecution”, using only
one definition of the environment variable LD_LIBRARY _PATH is not enough
because we usualy will need different definitions for different architectures.

The “.AtlasSettings” file should have the directories to be added to the
default value of the variable for each architecture. The syntax required has been
also described in “The actual execution” subsection. The file must be placed in
the $HOME directory and configured by the ATLAS application developer.

A set of host names that will act as a filter to avoid using in the application
other hosts (also able to run ATLAS processes) can also be included in the
“ AtlasSettings” file. The syntax for this (non mandatory) section of the file
has been described in “The broadcast mechanism?” subsection.

How a p'rocess knows its relative path

Also in subsection “The actual erecution” we have talked about an environ-
ment variable giving to the process being executed information about the path
where its binary code is.

In order that the developer can use easily this information, ATLAS offers an
API call which has the prototype

String atl_get_local_path ();

that gives a String which contains the absolute path for the directory contain-
ing the binary code for the executable process. Since ATLAS is able to decide
depending on the architecture which directories look to search executable files,
these executable files can be placed on directories different from the current
working directory, then the process can access to relative paths by prefixing this
relative path with the result of the atl_get_local_path routine.

Debugging ATLAS proceses

One of the mechanisms used by ATLAS to offer feult-tolerance requires pro-
cesses to regularly send messages to distr in order to notify their state. A pro-
cess stopped in a debugger will certainly stop sending this heartbeat messages
for a while, thus making the ATLAS distr process believe it is malfunctioning

86

(see more about the heartbeat message in subsection 6.1.2). In normally exe-
cuted processes this would force distr to kill the user process, but it should
not be applied to a process being debugged.

ATLAS introduces a mechanism which allows process debugging in a conve-
nient way. A process being run can be entered in “debug state” at any time
with a user command. From that moment on, the ATLAS distr process will
keep in mind this situation, thus allowing the process to stop sending heartbeat
messages. This way, the user can then attach a debugger to the involved pro-
gram, and behave as if ATLAS really was not there, debugging normally. Once
done, the process can be put again in “normal running mode”. This restores its
state, thus re-establishing the heartbeat message protocol.

The two commands involved in establishing and ending debugging sessions
within ATLAS are: ’

atl_init_debug (string process_name)
atl_end_debug (string process_name)

They require the process name to be an already running process. Thus,
to debug a process called *TestProc” with ATLAS, first, you would start the
process with the command:

USE TestProc;

Second, you would start the debugging session by entering:

atl_init_debug ("TestProc");

Since ATLAS is a multiplatform environment, a user process can be executed
anywhere in your network, and you will not necessarily know where. The USE
command will make ATLAS decide where to execute your process depending on
the workload of each machine, and the availability of the given process across
the network. So, when you start debugging your process, you will need the infor-
mation about the host that is actually running your program, in order to attach
a debugger to it. This information will be printed out for your convenience by
the atl_init_debug command. This way you can find where you should place
your debugger to work.

Once ATLAS knows you want to debug a certain process (by means of the
init.debug call), it is time to effectively debug it. Here we will use gdb as
the debugger, but you may use the debugger of your choice to accomplish this
task. Remember you need to execute gdb at the host currently executing your
process. In our example, we would do:

gdb
attach [process_identifier]

You need to know the pid of the process to debug. To find it, use for
example the ps shell command at the machine executing the process (you know
which machine it is because atl_init_debug gives you this information). Once

87

you enter the attach command, your process is fully debuggable. You may set
breakpoints, examine data, and perform step-by-step execution.

Once you have finished, you should restore the process state back to normal.
This means you have to first detach the debugger from the process. Do this by
entering:

detach

After doing this, you just need to issue the atl_end_debug command to end
your ATLAS debugging session, and revert the process’ state to normal. Do this

by simply typing:
atl_end_debug([process_namel);

as an ATLAS command, and this will end the debugging session.

6.1.2 The heartbeat mechanism

The control of the execution status is managed by the heartbeat mechanism.
This mechanism makes every process being executed in the application send a
short message periodically to the distr process giving the required information
to control the global status of the execution. The heartbeat mechanism is very
useful to detect if a process or the communication with it fails, therefore it is also
the first component of the fault-tolerance mechanism which uses the information
kept by the journaling mechanism to recover the status of that process when it
needs to be recovered.

Although this detection is not completely reliable (we can call it suspicion),
it has a high level of reliability. The messages are sent through a reliable connec-
tion (we use BSD stream sockets), and the periodicity of sending the heartbeat
message from a process is driven by the system timer (SIGALRM interruption).
So, unless the developer changes the ATLAS generated code that controls this
mechanism, if distr decides a process is death, it must be that it is either:

a) death
b) unreachable (network failure)

c) locked in an uninterruptable section for too long a period

6.1.3 Killing a process

The killing of a process can be provoked by:

¢ the lack of communication with it, in this case the distr process decides
whether it has to start the recovering or not (see chapter 8);

e an explicit order from the user which can be:

88

— to finish the process execution normally (via “UNUSE"), it says to
the process it has to finish its execution and it does everything that
it has to before exiting;

— to kill the process at the moment (via “KILLPRQC”), it kills the
process directly because it is supposed not working well.

6.1.4 Recovering a process

The heartbeat mechanism (section 6.1.2) is directly related to the recovering
of a process when its communication with distr is not working. A process
recovering is totally managed by distr but is directly related to the journaling
mechanism, so it will be extensively explained in chapter 8.

6.2 Communications management

As it can be seen in figure 3.1(b}, each process in an ATLAS application is directly
connected to the distr process. So any (or almost any) communication between
two processes passes through distr. This is a desirable characteristic in ATLAS
because it favours the maintenance of the journal and allows all of its facilities
(see chapter 8).

The work of distr, being in the middle of the communications path, is
just to direct messages to the right destination, so the commands are sent to
the Command Subsystem, the error or output messages are sent to the Input
Subsystem, the routine call and parameter messages are sent to the process
owning the routine, etc. Therefore the distr work (from the communications
management point of view) is just to look into each arriving message to know
what is its kind and act in consequence. - '

6.3 Input data management

ATLAS thinks in terms of a separation between computing processes and data
input processes (as has been already introduced in chapter 5). This causes
that the input of data and the requests for these data are usually produced by
different processes being connected to distr. This idea of separation is not
new. Plenty of references can be found in the literature since the late 70’s
(see [32] for a survey and references therein). In fact, since the late 80’s this
separation has been settled and the majority of works in the future trend are
more devoted to finding ways or tools to easily construct user interfaces (which
are not necessarily depending on the application subject).

Another work also following this idea of separation is the ADV (Abstract
Data Views) proposal [2], where an ADV can be seen as an interface associated
to an object (also called ADO). An ADO has no interaction with its outside
except for invocations coming from an ADV or another ADO. This dissociation,

89

however, is not compulsory in ATLAS. Some modules require very special inter-
face elements that are usually incorporated into the same process —~e.g. virtual
reality applications-.

The asynchronous matching functionality assigns input data to data requests
asynchronously depending on their type. This functionality then is the base of
the independence between input subsystems and the other processes and this
allows the re-usability of data input subsystems because an input subsystem
may be used by different applications, and the developer can implement his
application without having to implement also the user interface because he can
use another one already implemented.

The asynchronous matching consists of keeping the information of both input
data and data requests when they arrive to distr. Input data will be stored
into a FIFO list and data requests into a LIFO list, so in case of equal type
name between data and request, the last request is going to be the first to be
served with the data coming, but the first input data is the one to serve the
request coming. Figure 6.1 shows the scheme of the management that distr
does. The input subsystems send input data asynchronously to distr and
processes needing these data send data requests asynchronously as well. The
matching then acts distributing the data among the requests in the correct way
(depending on their type).

Requests list Input data list

distr

stores the serves the
request request removes

adds

serves the stores the
request input data” adds

Figure 6.1: Scheme of the asynchronous matching functionality

removes

When a data request arrives, distr looks at the input data list if there is
an input data to serve this request. If there is one it serves the request but if
not the request is added into the first position of the list waiting for an input

90

data for it. When an input data arrives something similar is done, distr looks
at the requests list if there is a request to be served by these data. If there is
one the data serves this request but if not the data is added to the list waiting
for a request asking for it.

This functionality is also flexible because assigning “timeouts” to input data
and requests different interaction modes can be defined. These are:

it gives expire time for them
= (the timeout amount of sec-
onds)

input data and requests having a
timeout greater than 0 (¢imeout > 0)

they are immediate, it
means if the matching can-
= ndét be done immediately
(when they arrive) they are

input data and requests having a
timeout equal to 0 (timeout = 0)

discarded
input data and requests having a - they do not have expire time
timeout equal to —1 (timeout = —1) (they can stay permanently)

they have an automatic reen-
trant behaviour, i.e. when

= they are served they are au-
tomatically added again to
the list by distr.

requests having a timeout equal to
—2 (timeout = —2)

With these timeout possibilities, the description of how the asynchronous
matching works explained above must change a little. If the arriving input data
or request has a timeout = 0 and there is no partner for the immediate matching
it has to be rejected, so it will not be added to the list. Moreover two more
treatments have been added to manage these timeouts:

¢ The timer management started periodically to control the timeout of pro-
cesses for the heartbeat mechanism is also used to control the timeout of
input data and requests being stored into the structure. At each time-
out, ATLAS will look at the lists (both input data and requests lists) and
remove from them any object overtaking its timeout.

» When a request is served and it had a timeout = —2 it is removed from
the list but added again automatically, because it is a reentrant request.

Null response

The timeout feature makes it possible for a request to be rejected without doing
matching with any input data. Thus no input data is given to this request. But
the process that produced the request may be waiting for the response, so a
response raust be given to the process. This response will be a null response
which is a response message (see chapter 7) but without containing input data.
The process waiting for this response is then notified and is responsible of dealing
with this null response.

91

Reordering possibility

The order given to the lists (both the input data and the request) is giving
priority to the first input data and to the last request received. These priorities
introduce some rigidity for the usefulness of the system for a final user who may
be interested in giving the data in a different order.

To be more flexible in this sense, ATLAS offers the possibility of changing
the order of these lists by selecting one of the objects on a list to be the first of
this list from this moment on, i.e. giving the identifier of a request, for example,
and calling a specific routine offered by ATLAS this request is changed in the
list order to be the first in its list.

To facilitate the use of this order changing routines and to give also flexibil-
ity to this functionality in other aspects (adding the possibility of eliminating
‘an input data from the list, for example), ATLAS offers two utility processes
that facilitate these tasks to the final user. These processes are demandes and
entrades and will be explained in chapter 9.

6.4 The events mechanism

At run time, the ATLAS kernel keeps some structures containing information
about the status of the application (which processes are in execution, if there
is some request waiting for an input data, etc). To give the opportunity that
an application process be informed about changes in this internal structures,
ATLAS offers the ATLAS events mechanism that allows the process to ask for a
subscription to a particular ATLAS event (a list of ATLAS events below). When-
ever an ATLAS event is produced the distr process sends the corresponding
event message to every process subscribed to that event, and the driver of the
process, when it receives this event message, calls the callback routine attached
to this event at subscription time.

Here is the enumeration of these ATLAS events and their meaning:

ADD_PROCESS: produced when a process is started, its message contains
the name of the process;

SUB_PROCESS: produced when a process has been killed and it is not going
to be recovered, its message contains the name of the process;

ADD_INPUT: produced when an input data arrives to distr, its message
contains the input data identifier and its type name;

SUB.INPUT: produced when an input data has been removed from the distr
structures, its message contains the input data identifier;

MOVEINPUT: produced when an input data has been moved to the top of
the list, its message contains the input data identifier;

ADD_DEMAND: produced when a data request arrives to distr, its message
contains the request object;

92

SUB.DEMAND: produced when a data request has been removed from the
distr structures, its message contains the data request identifier;

MOVE_DEMAND: produced when a data request has been moved to the
top of the list, its message contains the data request identifier;

IMALIVE: produced when a heartbeat message arrives to distr, its message
contains the name of the process sending the message to distr.

6.5 Journaling management

Almost all information passing through the distr process must be stored into
the journal in order to be able to recover processes, re-execute an application,
offer UNDO and REDO, and perform other journaling functions. Therefore
distr is the process charged on manage the whole journaling mechamsm This
mechanism will be the subject of chapter 8.

93

94

Chapter 7

Communications and
drivers ’

A communication can be described as the passing of messages through a commu-
nications channel from one process to another and backwards. A communication
then implies two end points, both of them sending and receiving messages.

In the ATLAS architecture almost all of these communications have at one
end point the distr process and at the other another process which can be the
Command Subsystem, an input subsystem or any other application process. All
of these processes then need a communications driver to be able to manage their
communications with distr.

This chapter describes everything in ATLAS related to communications: the
set of messages used, the most relevant communications protocols, the manage-
ment to pass data through the network and also the way in which the communi-
cations driver for an application process is generated automatically by ATLAS.

7.1 The ATLAS communications protocols

The specification of a protocol [33] consists of different parts: the service to
be provided by the protocol, the assumptions about the environment in which
the protocol is executed, the vocabulary of the messages used to implement
the protocol, the encoding (format) of each message in the vocabulary and the
procedure rules guarding the consistency of message exchanges.

In ATLAS the different services can determine different protocols between
processes interchanging messages. For all of them, except for the “information
broadcast” protocol the channels used are BSD stream sockets [34], so ATLAS
assumes that the communication at a low level is totally reliable in keeping
the order of messages and the assurance that none of them will be lost. For
the “information broadcast” protocol the channels used are datagram sockets,
which assure the correctness of messages if they arrive but do not guarantee
that they arrive.

