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Chapter 1

Introduction

Systems featuring a large number of interacting components (agents, processes or
mechanisms) may show a complex behavior, not easily derivable from the sum of the
activity of individual components. Addressing particular problems often requires an un-
derstanding of the system beyond the identification of its components and the phenomeno-
logical description of the observed behavior. It requires building models that capture the
essential features of the problem. Models are simplified representations of the reality
used to address specific questions regarding the modeled systems. Computational models
define objects and algorithms that simulate the components and mechanisms of the real
system, with a view to assessing their combined effect on the system as a whole. Trial and
refinement of the models is continually carried out together with real-world observations
and experiments, in order to obtain insight and increase predictive capability.

Biology is crowded with complex systems, from genetic networks to ecosystems. Since
the last century, biology has increasingly become an exciting domain to many physicists.
The contributions of physical models and techniques to biology are found in many areas
and at various levels of description: from the detailed analysis of structure and functions of
bio-molecules in the nanoscale, at a molecular level, through the microscopic description
of membranes and cells as a whole system, and up to the macroscopic level with the
study of population dynamics of living organisms. In particular, if the systems under
study are microbial communities, these scales are coupled together, providing a wide
range of problems to address and situations to explore. The use of computational models
of biology is often unavoidable due to the large amount of data to be handled and to the
intrinsic complexity of the systems under study.

The present work is a theoretical approach to a particular microbial community: the
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ensemble composed of red blood cells and the parasite Plasmodium falciparum which in-
fects them, causing malaria. It includes experimental observations and some computer
programming, but mainly focuses on the process of building a model of appropriate com-
plexity. It may be of interest to researchers from disciplines that range from medicine to
biology, engineering, physics and applied mathematics. Different educations and train-
ings entail different worldviews and the communication among colleagues is not trivially
straightforward when complexity arises. For this reason, I have tried to adapt the lan-
guage and orientation of this manuscript to a multidisciplinary approach accessible to
anyone with scientific education in the field of biomedical and/or experimental sciences.

The work on malaria is compared to the research carried out regarding other micro-
bial communities. Thereby studying general emerging properties of microbial systems in
general, with regard to the effect of cell individuality, heterogeneity and diversity; inter-
actions among cells and between cells and their local environment; and biological and
spatial complexity.

This first chapter is a preliminary approximation to malaria infected red blood cells.
It is basically a compilation of facts and relevant features that are to be considered by the
model. It also provides an outline of the fundamentals of modeling and of the Individual-
based approach. A detailed description of the general and specific objectives of the thesis
is also included at the end of the chapter.

1.1 Background

1.1.1 Research team

MOSIMBIO -MOdelització i SIMulació discreta de sistemes BIOlògics- is an interdis-
ciplinary group (physicists, mathematicians, biologists and agricultural engineers) that
has been working for nearly thirty years in modeling and simulation (MOSIMBIO, 2009).
It has its origins on the fruitful collaboration of investigators that studied the behavior
of liquids with techniques typically used by physics in solving N-bodies problems (Monte
Carlo and Molecular Dynamics) (Giró et al., 1980) with researches that worked on the
analysis of population dynamics in the framework of theoretical ecology (Lurié et al.,
1983). The foundational aim of the group was noticing general properties of microbial
populations and ecosystems with models based on the individual cells. This approach
allowed combining the techniques and experience from both disciplines: the biological
rules governing the individuals could be framed with the physical laws that also describe
their local environment, and the collective outcome could be drawn from the statistical
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treatment of the population ensemble and the (Giró et al., 1985; Giró et al., 1986).
The methodology provided a way to address questions that could not be covered

otherwise, such as describing the effect of the statistical distribution of individual char-
acteristics among the population on the system dynamics (Bermúdez et al., 1989), or
proposing mechanisms for the emergence of coordinated global behaviors out from local
individual interactions and randomness (Solé and Valls, 1992).

This seminal approach was further developed by López D. (1992), and Ginovart M.
(1997), gradually increasing the degree of detail and specification of the models. The
modeling methodology was revised, standardized and finally presented (Ginovart et al.,
2002a) with the acronym INDISIM that stands for INDividual DIScrete SIMulations.

The research is currently carried out through the development of specific models ad-
dressed to particular systems. The microorganisms under study range from bacteria to
fungi, yeasts and protozoa. The specific problems to be handled usually respond to a
determinate industrial demand or social concern, and the developed models pursue the
improvement of the technological use of microbial systems in fields such as food safety,
soil quality or pharmaceutics. Yet, the key point and ultimate goal of the group is to
acquire holistic understanding of microbial ecosystems, this is to unravel the connections
between the local microscopic rules and the macroscopic observations.

The present work comes out from the collaboration of MOSIMBIO with the Exper-
imental Microbiology Group (EMG-GSK) from the laboratory unit Diseases from the
Developing World (DDW), a research and development center of GlaxoSmithKline. This
unit holds around 2000 employees and engages more than 100 dedicated full-time scien-
tific staff, whose skills include chemistry, biology, biochemistry, toxicology, cytotoxicology,
assay development, and in vivo and in vitro screening, to assess disease targets and find
drug candidates for further development. The DDW is currently executing 8 research
projects, four on malaria supported by the partnership Medicines for Malaria Venture
(MMV) and four on tuberculosis, in the framework of the Global alliance for Tuber-
culosis. Among other topics in the field of malaria, the research in the DDW pursues
the improvement of the current in vitro clinical trialing protocols, the development of
in vivo culturing methods through murine models, and the assessment of the population
distribution characteristics through flow citometry (Jimenez-Diaz et al., 2009).

The objective of the four-year collaboration project (2005-2008) was to carry out ba-
sic research on the factors affecting the propagation of the malaria parasite Plasmodium
falciparum in red blood cell (erythrocytes) cultures under controlled laboratory condi-
tions. INDISIM-RBC, a specific version of the root model has been developed in order to
undertake this study. The strategic reason for this investigation is to gain understanding
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and control of the current culturing protocols of the parasite. This would eventually lead
to the improvement and increase in efficiency of the pharmaceutical in vitro trials, and
consequently facilitate drug development.

1.1.2 Malaria in the world

Malaria (a.k.a. paludism when the host is human) is the acute or chronic disease
caused by the presence of sporozoan parasites of the genus Plasmodium in the red blood
cells (a.k.a. erythrocyte and here referred as RBC). It is transmitted from an infected
to an uninfected individual by the bite of anopheline mosquitoes, and characterized by
periodic attacks of chills and fever that coincide with mass destruction of blood cells and
the release of toxic substances by the parasite at the end of each reproductive cycle.

The intracellular parasite is an eukaryote microorganism of the phylum Apicomplexa,
a large class of strictly parasitic protozoans that pass through a complicated life cycle
that involves the alternation of a sexual with an asexual generation, and requires two
or more dissimilar hosts. Half of the life cycle is spent in the lymphatic and circulatory
system of a vertebrate host, and the other half takes place in the digestive system of a
mosquito host, often referred as the disease vector. There are over the 200 known species
of Plasmodium, and at least four species that infect humans: P. falciparum, P. vivax, P.
ovale and P. malariae. Other species infect animals, including monkeys, rodents, birds,
and reptiles. The female mosquitoes of the genera Culex, Anopheles, Culiceta, Mansonia
and Aedes may act as vectors of the disease because they complement their basic nectar
nourishment with hematophagy (drinking blood from animals). The currently known
vectors (more than 100 species) for human malaria all belong to the genus Anopheles.

The evolution of the parasite inferred from the DNA sequentation suggests that Apli-
complexa were originally autotrophus prey protozoa that evolved the ability to invade the
intestinal cells of jellyfish and subsequently lost their photosynthetic ability. The genus
Plasmodium is closely related to the genus Leukocytozoon, which infects leukocytes (white
blood cells), liver and spleen cells and is transmitted by ’black flies’, and which formerly
evolved the ability to infect the liver from the intestine cells. It is currently believed
that Plasmodium evolved from Leukocytozoon about 130 million years ago, in coincidence
with the spread of angiosperms (flowering plants). This expansion presumably led to an
increase in the number of mosquitoes and their contact with vertebrates. It seems prob-
able that birds and reptiles were the first group infected by Plasmodium, and primates
and rodents became infected later(Escalante and Ayala, 1995). Plasmodium parasitism
of humans has independently arisen several times(Leclerc et al., 2004). Nevertheless, the
extant spices Plasmodium falciparum is believed to derive from one single parasite an-
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cestor within the last 50,000 years. This long history of coexistence between the parasite
and the host entails an evolutionary arms race that has lead to sophisticated infective
and immunity strategies, respectively (Rich and Ayala, 2000).

The term malaria was coined from the Italian words: “mala aria” meaning “ill airs”.
The first historical references to this disease are texts dated 1500 B.C, from China and
the Ancient Egypt. From the very beginning, the disease was associated to swamps and
wetlands, the natural habitat of the vector mosquito. In 1880 Charles Laveran observed
for the first time the protozoan parasite associated to paludism. In 1891, Romanowsky
successfully stained the parasite with Geimsa coloration, thus allowing the study of its
morphology. Meanwhile, the disease was eradicated from northern and western countries
during the XIXth and XXth centuries through the reduction of swamplands, and specially
as a consequence of the generalization of health care and attention, which implied the
control and isolation from possible vectors of the infected human hosts. In the late 1960s,
it was expected that malaria would be completely wiped out from the world and that
it would not entail a serious health concern. This optimistic prospects were based on
the successful eradication from areas were the disease had traditionally been endemic
and on the existence of effective treatments. However, in the last 20 years there has
been a notable rise, rather than a decrease, in the incidence and harm of this pandemics,
particularly, in the southern hemisphere. The pointed causes for this drift are the lack of
resources from governments and social agents assigned to face the menace, the increase
of mobility and connection of the societies, the increase of precipitations in the affected
areas and the abolition of DDT fumigation, among others. The appearance of several
new strains of the parasite with cross-resistance to the current treatments and the lack of
success of the employed strategies draw a much less optimistic scene for the immediate
future (Greenwood and Mutabingwa, 2002).

Today, malaria remains the greatest single cause of debilitation and death throughout
the world. According to the World Malaria Report 2008 edited by the World Health
Organization (WHO, 2008), half of the world’s population is at risk of malaria. There
were an estimated 247 million malaria cases among 3.3 billion people at risk in 2006,
causing nearly a million deaths, mostly of children under 5 years. This means one child
decease every 30 seconds. 109 countries were endemic for malaria in 2008, 45 within the
African region (see Figure 1.1). Children are particularly vulnerable to this disease, as
well as pregnant women. The incidence in this collective is four times the average for
adult men, and survival to the disease in this conditions is drastically reduced to 50%.
Malaria, in combination with other major health concerns, such as malnutrition and
AIDS, literally decimates the population in the sub-Saharan African countries. Assessing
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the real burden of malaria accurately is difficult because most deaths occur at home, the
clinical features of paludism are very similar to those of many other infectious diseases,
and good quality microscopy is available in only a few centers.

Figure 1.1: Risk of malaria infection worldwide and historical evolution. Risk estimation: high
malaria risk indicates endemic (constant incidence on the population) of the area. Low risk
indicates that child infection prevalence is below 10%. Data from the WHO World Malaria
reports 2005 and 2008 (WHO, 2008).

Besides being a humanitarian and sanitary scourge, malaria is also a great socioeco-
nomic burden for the affected countries (Sachs and Malaney, 2002). Malaria and poverty
are intimately connected and feed one each other, although the correlation between preva-
lence of the epidemic and of poverty is not straightforward due to the effects of ecological
and geographic factors. Growth is better correlated (with negative correlation) to the
presence of the disease. Countries with intensive malaria have income levels 33% those of
similar countries without malaria. The countries that eliminated paludism in the past half
century had an economic growth in the 5 years after eliminating malaria substantially
higher than growth in the neighboring countries. In average, countries with intensive
malaria grow 1.3% less per person per year, and a 10% reduction in malaria can be
associated with 0.3% higher growth. The mechanisms through which malaria affects pro-
ductivity remain unclear, nevertheless it can be speculated that malaria has a negative
impact on tourism and foreign investment because, unlike other diseases, it makes no
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distinction between rich and poor people, and also because has cumbersome or inefficient
treatments. For the same reason, it hinders internal movements, thus stunting the trans-
fer of technologies and knowledge between the industrialized and developed areas and
the countryside. In addition, it causes recurrent or continual absenteeism both at work
and mainly in school, strongly affecting education and compromising future competence
(Gallup and Sachs, 2001).

The response of the international community to this disgrace can be represented by
three general initiatives that afford more resources and presumably guarantee major ef-
forts. Firstly, the eradication of the malaria was included in the United Nations Millen-
nium Declaration: “Target 7: Have halted by 2015 and begun to reverse the incidence of
malaria and other major diseases” (UN Millenium Project, 2009). Secondly, the Roll Back
Malaria initiative was launched in 1998 to coordinate the actions against malaria of more
than 500 partners and institutions, specially including those nations where the disease is
endemic. As quoted in their foundational declaration: “RBMs overall strategy aims to
reduce malaria morbidity and mortality by reaching universal coverage and strengthening
health systems. The Global Malaria Action Plan defines two stages of malaria control:
(1) scaling-up for impact (SUFI) of preventive and therapeutic interventions, and (2)
sustaining control over time (Roll Back Malaria, 2009). Methods for malaria control in-
clude vector control, interruption of vector-human contact (isolation of ill people, use of
mosquito nets, and improving the access to and compliance with treatments).

Finally, the Medicines for Malaria Venture (MMV) was founded in to discover, develop
and deliver new affordable antimalarial drugs through effective public-private partnerships
(Medicines for Malaria Venture, 2009). Malaria is currently treated with blood schizon-
tides they are used to treat acute infections and to quickly relieve the clinical symptoms,
and may also act as chemo-prophylaxis for the parasite’s RBC propagation for uninfected
human hosts. Among them, the most widespread are chloroquine, quinine, artemisin,
sulfadoxine and their derivatives. The parasite has recently developed resistance to drugs
as a consequence of recurrent infections, mixing of populations due to human increased
mobility and inefficient or poor drug treatments. The strategic response to this problem
requires the discovery of new targets for antimalarial action, drug design and development
of a treatment. Better understanding of the culturing protocols can eventually lead to
the optimization of the resources, thus facilitate and reduce costs of research in medicine
development.
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1.2 Malaria and Plasmodium falciparum

1.2.1 Life cycle and pathogenesis

Malaria is initially characterized by fever, chills and paroxysm, headache, weakness,
and other symptoms that mimic a viral disease such as flu. These symptoms reappear re-
currently in continual or discrete episodes, eventually leading to severe or acute syndrome
with generalized metabolic acidosis and severe anemia. P. falciparum acute symptoms
include spleen, renal or multisystem failures and cerebral malaria. The later entails
impaired consciousness with non-specific fever, generalized convulsions and neurological
sequels. If not treated, cerebral malaria leads to a coma that persists for 24-72 hours,
initially raisable and then unraisable, and it is fatal after 72 hours (Miller et al., 2002).
The incubation period (the time from the initial malaria infection until first symptoms
appear) generally ranges from 7 to 14 days for P. falciparum, 12 to 18 days for P. vivax
and P. ovale and 18 to 40 days for P. malariae. Occasionally the incubation period may
reach from 8 to 10 months for P. vivax and P. ovale.