95

The vocabulary and encoding for messages involved in protocols are de-
scribed in the next section (7.2). The service and the procedure rules (described
with flow charts) for each protocol are going to be explained together in order
to facilitate the understanding of the protocol itself.

Before going into the protocols description we define two symbols used in
the flow charts which don’t belong to the flow charts language [33].

this symbol indicates the process will continue with
~ — its work at this point and what it does is not relevant
to the protocol itself.

FoT T this symbol indicates this is a subprotocol seen at
1 box name ' — this point as a black box because it will be described
————— l in detail in another subsection.

The most relevant protocols in the ATLAS system can be described as follows:

St’arting a process

When the distr process receives an order to start a process or decides by
itself that a process must be started it chooses the best server to execute this
process and sends the starting message for that process to the chosen server.
The server receives the message and tries to execute that process, answering to
distr whether it succeeded or not.

distr server_atlas

| O— ¥

receive
receive

v v v

exec. order < correct error starting
\ll \l, l process msg.
< error < correct
prep. starting adding proc.
process msg. to execution starting msg.
\l/ treatment
. P
starting 1ADD_PROCESS,
process msg. '

, event 1 true @ false
1

96

Killing a process

A process must, be killed when the distr process noticed the communication
with the process is lost or when there is an explicit order to finish it. If the
communication is lost the heartbeat mechanism must know what to do, but if
the process must be finished by an explicit order, a protocol is required for
distr to negotiate with the process its close-down.

distr processl

L=t Q/

killing
processi msg.

v

already dead kill order
before dead
killed process] can be
treatment killed?
\ll killing already dead

i phaeres ! processl msg.
1 SUB_PROCESS !
1 event : —
i

killing processt .
treatment) ><

cannot be killed

distr checks that the process is not essential and sends to it a destruction
message, tagging this process as not accessible from this moment. The process
finishes anything it was doing, receives the message and sends to distr the
confirmation of its death just before it exits. When distr receives the death
confirmation it can then clean up its data structures.

97

Information broadcast

The distr process sends a broadcast message and the ATLAS servers lis-
tening at the same port answer giving information about their host name, the
machine type and the processes of the application that they can execute on
that machine. All servers receiving the broadcast message send back the corre-
sponding information. This protocol allows the distr process to have enough
information to know where a process can be started at any moment.

distr server_atlas
start start
broadcast >
=
receive broadcast
timeout
information \l/ prepare
\V information
error

treat

information “ information

fals tru
= enough ? <

start C.S.
and LS.

receive

information

treat
information

L

98

Data input and request

There are two protocols involved in the data input and request, but they are
quite related to each other, so I present them as if they were only one protocol.

For an input datum being sent to distr by an Input Subsystem, distr
checks if there are any requests waiting for this datum, and if it is the case,
sends this datum to the requesting process. Otherwise it stores this datum in
the input data list.

For a request being sent by any process, distr checks if there is any input
data into the corresponding list to serve this request. In the affirmative case it
sends the data to the requesting and in the negative it adds the request into the
data requests list waiting until the adequate input data arrives.

Command S./app. process distr. Input S.

A
—
data

request

receive . —
data input data input event
request N
r .

St s .
receive F====="3 : ADD_INPUT input event
! :ADD_DEMAND; ; event 1 treatment
: event ! ""';l,"'"‘
- - v oo owm o
input data false input data
requested?
input data
:e(iﬁll:sgt \ll adding
to the Jist matching ‘(’(‘)"t‘}‘]‘ed:;f
l treatment
PoTTeT g
1 SUB_DEMAND ,
t SUB_INPUT 1
: events :

99

User command and external routine call

When an input subsystem produces a command and sends it to distr, distr
just redirects it to the Command Subsystem which is the ATLAS component in
charge of interpreting this command.

Since an external routine call is always produced in the Command Subsystem
and most of them because of a user command (otherwise the producer of the
external routine call is the main procedure of a module —which can be seen
also as a user command), both protocols are being presented together in this
subsection.

app. process distr, Input S.
receive receive user

routine routine Command
call call

input string

\Ll v build command
Command
. - results
routine deciding the \l/
execution process
Command
results>

results routine Command S.

call i’\

receive

> results > Command

interpreting

routine
call

u-u -
\

When the Command Subsystem sends an external routine call to distr, it
has to redirect the message to the right process. The reverse happens when the

100

process ends the execution of the external routine and sends the results back to
distr, which has to send them back to the Command Subsystem.

The external routine call can be synchronous or asynchronous. If it is syn-
chronous the execution of this command must be stopped until the results ar-
rive, and if it is asynchronous the execution can continue until the results of the
external routine are needed (see the asynchronous management in chapter 4).

Direct communication between processes

The needed protocol to allow direct communication between processes can
be divided into three parts:

Asking for channel: Process B asks to distr for.a communication channel
with A, so distr sends a channel request to A which creates the channel
and answers to distr sending the channel created. Then A waits until
the other process B makes the connection to this channel.

Proc. B distr. Proc. A

\1/ i
asking for
new channel
receive receive

asking for asking for
new channel

new channel

prep. channel

v

asking for
new channel

timeout

<comm. channel

| receive i Accept comm.
1

comm. channel

Commaunication: distr sends to the process B the communication channel
received from A. B then creates the communication and connects to this
channel. Once done it sends an acknowledgement to distr and the channel
is opened between the two processes A and B.

101

distr. Proc.B

—

Connect to
timeout A {(channel)

receive

Connect to
A (channel)

Create comm.

Communication closing: The request to close the channel can be produced
by either one of the processes having the communication opened. When
the process A decides to close its communication with the process B it
sends a message to B saying it is going to close the channel. This message
must go through distr because it has to know the channel is going to be
closed. When B receives this notification it sends an acknowledgement to
distr, and at this moment distr knows this channel is going to be closed
without any other action over it.

Proc. A distr. Proc.B

receive
receive

closing mess.
comm. A-B

closing > closing mess.
comm. A-B comm. A-B
closing mess. ack. closed
> comm. A-B comm. A-B <
ack. closed
\il \y comm. A-B
closing mess. treat closing
comm, A-B comm. A-B

closing

__.._j l__ comm. A-B

~

102

Events subscription

In the events subscription protocol the messages involved are: the subscrip-
tion request and the end of subscription request. When distr receives a sub-
scription request message from a process, this process is added to the list of
processes subscribed to this kind of events, so that from now on this process
will be notified when the event is produced. This subscription will be active un-
til the process sends to distr the end of subscription request message or until
the process ends.

distr. app. process

subscription

request

receive

v v

subscription end subscription <
request request
\1/ W end subscription
request
adding process removing proc.
to the event list from the list
T— —_—

Event sending subprotocol

In this subprotocol the message involved is the message notifying this event.
When distr detects an event happens, it sends the notifying message of this
event to every process which has been subscribed to this event. These processes
then will receive this event notification message and do whatever use they see
fit.

distr, app. process

v

generating
event

receive

bowm e -

event
treatment

N

103

Atl_ticket request

The protocol that allows a process to ask and get an atl ticket from distr is
a synchronous protocol. The process sends a message to distr asking for a new
atl_ticket and waits until distr sends back this atl.ticket. If the process receives
other message from distr while it is waiting for an atl_ticket, it just stores it in
order to deal with it when the routine waiting for the distr answer returns to the
driver loop. (The driver management is explained in section 7.5, and the global
input identification ~atl.ticket management- is explained in section 8.1.3).

distr. Process

atl_ticket
request

receive

atl_ticket
request

receive

Y Y

> atl_ticket > other
y y

process stored to
atl_ticket deal with later

,{/L____

atl_ticket

7.2 The set of messages used

The messages used in ATLAS communications can be grouped depending on the
sort of tasks where they are involved.

Apart from the division into these groups, which are control messages, ex-
ecution messages, messages of ATLAS events and data management messages,
there is another important difference between messages that must contain data
of any type and messages just containing strings and integers. Messages con-
taining data of any type have to be specially managed in order that these data
be interpreted with the same meaning by different architectures in an heteroge-
neous network. The ATLAS "Variables", fully explained in section 7.4, are used
to wrap data in order to hide to the developer the internals of the heterogeneous
communications.

Control messages: These messages are involved in the ATLAS internal man-
agements. The ATLAS control messages include those involved in the
broadcast mechanism, the heartbeat message, those necessary to handle
the subscription and unsubscription of processes to ATLAS events, those
involved in the journaling functionalities, the starting and finishing of a

104

debug management for a process and some control answers produced after
a process execution request (acknowledgement or error).

The concrete control messages and their contents are the following:

Bcast
AnswerBcast

ImAlive
Subscription
EndSubscription
AdvisedCheckpoint
CheckpointDone
RecoverCheckpoint
DontRecover
AskTicket
AnswerTicket
SubstituteTicket

InitDebug
EndDebug
Acknowledgement
Error

Dummy

distr sysid, user uid, gid and ATLuserid,
environment variables.

server_atlas host name, sysid, normalized
load coefficient, list of processes available.
status of the process.

event to subscribe, flag asking for update.
event to finish the subscription.

e

d

name of file. .
name of file.

atl.ticket identifier.

atl_ticket to be substituted and atl_ticket to
substitute the first.

name of process.

name of process.

Lidlliidll

error message to print.
— (needed at certain points to wakeup a
communications driver).

Lii Ll

Execution messages: These messages produce the actual execution of the

application. The ATLAS execution messages include those creating and
destroying processes, the user commands which will be executed by the
Command Subsystem, and those related to the routine calls {routine call,
parameters and different results).

The concrete execution messages and their contents are the following:

ExecProc
KillProc
ExitProc
ExitExec
Command
CallRoutine

1114 ll

Parameter
ReturnValue
ReturnParam
ReturnVoid

AR A

process name.
process name, flag of normal exit
exit status.

or direct kill.

the command string,.

process name, routine name, call identifier,
number of params.

process name, call identifier, data Variable.
call identifier, return value Variable.

call identifier, return parameter Variable.
call identifier.

ATLAS events messages: These messages are generated by distr when some

change in its internal structures occur and has to be notified to some pro-
cesses who asked for it. The ATLAS events messages are always produced
because something happened. The situations to be notified are the cre-

ation and destruction

of a process, the receiving of a heartbeat message,

105

the receiving of an input data or a data request message, and the elimi-
nation from the internal structure or a reordering in it of an input data
or a data request.

The concrete ATLAS events messages and their contents are the following:

EvAddProcess — process name.

EvSubProcess — process name.

EvimAlive — process name.

EvAddDemand - data request object.
EvSubDemand — request identifier.
EvMoveDemand — request identifier.

EvAddInput — input data identifier, type name.
EvSubInput — input data identifier.
EvMoveInput — input data identifier.

Data management messages: These messages are involved in the ATLAS
+ asynchronous matching management, so they include the data request
and input data messages, the matching message (answering a request),
those messages asking for reordering of input data and request and for re-
moving a request, and also those messages used to ask for the data value

into an input data object and answer to it.

The concrete data management messages and their contents are the fol-

lowing:
RequestData — data request identifier, type name, string to be
printed to the user, timeout value.
InputData — input data Variable, timeout value.
AnswerData — data request identifier, input data Variable.
ModifDemand — data request identifier.
ModifInput - input data identifier.
DelDemand — data request identifier.
AskInput — input data identifier.
AnswerInput — input data identifier, input data Variable.

All these messages have a common structure which includes an identifier
that allows the communications management to know which message has been
received. This structure encapsulates the message so that the sending and
receiving drivers do not have to know about the contents of the specific message
until it has to be treated (see next section for more details on implementation).
This makes the sending and receiving code be the same for all sort of messages
and it facilitates also the extensibility of the ATLAS set of messages because a
new kind of message just needs to add a new identifier and a new specialized
management.

7.3 Some implementation details

Each ATLAS message has different contents so it must have a structure different
from each other. On the other hand all of them must be treated by the commu-
nications management in the same way (being sent and received). The ATLAS

106

implementation for these messages encapsulates the common information into
a base class and derives from it a class for each kind of message adding the
specific contents.

The common information being stored into the base class, Message, is the
total length of the message, the message identifier and the execution thread
identifier (see section 8.1.1). The length of a message sometimes is not known
a priori and in these cases the length value is set to —1 to be recognized as a
message without known length. This class hierarchy also exploits polymorphism.
The base class declares virtual methods to send a message through a channel
and to destroy the message. These methods will be implemented by each derived
class.

The ATLAS communications mechanism is implemented using sockets, and
its implementation uses the wrapper classes for sockets offered by the public
domain package ACE_Wrappers (see [31] and [30]).

Since ATLAS processes may be running in different architectures, data must
be sent through the network using a standard representation in order that they
have the same meaning to the different processes. ATLAS just relies on XDR [35]
to transfer the data robustly between different architectures.

Since the translation of data to XDR is written directly to the communica-
tions channel where it has to be sent, the length of the message containing these
data cannot be previously known and the communication end point receiving
this message cannot detect when the XDR data is finished. To solve this prob-
lem, the ATLAS communications management adds an Out-Of-Band byte after
each XDR message for the end of this XDR stream to be detected. Another
Out-Of-Band byte is sent back to clear a semaphore, to avoid that a second
OOB be sent through the same channel before the first one has been received.

In order to not have delays because of these semaphore stops the receiving
management does not interpret immediately the messages arriving but just re-
ceives bytes looking for OOB bytes and sends back the other OOB to unlock
the sending process on the aother channel end point. This receiving manage-
ment stores the bytes stream into a dynamical length table of char buffers and
when the channel is empty a message interpreting procedure is started over this
buffers table in order to actually get the messages received.

7.4 Transparent data transfer: Variables

Besides the Virtual Machine, the ATLAS Variable structure is also used to wrap
user data in each process to go through the network. It includes methods to
encode and decode XDR streams making these translations transparent to the
developer. Following subsections explain this structure and the techniques used
to implement data transfer with the least hassle to the developer.

7.4.1 Wrapper structure for data and types

The wrapper structure designed in ATLAS for data and types addresses two
important requirements: (1) making the command subsystem able to access

107

component values of these variables (introduced in chapter 4) and (2) encapsu-
lating these data robustly for it to travel from one process to another.

The ATLAS variables are represented internally by a tree structure guided by
a compact type definition. This compact definition comes from the ATL type
definition and is initialized by the ATL compiler (see section 4.2.2), which is
aware of the complete type definition. As an example, figure 7.1 shows how the
ATL definition of a structured type, pyramid (left), is compacted to its type
representation string (right). Notice that this compacted type is, in fact, the
representation of the effective type we talked about in section 4.1.3.

ATL type definition: Compacted type:
#deftype point STRUCT "S(name string,
. x => real; base V[3)S(pt S(x real,y real,z real),
y => real; p2 S(x real,y real,z real),
z => real; ident integer),
ENDSTRUCT sides V[3]V[3]S(pl S(x real,y real,z real),
#deftype face VECTOR (3] p2 5(x real,y real,z real),
OF STRUCT ident integer))"
pl -> point;
p2 ~> point;
ident -> integer;
ENDSTRUCT

#deftype pyramid STRUCT
name -> string;
base ~> face;
sides -> VECTOR (3] OF face;
ENDSTRUCT

Figure 7.1: Example of a type representation.

The C++ class that stores this compacted type has the interface shown in
figure 7.2. The attributes of this class are the name of the type (used by the
ATL compiler) and its compact definition, which describes all components of
the type. The methods shown in the figure are those needed to manage the
access to the different components of the type.

class Type {

String tipus,deftipus; // deftipus contains the compacted type
public:
int Components (); // Returns the number of components.
int Accedir (char #cami); // Returns the component index from its name (only
// for structures).
char Codi (); // Returns a code showing the node type. It is

// useful when we need to make explicit castings.
Type TipComp (int index); // Returns the component type from its index.
String NomCamp (int index); // Returns the component name from its index (only
// for structures).

};
Figure 7.2: Interface for class Type.
The variables itself are represented by the C++ class Variable, shown in

figure 7.3. This representation has been designed to address three different
issues:

¢ it allows ATLAS to be undisturbed by the data type (ATLAS sees them as
Variables and does not care about their internal type);

108

¢ it contains both the variable tree representation and the standard XDR
representation of the variable (where one is computed from the other only
when necessary);

e it offers methods to translate automatically from one to the other repre-
sentation. These translations are possible because the variable is always
aware of its own type definition.

class Variable {

String nom; // name of the variable
Type tipus;
node #*arbre; // root node of the tree representation
XDR reprxdr; // XDR representation and
char *mem; // the position where data
int posdada,xdrlong; // is on the XDR stream
atl_tkt ticket; // global data identifier
int posticket;
public:

Variable () {}

Variable (String t, String n);

Variable (Type t, String n);

Variable (const Variable & v);

Variable (char #m, int lng);

void crea_arbre ();

int arbre_to.xdr (FILE *£); // translation to XDR, directly to the channel
int xdr_to_arbre {); // translation from XDR

};

Figure 7.3: Interface for Variable class.

The tree representation in the Variable class is a pointer to the root node
of the tree. The different possible nodes can be divided in two sets: one for the
intermediate nodes in the tree and the other for the leaf nodes. The intermediate
nodes contain references to other nodes in a forward step of the tree. The leaf
nodes contain the corresponding value in this field of the variable. The leaf nodes
values are always of basic types whereas the intermediate nodes correspond to
type constructors. Figure 7.4 shows the node tree representation for a pyramid
type variable.

The C4+ representation used to implement this node tree is based on poly-
morphism. There is an abstract base class node containing a Type which is
the type of the node and a number of references to control how many copies
of this node are in use (see figure 7.5). The rest of node classes derive from
this one and represent the different possible kinds of nodes so far: nodestruct
and nodevector represent the two possible intermediate nodes, and nodeenter,
nodereal, nodeboolea and nodestring represent the possible leaf nodes (for
integer, real, boolean and string basic types respectively).

The use of the compact type definition facilitates the construction of the
variable tree because it can be done recursively having only basic types in the
leaves and building the intermediate nodes as records or arrays of other nodes
or leaves.

Although the set of types usable in the ATL language is restricted to records
and arrays, the design for the ATLAS variable representations makes it possible
to add extensions easily. It would be quite easy, for example, to extend the

109

nodestruct

nodestring nodevector nodevector
(string) | l I l l l

nodestruct nodevector

nodestruct nodestruct nodeenter nodestruct

SN /NN TN

nodereal noderzal nodereal nodereal nodereal nodereal nodestruct nodestruct nodeenter

(real) (real) (real) {real) (real) % \' x\(integer)

nodereal nodereal nodereal nodereal nodereal nodereal
(real) (real) (real) (real) (real) (real)

Figure 7.4: Node tree representation for a pyramid type variable.

class node {

protected:
Type tip;
int referencies;

public:
node () {}
node {Type tipus) : tip(tipus) { referencies = 1; }
virtual node #accedir (int index) {}
virtual node & operator = (const node & n) = 0;
virtual int fromto_xdr (XDR #xdrs) = 0; // translation from/to XDR

};

Figure 7.5: Interface for the abstract class node.

accepted types in ATL to lists or hash tables by including the description of
these types in the language and extending the node types (classes deriving from
node) with nodelist and nodehash. Because of the modularity in the Variable
mechanism design the only effort needed to do would be inside these two new
node derived classes in order to achieve the methods implementation for the
translation to XDR and the access to their components.

7.4.2 Making this design transparent to the developer

Not only does ATLAS offer the automatic translation between the XDR repre-
sentation and the ATLAS Variable representation (included in the Variable
methods), but it also isolates the developer from these ATLAS Variables’ rep-
resentation.

In order to achieve the desired transparency for the developer, ATLAS pro-
vides code stubs to automatically transfer the user’s data into ATLAS Variables,
and backwards, through bridge types used to isolate the user from the details
of the ATLAS Variables (which an advanced user can use directly if he wishes

to).

110

These code stubs are automatically constructed by ATLAS from the interface
declaration of the process, which contains the type definitions used for variables
to be exported and the prototype definitions of the process external routines,
which describe the parameters and result types for them. All these definitions
give ATLAS enough information to generate code stubs to prepare the arguments
for user functions or collect results and encode them for being transported over
the network, and dispatch calls to user functions.

The bridge types are used to build intermediate objects with the data struc-
ture of the user’s objects (as per their ATLAS declarations) but without the
methods of the user’s objects (which remain unknown to ATLAS). Each bridge
type (automatically generated by ATLAS) has also methods to translate ATLAS
Variables into it and an operator to build a Variable from it, making then
both translations transparent to the developer. The énly burden on the devel-
oper is then to provide his classes with conversion methods to and from these
bridge type objects, which is normally trivial (unless the developer chooses to
have a very different structure for the ATLAS data that the one used internally
by his program).

Examples of bridge types and also the other code automatically generated
by ATLAS can be seen in section 7.5.1.

7.5 Process driver

Each process in an ATLAS application is connected to distr by a communica-
tions channel, therefore each process needs a communications driver to manage
the interchange of messages with the rest of the application.

The default for an ATLAS process driver is to manage the channel connecting
with distr and serving the interruption of SIGALRM, which is used in the
heartbeat mechanism (see section 6.1.2). The most common requests or messages
received from distr are routine calls, data answering a request, or an ATLAS
event notification. Figure 7.6 shows schematically the process driver role.

routine call

4 \
t add channel /<_ o
~ ~
\ So N
\ H 2%,
. add timer . N,
AN \ ~
R \ ~
~. Subchannel \'\
e -7 timeout handling
optional

Figure 7.6: Driver role scheme.

Users also may: add other channels for special purposes (for example to
listen to X-windows events); add a timer treatment; or remove channels added

111

before. This flexibility only requires to have implemented the processing of
messages being received through these new channels.

Aside from routine calls, parameters and answers to requests —see subsec-
tion “Automatic code generator” below—, a process may receive other kinds of
messages from distr, including:

o the contents of some input data item that the user introduced and is still
in the system’s internal structures. This message is produced in response
to an explicit request of this information made by the process,

¢ an order to finish the process execution. This order causes the call to a
finishing routine that the developer can define specially for each process,

¢ a system event notification. The ATLAS events mechanism gives the op-
portunity that an application process be informed about changes in ATLAS
internal structures (what processes are in execution, if there is some re-
quest waiting for an input data, etc —see section 6.4).

There are also other special messages a driver may receive, but they are
only used by the Command Subsystem (a command, a return value or a return
parameter). Although it is not advisable to change the Command Subsystem
process (because it is a heavy-weight component of ATLAS), if some application
intended to replace the Command Subsystem, it would need to use these special
messages for its communications.

7.5.1 Automatic code generation

Since ATLAS’ first priority is to offer the maximum transparency to the devel-
oper, the design of ATLAS architecture must hide the intricacies of the interpro-
cess communications from the programmer.

The ATLAS process communications require quite a bit of code in each pro-
cess devoted to handshaking with distr, generating the heartbeat messages at
the adequate rate, preparing the arguments for process routines or collecting
results and encoding them for being transported over the network, and dis-
patching calls to process routines. But the programmer should be relieved from
these tasks.

To handle this, ATLAS automatically generates code stubs that the developer
must link with his program.

The code generator and the compiler grammar of the Command Sub-
system

The code stubs to be automatically generated are constructed from the interface
declaration of the process (like in figure 7.7), which contains the type definitions
used for variables to be exported and the prototype definitions of the process
external routines.

112

USE se;
EXPORT #deftype point STRUCT
x -> real;
y -> real;
z => real;
ENDSTRUCT
EXPORT #deftype simplex STRUCT
name -> string; .
sides -> VECTOR [4) OF point;
ENDSTRUCT
EXPORT #deftype scene VECTOR [100] OF simplex
EXPORT #deftype property integer

EXPORT scene totalsc;

PROT
EXTERN PROCEDURE segmentation (scene ksc, property p);
EXTERN PROCEDURE display_scene (scene sc);
EXTERN FUNCTION contained_in (point p) RETURNS simplex;

ENDPROT

EXPORT PROCEDURE SegmentSimplex () IS
segmentation (totalsc, GETDATA("Input the property value"));
display_scene (totalsc);
se::Sortida ("Segmentation completed","m");

ENDPROCEDURE

Figure 7.7: Portion of the interface definition in ATLAS for the volume modeling
process (“volum”).

Since the same language (ATL) is used to define the process interface {more
about the process interface in chapter 9) and also to describe the application
behaviour (interpreted at run time by the Command Subsystem —explained in
chapter 4), we use the same parser in both cases, when the generator is going to
generate the code stubs for the communications mechanism (explained in next
subsection) and when the interpreter of the Command Subsystem is interpreting
the ATL code at run time. The actions the parser does are determined by a
flag indicating whether it has to generate code or it is directly interpreting code
(run time).

When the parser is doing code generation, it is mainly interested in extract-
ing information about the exported type definitions and about the prototypes of
external functions or procedures, to build the code stubs for the communications
driver.

Automatic code generator

The automatically generated code must implement the default for an ATLAS
process driver (managing the channel with distr and serving the SIGALRM
interruption —heartbeat). The generator creates the driver’s code in several files
(see “Automatically generated files” below) that are eventually linked with the
developer’s code.

In this subsection we will talk in depth about the design decisions these
requirements lead to, and we will show how the automatically generated code

works.

113

Calls, parameters and results

In the ’.atl’ file defining its interface, each process offers (makes public) some
types and routines. These routines are either routines implemented in the ATL
module itself, written in ATL language or external routines, implemented in
C++, by the process developer. They are called external routines, because they
are executed by the ATLAS process and not by the ATLAS Virtual Machine.
Once running, each process will be waiting for requests coming from the system
to execute its external routines. So, the need for communication between the
system and the process arises: calls and parameters should be passed from distr
to the process and results should go the other way (see figure 3.1(b)).

For each external routine call, distr will send the involved process a message
communicating the request, and one additional message for each parameter of
the routine. After executing that routine, the process will send back a message
with the return value (that may be void) and an additional message for each
parameter passed by reference.

Bridge types

In order to make type checking, types of the parameters of the external
routines declared in the ’.atl’ file must be defined (or imported) there. As
these are ATL type definitions and not C++ types, conversions must be made
somewhere from the internal ATLAS storage of variables {of type Variable —see
section 7.4) to C+-+ variables.

The automatic code generator produces code that carries out the conversion
from the XDR message to a bridge C++ type (see also section 7.4.2). The
communications driver is able to recover the Variable from the XDR message.
On the other hand, the bridge class definition and conversions from and to it
are provided in auxiliary routines (see below).