All four species of Plasmodium that infect humans exhibit a similar hybrid life cycle
with minor variations (see Figure 1.2). Human infection begins when sporozoites are
injected with the saliva in a mosquito bite. The sporozoites enter the circulatory system
and within 30-60 minutes will invade a liver cell (hepatocyte). After invading the hep-
atocyte, the parasite undergoes an asexual replication. This replicating stage is called
pre-erythrocytic schizogony. It does not entail symptomatology and may last several
days. Schizogony refers to the asexual replicative process in which the parasite forms a
progeny of ready-to-invade parasites. The progeny, called merozoites, are released into
the circulatory system following the rupture (a.k.a. lysis) of the host cell.

During blood schizogony, the intraerytrocytic cell cycle occurs and malaria symptoms
manifest. Merozoites released from the infected liver cells invade erythrocytes (RBCs).
After entering the RBC, the parasite undergoes a trophic period, during which it consumes
the infected red blood cell (IRBC) contents and strongly modifies its membrane to allow
an increased uptake of substances from the extracellular medium, followed by an asexual
replication. The recently invaded IRBC (0-18 hours) is often called a ring form due to its
morphology in Geimsa-stained blood smears. As the parasite increases in size, this ’ring’
morphology disappears and the IRBC is called a trophozoite (18-35 hours). Nuclear
division marks the end of the trophozoite stage and the beginning of the schizont stage
(35-48 hours). Erythrocytic schizogongy consists of 3-5 rounds (depending on species)
of nuclear replication followed by a budding process. Late stage schizonts in which the
individual merozoites become discernible are called segmenters (42-48 hours). After



1.2 Malaria and Plasmodium falciparum 9

approximately 48 hours, the IRBC breaks down and 8 to 32 (average ∼ 16) merozoites
are released. These merozoites invade new erythrocytes and initiate another round of
schizogony (see Figure 1.3).

Figure 1.2: Life cycle of Plasmodium spp. During a blood meal, a malaria-infected female
Anopheles mosquito inoculates sporozoites into the human host (1). (A) Exoerythrocytic cy-
cle: sporozoites infect liver cells (2) and mature into schizonts (3), which rupture and release
merozoites (4). (B) Erythrocytic cycle: merozoites infect red blood cells (5). The ring stage
trophozoites mature into schizonts, which rupture releasing merozoites (6). Some parasites dif-
ferentiate into sexual erythrocytic stages (gametocytes) (7). (C) Sporogonic cycle: the male and
female gametocytes are ingested by the mosquito during a blood meal (8). While in the mosquito’s
stomach, male and female merge generating zygotes (9). The zygotes become motile and elongated
ookinetes (10) and invade the midgut wall, where they develop into oocysts (11). The oocysts
grow, rupture, and release sporozoites (12), which make their way to the mosquito’s salivary
glands. Inoculation of the sporozoites into a new human host perpetuates the malaria life cycle
(1). Reprinted from the Public Health Image Library (http://phil.cdc.gov/phil/home.asp). Image
and caption from da Silva J. and Moser M., 2002.
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The blood-stage parasites of most of the Plasmodium spp. within a human host usually
undergo a synchronous schizogony. The most obvious advantage of such a coordination
is related to transmission, and to the nocturnal biting habits of the Anopheles mosquito
(McKenzie and Bossert, 2005). P. falciparum in vivo synchronisation is not so clearly
observed (Naughton and Bell, 2007).

It has been speculated that the synchronism among parasites is mediated by the host
immune system through its circadian rhythms (Hawking, 1975), the rise of temperature
associated with fever (Gravenor and Kwiatkowski, 1998), and specific responses to certain
stages of the parasite (Rouzine and McKenzie, 2003). The paroxysms of malaria are
associated with the rupture of IRBCs and the concomitant release of antigens and waste
products. The dumped wastes arouses the immune system response, thus provoking the
intermittent fever paroxysms associated with malaria. Fever, in turn, is assumed to affect
the later stages of the IRBCs more, thereby leaving a population comprised solely of
young ring-stage cells.

Blood stage schizogony in P. falciparum differs from the other human malarial para-
sites in that trophozoite- and schizont-infected erythrocytes adhere to other RBCs, form-
ing aggregates of several RBCs (rosettes) and to capillary endothelial cells, disappearing
from the peripheral circulation (sequestration) (Wahlgren et al., 1994). In severe falci-
parum malaria, the clumps formed by IRBCs and aggregated RBCs can obstruct capillar-
ies and post-capillary venules due to the combined effect of rosetting and sequestration.
This may lead to local hypoxia (deficiency of oxygen reaching the tissues of the body)
and to the accumulation of toxic products. Obstruction of the micro-circulation in the
brain (cerebral malaria) and in other vital organs is thought to be responsible for these
severe complications of the disease (WHO, 2000).

Sequestration may be the factor responsible for the lack of synchronism observed in
P. falciparum in vivo, as the IRBC remain stuck in the capillary vessels, safe from the
increased response of the immune system triggered by the rise in temperature, and also
avoiding going through the spleen (where blood is filtered and IRBCs would be destroyed).
Other factors may play a central role in the kinetics of the infection in vivo (White, 1998;
McKenzie and Bossert, 2005). P. falciparum merozoites are not as selective with the
age of erythrocyte host as the other Plasmodium spp. are. Malaria parasites have a
preference for young RBCs (Simpson et al., 1999), but falciparum merozoites are not so
finicky. This means that the infection is not so strongly limited by the availability of
suitable red cells (Ginsburg and Hoshen, 2002). Furthermore, P. falciparum IRBCs can
produce cytokines (immunoregulatory proteins) and thus might have some control over
the host immune response (Allan et al., 1993).
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Figure 1.3: a) Scanning Electron Micrograph (SEM) of a human RBC. From the Public Health
Image Library (PHIL) ref. 11693. b) SEM of a Plasmodium falciparum merozoite. Kindly pro-
vided by Dr. Peter David, Unité d’Immunologie Moléculaire des Parasites, Institute Pasteur. c)
Geimsa stained smears showing the major morphological stages throughout the intraerythrocytic
cycle of Plasmodium falciparum (Bozdech et al. 2005).
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All in all, many factors may affect the virulence and severity of the disease, both host-
related (control of the parasite population by the body is affected by the fitness and anti-
genicity of the immune system, the treatment and drug resistance) and parasite-related
(multiplication capacity, red cell selectivity, control of the host immune response). The
cardinal rules governing the intra-host dynamics of the infection (timing and magnitude
of peak parasite density) are yet not fully understood (Heddini, 2002). The development
of models and the use of statistical techniques for their fitting and comparison to real data
may provide quantitative understanding and predictive capability of the pathogenesis of
such a complex disease (Mideo et al., 2008).

1.2.2 Specific features of the intraerythrocytic schizogony

General description of the intraerythrocytic stages

RBCs are the hemoglobin (HgB) containing cells responsible for the transport of oxy-
gen to the tissues in the human body, and comprise the hematocrit, which represents
around 40% in volume of the circulating human blood. They take the form of flexible bi-
concave disks that lack a cell nucleus and organelles, and they cannot synthesize proteins.
They are continually produced in the bone marrow of long bones at a rate of 106 RBCs
per second and live for about 120 days. During the first 7 days, the developing RBCs
are known as reticulocytes and comprise about 1% of circulating red blood cells. Their
aging entails changes in their plasma membrane, making them susceptible to phagocytosis
in the spleen, liver and bone marrow. Many of the important breakdown products are
recirculated in the body (Guyton, 1987).

The cell division cycle of P. falciparum starts with the invasion of the host RBC
by 1 or more haploid merozoites, and ends with the release of up to approximately 32
new merozoites that can go on to invade fresh cells (Granham, 1988; Tori and Aijkawa,
1998). Invasion of the host RBC consists on the forced invagination of the RBC plasma
membrane and is mediated by the apical organelle of the parasite. The inner membrane
of the extracellular merozoite rapidly degrades and disappears. During the next 48 hrs,
the intracellular parasite develops surrounded by two membranes: the plasma membrane
of the infected RBC (IRBCM) and the invaginated membrane, closely attached to the
parasite itself, the parasitophorous vacuolar membrane (PVM) (Chitnis and Blackman,
2000).

During the first ∼ 20 h of development, the young parasite is observed in light mi-
croscopy as the ring stage. Rings result from the extension of parasite cytoplasm. The
main activity occurring during this stage is the adaptation for further feeding: the mod-
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ification of the IRBCM and the production of the enzymes required for the intracellular
metabolism. This stage corresponds to the quiescent or G0 phase of the cell division cycle
and beginning of the growth phase G1.

Initially, the parasite lies apparently dormant. From ∼ 16 h post-invasion, there is a
progressive increase in the metabolic and bio-synthetic activity, i.e. growth of the para-
site, degradation of the host cytosol and hemoglobin and major changes in the IRBCM.
Digestion of hemoglobin occurs in the digestive vacuoles of the parasite and results in the
production of amino acids and an insoluble pigment called hemozoin, which accumulates
in the IRBC and is characteristic of the mature trophozoite stage (∼ 20 h− 35 h post-
invasion). The digested cytosol and hemoglobin serve as a source of the building blocks
for further parasite duplication. Trophozoite stage corresponds to G1(growth), S (DNA
synthesis) and G2(growth) phases of the cell division cycle.

During the last 14 hours of the cell division cycle, DNA replication and cellular differ-
entiation of 8 to 32 daughter cells or merozoites occurs by asexual division (mitosis, or M
phase). The first nuclear division occurs at ∼ 35 h post-invasion (Leete and Rubin, 1996).
Approximately 3, 4 or 5 divisions (presumably interspersed by periods of further DNA
replication) are completed in a common cell cycle before the nuclei and other organelles
are partitioned into nascent merozoites. The metabolic activity decreases all through the
M phase. The IRBC in former M phase is known as the schizont stage (∼ 35 h− 42 h
post-invasion); the latter partitioning events are recognized as the fragmenter stage
(∼ 42 h− 48 h post-invasion).

Membrane transport and metabolism

The exchange of substances through any cell membrane is a diffusion-mediated process
constrained by four factors: (1) the number and capacity of the diffusion channels; (2) the
intrinsic rates of diffusion and reaction in the intracellular medium; (3) the geometrical
shape and dimensions of the cell; and (4) the concentration of the molecular species in
the immediate extracellular medium, just across the cell membrane. The transport of
substances through the RBC membrane is considered to be limited by the activity of
membrane transporters and usually modeled with more or less sophisticated versions of
the Michaellis-Menten model for enzyme activity. A simpler alternative is to consider
only the geometrical limitations and assume Blackmann kinetics (Ferrer et al 2008a).

To reach the parasite, the extracellular substances must cross the IRBCM and the
PVM. The activity and number of the transport systems of the IRBCM undergo marked
alterations through the infection cycle. The homeostatic state in the IRBC cytosol
changes consequently, and the geometry of the PVM is extremely complicated, with mul-
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tiple invaginations that directly connect the trophozoite with the extracellular medium
(Kirk, 2001). In conclusion, uptake kinetics for the IRBCs can not be easily modeled even
when models of the transport through the healthy RBC membrane are already available.
In this case, Blackmann kinetics are also a good alternative.

RBC metabolism has been well-studied in the last four decades and extensive biochem-
ical data have been accumulated (Kauffman et al., 2002). Schematically, the RBC mainly
uptakes glucose from the environment and processes it through the glycolysis pathway
to generate ATP and lactate. The ATP molecules are consumed mostly for maintenance
of RBC homeostasis (cation transport, mainly through the Na+ − K+ pump, in order
to maintain the cell volume, electroneutrality and osmotic balance). Other important
metabolic pathways are those involved in the control of the oxidation state of HgB, the
anabolism of nucleotides and the continual production of sugars through the pentose phos-
phate pathway, related to both the maintenance and reconstruction of the cell structure.

The uptake rate as a function of the extracellular concentration alone is not fully
understood for RBCs. The available models for carrier mediated facilitated diffusion,
such as the Michaellis-Menten models are insufficient. The transport of glucose in RBCs
has recently been reported to consist of two different phases for the transport of glucose
(fast and slow) that operate under different cellular conditions (low or high intracellular
nutrient concentration). The metabolic state of the RBC and the internal availability of
ATP play a central role in the modulation of these two phases (Leitch and Carruthers,
2007).

Metabolism of IRBC has been extensively studied and described in the search for po-
tential targets for drug activity (Sherman, 1998a; Rosenthal and Meshnik, 1998; Sherman,
1998b). Schematically, the parasite requires a great amount and variety of mononucleotide
precursors which can not be bio-synthesized to carry out DNA duplication. Some of these
substances can be obtained from the digestion of the RBC cystosol and HgB but many
others (such as purine or pyridine) must be obtained from the extracellular plasma. For
this reason, during its trophic stage the IRBC uptakes macromolecules from the sur-
rounding medium. In order to do so, the IRBCM is profoundly altered. An increased
permeability allows the ingestion of macromolecules but completely perturbs the osmotic
equilibrium of the IRBC with the extracellular surroundings. To maintain homeostasis,
the parasite digests an excess of HgB and cytosol and compensates the increased per-
meability with adapted concentration gradients and pump activity (Lew et al., 2003).
This results in an increased need for ATP. Glucose uptake (and lactate production) varies
through the infection cycle and may reach 100-fold the average uptake of healthy RBCs
(Roth, 1990).
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During the last decades, increasingly detailed kinetic models of RBC metabolism have
been developed (Rapoport et al., 1976; Palsson et al., 1989). They use large arrays of
coupled nonlinear ordinary differential equations that represent the biochemical reactions
occurring within a single cell and its immediate environment (Kuchel, 2004). Such an ap-
proach, known as systems biology, has produced a group of testable models that simulate
cell behavior and reproduce experimental results. Steady state solutions and predictions
of the in silico models of the RBC can be compared to data obtained through NMR spec-
troscopy (Jamshidi and Palsson, 2006). Recently, a systems biology model of the IRBC
has been developed and published (Mauritz et al., 2009). Its results corroborate that
the IRBC approaches lytic rupture as the infection cycle goes by, becoming increasingly
fragile.

Models from systems biology are too complex to be included in macroscopic models
of microbial communities. They usually operate at temporal scales ranging from 10 µs
to 1 ms and spatial scales around the micrometer. In addition, these models are not
spatially explicit and consider homogeneous populations (with the same average behavior
for every cell) and homogeneous spatial distributions of the modeled cells.

Merozoite release and invasion of RBCs

At the end of each asexual reproduction cycle (∼ 48 h), ∼ 16 merozoites egress from
their host cell ready to invade healthy RBCs. This process is physically hindered by
two membranes: the PVM and the IRBCM. The long-running debate about the mech-
anisms that underpin the egress of merozoites from the host cell basically offers three
alternatives:

(i) Membrane fusion. The IRBCM and the PVM fuse, creating an opening
through which clustered merozoites are ejected to a single point in the im-
mediate neighborhood ∼ 5 µm. The IRBC ghost first remains in place, then
degrades over time (Winogard et al., 1999).