ATL type definition:

EXPORT #deftype point STRUCT
x -> real;
¥ => real;
z => real;
ENDSTRUCT

Bridge type:

struct atl_point {fleat x; float y; float z;

atl_point() {}

atl_point(Variable &v) {
if (v.Arbre()==NULL) atl_exit(-1); // Invalid variable
x = ((nodereal #*)(*(v.Arbre())).accedir(0))->Getvalor();
y = ((nodereal #){*(v.Arbre())}).accedir(1))->Getvalor();
z = ((nodereal *)(x(v.Arbre())).accedir(2))->Getvalor();
}

operator Variable() {
Type t("volum::point","S(x real,y real,z real)");
Variable v(t,"");
v.crea_arbre();
w((*(v.Arbre())).accedir(0)) = x;
#((#(v.Arbre())) .accedir(1)) = y;
*({s(v.Ardbre())).accedir(2)) = z;
return (v);
}
Y]

Figure 7.8: Conversion from an ATL type to the corresponding bridge type.

114

In figure 7.8 we can see an example of an ATL type and its corresponding
C++ bridge type. All the information needed to construct this C++ class is
provided by the ATL definition of the type, and therefore all the code for the
bridge type shown in figure 7.8 has been automatically generated. As can be
seen, the conversion from and to an ATLAS Variable has been automatically
generated. The first direction is provided with a constructor of the bridge class.
The other one is made using a conversion operator.

With this mechanism, the conversion from the received XDR message to the
bridge type is made transparently to the developer, as well as the conversion
from a bridge type to a Variable, a step needed in order to send back results
and parameters of the call passed by reference.

So, the only step where the developer must act is in the last conversion: from
the bridge type to the actual parameter type in the C++ side. This last step
is kept manual in order to offer more flexibility: ATL types need not exactly fit
the definitions of the application’s C++ classes. Furthermore, incompatibilities
between C++ and ATL types can be circumvented.

In counterpart, the developer must write the routines to convert an object
from and to the bridge type. The automatically generated code will use this
conversions to translate parameters and results. It should be noted that this
conversion is usually very simple and easy to write, as the bridge class members
usually match the actual class members. This two-step design has been adopted
so that developers need not handle Variables directly in most situations. A
scheme of the different representations a parameter has in its “trip” through
the network can be seen in figure 7.9.

. i i
, Variable — XDR — Variable —= bridge type — actual type

"4 transparent 1o the developer

Figure 7.9: Scheme of the different parameter representations along its trip
through the network.

A better solution for these last conversions (bridge type +» actual type) would
be the derivation of the user type (actual type) from the bridge type. This
solution has not been adopted yet in the present prototype because of backward
compatibility of user applications code, so the examples used in the thesis still
use the first adopted solution. The derivation solution is better because it avoids
unnecessary copies of the object contents and is more intuitive and easier for the
developer. When the derivation is made public the only required in the derived
class is a constructor from a Variable object like the following:

115

user_type (Variable &v): bridge_type(v) {
// the addings required by the user type

If the derivation is private, besides the constructor, a redefinition of the
Variable() operator should be added:

operator Variable() { bridge_type::operator Variable(); }

Auziliary routines

In order to isolate application developers from communications topics, an
auxiliary routine is generated for each external routine. The auxiliary routine
carries out all the type conversions, from and to the XDR representations that
travel through the network and to the actual C++ classes of the parameters
and return value of the external routine. This is done using the bridge types
already explained. Figure 7.9 shows one way of this conversions. The other way
is necessary in order to send return values and pass-by-reference parameters
back to the external routine requester.

From the ATL declaration of an external routine, the automatic code gen-
erator extracts the information on the type and number of parameters and the
type of the return value (see subsection “Calls, parameters and results”).

When an ATLAS process requests the execution of an external routine from
another ATLAS process, distr receives this request. Many requests for the same
routine may arrive at a time. An identifier is assigned to each of them in order to
be able to send the return value and the existing pass-by-reference parameters
back to the appropriate process. So, distr assigns each call a different identifier
code.

An auxiliary routine receives two parameters. The first one is the code
identifying the call. This code will be included in the return messages the
auxiliary routine will send to distr. The second parameter consists of the list
of actual parameters of the external call. These parameters will be translated to
the appropriate C++ types through the bridge types and passed to the process
routine for which the auxiliary routine acts as an interface.

When the actual execution of the process routine finishes, the auxiliary rou-
tine sends a message for each pass-by-reference parameter back to distr. An
additional message is sent for the return value of the routine. If this return
value is of type void, a special message is sent to indicate the end of the exe-
cution. In this last situation, if there exists any pass-by-reference parameters,
the return-void message is not necessary (as the parameter itself is enough to
indicate the end of the execution), and thus it is not sent.

An example is shown in figure 7.10. In this example the process routine
receives a parameter passed by reference and has no return value, so only the
parameter is sent back to distr at the end of the process routine.

Some of the complexity of the code in this example arises from the combi-
natorial complexity originated by the “Global data identification” functionality

116

(see section 8.1.3). The conditionals "if" and "switch" thus, are covering all
possibilities for a parameter or a return value containing data or being only a
global identifier (for re-executions when data have been substituted —again ex-
plained in Global data identification). When only an identifier must be treated
the Variable only contains this identifier (an at1_tkt), so no translation through
the bridge type is needed ("else" code blocks).

1 void aux_segmentation(String codi,DLList<Variable »> ¶metres) {
2 Pix p=parametres.first();
3 char indexpar=0;
4 atl_tkt ticketaux;
5 ticketaux=parametres (p)->Ticket();
6 jo_abstract sioparQ;
7 if (parametres(p)->Gettype().Gettip()!="atl _ticket") { // parameter contains data
8 atl_scene ptpO(*(parametres(p)));
9 scene parO(ptp0);
10 iopar0O=new io<scene>(ptp0,ticketaux);
11 ((io<scene> *)iopar0)->ChangeMakecopy();
%% indexpar={indexpar<<1); indexpar+=1;
}
14 else { // parameter does not contain data, it is only a global identifier
15 ioparQ=nev io_base(ticketaux);
16 indexpar=(indexpar<<i);
17 }
18 parametres.next(p);
19 ticketaur=parametres(p)->Ticket();
20 io_abstract siopari;
21 if (parametres(p)->Gettype().Gattip()!="atl_ticket") {
22 property ptpl(((nodeenter #)parametres(p)->Arbre())->Getvalor());
23 iopari=new io<property>(ptpl,ticketaux);
24 indexpar=(indexpar<<1}; indexpar+=l;
25 }
26 else {
27 iopari=new io_base(ticketaux);
%SS) indexpar=(indexpar<<1);
30 parametres.next(p);
31 switch (indexpar) {)
32 case 0: segmentation(*((io_base *)ioparQ),«((io_base *)ioparl));
33 break;
34 case 1: segmentation(*((io.base #)iopar0),*({(io<property> #)iopari));
35 break;
36 case 2: segmentation(*((io<scene> *)iopar0Q),*((io_base *)ioparl));
37 break;
38 case 3: segmentation(*((io<scene> *)iopar0),*({io<property> *)ioparl));
39 break;
40 }
41 ticketaux=iopar0->Ticket();
42 if (iopar0->Containsdata()) {
43 ptpO={{io<scene> %)iopar0)->Dades(}.conversioc_a_tipus_pont();
44 Variable *rpO=new Variable(ptp0);
45 rpO->AddTicket (ticketaux);
46 ReturnParam *retparO=new ReturnParam(codi,rp0);
47 distrib.envia(retpar0);
48
49 else {
50 Variable #rpOsnew Variable(ticketaux);
51 ReturnParam sretparO=new ReturnParam(codi,rp0);
52 distrib.envia(retpar0);
53 }
54 delete iopar0O; delete iopari;
55 }

Figure 7.10: Example of an auxiliary routine.
Line 8 contains the conversion from the Variable representation to the

bridge class. The conversion from the bridge class to the actual parameter class
happens in the next line. The user’s routine is called in one of those cases

117

treated in the switch conditional (lines 32, 34, 36 or 38) depending on whether
parameters contain data or not. The pass-by-reference parameter is translated,
in case it contains data, to the bridge type in line 43 and to Variable in the
next one. Lines 46 and 47 construct the message and send it back to distr
(when the parameter going back does not contain data it is done by lines 51
and 52). The message contains the identifier of the call and the parameter itself.
A more complete example can be seen in chapter 9.

Management of remote procedure calls in an ATLAS process

In order to carry out the dispatch of calls to the routines offered by an ATLAS
process (its external routines), some more code is needed in the automatically
generated code. The missing piece is a structure bridging between messages and
the auxiliary routines introduced in the previous section. This structure is pro-
vided by the class gestio_crida_a_rutina (that is, routine call management).
The class definition is shown in figure 7.11. One instance of this class is created
in the automatically generated code for each process. It is in charge of receiving
and storing routine calls and parameters and of calling auxiliary routines.

typedef void (*rut_tract_crida)(String,DLList<Variable s> &);

class gestio_crida_a.rutina {
VHMap<String,rut tract_crida> crida.a; // table to store the routines to be
// called for each function
VHMap<String,dades_crida *> crides_pendents; // table to store the routines and
// parameters while they are arriving
public:
gestio_crida_a_rutina{) : crida_a((rut_tract_crida)NULL,20),
crides_pendents((dades_crida *)NULL,20) { }
void 1ligar_nom_crida(String nom,xut_tract_crida rut) {crida_a[nom])=rut;}
void nou_missatge_crida(String codi,String nom,int npars) {
if (npars==0) crida_a[nom] (codi,DLList<Variable #>());
else {
dades_crida *aux = new dades_crida(nom,npars);
crides_pendents{codi]=aux;
}
}
void nou_missatge_param(String codi,Variable »v) {
crides_pendents[codi)->afegir_parametre(v);
if (crides_pendents[codi]~>ja_tots_els_parametres()) {
crida_afcrides_pendents[codi]l~>nom()] (codi,
crides_pendents{codi]->obtenir_parametres());
crides_pendents[codi]~->alliberar_parametres();
delete crides_pendents[codil;
crides_pendents.del{cedi);
}

};

Figure 7.11: Class gestio.crida.a-rutina

Let’s take a closer look at this structure. Basically, it consists of two maps:
each external routine is linked with its auxiliary routine {through the class mem-
ber crida_a) and each external call is linked with its parameter list (through
the class member c¢rides_pendents). The first link is established in the ini-
tialization step of the process, inside the automatically generated procedure
ini.per_crides. The second link is created each time that a request for a rou-
tine reaches the process. Notice that an external routine cannot be linked with
a unique parameter list, because many calls to that routine may be pending at
a given time.

118

When a routine call message sent by distr arrives to the process driver,
the method noumissatge.crida (that is, new call message) is invoked. The
parameters of the method are the code identifying the call (see subsection “Auz-
iliary routines”), the name of the routine and the number of parameters of the
routine (this information is extracted from the routine call message). If the
number of parameters is zero, the corresponding auxiliary routine is instanta-
neously invoked. Otherwise, the call is stored and the auxiliary routine will be
effectively invoked when all the parameters of the call have arrived.

When a parameter message sent by distr arrives to the process driver, the
method nou.missatge_param (that is, new parameter message) is invoked. It
adds the parameter to the call’s parameter list. If all the parameters of the
involved call have arrived, the call to the auxiliary routine is dispatched. Notice
that the parameters of an external call arrive in order, because they are sent in
order by distr.

class dades_crida {
String funcio; // function name
DLList<Variable #> parametres; // pointers to the received parameters
int quants_parametres_falten; // how many parameters are missing
public:

dades_crida() : funcio(""),quants.parametres_falten(0) {}
dades_crida(String n,int np) : funcio(n),quants_parametres_falten(np) {}
String nom({) {return funcio;}
DLList<Variable *> kobtenir_parametres() {return parametres;}
bool ja_tots_els parametres() {return (quants_parametres_falten==0);}
void afegir_parametre(Variable *v) {

parametres.append(v);

quants_parametres_falten--;

void alliberar_ parametres() {
for (Pix p=parametres.first();p!=0;parametres.next(p))
delete parametres(p);
parametres.clear();
}
]

Figure 7.12: Class dades-crida

An auxiliary class is used to temporarily store the parameters of the calls.
This structure, dades_crida (that is, call data), is shown in figure 7.12. For
each call, it stores the name of the routine, its parameter list and how many
parameters are still missing.

main() part of processes

The code generator also constructs the main() module of the ATLAS process.
It consists of the code needed to control the network communications plus code
for the auxiliary routine introduced in subsection “Auziliary routines”.

Part of this code is the same for every ATLAS process. So, the generator
simply appends the process-dependent code with the process-independent part.

Figure 7.13 shows the piece of code that remain the same for every pro-
cess. As can be seen, it defines and uses global variables that are in charge of
communications and external routine call management:

119

#pragma implementation "taula.h”
#pragma implementation "Map.h"
#pragma implementation "VHMap.h"
#include "globals.H"

#include "ComunicDistr.B"
#include "Driver.H"

#include "String.h"

#include "gestio_crides.R"
#include “Variable.H"

#include "DLList.h"

#include "iodades.H"

#ifndef COMUNIC_DISTR

#tdefine COMUNIC_DISTR Comunic_Distr
#endif

#include "inc_atlas.H"

String nomprogranm;

gestio_crida_a_rutina gestor_crides_ext;
COMUNIC_DISTR distrib(CANAL_COMUNIC_DISTR);
Driver driv(distrib);

void main(int argc,char s+argv) {
nomprogram=argv[0];
ini_per_crides();
driv.set_name_program(nomprogram);
ini_process();
driv.Dispatch();
close(CANAL_COMUNIC_DISTR);
exit(0);
}

Figure 7.13: Process-independent code

¢ The distrib object encapsulates the communication channel with distr
and is responsible of the dispatching of messages depending on its contents.
The description for this Comunic_Distr class is:

class Comunic_Distr : public MyEventHandler
{
ACE_SOCK_Stream canal_com;
Receiver_socket rebuts;
FILE #*fd_stream;
typfunc Events[NEVENTS+1); // to keep the callbacks for ATLAS events
bool waitsemph, newimalive;
ImAlive im; // This message cannot be created dynamically because
// it is used in the interruption call.
bool oob_dos_bytes; // tlag to bypass the Out_0f_Band Data error
// detected in Solaris 2.5

void soc viu ();
void Handle_Message (Message smiss);

public:
Comunic_Distr (ACE_HANDLE td);
void ini_event_function (int ev, typfunc f);
void initialize (char *c) { oob_dos_bytes = (c[0}=='T’); }
bool is_oob_dos_bytes ()} { return oob_dos_bytes; }
int envia_cob ();
int envia (Message *miss); // method to send a message to distr

ACE_HANDLE get_handle () const { return canal.com.get_handle(); }
int handle_input (ACE_HANDLE fd); // method called when there is input
// through this channel
int handle_signal (int signum, siginfo_t * = 0, ucontext_t » = 0);
};

o The driv object encapsulates the process driver itself, it manages the loop
listening on the process’ channels (at least the channel communicating it

120

with distr). It also offers the possibility to add and remove other channels
to be listened to. The description for this Driver class is shown below.

class Driver

ACE_Reactor reactor;
String nomprogram;

public:
Driver (Comunic_Distr &d);
Driver (Comunic_Comp &d, String nom)
{

nomprogram = nom;
reactor.register_handler (&d, ACE_Event_Handler::RWE_MASK);

void set name_program (String nom) { nomprogram = nom; }
void Add_handler (ACE_Event_ Handler fe,
ACE_Reactor Mask mask=ACE_Event_Handler::RWE_MASK)
{ reactor.register_handler (%e, mask); }
void Add handler (int signum, ACE_Event_Handler *new_sh,
ACE_Sig_Action snew_disp=0, ACE_Event_Handler #*old_sh=0,
ACE_Sig_Action *0ld_disp=0)
{ reactor.register_handler (signum, new_sh, new_disp, old_sh, old_disp); }
void Remove_handler (ACE_Event_Handler ke,
ACE_Reactor_Mask mask=ACE_Event_Handler::RWE_MASK)
{ reactor.remove_handler (&e, mask); }
void Add_timer (ACE_Event_Handler ke, const ACE_ Time_Value tdelta,
const ACE_Time_Value &interval, const void sa=NULL)
{ reactor,schedule_timer (ke,a,delta,interval); }
void Dispatch () { for (;;) reactor.handle_events (); }
};

o The gestor.crides_ext object has been explained in subsection “Man-
agement of remote procedure calls in an ATLAS process”.

It is also worth mentioning that the ini_process routine called in the main
function (figure 7.13) is intended to allow the developer to make some initial-
izations of the process before entering the dispatching loop. This routine does
nothing by default, but the developer can redefine it to include the process
initializations.

The process-dependent code simply consists of the auxiliary routines and the
procedure ini_per.crides. The task of this procedure is to initialize the struc-
ture that links external routines with their corresponding auxiliary routines.

Automatically generated files

There are two sort of files containing the automatically generated code: the
permanent files and the temporary files.

The names for the permanent files consist of the name of the process (proc-
name) prefixed by atl_ or stub_, and they are:

atl.procname. H: This file has the bridge types implementation for those types
used by the external routines of the process (exported types in the ATL
module). It includes the Variable.H file needed for the conversion of
bridge types and those generated “.H” files corresponding to the modules
used by it (in the example of section The code generator and the compiler
grammar of the Command Subsystem the volum.atl module uses the se
module so the atl.volum.H generated file includes also the atl_se.H file.

121

atl_procname. C: This file implements the main code for the communications
driver and also the auxiliary routines introduced in subsection “Auziliary
routines”.

stub.procname.H: This file contains the stub prototypes necessary to cover
all possibilities of calling the actual routine used by the "switch" condi-
tional in the auxiliary routines (see Auxiliary routines above).

The temporary files use unique temporary names given by the system in
order to not disturb any other existing file. There are several temporary C++
code files and a script file.

The C++ code files (named _stubXXX.C, where XXX is the unique part
given by the system) implement the different actual routine stubs (those whose
prototypes are in the stub_procname.H file). Since these routines should not
be executed in a normal correct execution, they just produce an error notifying
the developer something is missing in his code (an example is shown in fig-
ure 7.14). The use of a nopar parameter in this routine is a trade off to solve an
implementation problem explained in section 8.1.3 ~Global data identification.

#inlcude "iodades.H"

#include "inc_atlas.H"
#include "volum.h"

io<simplex> contained_in (const nopar &) {
atl_send_error (A stud routine has been called",’e’);
jo<simplex> ret;
return ret;

}

Figure 7.14: Stub routine for the contained_in routine.

The script file (named _scptXXX) executes a Bourne shell and compiles all
these temporary C++ files, creating a dynamic library named libstubprocname.so
that must be linked with the rest of the components of the process.

A complete example of this code generation for a toy process is presented in
section 9.4.

7.5.2 Handling of ATLAS events

When a process wants to be subscribed to an ATLAS event it only has to call the
API routine “atl_subscribe (event, function)”, giving to it the event identifier
and the routine to be called when an event of this kind arrives (see chapter 9
for the complete description of this API routine and its parameters).

In order to be able to treat the ATLAS events messages arriving to the
process, the driver keeps the information of the callback functions passed as
parameters to those atl_subscribe calls, so when an ATLAS event message arrives
the driver only has to start the corresponding routine.

7.5.3 Requesting input data

One of the messages arriving to a communications driver can be the data fulfill-
ing a previous request. Any application process can cause a data input request

122

by using the API routine call “atl.send_request (typename, message, timeout)”
(described in detail in chapter 9), so the distr asynchronous matching mecha-
nism will send back the input data being matched to this request.

The implementation for the management of these requests in the current
prototype only permits these requests to be totally asynchronous, so the process
sends the request and goes on with its work and when the answering data arrives
a user routine is called which should be implemented by the developer to treat
this message. This routine must conform to the following prototype (described
in more detail in chapter 9):

void treat_data (AnswerData miss);

Since this management is a little bit restrictive —because it doesn’t allow the
process, for example, to wait for the answering data stopping until it arrives—,
a new design has been thought which is more complete and more flexible. This
new design has not been added to the prototype yet, but is explained in detail
in chapter 10 (section 10.1). .

123

124

Chapter 8

Journaling

The ATLAS journal records all the relevant actions that occur in a working
session in order to be able to repeat this work session at any other time.

By “relevant actions” we mean every message being received or sent by distr
which has effect on the execution of a process, i.e. every message coming from
or going to each process except the heartbeat messages, which have no effect on
the processes execution.

The re-execution of a working session is only one of the functionalities of
the ATLAS journaling. The information recorded in the journal is also useful
for other things like the fault-tolerance (a process’ state can be recovered by
replaying portions of the journal), the ability to make undo’s and redo’s or the
possibility of recovering the last state of the whole application stored in the
journal, to keep on with the same work session left and closed at any other time
in the past.

From an abstract point of view the ATLAS journaling design consists of two
phases: ’
Meta-Journal

Journal

N
©)
®

-

¥

-~

translator | ==>

]

@@@?

lemereew

delete 2 4
N\

Figure 8.1: Scheme of the two phases of the ATLAS journaling

o the creation of a Meta-journal which also includes orders to modify the
journal caused by user editions of it,

125

» the translation of this Meta-journal that executes these modification or-
ders. This phase needs to check that the resultant journal is consistent.
As an example if block 2 in figure 8.1 defines a new data tag referenced
in block 3, the delete order will not be executed.

ATLAS considers the Meta-journal just as a journal which has also some regis-
ters containing instructions that affect other journal registers (Meta-instructions).
These Meta-instructions are executed over the Meta-journal to translate it into
a journal (without Meta-instructions).

8.1 The journal and its functionalities

8.1.1 Design

Before discussing the design decisions for the ATLAS journaling, we need to
review quickly the requirements for this journal, i.e. what are the functionalities
that the ATLAS journaling must include.

From an abstract point of view we have seen a design distinguishing between
the Meta-journal and the journal because the first one is also a journal but
modified by user edition, and this modification must be checked by the system.
But the journal itself must support:

¢ the fault-tolerance to crashes of hosts or communications, being able to
recover a process from the start to the status it had when the communi-
cation was lost;

o the re-execution of a working session, either to offer a demonstration pre-
viously saved to a journal file or to keep on with the working session after
an accidental interruption;

¢ the global identification of input data introduced in chapter 2;

e the definition of process checkpoints, being able to know when it has
a checkpoint for a process in order to avoid a total re-execution of the
process when it has to be recovered;

¢ the possibility of doing undo’s and redo’s of the last user commands with-
out having to edit the journal to do it.

Four levels of information

The design for the ATLAS journal distinguishes four different levels of infor-
mation to be kept as registers in the journal:

level 0: the commands or instructions introduced by the user. From the user
point of view these can be considered “the working session” and most of
them will trigger some execution;

126

level 1: the ATLAS actions or annotations. This information is directly de-
pendent of the previous one because it is triggered by the executions of
commands;

level 2: the Meta-instructions, caused by editions of the journal and only rel-
evant to the Meta-journal (see section 8.2);

level 3: the messages produced asynchronously by the system, which are not
caused by any command or instruction introduced by the user (for example
an execution triggered by a heartbeat message through the ATLAS events
functionality —see section 6.4).

The third level will be discussed in the Meta-journal section. The other
three involve messages arriving to and leaving from the distr process. All this
information is needed to be able to offer the desired functionalities. The details
of how these functionalities work will be explained in section 8.1.3.

Sane points

The ATLAS journal has to keep also information about the state of the input
data and requests lists. An ATLAS sane point indicates that at this moment of
the execution the information of input data and requests that the distr process
has in its internal structures is not relevant.

The sane points are used to avoid problems because of the asynchrony of
the arriving of input data and requests when a re-execution of the journal is
required to continue its work. This asynchrony can provoke that a re-execution
has, at the end, a different order in the internal structures of distr. Since the
order is important to decide the matching (see section 6.3), this situation can
lead to an undesired execution because in fact it is not the same execution as
the first one.

This problem can be present in two different situations: when a working
session is stopped by the user in order to be continued at some other time, or
when the machine where distr is being executed crashes. In the second case
the situation of the input data and requests structures in the distr process is
unpredictable,

A sane point will be produced each time distr notices the structures for
input data and requests have no relevant information (they are empty or have
data or requests with timeout). There will be a lot of these sane points in a
journal so they must occupy the minimum possible space.

The use that the journaling does of these sane points is on a re-execution.
The re-execution goes on until the last sane point, where it can assure consis-
tency with the last execution of this journal. The rest of the journal registers
after this sane point can be reexecuted or not, depending on the decision of the
user. .

Different linkages for a register

The journal is directly managed by distr, so that the algorithms handling
it should be as efficient as possible to avoid an excessive amount of working time
for distr, and consequent delays in the execution.

127

In order to make these more agile, ATLAS keeps several different linkages
among the registers in the journal:

Timing order linkage: the order of registers in the journal is the order in
which they arrived. Each register has a linkage with the previous one
registered in the journal and will have another with the following one.
This timing order linkage is the most important because it gives the order
of the exchange of messages with the processes, and is also the most easy
to maintain.

Command level linkage: this is the linkage among the registers of level 0.
Each register of level 0 has a linkage with the following register which is
also of level 0.
The command level linkage gives the order of the commands input by the
user. In some way it is the working session viewed by the user. This
linkage is important for the re-execution functionality in a demonstration
because these registers are those to be reexecuted. It will be also useful
to allow an edition of the Meta-journal because these registers are those
that can be modified by a user edition (see section 8.2.)

.

Execution dependent linkage: each register of level 1 depends on a register
of level 0 which is the one provoking an execution that can involve many
other registers of level 1. This linkage between a register of level 0 and the
registers of level 1 caused by the execution of the first one is the execution
dependent linkage. The time order among them is always maintained.
The execution dependent linkage gives the order of all actions caused by
a given command execution.

Process linkage: for each process there is a linkage joining those registers
associated to this process {representing messages being sent and received
through the communications channel with this process). The process link-
age gives the order of the registers related to a given process. This linkage
is very useful for the process recovering functionality because it groups all
the registers that are needed to recover the process.

The maintenance of these linkages must be done each time a new register
is going to be stored into the journal. To do this efficiently, distr must keep
some extra information to be able to know quickly which are the registers on
the journal that have to link with this new register (this will be explained at
length in section 8.1.2).

ATLAS messages need to be enriched with adequate information to allow
distr to properly construct all these linkages. First of all the execution flow
of a command in the system must be recognized. The execution of a command
can cause many interchanges of messages among processes because of different
external routine executions. Since ATLAS is totally asynchronous in message
receiving {distr never waits for a specific message, it treats them when they
arrive), we need some kind of identification of these messages to know which
command execution they are depending on.