(ii) Membrane breakdown: The IRBCM and the PVM degrade so that merozoites
remain in the place previously occupied by the IRBC. Remnants of the IRBC
disperse as segregate macromolecules (Wickham et al., 2003).

(iii) Exploding flowers: An increase in merozoite size and concurrent breakdown
of the RBC cytoskeleton cause a physical pressure that blows the IRBC apart,
scattering both the invasive merozoites and the clotted remnants of the IRBC
to a local range up to ∼ 25 µm (Glushakova et al., 2005).
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Recent video recordings suggest that model b) best fits observations (Rayner, 2006).
Extracellular merozoites, like all apicomplexans, have motile systems that allow them

to glide- that is: to move towards a fixed destination, maintaining their orientation and
without cell deformation. However, the merozoite has not been seen to glide, although it
is not known how it behaves in the confines of a venule crowded with adherent schizonts.
In vitro, merozoites do not move across a substrate at all, until they contact the surface
of a healthy RBC (Pinde et al., 2000).

Once the surface coat of the extracellular merozoite contacts the surface of a healthy
RBC, it provisionally attaches to it. Then, it reorientates so that the apical complex
faces towards the RBC membrane. Once the reorientation is completed, a stable junc-
tion between the apical complex and the RBC membrane is set. Then, the attachment
becomes irreversible and the invasion of the RBC takes place: the membrane of the RBC
increasingly invaginates, and the parasite pulls itself to the center of the RBC via the
proteins allocated on its surface coat. The invasion process lasts ∼ 30 seconds and is not
always successfully carried out (Chitnis and Blackman, 2000). Merozoites are short lived
in the extracellular medium ∼ 20 − 30 minutes (Barnwell and Galinski, 1998). Beyond
this time span, they seem incapable of RBC invasion. As a result, the spreading of mero-
zoites through the hematocrit in in vitro cultures occurs solely after the lysis at the end
of an infection cycle or after a frustrated invasion attempt. This spreading lasts a few
minutes and has a short range.

RBCs containing more than one parasite (two, three and eventually four) are com-
monly observed in blood smears taken from patients and also in in vitro cultures. The
tolerance for multiple invasion can be explained because changes in the IRBCM take place
slowly (all through the ring stage), and also because the local geometric constraints on the
IRBCs under the conditions in which the propagation of the parasite takes place (mainly
in venous capillaries, with no blood circulation) ensures that immediate neighboring RBCs
are surrounded by an excess of potential invaders.

The study of the multiple-infected RBCs in vitro can provide information regarding
how the RBC susceptibility to infection varies with RBC age (Simpson et al., 1999).
Alternative measurements also show that Plasmodium falciparum has preference for re-
tyculocytes, but that its selectivity is not as strong as for other Plasmodium spp. The
susceptibility to invasion of retyculocytes is between 2 and 4-fold the susceptibility of
grown RBCs (Pasvol et al., 1980).
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Physical modifications of the IRBCM and interactions among RBCs

Many changes affect the RBC during the intracellular development of P. falciparum.
Many of these changes mimic those of apoptosis (programmed cell death) with the dif-
ference that the latter are ATP-dependent, meaning that they require the activation of
specific cellular mechanisms by the RBC and are triggered by osmotic shrinkage. In
contrast, the osmotic ability of IRBCs is maintained by the parasite and any one-time
scarcity of energy (glucose) may lead to cell lysis, the disintegration and dissolution of
the cell(Sherman et al., 2004). The alteration of the IRBCM is completed by the end of
the ring stage, and the osmotic compensation requires an increasingly excessive digestion
of host HgB and cytosol after ∼ 24 h post-invasion, which in turn requires an additional
energy demand (Lew et al., 2003). All in all, it is reasonable to assume that IRBCs are
more fragile and sensitive to perturbations as they approach the end of the infection cy-
cle. This argumentation is consistent with the observation of an increased rate of lysis of
the mature IRBCS, and it has been speculated to be responsible for the synchronization
of the parasite population after fever paroxysms (Kiatkowski, 1989). Paradoxically, low
temperatures also seem to affect parasite development only after ∼ 30 h post-invasion
(Rojas and Wasserman, 2007). This suggests that the fragility of IRBCs is not related to
the denaturing of the enzymes by febrile temperatures, but to a complex counterbalance
of the alterations produced by the parasite.

The shape and surface of the IRBCs are substantially altered. The biconcave RBC
disc becomes more spherical and rigid, and it also acquires a sickled curvature, responsible
for the name falciparum. The surface becomes wrinkled and covered with sub-microscopic
protuberances called knobs. Knobs are elevations of the plasma membrane of ∼ 25 nm
height and 100 nm diameter, with increased electron density. The number and size of
knobs vary with the development of the parasite. Rings have no knobs and, while the early
tropozoite has numerous small knobs, the schizont has fewer and bigger protuberances.
The function of knobs is basically to produce adhesiveness. This adhesiveness serves the
parasite in two ways. Firstly, it causes cytoadherence: the IRBC sticks to the endothelium
of the circulatory vases, giving rise to the sequestration in capillaries. Secondly, it is
responsible for the aggregation of IRBC with many RBCs in clumps called rosettes
(Wahlgren et al., 1994).

Higher parasitemia is associated with rosetting phenotypes, so the role of rosetting
is to enhance parasite growth and survival by facilitating invasion or promoting immune
evasion in vivo (Rowe et al., 2002). However, rosetting does not play a role in the invasion
or targeting of parasites into uninfected cells in vitro, even when the culturing conditions
are similar to microvascullar flow (Clough et al., 1998). This suggests that the role of
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Entity Characteristic Value Source

RBC

density 1.1 g/ml

volume 85 µm3

diameter 6− 8 µm Guyton, 1987
width 1− 2 µm
max. age 120 days

IRBC

infection cycle 48 h

ring stage 18 h

trophozoite stage 17 h Torii and Aikawa, 1998
schizont stage 7 h

fragmenter 6 h

Merozoite
volume 2 µm3 Torii and

Aikawa, 1998endurance 30 minutes

Plasma

Hematocrit 5x106 RBCs/ml

Guyton, 1987
[glucose] 65mg/dl

[oxygen] 1.4 g/l

pH 7.4

proteins 8% volume

Table 1.1: Some characteristic features of the healthy erythrocytes (RBCs), infected erythrocytes
(IRBCs), extracellular merozoites and blood plasma.

rosetting is not to guarantee the proximity of infectable RBCs, but to prevent immune
response.

Rosettes usually bind a few RBCs to a single IRBC, but they may contain from 10 to
20 IRBCs and up to 50 uninfected RBCs (Wahlgren et al., 1994). Rosetting adherence
forces resist the physiological shear forces that are encountered in venous circulation
0.1 − 0.5 Pa (Chotivanich et al., 2000). Healthy RBCs, in turn, are also subject to
small attractive forces. They are known to form aggregate structures in culture called
rouleaux. The adhesion binding energy between two healthy RBCs has been estimated
to be from 6 ·10-4N/m to 1 ·10-3N/m (Hochmuth and Marcus, 2002). This inter-cellular
attraction produces a net inwards pull on the cells of the border of the hematocrit, so
these will exhibit a property similar to the surface tension of liquids (Foty and Steinberg,
2005) (see Figure 1.4).
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Figure 1.4: a) Scanning electron micrograph (SEM) of erythrocytes grouped in a
Rouleaux formation. ref.: PHIL-1092. b) SEM of a rosette formation comprised of an IRBC
surrounded by three healthy RBCs.
c) Static hematocrit layer shaped like a sessile drop: i) side view and ii) top view. Attractive forces
that bind settled hematocrit RBCs are weak, so hematocrit easily deaggregates with minimum
perturbation: iii) after medium renewal and iv) in a suspended culture. Images kindly provided
by Dr. J. Vidal, Experimental Microbiology Group, GlaxoSmithKline.
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1.3 Cultivation methods

1.3.1 In vitro cultivation of erythrocitic stages

Most species of malarial parasites and most stages of P. falciparum cannot be routinely
maintained in cell culture. Even the erythrocytic cycle of P. falciparum, which can be
cultured, is very slow, labor intensive, and expensive to maintain and propagate.

P. falciparum-infected erythrocytes were first preserved in vitro with subsequent in-
fection capacity in 1974 (Pavanand et al., 1974). IRBCs were preserved for at least 64
hours with re-invasion and no loss of viability. Different storage times of the RBCs were
tried. The current methods in use for in vitro propagation of the parasites are based on
the candle-jar method, which was first developed by Jensen and Trager (1976).

This method keeps a thin layer of RBCs incubated in culture plates (petri dishes),
at 38ºC, in 20 ml of artificial culture medium (RPMI1640; see table 1.2 for an outlined
specification.) mixed with human serum, at around 10% hematocrit in volume and in
a low oxygen atmosphere. Subcultivation of the population is required approximately
twice a week to limit culture infection ratios below 10% in the parasite load. This means
that a sample of the culture containing both healthy and infected RBCs is derived to
another culture vial with just healthy RBCs. Samples are diluted to a 1:3 - 1:4 fraction
with healthy hematocrit suspensions. This ratio corresponds approximately to the one
that results in a 0.5% − 1% of parasitized cells (a.k.a. parasite load or parasitaemia).
The medium is renewed daily, but not the day after subcultivation, through a gentle
drain that does not perturb the hematocrit layer. The easiest way to get the low oxygen
atmosphere is to keep the whole system hermetically closed together with a candle. After
each time the system is manipulated, the candle is lit and allowed to extinguish itself,
thus consuming most of the oxygen.

In the same article, the authors presented the continuous-flow method. It differs from
the candle-jar method in that the culturing medium is continually renewed instead of
replaced at discrete events. This achieved through a constant input flow with a peristaltic
pump operating at an input rate of 50 ml/day.

Both methods allow preserving the cultures for long-term stable cultivation with par-
asite growth rates reflecting 6-7-fold increases per cycle, and with full invading capacity
and no observable cellular damage of the IRBCs. This opened the door to the in vitro cul-
tivation of the parasite for pharmacological and immunogenic trials. The ratios between
the cell and medium volumes, the thickness of the cell layers (Jensen and Trager, 1978),
and the effect of using different RBCs sources and storage times (Capps and Jensen, 1983)
or strains of P. falciparum (Chin and Collins, 1980)were studied at the time.
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In later years, different studies regarding the same method were carried out. The role
of pH, glucose and lactate (Jensen et al., 1983), the synchronization of the cellular cycle
through the damage induced by drugs (Lambros and Vanderberg, 1979) or by the effect
of febrile temperatures (Kiatkowski, 1989), and the variations found in the growth rate
when using different substitutes of the serum were analyzed.

With the ultimate goal of building semi-automated, bio-reactor-like culturing meth-
ods, the harvests from static and agitated culture systems were compared (Butcher, 1981;
Butcher, 1982). The results were not conclusive and the heuristic assumption that agi-
tation would harm or be deleterious for parasite development remained (Jensen, 1988).
At the same time, many semi-automated methods based on the continuous flow protocol
were proposed. However, apparently none of the proposed apparatus offered a sufficient
increase in the performance to warrant the cost of building and maintaining it (Trager,
1994). Nowadays, there are some published standardized protocols for culturing Plas-
modium spp. (MR4, 2008). These methods are published by the Malaria Research and
Reference Reagent Resource Center (MR4), and they are periodically updated.

Some of the experiments presented above have been used to build, calibrate and
validate the model. Their detailed description can be found in Section 2.3.

1.3.2 Cultures performed by EMG-GSK

The bulk of the simulations were compared to the experimental work carried out
by the EMG-GSK. They had particular questions that required the application of the
computational model (e.g. what are the best storage timings for the RBCs, which is
the optimal design for the static cultivation of the parasite, how to assess the effect
of adrug when there are very small populations, among others). Additionally, some
experimental trials were designed to test the predictions and patterns produced by our
model, in order to check its validity. Unless specified otherwise, P. falciparum infected
RBCs in in vitro cultures were raised under the culturing conditions according to the MR4
protocols published in 2005. These general culturing conditions are outlined in table 1.2.
A list containing all the experiments performed by EMG-GSK is presented in Appendix
B.

The measurements performed on the culture system may give information regarding
different aspects of the infection course. Parasitaemia represents the extent of the in-
fection. Number of lysis and damaged RBCs can give information regarding the stress
suffered by RBCs and IRBCS. Age structure provides information regarding the degree
of synchronicity of the culture. Finally, the percentage of multiple infections can yield
information both regarding the spreading of the parasite through the hematocrit and the
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Input measurements Initial hematocrit (%H0), volume and shape of the
culture system, initial parasitaemia (%I0)

RBC source Human AB-, supplied by Spanish Red Cross. Variable
storage time.

Initial hematocrit (%H0) 5 % - 15% Hematocrit
Parasite source P. falciparum 3D7A supplied by the MR4
Initial Parasitaemia (%I0) 0.1 % - 3 %; Not applicable to recrudescence trials.
Culture medium: RPMI 1640, 25 mM HEPES, 10% human serum, 0.15

mM Hypoxanthine.
Cgluc 2.67 mM/l
Clact 0 mM /l
pH 7.2

Culturing method: static, agitated, suspension or recrudescence
Medium renewal Continuous medium renewal or daily punctual procedure
Culturing conditions Temperature: 37º C; Athmosphere: 5% O2, 5% CO2,

90% N2
Subcultivation: discrete events: daily or each 2, 3, or 4 days
Dilution ratio (ν): 1/5 - 1/3 of culture volume
Output measurements parasitaemia (%I), Growth ratio (GR), age structure of

IRBCs, % lysis or damaged IRBC counts, % multiple
infections

Table 1.2: General conditions of the cultures performed by the EMG-GSK. Detailed specifica-
tion sheets for RPMI1640 culturing medium and for human serum may be found at commercial
suppliers.
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preference for certain RBCs (young RBCs). They are all obtained by extracting samples
from the culture and counting the observed forms of the parasite and RBC.

The growth ratio per infection cycle (GR) measures the proliferation of the parasite
or propagation of the infection. It is obtained dividing the final by initial parasitaemias
through an infection cycle. This measurement can only be carried out for very syn-
chronous cultures. Growth ratios at fixed time spans are used instead to assess the
propagation of the infection. They are calculated from the parasitaemia measurements
at consecutive samplings. Typically, they comprise 12-hour growth ratio (GR12), daily
growth ratio (GR24), or ratio observed at each 48 hours (GR48), through the average
duration of the parasite intraerythrocytic life cycle.

1.3.3 Pending issues

More than 30 years of collective experience in the cultivation of P. falciparum have
provided a vast amount of heuristic knowledge and a broad set of rules that are considered
to be commonsense when tackling in vitro cultures. Some of this evidence is revisited by
INDISIM-RBC in Chapters 2 and 3. Additionally, some limitations in parasite develop-
ment have been observed in experimental static culture systems, in particular, and are
not yet fully understood.

a) The culturing medium must be replaced daily by fresh medium, except the
day after subcultivation. Medium renewal does not entail the agitation of the
hematocrit layer. Variations in the total amount of culture medium do not
drastically modify the culture requirements for renewal.

b) Subcultivation of red blood cell is carried out in order to control the par-
asitaemia. Custom static in vitro culture systems usually support 5% par-
asitaemia. Whenever the parasitaemia exceeds a 15% threshold, IRBCs un-
dergo excessive stress and cultivation is no longer feasible. It has been claimed
that increasing the culture medium to hematocrit ratio allows for higher par-
asitaemias (MR4, 2008); recent publications propose methods for achieving
such high infections (Radfar et al., 2009).

Furthermore, cultures where the red blood cells are maintained in suspension
(through the continual agitation of the culture system) do not present this
limitation on the parasitaemia. Subcultivation must still be carried out every
three or four days to maintain the viability of the culture, but the ratio of
IRBCs to healthy RBCs may reach up to 60% in this case.
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c) Culture systems must be of an appropriate size. Culture volumes typically
are ∼ 2− 100 ml and each volume must be cultured in a dish of appropriate
surface. The hematocrit is typically set in layers up to 3 mm depth.

The usual explanations for the observed limitations are commonsense yet quite vague. For
instance, the medium must be replaced because it is exhausted, RBC population must
be subcultured because otherwise no healthy RBCs would be available for contagion, and
the size of the system must be appropriate for optimal handling.

A more thorough examination of these and other limitations would increase the in-
sight concerning the system, and could contribute to improving the current standard
protocols. For instance, to have a bioreactor to cultivate malaria (and extensively other
infectious diseases) would aid pharmacological research. Such a device should be easy to
use and reliable, and allow for automated cultivation of the parasite with minimal RBC
and medium expenses. In order to build an automated bioreactor-like culturing device,
the following questions (conceptual and applied) regarding the current protocols require
detailed answers:

1. Why is the culture medium continually replaced? Are there alternative methods
for maintaining an appropriate environment for the RBCs?

2. Why are IRBC populations subcultured every 4 days at most? Can this limitation
be skipped?

3. Why is there a maximum threshold of culture viability at 10%− 15% parasitaemia
for static cultures but ∼ 60% for suspended cultures?

4. How does the storage of RBCs prior to cultivation affect the culture yield? Which
is the optimal storage period?

5. How do IRBC populations get synchronized or desynchronized? How does the
degree of synchronicity affect the population dynamics?

6. How does the size of the culture system affect the parasite performance? Which is
the optimal size for static cultivation?

7. How does the agitation of the culture system affect the propagation of the infection?
Whihc is the optimal agitation regime?

Answering these questions requires a detailed scaffolding, a model that directly tackles
the system formed by interacting healthy and infected RBCs.
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Better understanding of the culture systems is also required in many other domains
regarding the study of P. falciparum. An example is the current interpretation of the
experimental results of drug trials. The observed relation between the dose and exposure
to drug treatments and the subsequent lag in the infection detection times in treated
cultures is not yet fully understood. The amount of ill cells that are destroyed or harmed,
and the recovery times for the harmed surviving IRBCs can not be extracted from the
treatment outcomes. As a consequence, the effect of drugs in vitro is hardly translated
into an expected effect in the systems in vivo, which may lead to suboptimal choices on
which drugs should be selected for animal test trials. Appropriate models of the data
results are required to facilitate decision-making in this field.

Model and simulation of the behavior of IRBCs is also fundamental for the interpreta-
tion of more complex systems. One particular case is the response of experimental murine
models. These animal models consist of genetically modified mice with a reduced immune
system that can be engrafted with human erythrocytes. Later, infection can be inoculated
into each mouse and the response of the subject to specific treatments can be assessed.
The in silico model could be a tool to provide estimations for relevant parameters in the
animal model that can not be easily inferred from measurements on the real systems.

1.4 Models of the infection process

1.4.1 Levels of description and other classification criteria for
mathematical models

Mathematical models are simplified representations of the reality used in natural sci-
ences. They use mathematics to describe and understand the features (dynamics, struc-
ture and phenomena) of the systems under study. Models in microbiology may tackle
microbial ecosystems at different levels of description. Three different levels of descrip-
tion can be distinguished depending on their specific spatial (L) and temporal (T ) scales:
molecular, L ∼ 10−9m and T ∼ 10−6s (e.g. metabolic reactions, membrane transport,
protein folding); cellular, L ∼ 10−6m and T ∼ 10−3s (e.g. whole cell systems); and
populational, where L ∼ 10−3m and T ∼ 1s, at a minimum. Last, it must be stressed
that the characteristic scales of the populational or community level of description may
vary depending on the system and process under study. For instance, the appropriate
scales to study certain aspects of bacterial population dynamics in planktonic ecosystem
might be on the order of L ∼ 103m and T ∼ 1 year.

Besides the level of description, models in microbiology can be classified into dual
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categories, following other criteria:

Mechanistic-Empirical: Depending on whether the model attempts to unravel the
mechanisms that drive a particular observed behavior (e.g. how gravity and air
friction determine the trajectory of a cannonball) or simply tries to describe it (e.g.
best fit to experimental data).

Spatially Explicit-inexplicit: Depending on whether the model explicitly considers
(or not) the position of the modeled items. The simplest way to avoid making the
spatial configuration explicit is to consider a mean field approximation, to replace
all local interactions with an average or effective overall interaction.

Dynamic-Static: Depending on whether the model accounts for a process (e.g. the
evolution of landscape in successive stages of deforestation) or the outcome of a
steady or one-time situation (e.g. the best bet in a roulette game).

Stochastic-Deterministic: Depending on whether the model considers randomness or
not, both as uncertainty in the description of the processes and as diversity in the
values of the variables.

Continuous-Discrete: Depending on whether the model considers a continuum or a set
of one-time actions occurring at discrete events and at distinct sites.

Analytic-Numerical: Depending on the techniques used to assess the outcome of the
model. Whether an exact result of the model can be obtained or it must be solved
using approximate numerical calculations, often with a computer.

These classification criteria do not pretend to be exhaustive, but just orientational. A
more thorough description of the presented categories can be found in the thesis of A.
Standaert (2007).

1.4.2 Strategies in modeling complex systems

Two alternative strategies can be followed to structure information and build models:
the top-down approach (comprised by Population-based Models or “PbMs” in the
field of ecology) and the bottom-up approach (consisting of Individual-based Models
or IbMs in the field of ecology).

The top-down approach is the most widespread in science. It is also referred to as
decomposition or analysis and builds models through the breaking down of the system
and the describing of each of the parts that compose it. In the context of ecology, this
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approach aims to disclose the behavior of individuals and the rules that govern them from
the observations of the whole system or parts of it. Models built at a population level
of description are a particular type of System-based Models: they consider variables
that characterize the population and a set of laws governing them. These rules are
usually formalized with differential equations which are ultimately based on assumptions
regarding the behavior of individuals. System-based modeling consists on: defining the
relevant variables of the system and proposing a set of rules governing them, applying
these rules (i.e. solving the equations), and assessing the validity of the model through
the comparison of its results with experimental observations.

The bottom-up approach is synthetic thinking, i.e. the combination of simple as-
sumptions to give rise to a complex whole. It consists on piecing together detailed bits
of information to subsequently ascertain how the linked system behaves. Individual-
based modeling is an established discipline in theoretical ecology. It constitutes both
an approach and a set of techniques that differ from the ones used in the traditional
system-based models (Grimm and Railsback, 2005). Basically, Individual-based Models
in microbiology consider each cell a discrete entity characterized by individual variables,
besides their age and spatial location. IbMs constitute a shift of paradigm and follow a
bottom-up approach. They focus on the emergence of aggregate (and sometimes unex-
pected) behaviors observed in ecosystems from the detailed description of their compo-
nents. The cornerstone of IbMs is that simple rules defined at an individual level can
generate complex behaviors at a macroscopic level of description (Uchmanski and Grimm,
1996).

Models built at an individual level are a type of Agent-basedModels (AbMs): these
are computational models that simulate the actions and interactions of the autonomous
components of a system, in order to assess their collective behavior. Individual-based
modeling requires using heuristics and specific knowledge to define the individual entities
and the rules governing them, programming tools to put together the modeled rules and
mechanisms, and statistical analysis to extract information from the simulation outcomes
and compare them to experimental observations (Bonabeau, 2002). In recent years, the
Individual-based approach has been increasingly used in the field of microbial ecology
(Hellweger and Bucci, 2009).

In this thesis, the bottom-up approach is most commonly used: the heusristic assump-
tions of the experimentalists are sistematically put to the test because the foremost aim
of the thesis is to gain understanding of different culture systems. Nevertheless, contin-
uous models are also used to check the consistency of the IbM structure and predictions
and to connect the IbM with macroscopic observations (see Section 3.5). The problem
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of choosing and developing a modeling strategy in the domain of microbial population
dynamics is tackled in depth in Chapter 4.

1.4.3 Models of the spreading of diseases

The evolution of the parasitic infection can be regarded as the population dynamics
of two coexisting populations: the parasite and the host cells. In this case, tackling
the potential factors that regulate the spreading of the disease within a host or through
an in vitro culture may resemble solving a traditional problem in ecology: population
regulation in an ecosystem composed of two competing species (Haydon et al., 2003). This
kind of approach allows posing general questions on the mechanisms that govern parasite
proliferation and to predict the expected population dynamics for not too complex systems
and for steady states. An example of such an approach is the Nicholson-Bailey Model
(Bailey, 1933; Nicholson, 1933), which is closely related to the logistic model of Lotka-
Volterra for the population dynamics of two interacting populations (Lotka, 1925).

An alternative approach is to consider the sub-populations of healthy and infected
individuals and model the disease as a transference from one group to the other. This
approaches assume a given model for the transfer between the two groups in order to
study the evolution of the system as a whole, with the ultimate aim of improving the
procedures and treatments to control the disease. For instance, models of the disease in
vivo are used to: (i) infer the effective multiplication rate and degree of sequestration
in the microvascullary system from the observed parasitaemias in the peripheral blood
(White et al., 1992), (ii) describe the regulation of the parasitic population by the febrile
temperatures and vice versa (how the population may give rise to fever) (Gravenor and
Kwiatkowski, 1998), or (iii) study the response to drug therapy and determine the optimal
susceptible targets for further drug development, among others (Chyiaka et al., 2008).

The building block of any epidemiological model is the Kerman-McKendric model or
SIR model, which computes the theoretical number of individuals (a.k.a. agents) infected
with a contagious illness in a closed population over time. The name of this class of
models derives from the fact that they involve coupled equations relating the number of
susceptible agents S(t), infected agents I(t), and recovered (or dead and removed from
the infection process, but still counted within the population) agents R(t).

The most basic SIR model assumes that the population size is fixed (i.e., no births
or deaths by natural causes), that the incubation period of the infectious agents is in-
stantaneous, and that the duration of infectivity is equal to the span of the disease. It
also assumes a completely homogeneous population with no age, nor spatial or social
structure. In this case, the model consists of a system of three coupled nonlinear ordinary
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differential equations:

dS(t)
dt

= −βSI (1.1)

dI(t)
dt

= βSI − γI (1.2)

dR(t)
dt

= γI (1.3)

where β is the infection rate, and γ is the recovery (or mortality) rate.
The key value governing the dynamics of such a system is the reproduction number

(R0), which can be regarded as an epidemiological threshold: R0(t) = βS(t)
γ . It represents

the subsequent potential infections caused by a single infection, and is determined by the
total number of “contacts” that occur since one agent gets infected until it recovers or
dies. The value of R0 is crucial in this model: when R0 < 1, each agent that contracts the
disease will infect fewer than one individual before dying or recovering, so the outbreak
will run down until it gets extinguished. When R0 > 1, each person that gets the
disease will infect more than one person, so the epidemic will spread until reaching every
single agent. In this case, the number of infected individuals exponentially increases until
healthy individuals are no longer available and I(t) follows a sigmoidal curve. The greater
R0, the steeper the slope of I(t). A simple but surprising result drawn from this model
is that for the population as a whole it is better to have epidemics with high mortality,
because they dissipate more easily (Anderson and May, 1979).

The SIR model can be made more realistic by introducing increasing complexity. One
first step would be to introduce continuous or discrete inputs (for instance, a growth
rate of healthy agents, µ) and/or output of agents (for instance, a constant death rate of
agents, equal to the growth rate, µ). This leads to stable, oscillating or chaotic popula-
tion dynamics in the steady state (Kuske et al., 2006). Studying the temporal patterns
observed in these models gives information regarding the characteristic temporal scales
of the propagation of the infection.

More elaborate models can consider that the recovered individuals become infectable
after a certain period (i.e. SIRS models) (Aiello et al., 2000), or define additional stages in
the infection process, e.g. SEIR models S-susceptible, E-exposed, I-infective, R-removed
(Li et al., 2001), where the exposed stage corresponds to those already infected individuals
that are not yet infective themselves. Alternatively, the model can be structured to
explicitly represent different parts of the system, for instance to consider different ages for
the agents (White et al., 1992). The population is then divided into a set of interacting
sub-populations, each one governed by a set of equations 1.1, 1.2 and 1.3. The set of
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equations are coupled with each other. One could split hairs to add all these and more
refinements into a model to get more detailed and structured models with bigger matrices
of coupled equations, but there is the risk of missing the forest for the trees.

A qualitative step in the complexity of the model is to consider the spreading of the
infection as a random process occurring between individuals. This is assuming that the
single effective contact between an infected and a susceptible individual, as well as the
death or recovery of an infected agent, are stochastic phenomena occurring with a given
probability. Then, the spreading of the disease can be described as a Markov process
(where the future state of the system at a given time is a stochastic function of the state
at the present time). Such processes can be studied with computational techniques to deal
with random processes, such as the Monte-Carlo simulation methods (Metroppolis and
Ulam, 1949). This way of tackling the problem is called the Reed-Frost model, and must
be introduced when we consider finite populations (Abbey, 1952). It provides qualitative
differences from the Kerman-Mckendrick model outcome mainly when small populations
are taken into account. The most relevant difference is that disease can persist even when
R0 < 1 and may peter out although R0 > 1. The nonrandom Kerman-McKendrick model
can be considered as the average outcome of the Reed-Frost model when populations are
big enough and when we consider an statistical ensemble of simulations, when the model is
run several times with different seeds for the random numbers (Hoppensteadt and Peskin,
2001).

The models presented to date all consider homogeneous distributions of the infected
agents. They consider that any individual has the same probability of coming into con-
tact with the infection. This is generally true when the system under study is mixed (i.e.
infection occurring in circulating blood, or agitated culture systems) and when the infor-
mation regarding the spatial structure of the system is not available. More complicated
spatially explicit or network-based models can be developed to account for the spatial
structure in the spreading of diseases (Rhodes and Anderson, 1996).

Alternatively, models can be built using bottom-up strategies: Cellular Automata
(CA) and Individual-based models (IbMs). CA consider the spatial structure of the
system alone and define local rules for the interaction between sites. CA have been
applied to study epidemics, giving similar results to the ones obtained with the SIRS
models and extending their versatility to other situations (Ahmed and Agiza, 1998).

The connection between PbMs and IbMs in the modeling of infectious diseases has
recently been analyzed in depth (Sharkey, 2008). More particular, IbMs have been de-
veloped to better understand the between-host spreading of malaria (Dietz, 1988), the
intra-host population dynamics of P. falciparum (White et al., 1992), and both processes



1.5 Aim, objectives and outline of the thesis 31

simultaneously (McKenzie and Bossert, 2005).
Chapters 2 and 3 in the current study are particular applications of the IbM approach

to the study of the infection processes occurring in in vitro cultures of P. falciparum
infected RBCs.