In order to establish this relation among messages and the command that
caused them, ATLAS uses the execution thread identifier which is part of each

128

ATLAS message. This identifier is unique for each command execution and will
be the same for all messages related to this execution thread !. The management
of this identifier by the different ATLAS components is as follows:

o In the distr process: The messages arriving to distr with a thread iden-
tifier have to propagate this identifier to everything they produce. In cases
that the message arriving did not have a thread identifier yet (when it is
a command of level 0), distr gives it a new thread identifier which will
identify everything related to this command.

o In the process driver: Each time a new thread identifier arrives with a
message it changes the present thread in the driver and the new thread
becomes active. This active thread causes each message produced by the
process to have this thread as its thread identifier, so everything caused
by this execution thread will be marked as belonging to this thread by the
communications driver. .

o In the Command Subsystem: Since the Command Subsystem is formed by
three different processes with communications between them (see chap-
ter 4), the treatment it has to do with the execution thread identifier
is quite different. The execution of an ATLAS command is managed by
the Virtual Machine but is guided by the compiler, so any new execution
arrives to the Virtual Machine from the compiler.

When a message arrives to the Command Subsystem driver it already has
its own execution thread identifier. In case this message is an ATL com-
mand introduced by the user, it can produce an execution (it is an ATL
sentence out of any function or procedure definition). The driver then
passes this thread identifier to the compiler in order to pass it to the
Virtual Machine when the compiler sends to the Virtual Machine a new
execution request. In the compiler the thread will continue to be valid:

— until the execution order is given to the Virtual Machine, in case the
command was a direct execution order; ’

— or until the file compilation finishes, in case the command was a “USE
namefile” command, because in this case there can be more than
one executions related to this thread identifier.

In the Virtual Machine the thread identifier received from the compiler for
an execution is associated to the ExecStep of this execution and inherited
when an asynchronous call creates another ExecStep (see sections 4.2.2
and 4.3). Each message generated by the Virtual Machine to go to distr
will use the thread identifier associated to its own ExecStep.

There are two special cases.in the management of the thread identifier: the
ATLAS events messages and the input data messages.

L Although it is not exactly a low level thread, it means the same in an abstract view. That
is why we called it execution thread.

129

e The ATLAS events messages must contain the thread identifier of the ex-
ecution that caused this event. The only event messages relevant to the
journal are those that are sent to a process, i.e. at least one process is
subscribed to the event. The execution triggered by the event message
sent will also belong to the same execution thread.

In case the message causing the event is sent directly by the user, it belongs
to level 0 so a new thread identifier will be assigned to the execution this
event triggers.

When the message is caused asynchronously by the system, it belongs
to level 3 and a new thread identifier is also assigned to the triggered
execution.

¢ An input data is not really effective until it is matched to a data request
(see section 6.3). The thread identifier for this datum then must be the
same as the one identifying the request, because the data is going to
become part of that execution thread.

Deciding when a message is a direct consequence of a user action {and there-
fore belongs in level 0) or not is not always simple.

In a window-driven user interface and specially in computer graphics appli-
cations, the user input data is produced in a window (X-window, for example)
and managed as window events. This events are usually managed by the pro-
cess that creates the window where they are produced. An ATLAS application
process can also manage these events by adding a connection to the X server
to the process driver as a new channel to be listened to (an example for X-
windows events management is presented in the “demandes” utility process —
section 9.3.2). In this case distr is not aware of which are the messages directly
input by the user because the interface with the user is managed by an external
process.

The only difference the process’ communications driver can use to decide
something is produced at level 0 (by the user) is the channel through which
the message is received. Usually an external routine call (in the process that
implements it} is synchronous, therefore everything produced by it will belong
to the corresponding execution thread, it will not be at level 0. But something
arriving to the process driver through a channel not being the connection with
distr can be considered independent of an execution order coming from distr.

The process driver then will assign level 0 to any message coming through a
channel not being the connection with distr.

It is not true that everything a process driver decides is of level { can only
be produced by the user directly. As an example we can think on a process that
forks when a certain routine is called and maintains a communication with its
son until it finishes its work. The messages coming through this channel to the
driver could be considered as a production of the routine call which causes the
process to fork. However we consider that in such cases the asynchrony produced
by the sub-process is desired by the developer, so those messages going to distr
which are produced during the execution of that channel’s handle_input ()
method are also considered of level 0.

130

8.1.2 Some implementation details

As we have seen in chapter 6, distr is the most relevant component of the
system. It is also responsible for the journaling facilities, so the internal man-
agement of the journal must be as efficient as possible in order to not disturb
the execution of the rest of the application. Moreover the journal structure is
required to be persistent in order to survive to possible crashes of the machine
where distr is running. These two requirements make it necessary to devise a
combination of persistent physical structure and quick updating management.

To solve these problems, the ATLAS approach uses a structure based on a file
where the addresses are always referring to the file addresses and the linkages
are also absolute addresses of the file. Each register knows its own length. The
last part of this file is mapped in memory in order to have a much faster access
to it (specially for the addition of registers which is the most common activity),
and the operating system handles the updating to the file automatically. When
the memory mapping is full, it is unmapped and mapped again from a later
position of the journal.

But besides the recording of registers, the journaling management many
times requires an access to positions other than the last one, and sometimes
these access are to positions far from the last one, so some of these positions
asked to be accessed may not be in the mapped area. To solve these cases,
ATLAS also maps another area of the file in order to have access to positions far
from the last one; this second mapping (the mobile mapping) will be changed
from one area to another each time the access required cannot be solved in the
first mapping area (of course these cases will not be numerous). Figure 8.2
describes this management graphically and also includes the formulas to obtain
a file address from a memory address and backwards.

0 TAMBUF ~ 2*TAMBUF 3*TAMBUF 4*TAMBUF 5*TAMBUF
T I I i I
FILE l | I | I

] I]] I

7 4
-« + B . .

.+" (nunTAMB = 2) .+ (numTAMB = §)
Ao - ITMBUF _ _ > o — 2*TAMBUF . _ 3

I I
l |

MEMORY : IZ

ADDR (mov) 2*TAMBUF+ADDR(movV} ADDR 2*TAMBUF+ADDR

@file = @mem - ADDR + numTAMB * TAMBUF
@mem = ADDR + @file - numTAMB * TAMBUF
A register is in memory when: @file div TAMBUF >= numTAMB

Figure 8.2: Internal structure to manage the journal

131

The internal management maps the n*TAMBUF file address in memory taking
2*TAMBUF space. When the second TAMBUF block in memory is almost full, the
memory is unmapped and mapped again from the next block ({n+1)*TAMBUF),
and so on.

The TAMBUF length must be adequate to avoid an excessive number of ac-
cesses to the mobile mapping. This length is configurable in the system in order
to allow fine tuning,.

The register structure

According to the journal structure already described, a register must be a
part of the journal file. As we already said the linkages among registers will be
implemented also as absolute addresses to the file. A register is implemented
internally as a stream of bytes and its contents are:

- the length of the register;

- pointers to other registers to maintain the 4 linkages (see section 8.1.1);

- the thread identifier of the register;

- the process identifier of the register;

- a byte containing several different information like:

— level (requires 2 bits),

in/out (from/to the process),

sane point/no,

active/no.

- and finally the specific content of the register, i.e. the message sent or
received by distr.

The flag saying if the register is active or not is used by the editions of the
journal (see section 8.2).

The flag indicating if it is a sane point in fact indicates whether after this
register distr has marked the situation as a sane point or not. This imple-
mentation of the sane point (see section 8.1.1) is adequate to waste the least
possible space on it.

The Journal class

The Journal class is the wrapper of the structure described to manage the
journal. It also offers some important methods to be mentioned:

o to add a register, it has to maintain all linkages (see “Maintenance of
linkages” below);

e to access to elements of a list (first, next, last) which are able to act over
all linkages (which one depends on their parameters);

132

¢ to un-do and re-do one or more user actions {see subsection 8.1.3);
¢ to ask if there is a checkpoint for a given process name;

to substitute a global input identifier for another (see subsection 8.1.3);

or to add a Meta-instruction (see section 8.2).

Maintenance of linkages

The addition of registers to the journal is obviously the most common work
that distr has to do related to the journal. This work is not easy because the
linkages among registers described in section 8.1.1 must be also maintained at
this time.

In order to facilitate this maintenance when a register has to be added,
ATLAS keeps some extra information in some of its structures:

¢ The timing order linkage and the command level linkage are unique in the
journal. ATLAS keeps the first and last pointers to these linkages into
the Journal class, so when a new register is going to be the next on these
linkages, the management accesses directly the 1ast one to modify its link
to next and updates the last.

e There is a process linkage for each process taking part on the application.
In order to maintain these linkages ATLAS keeps the first and last
pointers to these linkages with the corresponding process information, so
for each active process in the application execution a register adding to
the linkage does the same as the other two linkages explained above but
for the corresponding process.

¢ For the ezecution dependent linkage the information of first and last
of all these linkages cannot be kept. Each user command triggering an
ATLAS execution thread creates a new execution dependent linkage and
the number cannot be limited. ATLAS is not able to determine when a
thread has ended and will produce no more registers.

Since all this information cannot be kept, but is needed in order to have
some efficiency for the maintenance of these linkages, we decided to keep
only a certain number of these linkages. In fact the N last referenced
threads (where N is configurable) will be kept in a special structure that
allows a direct access to a given thread linkage information. The manage-
ment is:

- the structure keeps N thread linkage informations;
- these N are the last referenced in the execution;

- when a new register is created with its corresponding thread iden-
tifier, ATLAS tries to access directly to the linkage information by
accessing the structure;

- if the thread found in the position accessed is not the one being
looked for, it means this thread must be searched in the journal and
the structure must be updated leaving out the one which spent more
time without being referenced.

133

The fourth step is, of course, the most costly, so the N configurable pa-
rameter must be big enough to cover almost all threads active at any time
but not spending an excessive amount of memory.

8.1.3 The journal functionalities
Re-execution for a demonstration

The relevant information in the journal for the re-execution functionality is the
registers of level 0 (commands input by the user) and level 3 (asynchronous
system messages). The input data matchings will be used to repeat the same
input for the same request.

The distr process is executed in a special mode “REEXEC” that causes it
to act differently in the following cases:

e it will execute only those registers of levels 0 or 3 in the journal being
re-executed; '

it won’t take into account anything coming at level 0 nor input data from
the user;

e it will manage the heartbeat messages from the processes because it has
to control the execution of them, but this management will not produce
new event messages because they are already registered in the journal at
level 3 so they will be also re-executed;

o it will check if the messages coming from the processes are the same that
those registered in the journal in order to control that processes are de-
terministic;

¢ finally, it will not generate another journal.

The only treatment distr will do the same way as a normal execution is
the broadcast done by distr to know which server daemons are able to execute
ATLAS processes (see chapter 6).

The determinism of a process is checked only with respect to ATLAS (i.e.
for the same messages being sent to a process in two different executions, they
produce the same messages back to distr and in the same order). When a
process is indeterministic with respect to ATLAS, distr may detect it and give
a warning message to the user in order to let him know of this situation.

Checkpoints

The recovering of a process with state is much more efficient and quick if the
process maintains checkpoints periodically. A checkpoint in a process keeps
the important information for the process state at the checkpoint time, so it
facilitates the recovery of this state of the process at any other time.

The ATLAS checkpoints functionality offers to the developer several possi-
bilities in order to be more flexible in its use. These possibilities for a process
are:

134

e never do any checkpoint: this is the case for a process without state or for
a process which wants to be totally re-executed when it must be recovered.

¢ do a checkpoint each time ATLAS advises to do it: in this case the process
does not need a special treatment to provoke the checkpoint. There are
also two possible treatments for this case:

— to implement the desired checkpoint for this process,
— to take the ATLAS default checkpoint as the process checkpoint.

¢ do a checkpoint when the process decides: this possibility requires a specific
treatment to control when and how the checkpoint must be provoked.

Since ATLAS does not know anything about the internals of processes, the
only way it may offer a default checkpoint is by dumping the memory of the
process in a file in order to undump it later to recover the state.

The advise distr sends to processes to provoke a checkpoint is generated
when distr is in a sane point (see section 8.1.1) and the journal has grown
over a fixed threshold (the larger number of registers in the journal, the more
expensive re-execution of it will be).

When a process does a checkpoint it must notify it to distr in order that
the checkpoint be saved in the journal to be used in case of recovery of the
process. This notification is done by using the routine “atl_checkpoint” of the
API library (see section 9.2) which sends to distr the name of the file saving
the checkpoint and also the name of the routine to be started to recover the
checkpoint. This routine must have always the same signature. Its parameter
will contain the name of the file where the checkpoint was saved.

Processes recovery

-

One process recovery

In a process recovery ATLAS acts differently depending on the process re-
coverability:

e a process without state just must be re-started without recording in
the journal its death nor its re-starting.

¢ a process with state must be recovered and/or re-executed.

First of all distr must be put in a special mode, RECOVER-PROC, which
causes it to act differently with respect to the process being recovered than
with respect to the rest of the application.

For the process being recovered, distr re-starts it and finds the last check-
point of this process in the journal. In case a checkpoint is found it in-
structs the process to recover this checkpoint, passing the file name where
the checkpoint is saved to it, and puts the re-execution pointer to the next
register in the journal for this process (linked by the process linkage - see
section 8.1.1).

135

If there was not a checkpoint the re-execution pointer in the journal will
be the first register for this process.

In both cases the recovering follows by re-executing the rest of the process,
i.e. following the process linkage in the journal registers, re-sending to the
process all messages sent before and for each message being received from
the process, checking if they are the same than the process sent before (in
order to check the determinism of the process).