1.5 Aim, objectives and outline of the thesis

The motivation for the research carried out by MOSIMBIO is to extract general un-
derstanding on microbial populations through the study of different specific applications.
Therefore, we address particular aspects regarding the role of the population structure
in communities consisting of a large number of cells, usually at the request of field ex-
perts. As a result, we develop practical tools that can be used to connect theoretical
microbiology with social and industrial demands.

The research in malaria is issued upon request of the EMG-GSK and gives rise to the
development of the tool INDISIM-RBC. The aim of this thesis is to acquire better under-
standing of the long-term in vitro cultivation of human RBCs infected with Plasmodium
falciparum under different conditions.

Alongside this particular application, the thesis also intends to revise, compile and for-
malize the current know-how regarding the modeling of microbial populations in general,
in order to improve current strategies and techniques for studying microbial ecosystems
and cell cultures.

The specific goals to be achieved can be classified into three categories:

A) conceptual goals, which aim to improve the comprehension of the culture sys-
tems, decode the underlying mechanisms and explain the observed behaviors,

B) methodological goals, which refer to those advances regarding the procedures
and techniques that need to be achieved when raising, building and analyzing
the model; and

C) applications and practical benefits that can be obtained from the use of the
methodology, the model and the simulator INDISIM-RBC.

A) Theoretical approach

The increase in understanding of complex systems requires building mechanistically
rich models that capture the essential features for explaining the observed behaviors.
Such models should be appropriate to:
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A1) Key the experimental measures that provide operative information relevant
to the study of malaria-infected RBCs in in vitro cultures.

A2) Identify the individual features and local mechanisms that govern the prolif-
eration of the malaria infection in in vitro cultures.

A3) Determine how macroscopic conditions and external manipulations of the cul-
ture system influence the dynamics of the infection.

B) Methodological approach

Building a mechanistically rich and (temporally and spatially) explicit IbM of the
experimental cultures that allow for a quantitative comparison of the simulation outcomes
with real measurements is more easily made when following a plan. A methodological
roadmap to do so is:

B1) Develop minimal models and gradually increase their complexity following the
PoM (Pattern-oriented Modeling) strategy (Grimm et al., 1996).

B2) Select the most appropriate approach to tackle each specific problem (ei-
ther PbM and IbM), and apply the SWOT analysis (Strengths-Weaknesses-
Opportunities-Threads) to modeling in microbiology.

B3) Develop tools to canvas the experimental data and the simulation outcome.

B4) Adapt standardized methods for describing, analyzing and communicating
IbMs, such as the ODD (Objectives-Design concepts-Details) protocol, to
modeling in microbiology.

C) Applications of INDISIM-RBC

The use of the theoretical and methodological advances should lead to effective appli-
cations that serve to improve the understanding and management of specific real systems.
The expected benefits are to:

C1) Define methods and criteria to compare different RBC storage periods, para-
site strains and commercial sources of culture medium, among others.

C2) Determine the connection between mechanisms operating at the cellular and
the macroscopic levels of description.
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C3) Detect the advantages and limitations of different culturing protocols and call
the prospects for improving them.

C4) Set the geometry and dimensions of the culture vials that lead to optimal
static cultivation of the parasite.

Outline of the thesis

The specific results obtained with INDISIM-RBC to cover the objectives listed above
regarding the application of INDISIM-RBC appear recurrently in Chapters 2 and 3 of
this thesis. The fundamentals of INDISIM methodology are presented in Section 2.1. The
first robust version of INDISIM-RBC, the two-dimensional model, is presented in Section
2.2. The results obtained with it are presented in Section 2.3. Section 2.4 outlines some
of the problems that could not be tackled with the version of the model in 2D. The model
was presented in Ferrer et al (2007).

The three-dimensional version of the model is presented in Chapter 3. The observed
patterns that could not be explained by the 2D model are described in depth in sec-
tion 3.1. Section 3.2 describes the modifications made on the model to deal with these
pending issues described above. Section 3.3 presents the first results from this version.
The geometric limitations on the static cultivation of the parasite that result from local
interactions are studied in depth in Section 3.4. The contribution of diffusion to the local
limitations is examined in Section 3.5. Finally, some lines that remain open for further
research are proposed in Section 3.6. The application of INDISIM-RBC to static cultures
was presented in Ferrer et al (2008b).

The view obtained by MOSIMBIO when modeling different types of microorganisms
and phenomena results in an heuristic program that is formalized in Chapter 4. A strategy
for raising realistic and mechanistically rich models, Pattern-oriented Modeling (PoM),
is outlined and adapted to microbial communities and cell cultures in Section 4.1. Its
application to deal with malaria cultures is put forward as an example. Two comple-
mentary strategies can be adopted to build models of microbial communities: bottom-up
and top-down approaches. The suitability of each strategy -specifically, models based
on individuals (IbMs) and models describing whole populations (PbMs)- is examined in
Section 4.2. The discussion is illustrated with examples from predictive microbiology and
microbial ecology in general. Finally, some tools for analyzing microbial systems are pre-
sented in Section 4.3. Some strategies and techniques adopted from thermodynamics and
statistical physics are applied to the analysis of populations, in order to provide criteria
to deal with real or simulated cultures. This discussion was compiled in two publications:
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Ferrer et al. (2008a, and 2009).
The thesis concludes with Chapter 5, which consists of a summary of the general

conclusions (Section 5.1), an scheme of the specific results obtained (Section 5.2), and an
exposition of the perspectives for further work (Section 5.3).

In order to complement the information here presented, some clarifications, technical
details and additional data have been included in the Appendices. A list of the abbre-
viations employed in the document is presented in Appendix A. A detailed description
of the experimental work carried out by the EMG-GSK is presented in Appendix B. An
outlined description of the statistical tools and programs used is presented in Appendix
C. Finally, a list of publications related to the work presented is offered in Appendix D.
This appendix also includes a link to the web page of MOSIMBIO, where the interested
reader can find links to some sample simulations in 2D and 3D, to the open sources of
the simulation code in Visual Fortran 6, and to other lines of investigation pursued by
the group.



Chapter 2

INDISIM-RBC: model of P.
falciparum infected RBCs in in
vitro cultures

In vitro cultivation of P. falciparum is a custom practice carried out with mastered
techniques that were set thirty years ago. Yet, many limitations that make malaria har-
vesting costly and tenuous are accepted without examining whether they could be avoided
by using alternative cultivation methods. Plasmodium falciparum in vitro cultures (see
Section 1.3) have been modeled using INDISIM-RBC, an Individual-based model (see
Section 1.4) that has been framed with the information on the RBC and the parasite
found in literature (see Section 1.2).

This chapter describes the working methodology (Section 2.1) and the specific model
(Section 2.2) used to tackle malaria spread in vitro. It also includes the results obtained
with the 2D version of the model (Section 2.3), which is especially concerned with the
processes affecting individual cells. These results refer to specific problems detected in
real systems and reproduce observed phenomena and trends. The chapter ends with a
brief discussion of the results obtained and the loose ends that should be tackled in further
chapters (Section 2.4).
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2.1 Background and general outline of INDISIM

2.1.1 Basis of INDISIM

The acronym INDISIM stands for INDividual DIScrete SIMulation. It refers to a
modeling methodology and also to the software developed in FORTRAN to examine the
outcome of particular models through computer simulations. INDISIM is specifically
designed to study microbial communities and their environment through a mechanistic
approach.

INDISIM has features typical of the Monte Carlo Methods (MC). This term describes a
large class of computational algorithms that use repeated random sampling and reckoning
to obtain their results. MC simulations are especially useful to address systems with
a large number of interacting particles and they are a good tool to study stochastic
phenomena (see Section 1.4).

Both INDISIM and MC require the use of large sets of random numbers. As truly
random numbers are only obtained through measurement of probabilistic processes, com-
puters use pseudo-random sequences. These are long strings of integers that exhibit the
statistical properties of randomness, at least to the extent required by the simulations.
They can be generated with an algorithm from an initial value called the random seed.
Two simulations with the same initial configuration and random seed will produce exactly
the same results. Modifying the random seed can produce different results because the
stochastic contributions to the simulations are altered (Metroppolis and Ulam, 1949).

The model is also related to the ones used in Molecular Dynamics (MD). MD comprises
those computational models in which interacting atoms (or molecules) are allowed to move
in discrete events, following the model rules, to give rise to the long-term evolution of
systems composed of a large number of particles (Alder and Wainrwright, 1959). Both
methods simulate the evolution of dynamical systems based on statistical mechanics.

However, the methodology of INDISIM differs from the MD approach in several main
aspects. Firstly, the main entities in MD are molecules while INDISIM deals with cells.
This means that the processes represented by each approach cover different spatial and
temporal scales. Secondly, MD typically uses deterministic rules while INDISIM de-
picts stochastic processes and uses probability distributions. Thirdly, MD typically deals
with systems in the thermodynamic equilibrium (or in the steady state) while INDISIM
simulates open systems that are far from the thermodynamic equilibrium. This list of
divergences could be further extended. Although INDISIM originally arose from MC and
MD models, it has its own specific features.

For this reason, the model is better seen in the context of System Dynamics, the
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branch of physics that tackles generic complex systems. In this context, INDISIM is
classified as an Individual-based Model (IbM, a term mainly used in theoretical ecology)
or as an Agent-based Model (AbM, a term mainly used in social sciences). A thorough
discussion of the application of the IbMs approach to microbial populations is provided
in Chapter 4.

The root of the simulator is the program Barcelonagram (Valls, 1986; Giró et al.,
1986). It was initially employed to better understand the normalized biomass distri-
bution function among ecological populations. Simulations were used to show how the
application of fundamental theoretical principles can give rise to the behavior observed in
real communities (Wagensberg et al., 1988a; Wagensberg et al., 1988b). The methodology
proved an appropriate tool to address the theoretical study of complexity when Solé et al.
(1992) used a version of Barcelonagram to study self-organized criticality in ecosystems.

Meanwhile, the approach to particular systems was tackled as Bermúdez et al. (1989)
built the direct precursor of INDISIM and succeeded in simulating the growth of Serratia
marcesens and Escherichia coli in different situations, in accordance with experimental
data. In the year 2002, the current term INDISIM was coined for the first time and
its general methodology was explained in detail (Ginovart et al., 2002a). From then on,
INDISIM evolved in the study of specific cases of interest, such as bacterial growth in
agar plates (Ginovart et el., 2002c), the study of the influence of bacteria size and shape
in yogurt processing with S. thermophilus and L. bulgaricus (Ginovart et al., 2002b),
bacterial ecosystems in soil dynamics (Ginovart et al., 2005; Gras, 2004), the composting
process (Gras et al., 2006; Prats et al., 2006b), flocculation in brewing yeasts (Ginovart
et al., 2006; Ginovart et al., 2007) and the study of the lag phase in bacterial growth
(Prats et al., 2006; Prats et al., 2007; Prats et al., 2008).
Arguments on the use of Individual-based methodology in the context of microbial sys-
tems, in general, and an overview of the range of applications that can be tackled with
INDISIM, in particular, will be presented in Chapter 4.

2.1.2 General outline of the INDISIM methodology

INDISIM is a spatially explicit IbM. The modeled space is split into a set of regular
divisions called spatial cells. The modeled events occur at finite and regular intervals,
called time steps. Two main entities are taken into account by the model: the micro-
bial cell and the spatial cell. The population is the ensemble of microbial cells and the
environment is the set of spatial cells.

The state of a population composed of N microbial cells at a given time step t is
described with the matrix PN (t).
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PN (t) = {
−→
B i[v1(t), v2(t), ....vs(t)]}i=1,N (2.1)

The state of each microbial cell is defined with a vector
−→
Bi(t). The s components of

this vector stand for: the individual label (integer number i), the spatial position of the
cell and the microbial characteristic variables (e.g. age and mass, among others), which
may change throughout the simulation according to the set of rules governing individuals
(e.g. motion, uptake and metabolism, among others).

Microbial cells are located in a regular grid. The modeled space is divided into Q
spatial cells, each representing a site in the grid. The state of the environment at a given
time step t is described with the matrix GQ(t).

GQ(t) = {
−→
E j [w1(t), w2(t), ....wr(t)]}i=1,Q (2.2)

Each spatial cell represents the local environment of microbial cells, and is described
with the vector

−→
Ej(t). The r components of this vector stand for: the cell label (integer

number j), the coordinates in the spatial grid and the local characteristic variables (e.g.
concentration of substrate, among others). The processes that affect each spatial cell are
described by the set of rules governing the environment (e.g. substrate diffusion, among
others).

The operating procedure of INDISIM follows the general scheme of Monte Carlo Meth-
ods. Firstly (a), the initial state of the system is set. Secondly (b), the rules governing
the system are applied recurrently, and finally (c), once the simulation is finished, the
output data is analyzed.

The matrices PN (t) and GQ(t) are usually very large (N ∼ Q ∼ 104 − 106 ) and not
easily handled. For this reason, rules governing the model are applied through explicit
first-order methods (the state of the system at next time step is computed just from the
state of the system at the current time step). This allows the identification of individual
cells and facilitates the implementation of rules describing local interactions. It also
avoids performing operations that require a lot of computation (such as the inversion
of PN (t) and GQ(t)). Explicit solving of the proposed rules entails the reduction of
the computational time. However, a burdensome limitation comes from the fact that
explicit methods are numerically unstable for certain values of the parameters used by
the model. This hindrance was found during the execution of this thesis. The formulation
of the problem (model of substrate diffusion through the hematocrit layer) and how it
was handled is described in Section 3.5.

Rules governing the individuals and their local environment are implemented as in-
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dependent sub-models that can be switched on and off at will. This means that models
can be built with increasing complexity and that the outcome of the different versions
of the same model are easily compared with each other. Such a procedure provides the
staggered study of complex systems and allows determining the appropriate degree of
complexity of the models.

INDISIM can track the evolution of single individuals. It can also store data at any
time during the time step, thus following in detail the course of an event within the time
step. This feature allows the comprehensive monitoring of any process occurring in the
model.

The general operation of the simulator is depicted in the flowchart in Figure 2.1.
An exhaustive description of the general procedure of the simulator may be found in
(Ginovart, 1996).

INDISIM-RBC is the specific application of the presented methodology to the study of
the spread of the malaria parasite in in vitro red blood cell cultures. It was developed in
close collaboration with the EMG-GSK, in response to their specific needs and interests.
The following two chapters provide a detailed description of the procedure and a discussion
of the obtained results with different versions of INDISIM-RBC: a preliminary 2D model
with a time step of 1 hour, and the 2D and 3D models with a time step of 6 minutes.
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Figure 2.1: Flow chart of the simulator INDISIM. There three main parts of the Montecarlo
Method are distinguished. a) Initialization: (1) External data is input (2) to characterize the
individuals and spatial cells, define the rules governing them, and (3) set the spatial structure
and scaffold of the model. This information is used (4) to set the initial configuration of the
system and to run the simulation (5,6). ; b) Main loop: repetitions at each time step that
recurrently apply the rules governing (5) the individuals, and (6) their local environment; and
c) Outcome: (7) data are obtained through the simulation (7i: during the course of individual
actions, 7ii: after all the population has acted and 7iii: after the action on all spatial cells); (8)
output information is stored and analyzed.
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2.2 ODD description of INDISIM-RBC in 2D

The ODD protocol is the standardized protocol used to present Individual-based Mod-
els in ecology in order to facilitate their communication and sharing (Grimm et al., 2006).
It comprises a formal layout that consists of three blocks (Overview, Design concepts, and
Details). In the first block, the generalities of the model are outlined. This includes the
Purpose of the model, its operating State variables and scales, and a schematic Pro-
cess overview, as well as Scheduling details (the order in which the simulator applies the
outlined rules). The second block should deal with the key concepts for designing and
understanding IBMs in ecology, such as the emergence of behaviors at a system level,
the use of stochasticity by the model, the nature and range of the interactions among
individuals, and the extraction of information from the model to be compared with real
world observations. Finally, the third block offers a detailed description of the particu-
larities of the model, such as the Initialization of the values for the variables, the use of
Input data from external databases, and a thorough description of the Submodels: the
rules and functions implemented.

A description of the 2D version of INDISIM-RBC is presented below in line with the
ODD standard protocol.

Overview

Purpose:

The model aims to decipher essential underlying mechanisms that control in vitro cultiva-
tion of Plasmodium falciparum IRBCs. It focuses especially on how system-level behaviors
may emerge from individual characteristics and population structure. Two versions of the
program are presented here: 2Dv.1 and 2Dv.2.

Characteristic scales:

The model is spatially explicit and represents a small fraction of the hematocrit. In the
first version (2Dv.1 ), the space is modeled as a regular 2D grid formed by L× L spatial
cells (sc), with L = 100-300 spatial cells. Each spatial cell is a square of lsc = 10 µm side
(l). Therefore, the grid represents a surface of 1 mm². Processes are modeled discretely
and events take place at finite time steps. The time step (ts) for the first version of the
model (2Dv.1) is set to 1 hour. The value of the simulation unit that represent substrate
particles (su) is set to 106 molecules.
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The later version of the simulator (2Dv.2 ) operates at smaller temporal scales; in particu-
lar the time step is reduced one order of magnitude and set to ts = 6 minutes. Such mod-
ification comes together with the reduction of the simulation unit to su = 105 molecules,
and this entails modifying some parameters defined in the model. These modifications
are specified in situ.
The characteristic scales used by this version are outlined in Table 2.1.

Boundary conditions:

The model represents a small part of a real culture that exchanges biota and substrate
with the rest of the system. In other words, most of the surface of the culture system
consist of thousands of replicas of the model tiling it (exceptionally, the regions next to the
walls of the culturing flasks are not in contact with other parts of the culture). Periodic
boundary conditions (PBC) are used to effectively simulate this kind of infinitely tiled
systems. Basically, they make any RBC or substrate particle going beyond the boundaries
of the model re-enter through a point symmetrical to its exit. Such boundary conditions
reduce the effect that the finite size of the simulation grid has on the dynamics of the
model (Hoffmann and Chiang, 2004).

State variables:

Two types of low level entities are defined, the Red blood cell (RBC) and the spatial
cell (SC). Each entity has a set of variables that determines its state. Average values of
the characteristic X computed throughout the population of RBCs (or spatial Cells) are
represented with the notation X. Values temporally averaged throughout the simulation
course are represented with the notation 〈X〉.

1. Variables of the RBC (the Red Blood Cell susceptible to infection). We distinguish
three kinds of individual variables:

a) Common characteristics for every RBC. These include constant values,
such as the cellular volume, or the types of infection states: healthy RBC
(type 0), and IRBC in the ring (R), trophozoite (T ), schiszont (S) and
fragmenter (F ) stages of the infection cycle. Also there are properties
that depend on the cellular state, such as the infection susceptibility
(Pinf ), which depends on the age of the RBC, or the accidental death
rate during the infection cycle (Pdeath), which depends on the stage of
the infection cycle.
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b) Individual characteristics that are set when the RBC is introduced into
the model. Each RBC has its own specific traits that are represented
as characteristics that do not vary through the simulation. The values
representing them (X) are set with normal distributions (N

(
X,σX

)
)

around mean values (X) and with deviations (σX) that are extracted
from measurements of real systems. Some individual characteristics are:
the uptake requisite for healthy RBCs (U), the maximum number of
time steps that viable RBCs last (tMRBC), the time for optimal infection
susceptibility (tMSUS) or number of time steps that the RBC is regarded
as an optimal target of invasion by the malaria parasite, the duration
of the infection cycle (tMINF ) and the duration of each of the stages of
the infection cycle (tMCL ({R,S, T andF})).

c) Individual variables that vary through the simulation. They define the
instant state of the cell. Some variables are: location in the spatial
grid (x, y), RBC age (tRBC) and time in culture (tcult), infection stage
(ICL = {0, R, S, T or F}), post-invasion time (tINF ), and metabolic
stress index (IM), among others.

2. Variables of the spatial cell. They represent characteristics of the local environment.
They include: total number of RBCs (nRBC (x, y)), and of each of the infection
stages (nICL (x, y), ICL = 0 : F ), number of merozoites (nmero (x, y)), and total
amount of glucose (Cgluc (x, y)) and lactate (Clact (x, y)).

A scheme presenting the characteristic scales, entities and spatial structure of the model
is depicted in Figure 2.2. The list of variables, their values (in simulation units and in
measured amounts) and their reference sources to set them are presented in Table 2.1.

Process overview and scheduling:

The general scheduling of the simulator follows the scheme depicted in Figure 2.1. At
each time step, the processes affecting the low level entities of the model are split into:
1) processes affecting the RBCs, 2) processes affecting the spatial cells and 3) processes
affecting the system as a whole.

First, the actions on every RBC take place. RBCs act sequentially, and each one
carries out its actions consecutively. Individual actions affect solely the spatial cell in
which the RBC is placed and modifications in the spatial cell due to RBC actions are
updated as each individual action proceeds. Once a RBC has finished all its actions,
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another RBC starts to act. Output data regarding any of these processes are labeled as
7i in Figure 2.1.

RBC actions alter the characteristic variables of each spatial cell. After every RBC
has acted, processes affecting the spatial cells take place. The non-homogeneities caused
by the diversity in biological activity produce fluxes to relax the appearing gradients.
Output data reflecting these transport phenomena are updated in paral·lel, once every
spatial cell has acted, and they are labeled as 7ii in Figure 2.1.

Finally, processes that affect the system as a whole affect every RBC and spatial
cell. They occur once in a while and represent global modifications of the population
and environment. Processes of the whole system are implemented after actions on the
individuals and spatial cells have occurred. They represent a modification of the scenario
for the next time step. Output data showing the configuration of the system after all
actions are labeled as 7iii in Figure 2.1. The modeled processes are listed below following
this scheduling:

1. Processes affecting the RBC (including IRBCs).

(a) Motion: RBCs randomly shift positions in agitated cultures and don’t move
in static cultures (see process 3c).

(b) Uptake: each RBC uptakes an amount of glucose that depends on its requisites
and on the concentration of substrate at the same spatial cell.

(c) Metabolism: the uptake requisites for the next time step are determined and
an amount of lactate is excreted as a function of the uptake.

(d) Infection:

i. IRBCs undergo the parasite life cycle. After a complete infection cycle,
the IRBC dies and may infect neighboring cells, so

ii. any healthy RBC neighboring an IRBC at its lysis may become infected
with a fixed probability.

(e) Death: dead RBCs are removed from the model. Death may becaused by

i. accidental rupture, with probability that increases with the infection stage;

ii. exceeding the maximum age;

iii. exceeding maximum metabolic stress index.

iv. lysis at the end of the infection cycle.
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Figure 2.2: Depiction of the entities, variables and spatial structure of the 2D versions of
INDISIM-RBC. Figure shows a 3x3 square grid containing i) RBCs and ii) Spatial cells. Up
to 2 RBCs can be contained in a spatial cell; iii) concentration of substrate glucose is indicated
as the gradation in a blue-white scale; iv) extracellular merozoites are depicted as green dots.
Figure shows nine replicas of the simulated system to illustrate the implementation of periodic
boundary conditions. Whenever a magnitude is transported beyond the system, it reenters it from
a symmetrical spot.
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Parameter description Notation Value Reference source
Time step ts 1 h (0.1 h)
Grid size L 100
Cell size lsc 10 µm

Substrate unit su 106molecules
Maximum RBC age tMRBC 2800 (28000 ) ts Capps and Jensen,
Maximum time for infection tMSUS 170 (1700 ) ts 1983
Average glucose uptake rate U 20 su / ts Pasvol et al. 1980
Maximum metabolic stress index IMM 3 Guyton, 1987
Maximum and minimum infection
susceptibility for RBCs

Pmax, Pmin 0.7 - 1, 0 - 0.5

Duration of infection cycle tMINF 48 (480 ) ts
Maximum duration (tMCL (−)) and
death probability (Pdeath) of the infected
stages:

tMCL (−) Pdeath

- Healthy RBC 0 - 0
- Ring R 18 (180 )

ts
0 Sherman, 1998a

- Trophozoite T 17 (170 )
ts

10−3(10−4)

- Schizont S 7 (70 ) ts 10−2(10−4)

- Fragmenter F 6 (60 ) ts 10−2(10−3)

Initial parasitaemia %I0 0.1 - 5 %
Trager and
Jensen, 1976

Initial mean post-invasion time tINF (0) 0 - 48 (480 ) ts
Initial glucose per spatial cell Cgluc(0) 1200 su
Initial lactate per spatial cell Cgluc(0) 0 su
Subcultivation period - 48-96 (480-960)

ts
Subcultivation ratio - 66% - 80% MR4, 2009

Table 2.1: Characteristic parameters of INDISIM-RBC that describe: the scale and spatial
structure of the model, the RBC population, the parasite strain, the suitability of the culturing
medium (captured as an accidental death probability), the initial conditions and the experimental
protocols. Enclosed italic values correspond to the versions 2Dv.2 and v3D of the simulator that
operate at reduced time steps.
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2. Processes affecting the spatial cells (SC ).

(a) Diffusion of substrate: Substrate propagates from cell to cell following Fick’s
law to compensate concentration gradients. The total surface between cells is
not taken into account.

(b) Motion/death of RBCs: RBCs may abandon a spatial cell (see processes 1a
and 1e).

(c) Resetting of spatial cell characteristics due to a subculture (process 3a) or
medium renewal (process 3b).

3. Process affecting the system as a whole (WS ).

(a) Sub-cultivation: A variable fraction of the RBC population is replaced by
healthy RBCs and the medium is renewed. Glucose and lactate concentrations
are set to initial values.

(b) Medium renewal: A fraction of the culture medium is renewed.

(c) Agitation: RBCs shift their position in the spatial grid at random.

Design Concepts

Emergence:

Population structure (e.g. distribution of post-invasion times among the IRBC popu-
lation, among others) and spatial patterns emerge from the individually defined infection
cycles, from the local interactions among RBCs and merozoites, as well as from the in-
clusion of stochasticity in the processes. The average infection proliferation within the
culture (growth ratio) depends on these features, and thus also emerges from the individ-
ually defined rules.

Adaptation/Fitness/Prediction/Sensing:

RBCs perceive just their immediate surroundings (∼ 10 µm). Rules governing indi-
viduals take into account the number of glucose and lactate particles, extracellular mero-
zoites and RBCs in the same spatial cell. Rules governing each spatial cell (i, j) take into
account its immediate neighborhood (nn) which consists of eight cells, four side-to-side
spatial cells -(i, j ± 1) and (i± 1, j)- and the four diagonal neighbors (i± 1, j ± 1).
The principle of parsimony suggests that, since cellular behavior can be explained as a
mechanism, it is better not to resort to more complex explanations, such as individual
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preferences or free will. For this reason, RBCs don’t make decisions to increase their
fitness and no adaptation rules are defined. Nor do RBCs have predictive capability,
and they only sense their environment in the sense that they uptake as much nutrient as
available.

Stochasticity:

Randomness is introduced in the model in different ways. Firstly, population is hetero-
geneous. Some individual characteristics (e.g. U , tMRBC , among others) are randomly
distributed among the population with normal distributions around mean values. Sec-
ondly, uncertainty and variability are introduced in individual processes as Gaussian noise
on the expected values (e.g. instant uptake needs u are set following N (U, σU )), and also
as probabilistic rules (e.g. infection of healthy RBCs -sub-model 1d.ii - or accidental death
-sub-model 1e-).
It must be stressed that the inclusion of stochasticity is essential in order to obtain the
appropriate emergent behaviors. Finally, random numbers are also used to create the
tables that determine the order of action when RBCs act sequentially.

Interactions:

The main interaction between individuals is the spreading of the infection. RBCs also
interact with each other by competing for nutrients and accumulating harmful substances.
Both interactions are local and range to the first nearest neighboring cells.

Observation:

The graphical interface of the model shows data collected at the end of each time step (la-
bel 7iii in Figure 2.1). It is comprised of three (six, in version 2Dv.2 ) graphical windows
and a numeric display showing system-level variables that are updated on the fly. The
windows represent (1) the spatial distributions of RBCs and IRBCs, and (2) merozoites
(in version 2Dv.2, concentrations of (3) glucose and (4) lactate are also depicted), (5)
the temporal evolution of the number of RBCs (NRBCs(ts)) and parasitaemia (%I (ts),
percentage of IRBCs), and (6) the IRBC age structure (histogram of the distribution
of tINF among IRBCs: q(tINF )). The numeric display (7) shows the number of time
steps and equivalent time in real cultures, and the number of RBCs, IRBCs and extra-
cellular merozoites. All this information and additional data (for instance, track of the
life cycle of a single cell, measurements of the infection growth ratio (GR) and external
modifications on the whole system that represent manipulation of the cultures, among
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others) may be recorded and stored in files for further analysis. System-level variables
(parasitaemia, growth ratio, age structure, abundance of multiply infected IRBCs, and
average concentration of glucose and lactate) are compared to real world observations.
Measurements of local characteristics of the real systems were not performed during the
preparation of this thesis, so spatial distributions of local variables are not compared to
experimental results (see Table 1.2 in Section 1.3). Figure 2.3 shows a screen-shot of the
2Dv.2 version of the model.

Figure 2.3: Screen-shot of the version 2Dv.2 of the 2D model. This version operates with a
time step set to six minutes. The size of the spatial grid is 100x100 cells. The initial popula-
tion is 20000 RBCs and the initial parasitaemia 1%. Windows show: 1) spatial distribution of
healthy RBCs (red) and IRBCs (yellow); 2) spatial distribution of merozoites (indicating where
lysis occur); 3) spatial distribution of glucose concentration; 4) spatial distribution of lactate
concentration; 5) temporal evolution of RBC population (red, rescaled), parasitaemia (yellow)
and merozoites (grey); and 6) age structure, histogram of the post invasion times among the
IRBC sub-population. The numerical display shows the time step and corresponding time for real
systems and total number of RBCs, IRBCs and extracellular merozoites.
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Details

Initialization:

Cultures are set with random distributions of RBCs, infected RBCs and glucose.
No lactate and no extracellular merozoites are initially introduced into the model. The
individual characteristics (X) for each RBC are set following normal distributions around
the average values (X) with variance σ2

X = 10% and truncated (X − 1.96σ2
X < X < X +

1.96σ2
X) to avoid unrealistic values (Prats, 2008). The distribution of post-invasion times

among IRBCs is set in correspondence to the specific experimental input measurement.
Parameters that describe the general characteristics of the RBC and Plasmodium (see

Section 1.2) and those describing the general features of the culture system (see Section
1.3) are taken from literature and presented in Table 2.1. Dimensions of the spatial grid,
initial parasitaemia, total number of RBCs, and age structure of the IRBC inoculum are
specifically set to reproduce experimental behaviors. A detailed list of the particular input
parameters are presented for each simulation in Section 2.3, together with the inputs of
the experimental observations, and particular modifications of the values shown in Table
2.1.