For the rest of the application processes, distr does not send any message
to them because the execution is supposed to be stopped, but the processes
are not really stopped, so they can keep on sending messages to distr,
in fact they also send the heartbeat messages as usually. distr does not
have to treat other messages coming from processes while it is in recovering
mode, but it has to treat the heartbeat messages in order to control other
possible failures. The other messages, then, are stored in memory in order
to be treated when the recovering finishes.

Once the recovering is finished distr has to treat all messages stored in
memory before continuing the normal execution. In this case it also has to
treat the heartbeat messages coming asynchronously but now they can be
‘treated normally (triggering an execution in case they have to —see ATLAS
events in section 6.4).

Before the decision of recovering a process or not, distr needs to have
information about the process saying if it has state or not. Since this information
is only known by the developer, in case the process does not need to be recovered
(it has not state), the process implementation has to notify it to distr by using a
routine “atl_dontrecover()” offered in the API library (see section 9.2) which
indicates this process does not need to be recovered.

distr controls that each process is running normally with the heartbeat
mechanism’ (see section 6.1.2). When distr detects a process is not sending
heartbeat messages it starts the recovery of the process by checking if the process
must be recovered or not. In case the process must be recovered (because it has
not send the “dontrecover” message), distr will ask the user if the recovering
must be started. This allows the user to decide if the recovering is necessary or
not and can avoid the recovering of processes having errors at developing time.
If the user says the process does not need to be recovered, distr stores an exit
message for this process in the journal in order that a total re-execution of this
journal kills the process at this moment in the application execution.

Total recovery

A total recovery implies a re-execution of the journal not for a demonstration
but only to recover the state of the system in the journal, and to continue with its
execution. The quickest way to do this is by recovering all processes, including
distr, from the information kept in the journal.

First of all distr has to start the system and do the broadcast as usual in
order to have the information needed to determine where each process can be
executed.

In a total recovery distr acts in a special mode, RECOVER, which causes
the following:

136

- distr considers itself in the last sane point registered in the journal;

- for each process active in the journal at this sane point distr applies the
recovery of a process at this point, i.e. goes to the last checkpoint before
the sane point (if it exists) and re-sends all messages until the execution
of this process reaches the sane point in the journal. In this case distr
has to update the process information as needed in order to be ready to
continue;

- once all processes have reached the sane point, distr will ask the user
if he/she wants to continue the execution until the end of the journal or
he/she wants to discard the registers in the journal from the sane point
on. If the user wants to continue, distr will re-execute all registers of
level 0 and 3 from the sane point to the end of the journal;

- finally distr will change its mode to a normal execution and will listen
for new commands.

Global data identification

Giving a global identification to input data favours a consistent management
of graphical input data and a generic use of these data for constraint solving
processes (both of them special requirements for computer graphics applications
-see chapter 2).

As introduced in chapter 2, this functionality is based on a very simple idea.
Input data are attached a unique tag used to identify that datum globally, and
both tag and datum are recorded in the journal together. (A similar mechanism
but with a different meaning and motivation is proposed in [36]. Tags are used
there to define topologic relationships in order to be able to compute the results
in a model where its parameters have been changed).

The ATLAS API library (described in section 9.2) offers some routines which
help the developer to use this functionality in the easiest way. For example,
an application process can ask for some of these tags (new tags) to be at-
tached to its own data (atl.get.ticket), or the process receiving this input
datum can request that an annotation be made in the journal that his interpre-
tation of that datum corresponds to some other (previously obtained) datum
(atl_substitute.ticket (t1,t2)). This new tag will be used in replays of the
journal instead of the datum, speeding up replays and making them more ro-
bust. The effort the process must do to tell the system (distr) this association
of tags is minimum, and also minimum is the information that goes through the
network.

This simple global identification achieves the required robustness in the re-
execution of the journal, and is also useful internally to control the consistency
of the journal after being edited and modified.

The conceptual idea for the wrapper classes interface to manage this tag
association to input data can be seen in figure 8.3. The actual implementation
in fact, is a little bit different in order to deal with a trade-off between the
desired transparency to the developer and the conceptual idea (see below for a
more detailed explanation of this).

137

class {o_base {
protected:
atl_tkt ticket;
String typename;
int referencies;
bool containsdata;
void canviticket (atl_tkt tck) { ticket = tck; }
public:
io_base (atl_tkt tck, String n): ticket(tck), nom(n)
{ referencies = 1; containsdata = falss; }
io_basel operator = (const io_base &iob);
void afegir_referencia ();
virtual void eliminar_referencia ();
atl_tkt Ticket const () { return ticket; }
String Typename const () { return typename; }
bool Containsdata () const { return containsdata; }
virtual “io_base ();
};

template <class T>
class io : public io_base {
T dades;
protected:
String atl_get_type_name ();
public:
io (T d) : dades(d)
{ ticket = atl_get_ticket(); typename = atl_get_type_name();
containsdata = true; }
io (T d, atl_tkt tck) : dades{(d)
{ ticket = tck; typename = atl_get_type_name(); containsdata = true; }
void eliminar referencia ();
operator T&() { return dades; }
“io ()

’

};

Figure 8.3: Wrapper classes interface for ATLAS tag-datum association

Although this tag is included in the ATLAS Variable structure to go through
the network (see section 7.4), the io design is needed by the driver of each appli-
cation process in order to offer this “tag-datum” association to the developer in
an easy way of use. This design is also used by the Virtual Machine component
of the Command Subsystem (described in section 4.2). It makes possible this
tag association goes through a data requested in the ATL code being sent to an
external routine as a parameter.

From the developer point of view, a process can use this association if it is
worth for it, or can elude its use by doing nothing on it. The simplicity of using
this and also the achieved level of transparency for the developer can be shown
through a simple example:

Suppose we want to implement a routine to select an edge from a 3D point
(if this point is near the edge). If we design the classes “Point3D” and “Edge”
as in figure 8.4 and considering we have an array of edges as:

io<Edge> Table[MAXEDGES];,
the routine do_anything (figure 8.5) can be implemented taking a “Point3D”
as a parameter and searching for the corresponding edge in the array. If the
corresponding edge is found, the routine asks the system to make an annotation
in the journal to replace the “Point3D” tag for the selected “Edge” tag for
future re-executions.

Since the do_anything routine asks for a substitution of the tag passed to

138

class Point3D {
float x,y,2z;
public:
Point3D (float xx, float yy, float 2zz)
{x=2xx; y=yy; z=22z; }

3
class Edge {
io<Point3D> Efvert, &svert;
public:
Edge (io<Point3D> &fv, io<Point3D> &sv)
{ fvert = fv; svert = gv; }

}

Figure 8.4: Interfaces of classes “Point3D” and “Edge”

void do_anything (io<Point3D> Zinput)
{

int 1=0;
while ((i<N) && (!near_edge (input, Table[i])))
{i++; } .
it (i<N)
{ atl_substitute_ticket (input.Ticket(), Table(i].Ticket());
Compute_.vith_edge (Table{i});
else error ("there aren’t edges near that point");

HEOOOOOLR LN -

Figure 8.5: Routine searching the edge to compute with it

it (line 7 in figure 8.5), in a re-execution of this journal the routine will receive
just an “Edge” tag as a parameter. The routine do_anything then must be
overloaded to accept also this tag as a parameter:

void do_anything (io_base &idl)
{ Compute_with_edge (search_for_edge(idl)); }

Moreover, this management can be even more flexible if we provide a rou-
tine with a generic parameter, which can be used also passing an edge if the
application allowed the user to input edges. (figure 8.6)

void generic (io_base farg)
{
if (strcmp (arg.Typename{), "Point3D") == 0)
do_anything ((io<Point3D>) arg);
else if (strcmp (arg.Typename(), "") == 0)
Compute_with_edge (search_for_edge(arg));
else if (strcmp (arg.Typename(), “Edge") == 0)
Compute_with_edge ((io<Edge>) arg);
else error(“type error");

Figure 8.6: Routine with a generic parameter

The actual usefulness of this generic routine requires the possibility of
declaring external routines in the ATL module with overloading in its param-
eters (accepting a “Point3D” or an “Edge”). This is an easy extension to the
language which is planned to be done as soon as possible in the current proto-
type (see chapter 10), but is not yet available.

139

The actual classes implementation

As we already introduced the wrapper classes in figure 8.3 are not the struc-
tures actually used in the implementation. The actual structure design is shown
in figure 8.7 where the io_base class is not the base class for the io class, even
though it has the same information and the same role than explained before.

io_abstract

T |e=--- io ‘] io_base | - . _s.| nopar
A

= => Cust operator

Figure 8.7: Actual design for the “tag-datum” implementation.

’

In the actual design used in the implementation there is an added abstract
class io_abstract in order that an io is not an io_base directly. The conceptual
idea, however, is the same and the user can see this in the same way.

The reason for this change in the implementation comes from the automatic
code generation (see generated code in section 7.5.1). On one hand the devel-
oper is not requested to use this tags (desired transparency for the developer),
so he can use directly the process’ types for his routines. This is possible and
transparent by having the operator T() defined as a method in i0o<T>. On the
other hand the developer is also allowed to substitute tags for any parameter
of a routine, causing a re-execution use only an io_base as a value for that pa-
rameter. The generated code, thus, must cover all combinations of 10<T> and
io.base for the parameters of a routine. Some added stubs must be generated
also to allow the compilation of the generated code covering all these combina-
tions (see section 7.5.1 and also a complete example in section 9.4). But, if the
io<T> class derives from io.base, the matching from io<T> to io_base has
higher priority than the one from i0<T> to T, so the code would execute the
stub routine instead of the user’s one even the value passed for the parameter
is an io<T>. The dissociation of classes io<T> and io_base added to the
fact that the routines in stubs ask for a nopar parameter type which is only
reachable from io.base and not from io<T> solves the problem and does not
interfere in the conceptual idea of the management.

UNDO and REDO possibilities

The idea of having the UNDO and REDO possibilities is directly related to
the execution because they must have an immediate effect. Since the journal is
editable and changeable, the user can also remove or add blocks of registers by
using the Meta-journal facilities (see section 8.2), but these are not interactive,

140

so the UNDOQO and REDO are the interactive commands to do the same at the
end of the journal (acting on the last user actions).

From an abstract point of view the UNDO and REDO actions just have to
cause a movement, back and forward, of the execution pointer in the journal.
They only act over the user actions. In fact a REDO can only be done if at least
one UNDO have been done before. In order to make more flexible the use of
UNDO and also more efficient in cases that the user wants to un-do more than
one action, the UNDO command can have a parameter indicating the number
of actions the user wants to un-do, so the journal goes directly to the last point
where the UNDO guides it to.

Since the UNDO action can be very costly in time, ATLAS has different
possibilities to do this trying to reach the cheapest one. These are:

o first it checks if there is an inverse function for the action to un-do; this
would be positive because it avoids the recovery of the process;

o if there is no inverse function, it must recover those processes taking part
on the action to un-do (looking for their checkpoints and recovering the
processes from them, or from their starting point). This recovery goes
until the action before the one to un-do.

An inverse function is a function or procedure, implemented by the devel-
oper, which does just the contrary in execution than the other function (’a’ is
inverse of 'b’) achieving the same state in the process as if it had not executed
'b’ in the first place.

An inverse function can only be defined by the developer because he/she is
the only one knowing the semantics of the function. As it has been explained
in the ATL language definition (section 4.1.7), an inverse function (which is
also a command) must be declared in the ATL module saying that it can be
used to invert a command. distr keeps this information when the module is
compiled and when the command having inverse must be un-done, distr knows
the inverse function and can call it instead of recovering the process (a more
expensive operation).

Internally, the work to be done by distr in case the user requests an UNDO
action is:

¢ If there is an inverse function for the command, distr orders the execution
of this inverse function;

¢ If there is no inverse function, distr has to find out the processes taking
part on this command in order to know which processes must un-do their
last actions; after this it has to recover (with or without checkpoints) the
state of these processes before the last user action.

A REDO action only makes sense after an UNDO action is done, and it will
re-execute the last user action being un-done.

141

8.2 Meta-journal

As we already said in the introduction of this chapter, ATLAS considers the
Meta-journal as a journal having also Meta-instructions which are orders to
modify the journal.

The only modification orders allowed in a Meta-instruction are: insertion,
remove or move, and can be applied to a register or an interval of registers in
the journal. The registers that can be directly affected by a Meta-instruction
are those belonging to level 0. This is because a Meta-instruction is produced
by an edition of the Meta-journal done by the user, so he is only allowed to
modify the user commands (level 0).

A Meta-instruction then consists of a modification instruction (insertion,
remove or move) and the reference to a register or an interval of registers of
level 0.

Since the Meta-instructions must be introduced by the user and this requires
the existence of a user interface, ATLAS offers a specific process to manage this
user interface in order to relieve distr of this work. This specific process is
an ATLAS process that the user can start by introducing the command: “USE
MJEditor” as done with any other ATLAS module.

Although the MJEditor process is the one that implements the user interface
and listens to the user requests to insert Meta-instructions, only distr is re-
sponsible of the journal and the Meta-journal. In order that MJEditor can have
some effect over the Meta-journal, there are several routines offered as a journal
specific API that an ATLAS process (like MJEditor) can use to ask distr to do
a certain Meta-journal operation. These routines allow:

- registering a Meta-instruction in the Meta-journal;
- translating the Meta-journal to the journal;

- checking the consistency of the journal after modifications.