Inputs:

The experimental culturing protocols are external manipulations of the system repre-
sented by imposed dynamics of the variables of the system. They comprise subcultivation,
medium renewal and agitation.

Subcultivation of the parasite is modeled in accordance to the protocols proposed by
Trager and Jensen (1976) and the MR4 recommendations (MR4, 2008). It consists of the
removal of most of the population and replacement by healthy RBCs. Depending on the
protocol, this occurs each 48 ts- 96 ts, and the fraction of removed population varies from
66% to 80%.

Medium renewal is modeled as the (partial or total) resetting of the glucose and lactate
concentrations. This takes place each 24 hours and together with the subcultivation, but
not the day after subcultivation.

Agitation is modeled as the shift of positions of every RBC and the homogenization of
glucose and lactate concentrations. This occurs together with subcultivations or at fixed
spans. In particular, suspended cultures are modeled as being agitated at every time step.

Other external inputs that can control the dynamics of the culture are the storage
time of RBCs, the strain of P. falciparum, the composition of the culturing medium or
serum, the treatment with drugs or the exposure to other harmful situations (temperature,
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chemicals). They are modeled as specific modifications of the parameters in the model
and are explained in detail when required, in Section 2.3.

Submodels:

Three kinds of submodels are distinguished: 1) those referring to the erythrocytes
(RBC), 2) those refering to the spatial cells (SC), and those refering to the culture system
as a whole (WS).

Shuffling. RBCs act sequentially. In order to reduce the artificial bias on the model
outcome caused by the process of sequentation, we impose random orders of action
for the RBCs at each time step, to avoid having an RBC always favored with the
first turn of action. Randomization of the sequences of action i is carried out using
disordering tables that can reshuffle any given list. These tables are created at the
beginning of the simulation (step 3 in Figure 2.1).

1a) RBC Motion. At the beginning of the simulation and after an agitation, RBCs
are randomly distributed throughout the spatial grid. X and Y coordinates for each
RBC are integers set randomly between 1 and L. The spatial cells have limited size
and allow only 2 RBCs occupancy. If there are already two RBCs in the selected
spatial grid, the coordinates are drawn again.

1b) RBC Uptake. At each time step, each RBC attempts to uptake as much nutrient
as is required by its ingestion needs. They are represented by the number of particles
of glucose to be ingested (Uin = u · IM). The value for the instant uptake needs
(u) is drawn from a normal distribution centered on the average uptake rate for
U = 20 su/ts. The real uptake (Ueff ) is limited by the availability of glucose at
the same spatial cell (x,y): Ueff = max(Uin, Cgluc (x, y)). The excess of lactate
hinders the uptake of glucose. If the amount of lactate in the same spatial cell (x,y)
exceeds a maximum threshold (Clact (x, y) > 10000 su), Ueff decreases to zero. If
the Uin requisites are not fulfilled, the RBC will suffer metabolic stress (increase of
the metabolic stress index IM), enhancing further ingestion needs.

Infected RBCs have greater energy demands than healthy RBCs and must consume
more glucose (see Section 1.2.2). Their ingestion needs (Uin)are fixed in the same
way as for healthy RBCs, but they are multiplied by a factor that varies with the
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post-invasion time f(tINF ) (Kirk, 2001; Lew et al., 2003).

f(τ) =


1 su ; τ < 18 ts

max (20 · (τ − 18), 100) su ; 18 ts < τ < 35 ts

100 su ; 35 ts < τ < 40 ts

max (100− 20 · (τ − 40), 1) su ; 40 ts < τ < tMINF

(2.3)

The shape of f(τ)is depicted in Figure 2.4. For each ingested glucose unit two
lactate units are dumped into the extracellular medium.

1c) RBC Metabolism. For each ingested glucose unit two lactate units are dumped
into the extracellular medium. The metabolic stress index (IM ) increases when the
RBC starves. If the effective uptake is smaller than the RBC requisites (Ueff <
Uin), then IM = IM + 1. Otherwise, IM = 1. Excessive metabolic stress may
cause the death of the RBC (IM > IMMAX).

tMINF< 44 ts tMCL(F ) = 2 ts nr = 22 = 4
44 ts < tMINF < 46 ts tMCL(F ) = 4 ts nr = 23 = 8
46 ts < tMINF< 50 ts tMCL(F ) = 6 ts nr = 24 = 16

50 ts < tMINF tMCL(F ) = 8 ts nr = 25 = 32

Table 2.2: Duration of the fragmenter stage (tMCL(F )) and number of merozoites released to
the extracellular medium (nr) as a function of the duration of the infection cycle (tMINF ).

1d) RBC Infection. It comprises: i) the evolution of the infection cycle for the IRBCs,
and ii) the process of invasion of healthy RBCs by extracellular merozoites.

i) At the beginning of the simulation, the duration of the infection cycle tMINF is
set for each RBC. If the RBC becomes infected, the span tMINF constrains
the duration of the fragmenter stage and determines the number of merozoites
released to the medium. This model assumes that the duration of every mitotic
partition is 2 hours and that the average number of nucleus divisions is 4 (see
Section 1.2.2). The corresponding values are outlined in Table 2.2.

At each time step, the post-invasion time is updated (tINF = tINF + 1) for
every IRBC. At fixed spans the IRBC switch their infection stage, from ring
to trophozoite, schizont and fragmenter (see Table 2.1). When tINF > tMINF ,
the IRBC lyses and nr merozoites are released into the medium. Merozoites
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are randomly distributed among the first neighbor spatial cells, including the
origin spatial cell itself (see Figure 2.9 in Section 2.3.3).

ii) The process of invasion is specific for each version:

2Dv.1 For each healthy RBC, the model counts how many merozoites are
in its same spatial cell. Each merozoite can invade the RBC. Invasion is
a probabilistic event that occurs with a probability Pinf . Pinf linearly
decreases with the age of the RBC (tRBC) and abruptly decreases with
time in culture (tCULT , see Submodel 3a) after the threshold of optimal
susceptibility (tMSUS).

Pinf (tRBC , tCULT ) =

»
Pmax −

tRBC
tMRBC

(Pmax − Pmin)

–
·min(1, e

− tCULT
tMSUS )

(2.4)

For a given culture trial, the storage time of RBCs (τstore) is a fixed value,
IE = ITCULT + τstore and Pinf depends on a single variable. The shape
of this function is depicted in Figure 2.4, b. The values Pmax and Pmin

depend on the parasite strain and on the origin of RBCs. Multiple invasion
of IRBCs is allowed until reaching the maximum value of 3 parasites per
IRBC. Beyond this value, the IRBC is no longer invadible. The merozoites
that don’t invade a healthy RBC are removed from the model.

2Dv.2 In the second version of the 2D model, invasion occurs as in 2Dv.1.
The sole exception is that now merozoites are let in the culture for up to
5 time steps before being removed. While they stay in the extracellular
medium, they can eventually move to one of the nearest neighboring cells
after each unsuccessful invasion attempt.

1e) RBC Death. Each RBC may die due to i) accidental death probability Pdeath,
ii) exceeding its maximum age (tRBC > tMRBC), or iii) not fulfilling its metabolic
demands (IM > IMMAX). IRBCs, in particular, die at the end of their infection
cycle (iv, when tINF > tMINF ). Whenever an RBC dies, it is completely removed
from the model. The accidental death probabilities per time step depend on the
culturing medium and are fixed to best fit experimental results.
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Figure 2.4: a) Factor of individual metabolic requirements for infected RBCs (f (τ)as a function
of the post-invasion time (tINF ). τR = tMCL (R): end of the ring stage of the infection cycle.
τF = tMCL(R) + tMCL(T ): beginning of the fragmenter stage of the infection cycle. τC =

tMCL(R) + tMCL(T ) + tMCL(S) + tMCL(F ): end of the infection cycle. b) Evolution of the
individual infection susceptibility. t: time in culture. Pmax: maximum invasion probability, for
young RBCs. Pmax: minimum invasion probability, for old RBCs. tMSUS: maximum time of
infection susceptibility. tMRBC : maximum individual age.

2a) SC Diffusion. The number of glucose and lactate units at each spatial cell is up-
dated at each time step due to biological activity. This entails a local heterogeneity
further compensated through diffusion, according to Fick’s law. For each spatial
cell and at each time step, the model evaluates the difference in concentration with
the neighboring cells and allows a partial balance of the concentration of substrate.
Diffusion is carried out with the FTCS (Forward-Time Central-Space) explicit Euler
method (Hoffmann and Chiang, 2004). Let Ctij be the concentration of substrate
(Ctij refers to Cgluc(i, j) or Clact(i, j), indistinctly, at time step t). The amount of
substrate at the same spatial cell the next time step is given by:

Ct+1
i,j = Cti,j + D̃

nn(i,j)∑
wk,lC

t
k,l

k,l

(2.5)

Where k and l are the spatial coordinates of the 9 cells that constitute the imme-
diate environment of cell (i,j). Equation 2.5 adds up the contributions of the each
cell to the diffusive transport of substrate. The set of parameters wk,l weighs the
contribution of each spatial cell, which is inversely proportional to the distances
between centers of the spatial cells, and normalized so that |wk,l| = 1. This results
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in:

wk,l =


1

4(1+
√

2)
; (k 6= i) ∩ (l 6= j)

−1 ; (k, l = i, j)
√

2
4(1+

√
2)

; otherwise

(2.6)

The weights in equation 2.6 are presented and justified in (Ginovart, 1996). D̃ is the
effective diffusion coefficient. Its value is set at D̃ = 0.6, the maximum numerically
stable value.

This explicit model of the diffusion process is just a preliminary approach to assess-
ing the local limitations of substances. Subsequent work has shown that the version
of the diffusion model here presented should be improved. This problem is further
revisited in Section 3.5.2.

2b) SC Merozoite propagation. In version 2Dv.1, merozoites are released into a
spatial cell and removed during the next time step, so no propagation of the parasite
is modeled beyond merozoite egress at the end of an infection cycle. In contrast, in
version 2Dv.2 merozoites can move to the nearest neighbor spatial cells during the
next five time steps after egress. At the end of each time step, merozoites remaining
in the medium randomly shift their position to one of the nearest neighbor cells with
a probability set to Pprop. The value of Pprop is adjusted to best fit experimental
observations and typically takes values ranging from 0 to 0.1.

3a) WS Subcultivation. Subcultivation may occur at pre-fixed periods or be triggered
whenever a pre-fixed threshold parasitaemia is surpassed. The fraction of popula-
tion to be replaced may also remain fixed or depend on the parasitaemia prior
to subcultivation. The mechanism to set the rate and extent of subcultivations
reproduces the experimental setup to be simulated.

Subcultivation entails the extraction of a fraction of the RBC population, the in-
clusion of healthy RBCs to reach the initial number of RBCs (Ninput = NRBC(t =
0) − NRBC(t = t∗), where t∗is the time at subcultivation), the complete renewal
of the culture medium (see Submodel 3b), and the agitation of the new population
(Submodel 3c).

Whenever a new RBC is introduced into the culture, the values of all its characteris-
tics are set as in the initialization and its time in culture is set at zero (tCULT = 0).
Therefore, the time in culture of an RBC is the difference between the age of the
RBC at the present time step and the age it had when it was introduced into the
culture.
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3b) WS Medium renewal. Medium renewal can occur at discrete events or contin-
uously, depending on the experimental system to be simulated. Discrete medium
renewal occurs daily, except on the day after a subcultivation, and it entails the
complete renewal of medium. Continuous medium renewal entails the extraction of
a fraction of Cgluc, Clact and nmero from each of the spatial cells and the replace-
ment of such amounts for the corresponding values under the initial conditions.
After each subcultivation the medium is always completely renewed.

3c) WS Agitation. Agitation of the culture system is simulated as the random shift
of position of RBCs, together with the uniformization of the local values of Cgluc,
Clact and nmero.

2.3 Analysis of experimental observations with the 2D
model

2.3.1 Short-term preservation of IRBCs. Adjustment of INDISIM-
RBC.

The reproduction of the first short-term culture of malaria infected RBCs in vitro was
used to check the relevant parameters to set the calibration of the program. The reference
employed is the experiment of Pavanand et al. (1974) for preserving P. falciparum in
culture for more than a complete cycle of infection. Infected RBCs are maintained in static
cultures for 64 hours with effective parasite proliferation. Cultures of 0.2 ml are incubated
at 37ºC in a mixture of culturing medium and human sera, with no medium renewal.
Concentration of the hematocrit is 9.36% in volume. Size of the culturing aliquots and
shape of the hematocrit layer is not specified. The initial glucose concentration is 2g/l and
initial lactate concentration is 0 (Diggs et al., 1971). Initial parasitaemia is approximately
1%. The experimental measurements are parasite counts per 1000 RBCs. Three forms of
the IRBC are distinguished by their infection stages: rings, trophozoites and schizonts.
No distinction is made between schizonts and fragmenters.

The experimental data regarding the parasite counts of each of the infection stages
(0, R, T and S + F ) are used to build and calibrate the model. The initial parasitaemia
%I0 can be inferred from the experimental data assuming no accidental death rates for the
healthy RBCs and Ring stage forms. The values for the probability of accidental death
per time step and infection stage Pdeath(0, R, T, S and F ), the maximum susceptibility to
invasion of healthy RBCs Pmax and the initial post-invasion time distribution for IRBCs
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are set to adjust experimental data (post-invasion times are uniformly distributed from 1
to a maximum initial post-invasion time ).

Figure 2.5: Reproduction of the experimental results for short -term in vitro preservation of
P. falciparum (Pavanand et al., 1974) with the version 2Dv.1. Grey dots represent experimental
results. Small black dots represent simulation results. The statistical variance is not shown. a)
Total parasite count. b) Ring-stage IRBCs. c) Trophozoite-stage IRBCs. d) IRBCs at schizont
and fragmenter stage.

Simulation results obtained with version 2Dv.1 are shown in Figure 2.5. Results
obtained with version 2Dv.2 with the same input parameter sets (with the values of
Pdeath and Pprop = 0.05 readjusted in accordance with the modification of the time step)
do not show significant differences.

The variance of the model is assessed performing 100 repetitions of the simulations
with a fixed set of parameters and varying the random seed. It has been found that,
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once every parameter is fixed, simulations are highly determined, and the variance is
σ2 < 10−3.