Meta-instructions have to be produced in an edition of the Meta-journal,
but the user can do more than one modification in the same edition. We define
a Meta-edition as a set of Meta-instructions which is required to preserve the
first level of consistency of the journal. This first level of consistency is checked
interactively when an edition is finished (see section 8.2.2 for more details on
this).

The Meta-editions (and also the Meta-instructions) are created and regis-
tered in the Meta-journal on the first phase of the ATLAS journaling design
(explained in the introduction of this chapter), therefore they have no effect on
the application execution until the second phase, the translation, is done. In
other words, when the user edits the Meta-journal and changes it, these changes
will not produce any change in the execution until the user explicitly requests
the translation of the Meta-journal to the journal.

142

8.2.1 Translation Meta-journal — journal

The translation of the Meta-journal to build a journal which has the changes
ordered by the Meta-instructions must be requested explicitly by the user. This
translation means the application execution has to go back and forward again in
order to take away the effect of commmands that the user wants to remove (Meta-
instructions ordering remove), or to execute commands that the user wants to
insert (Meta-instructions ordering insertion or move).

The whole translation consists of two phases:

¢ The first one is a checking phase. In this phase the final consistency of the
journal must be checked. The consistency checking {explained in the next
section) is done before the real translation to avoid, if possible, processing
erroneous editions.

¢ The second phase is only executed if the first one-has had a positive result.
In this case this phase is the actual translation or evaluation of the Meta-
journal, i.e. the inclusion of the Meta-instruction orders in the current
application execution. '

To do this translation, distr uses the journal functionalities explained in
section 8.1.3 combining them as follows (shown also in figure 8.8):

D: Removed

I: Insertion
pos. to imsert

y
Meta-joumal pl <« J|p|p| -+ lzlxlx Z

Total
lrecovering
]

I
1
:(sane point)
1
1
1
1

UNDOs
Step 1:

—

Re-execution
Step 2:

Y

.
Lt |
'
t
t
I
]

Figure 8.8: Translation process from Meta-journal to journal.

— The first step is to go back in the execution to the last sane point
before the first register modified by the Meta-instructions. To do this
the UNDO functionality can be used, so in some cases the execution
can go back through the inverse functions and in other cases it must
recover the status of the processes at the decided point. This must
be done also for distr, so the recovering will be a total recovering.

— The second step starts at that sene point and must re-ezecute the
rest of the journal considering those changes made by the Meta-
instructions (inserting registers in the right position and not consid-
ering registers marked to be removed).

143

Those registers marked to be removed will not be executed in the trans-
lation, but they will not be removed from the journal file either. This is
to facilitate the user to un-do a removing done before even though the
translation has been done.

8.2.2 Consistency checking

The consistency of the journal can be altered at two different levels: one is the
identifiers level and the other is the ATL definitions level.

The identifiers level is affected by changes on the registers containing some
atl_ticket (identifier given to input data —see also subsection 8.1.3) or containing
a request identifier (given by distr to any data input request produced in the
system)}. The first case can create inconsistencies if the declaration point of the
atl_ticket is removed and there are other registers in the journal making some
reference to this atl_ticket. The use of the ati_tickets is usually managed by the
application process, so cases where an atl_ticket is used more than once in an
execution can be very common. The second case is easier because a request
identifier is created in the same execution thread that uses it (matching it with
an iriput datum). Here the only possible inconsistency is produced when before
the matching happens this request is re-ordered in the list of requests, because
this re-ordering command is also referring to its identifier.

To solve this level of consistency checking, in the first case, distr looks
at the Meta-instruction being evaluated and if it affects a register declaring
an atl_ticket and the Meta-instruction order is a remove or move order, distr
checks the rest of the journal looking whether any of the registers recorded have
some reference to this atl_ticket that must be removed or moved in the journal.
If this case is found, distr has to notify to the user there is an inconsistency
and not take into account the Meta-edition causing it. In the second case, if the
register causing a data input request is going to be removed or moved, distr
just have to look in the middle of the two references to this request if there
is a re-ordering command for this request. This inconsistency can be solved
by just removing also the re-ordering command if the Meta-instruction is to
remove, or moving the re-ordering command together with the registers in the
Meta-instruction if this is to move.

This identifiers level of consistency checking can be done interactively be-
cause distr can manage it just by looking in the journal (it does not need any
other ATLAS component to check it). This consistency checking is done then
each time the user wants to record a Meta-edition in the journal even though
the Meta-journal is not going to be translated yet. This is called then the first
level of consistency.

The ATL definitions level is concerned with the ATL declarations or their
order, because these changes can cause a re-execution of these ATL commands,
which when sent to the Command Subsystem may have compilation errors be-
cause of undefinitions. A clear example can be the removing of a USE sentence of
a module when there are still commands using exported entities of this module
(see figure 8.9).

144

ATL flow of commands Meta-journal changes
USE se; USE se;
USE volum; Us X

se::Sortida("Start segmentation”); se::Sortida("Start segmentation”);

volum::SegmentSimplex(); volum::SegmentSimplex();

™~

Inconsistency

Figure 8.9: Example of an inconsistency at ATL definitions level.

This kind of inconsistencies cannot be noticed by distr itself, because they
need the symbols table of the Command Subsystem. To do this level of consis-
tency checking, distr requires some help from the ATL compiler.

The consistency at this level is only checked by distr when the translation of
the Meta-journal is required (at the first phase of this translation —section 8.2.1).
To do this checking, distr starts an auxiliary process, AtlasCompAux, which
has the ATL compiler. Next, distr sends to it all the commands to be parsed
by the ATL compiler, and the AtlasCompAux process compiles them and notifies
to distr if there is any error in compilation. If there is a compiling error the
consistency is not preserved and the user must be notified of it.

The AtlasCompAux process is an ATLAS process that executes the ATL com-
piler without producing intermediate code. It has as input those commands sent
by distr and causes the error output to be sent also to distr.

This process, like the Command Subsystem, does not have an associated ATL
module. It is started by distr only to check the ATL definitions consistency
and finishes when it is done. Figure 8.10 shows the scheme of the AtlasCompAux
process and its communication channels.

error messages

AtlasCompAux

Figure 8.10: The AtlasCompAux process and its communications.

145

8.2.3 The journal API offered by distr

The small API offered by distr to be used by the editor of the journal consists
of three routines:

¢ “void atl_jour_addMetalInst (Metalnstruction &mi, Comunic_Distr &d);"

This routine asks distr to insert the Meta-instruction received as a pa-
rameter in the Meta-journal. The Metalnstruction ’mi’ is the first pa-
rameter of the routine.

The second parameter is optional and represents the object wrapping the
communication of the process with distr. The default value for this
parameter is the communication object each process has by default (see
the code generation in section 7.5.1).

¢ “bool atl jour_translation (Comunic Distr &d);”

This routine orders the translation of the Meta-journal to a journal. It
does not need any parameter, but it can have the communication channel
which is optional like in the routine atl_jour_addMetalnst.

At any time distr keeps information about the current level of consistency
of the Meta-journal. When a translation order arrives, if the current
level of consistency indicates that some consistency level has not been
checked after a change in the Meta-journal, distr automatically checks
the consistency at that level before translating the Meta-journal.

The return value indicates whether the translation succeeded or not, i.e.
if the Meta-journal has been translated or not.

¢ “bool atl_jour_consistcheck (int level, Comunic Distr &d);”
This routine orders a consistency checking of the Meta-journal.

The first parameter is optional and indicates the level of the consistency
to be checked. The correspondent values are:

— level = 0: both levels identifiers and ATL definitions must be checked.
This is the default value.

~ level = 1: only the first level, identifiers, must be checked.

— level = 2: only the second level, ATL definitions, must be checked.
The second parameter is also optional and represents the communication
with distr (as in the routine atl_jour_addMetaInst).

The return value is a boolean indicating whether the checking succeeded
or not,.

8.2.4 The MJEditor

The MJEditor is the editor process offered by ATLAS as a utility process to do
the edition of the Meta-journal.

146

The current version of this process in the ATLAS prototype is not yet what
we require for this process to be actually useful. It has been implemented just
to test the Meta-journal facilities in ATLAS, so it is able to call the journal API
routines but without having a friendly user interface that facilitates this work to
the user. Nonetheless, we want to enumerate here the requirements this process
should satisfy to be useful.

First of all, it requires a user interface able to show a compact vision of
the journal so the user can easily identify in this vision the commands (level
0 registers) that he can deal with. It should also allow the user to select one
or more of these commands and choose one of the permitted Meta-instruction
orders (insertion, remove or move). A textual input to permit the insertion of
new commands by the user must be also allowed.

The editor is also responsible of dealing with Meta-editions. It has to send
the Meta-instructions taking part on the Meta-edition to distr and it also
should ask for the consistency checking at the identifiers level when all the
Meta-instructions of the Meta-edition have been sent.

It also should offer to the user the possibility of requesting the translation
of the Meta-journal when he wants to do it.

147

148

	TMFG00001.pdf
	TMFG00002.pdf
	TMFG00003.pdf
	TMFG00004.pdf
	TMFG00005.pdf
	TMFG00006.pdf
	TMFG00007.pdf
	TMFG00008.pdf
	TMFG00009.pdf
	TMFG00010.pdf
	TMFG00011.pdf
	TMFG00012.pdf
	TMFG00013.pdf
	TMFG00014.pdf
	TMFG00015.pdf
	TMFG00016.pdf
	TMFG00017.pdf
	TMFG00018.pdf
	TMFG00019.pdf
	TMFG00020.pdf
	TMFG00021.pdf
	TMFG00022.pdf
	TMFG00023.pdf
	TMFG00024.pdf
	TMFG00025.pdf
	TMFG00026.pdf
	TMFG00027.pdf
	TMFG00028.pdf
	TMFG00029.pdf
	TMFG00030.pdf
	TMFG00031.pdf
	TMFG00032.pdf
	TMFG00033.pdf
	TMFG00034.pdf
	TMFG00035.pdf
	TMFG00036.pdf
	TMFG00037.pdf
	TMFG00038.pdf
	TMFG00039.pdf
	TMFG00040.pdf
	TMFG00041.pdf
	TMFG00042.pdf
	TMFG00043.pdf
	TMFG00044.pdf
	TMFG00045.pdf
	TMFG00046.pdf
	TMFG00047.pdf
	TMFG00048.pdf
	TMFG00049.pdf
	TMFG00050.pdf
	TMFG00051.pdf
	TMFG00052.pdf
	TMFG00053.pdf
	TMFG00054.pdf
	TMFG00055.pdf
	TMFG00056.pdf
	TMFG00057.pdf
	TMFG00058.pdf
	TMFG00059.pdf
	TMFG00060.pdf
	TMFG00061.pdf
	TMFG00062.pdf
	TMFG00063.pdf
	TMFG00064.pdf
	TMFG00065.pdf
	TMFG00068.pdf
	TMFG00069.pdf
	TMFG00070.pdf
	TMFG00071.pdf
	TMFG00072.pdf
	TMFG00073.pdf
	TMFG00074.pdf
	TMFG00075.pdf
	TMFG00076.pdf
	TMFG00077.pdf
	TMFG00078.pdf
	TMFG00079.pdf
	TMFG00080.pdf
	TMFG00081.pdf
	TMFG00082.pdf
	TMFG00083.pdf
	TMFG00084.pdf
	TMFG00085.pdf
	TMFG00086.pdf
	TMFG00087.pdf
	TMFG00088.pdf
	TMFG00089.pdf
	TMFG00090.pdf
	TMFG00091.pdf
	TMFG00092.pdf
	TMFG00093.pdf
	TMFG00094.pdf
	TMFG00095.pdf
	TMFG00096.pdf
	TMFG00097.pdf
	TMFG00098.pdf
	TMFG00099.pdf
	TMFG00100.pdf
	TMFG00101.pdf
	TMFG00102.pdf
	TMFG00103.pdf
	TMFG00104.pdf
	TMFG00105.pdf
	TMFG00106.pdf
	TMFG00107.pdf
	TMFG00108.pdf
	TMFG00109.pdf
	TMFG00110.pdf
	TMFG00111.pdf
	TMFG00112.pdf
	TMFG00113.pdf
	TMFG00114.pdf
	TMFG00115.pdf
	TMFG00116.pdf
	TMFG00117.pdf
	TMFG00118.pdf
	TMFG00119.pdf
	TMFG00120.pdf
	TMFG00121.pdf
	TMFG00122.pdf
	TMFG00123.pdf
	TMFG00124.pdf
	TMFG00125.pdf
	TMFG00126.pdf
	TMFG00127.pdf
	TMFG00128.pdf
	TMFG00129.pdf
	TMFG00130.pdf
	TMFG00131.pdf
	TMFG00132.pdf
	TMFG00133.pdf
	TMFG00134.pdf
	TMFG00135.pdf
	TMFG00136.pdf
	TMFG00137.pdf
	TMFG00138.pdf
	TMFG00139.pdf
	TMFG00140.pdf
	TMFG00141.pdf
	TMFG00142.pdf
	TMFG00143.pdf
	TMFG00144.pdf
	TMFG00145.pdf
	TMFG00146.pdf
	TMFG00147.pdf
	TMFG00148.pdf
	TMFG00149.pdf
	TMFG00150.pdf
	TMFG00151.pdf
	TMFG00152.pdf
	TMFG00153.pdf
	TMFG00154.pdf
	TMFG00155.pdf
	TMFG00156.pdf
	TMFG00157.pdf
	TMFG00158.pdf
	TMFG00159.pdf
	TMFG00160.pdf