The comparison of the model outcome with experimental measurements is usually
carried out qualitatively because the use of statistical tests can be deceptive and must
be handled with care. For instance, a Student’s t-test suggests that the two data sets
are not significantly different (p− value = 0.08), but the Kolmogorov-Smirnov test gives
only a non-significant probability that both samples come from the same distribution
function (r2 = 0.7143). For an outlined description of the statistical tools appropriate to
comparing each set of samples see Appendix C.

Input parameter Value
%I0 0.12%

Pdeath(−) 0 R T S + F

0 0 0.005 0.025

Pmax, Pmin 0.8 , 0

tMAX
INF (t = 0) 4 ts

Table 2.3: Values for some initialization parameters in the 2Dv.1 simulations of the experiments
for short -term in vitro preservation of P. falciparum (Pavanand et al., 1974). Measured initial
parasitaemia (%I0), and values set to best fit experimental outcome: probability of accidental
death per time step and infection stage (Pdeath(0, R, T, S and F )), maximum susceptibility to
invasion of healthy RBCs (Pmax) and maximum value of the post-invasion time of the inoculated
IRBCs (tMAX

INF (t = 0)).

The values for the input parameters have been searched through the systematic and
oriented trial of different sets of values (Prats, 2008). The values that best fit the ex-
perimental observations are outlined in Table 2.3. The sensitivity of the model to slight
modifications on the values of the parameters has been qualitatively assessed. For in-
stance:

1. the increase in parasitaemia (or growth ratio GR) is more affected by variations
in the accidental mortality rate Pdeath than by those in the infection probability
Pmax. In fact, varying Pmax from 0.7 to 1 does not significantly alter the simulation
outcomes, while small modifications of Pdeath(S + F ) from 0.25 to 0.255 make a
substantial difference.

2. The initial distribution of post-invasion times is determinant to the best fit to the
experimental data on the parasite counts of the different stages of IRBCs. The
best-fit function is a uniform distribution of post-invasion times truncated for post
invasion times greater than tMAX

INF (t = 0).
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The analysis of sensitivity of input parameters is not exhaustive. The model outcome
could be more accurately fitted to the experimental observations, yet the current qualita-
tive fitting of the model indicates that the modeled infection dynamics and the structure
of the post-invasion times among IRBCs are consistent with the observations of real cul-
tures.

A thorough assessment of the sensitivity of parameters is important for well-established
models, in order to improve their predictive capability. Models with fewer parameters and
a simpler structure are more suitable for such a use. A discussion of the role of different
kinds of models is put forward in Section 4.2.

2.3.2 Long-term cultivation of IRBCs. Readjustment of INDISIM-
IRBC.

The experiment carried out by Trager and Jensen (1976) is used to validate the qual-
itative behavior of the model when simulating cultures with multiple cycles of infection.
Healthy and infected RBCs are maintained in static cultures for several weeks with ef-
fective parasite proliferation. Cultures of 1 ml with 5% hematocrit are incubated at
38ºC under a low-oxygen atmosphere and culturing conditions referred to in Table 1.2,
in flat bottomed vials. The depth of the hematocrit layer (HLD) is set to a value
HLD ∼ 0.1 mm. Initial concentrations of glucose and lactate are 2.667 mM and 0 mM,
respectively.

Subcultivations are performed every three our four days, depending on the para-
sitaemia. Variable dilutions are effected to obtain a parasitaemia around 0.5% after
subculture. In particular, the dilution factor of the sample to the subculture is 3-fold,
3.5-fold or 4-fold, this last being the most usual. Some of the subcultures are indicated
in the experiment, while others are not specified but may be inferred from the indicated
dilution shown in the experimental data sets. Four forms of the asexual intraerythrocytic
stages of the parasite are distinguished in this experiment (0, R, T, S and F ).

Two different protocols are presented: the continuous method and the candle-jar
method. In the first one, IRBCs are maintained for 48 days out from an inoculum with
%I0 = 0.32 in a semi-open system with a continuous flow of culture medium. Medium
renewal is performed continuously at a rate of 50 ml/day out of a reservoir of 120 ml.
The second protocol achieves the preservation of parasitized red blood cells for more than
three months in a closed culture with discrete daily medium renewal. The medium re-
newal is carefully executed, so no disturbance of the RBC population is expected and no
agitation needs to be considered due to medium renewal.

Both protocols use the same blood source, parasite strain and culture medium prepa-
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ration, and maintain the hematocrit under similar geometrical conditions. Two culture
lines (lines A and B) are cultured under different atmospheric conditions, B being appar-
ently more suitable for RBC development (Jensen, 1988). At variable time spans, (1-day
to 5-day ) the culture is sampled and the parasitaemia and age structure are measured.

Both lines are simulated with the same model. The experimental parasite counts
of each of the infection stages (0, R, T, S and F ) are used to check the capacity of the
model of simulating long-term culture systems. The maximum susceptibility to invasion of
healthy RBCs Pmax is common for both trial lines, as they share parasite strain and RBC
source. Their values are set to best adjust experimental data. The initial parasitaemia
%I0 and the input parameters describing the external manipulations on the system are set
according to the specifications of each experimental procedure. The initial post-invasion
time distribution for IRBCs (mean value tINF (t = 0)) and the values for the probability
of accidental death per time step and infection stage Pdeath(0, R, T, S and F ) are set
independently for each trial to best fit the experimental data. Every value is determined
using the procedure explained in Section 2.3.1. They are presented in Table 2.4.

Of note, the inoculum of line B is much more synchronized than the one of line A (the
initial distribution of post-invasion times is narrower in line B). This could be explained
by a hypothetical rupture of mature parasite forms during the transfer from one culture
system to the other.

The only difference between the models of line A and B is that the former has a
continuous replacement of part of its culturing medium. This is implemented as the
replacement of a fraction of the culture medium at each time step (f = 50 ml/day

120 ml ·
1 day
24 ts ).

This replacement entails the removal of extracellular merozoites. Thus, each merozoite
has a probability of 0.017 of being removed from the medium.

Input parameter Line A Line B
%I0 0.32% 0.14%

tINF (t = 0) 22 ts 2 ts

Pdeath(−) S F S F

0.006 0.01 0.005 0.012

Pmax, Pmin 0.85, 0

Table 2.4: Values for some initialization parameters in the simulations of the experiments for
long -term in vitro cultivation of P. falciparum (Trager and Jensen, 1976). Measured initial
parasitaemias (%I0) and best fit values for mean value of the post-invasion time of the inocu-
lated IRBCs (tINF (t = 0)) and probability of accidental death per time step and infection stage
(Pdeath(S and F ), for healthy RBCs , Rings and Trophozoites, Pdeath = 0) for each line of the
culture. Maximum and minimum susceptibility to invasion of healthy RBCs (Pmax, Pmin ) are
common for both lines.
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The analysis of the variability and sensitivity of the model provides similar results to those
presented in the last section. Two differences with respect to the previous conclusions
are:

1. In this case, the post-invasion time distributions among inoculated IRBCs that best
fit the initial measurements of the age structures are normal distributions around
a mean value tINF (t = 0) with standard deviation σtINF = 0.1. The model shows
very dissimilar results for different input distributions of the post-invasion times,
when multiple consecutive cycles are taken into account.

2. The model is highly sensitive to variations in the parameters that regulate the cul-
turing protocols. Small variations in the subcultivation span or dilution factor may
lead to significantly different courses of the infection. The experimental subcultur-
ing protocols are not described with enough detail. In fact, the moment of external
manipulations are not specified and must be deduced from the results.

An increased number of parameters (the initialization parameters presented in Table 2.4
plus the input parameters that describe the external manipulations of the system) now
govern the dynamics of the model in a complex and interrelated way. These parameters
represent magnitudes or events that can not be directly measured, and must be fixed to
better adjust the evolution of the infection and of each of the IRBC stages.

The degree of adjustment of the model outcome to the experimental data is assessed
by:

1. qualitatively checking the similarity of the temporal evolution of the IRBC popu-
lation structure (see Figures 2.6 and 2.7, total IRBC evolution and for each of the
infection stages); and

2. comparing the average infection growth ratios between two consecutive samplings
< GRsample > throughout the culture (see Table 2.5).
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Figure 2.6: Simulation results compared to experimental data of the infection course in the
Continuous-flow cultivation (Line A ) of P. falciparum IRBCs (Jensen and Trager, 1978). Blue
dots stand for experimental measurements. Small black dots represent simulation results. Leap
in the black dot trail indicates a subcultivation. a) Total parasite count. b) Ring-stage parasite
count. c) Trophozoite-stage parasite count. d) Schizont-stage parasite count. e) Fragmenter-stage
parasite count.
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Figure 2.7: Simulation results compared to experimental data of the infection course in the
Candle-jar cultivation (Line B ) of P. falciparum IRBCs (Jensen and Trager, 1978). Blue dots
stand for experimental measurements. Black small dots represent simulation results. Leap in the
black dot trail indicates a subcultivation. a) Total parasite count. b) Ring-stage parasite count. c)
Trophozoite-stage parasite count. d) Schizont-stage parasite count. e) Fragmenter-stage parasite
count.
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< GRsample > Simulation Outcome Experimental results
Line A 7± 3 8± 5

Line B 12± 6 10± 4

Table 2.5: Temporal average growth ratio of the parasitaemia during consecutive samplings <
GRsample >. They stand for approximately two complete intraerythrocytic cycles of the parasite.
Simulation results are consistent with experimental measurements.

Simulation results obtained with version 2Dv.1 are shown in Figure 2.6. Results
obtained with an equivalent model in version 2Dv.2 do not show significant differences.
The outcome of the model when performing several repetitions of the simulations varying
the random seed show highly dissimilar long-term evolutions of the IRBCs population
structure, but no significant differences in < GRsample >.

The comparison between simulated and experimental growth ratios allows the con-
clusion that the model is consistent with the system it represents. However, it must be
stressed that the uncertainty of GRsample is very high both in experiments and simu-
lations. Again, a more accurate quantitative fit of the simulation outcome to the ex-
perimental data would be very toilsome and would not provide much useful information.
Additionally, the qualitative reproduction of the experimental dynamics with the simplest
model assumptions provides a certain validation of the model: minimally, the model and
the experimental cultures behave in a similar way.

2.3.3 Patterns observed in in vitro cultures.

The accurate quantitative reproduction of several particular data sets from single ex-
perimental trials positively allows us to extract some conclusions. First, it indicates that
the model includes enough information at an individual level to reproduce the complex
observed behavior. Second, it suggests that the rules in the model are a good representa-
tion of the processes occurring in the real culture systems, because the same rules serve
to simulate different cultures. And third, it provides an estimation of the values (or at
least order of magnitude) of some magnitudes that can not easily be measured (such as
the RBC death rate and the infection probability).

However, it does not provide enough arguments to assess the validity of the model on
its own. First, because it can’t be disproved that simpler models could also reproduce the
observed behavior. Second, because the coincidence between the model outcome and ex-
perimental observations does not ensure that it accounts for real underlying mechanisms.
And third, because obtaining the best fit requires adjusting the values of several parame-
ters simultaneously, and different sets of parameters could provide similar outcomes. The
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exhaustive exploration of the parameter space would be extremely time-consuming and
has been carried out just to a reasonable extent here.

So, what else can be done to assess the validity of the model? The reproduction of
a group of independent patterns observed in real culture systems at different scales and
regarding distinct phenomena can provide increasing confidence in the capacity of the
model to capture the essence of the experiments. If the model reproduces different uncor-
related phenomena and features of the real systems, it means that it correctly represents
the reality. Then, the modeled rules can be better regarded as indicators of the essential
underlying processes occurring in real cultures. Some independent patterns are repro-
duced below. A more detailed discussion of the arguments presented in this paragraph
may be found in Section 4.1.

Strains of P. falciparum

The performance of in vitro cultivation of P. falciparum strongly depends on the
strain, ranging from the infeasibility of setting cultures to highly effective harvests (Chin
and Collins, 1980). The variability in the performance of a fixed strain is also very high
and the evolution of observed cultures shows that the multiplication ratio of the number
of IRBCs per infection cycle does not solely depend on the strain.

The results obtained by Butcher (1982) reflect this intrinsic variability. Three differ-
ent strains of P. falciparum were maintained under static (candle-jar) and suspension
conditions. The parasite was maintained in continuous cultures with the same blood
source and conditions for approximately one month. Renewal of medium was performed
daily but was skipped sometimes between two consecutive subcultivations. Samples were
extracted when setting new subcultures every three days. The growth ratio (GR72) was
then measured. Growth ratios where calculated as the ratio between the observed par-
asitaemias at the beginning and end of each subculture. The experimental results are
presented in Table 2.6.
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GR72 Strain A Strain B Strain C
trial Static Susp. Static Susp. Static Susp.
1 6.9 * 1.8 * 1.8 * 14.4 * 5 * 23.8 *
2 10.6 * 2.0 * 1 4.5 0.7 * 9.0 *
3 8.8 * 8.2 * 0 8.0 4.4 * 10.8 *
4 9.1 11.6 7.1 22.0 6.8 * 9.2 *
5 7.1 6.0 1.8 * 2.9 * 7.7 * 19.7 *
6 10.6 16.5 9 25.3 - -
7 5.1 * 3.3 * - - - -

< x > ±σ 8± 2 7± 5 3± 4 12± 9 5± 3 14± 7

Table 2.6: Experimental average 3-day growth ratios (GR72) for Static ( candle-jar culture
conditions) and continuously agitated cultures (“Susp.” stands for RBCs in suspension) for 3
different strains of P. falciparum. The row < x > ±σ indicates the mean and standard deviation
of GR72 averaged over a month. The symbol * indicates that no medium renewal was carried out
between two samples. Reprinted from (Butcher, 1982).

The first remark on the experimental observations is that the intrinsic variability of
any real culture system usually allows drawing only tentative conclusions regarding the
observed behaviors. The averaged values are often accompanied by such high uncertainties
that they can not be said to be significantly different. Using statistical tool packs such
as ANOVA (a collection of statistical models to perform the ANalysis Of VAriance of
datasets, i.e.: Student’s t-test, Kruskal-Wallis test, Kolmogorov-Smirnov test, among
others; see Appendix C) facilitates the discrimination of data, but it is still not enough
to distinguish different strains.

Even discriminating between different culturing protocols is controversial. For in-
stance, results from Strains B and C suggest that suspended cultures are more efficient
than static cultures but this is not supported by the observations of Strain A. Further-
more, results from Strains A and B, which combine subcultures with and without medium
renewal, suggest that the lack of medium replacement hinders the development of the par-
asite. However, Strain C, whose medium was not renewed between subcultures shows a
qualitatively increased performance.

The simulations of the different set of experiments carried out using INDISIM show
similar statistical behaviors and their analysis presents analogous problems. One strategy
to follow in order to analyze the model is to focus on the effect of one single parameter,
while the rest set of parameters are fixed.

For instance, modifying the strain can be associated with varying the infection ca-
pability of the merozoites Pinf . Variations in those parameters used to set Pinf , within
the ranges 0.7 < Pmax < 1, and 0 < Pmin < Pmax entail fine variations of the simulated
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outcome growth ratios (GR48). Of note, this small modification of GR48 can eventually
lead to great dissimilarities between cultures under similar harvesting protocols, because
the effect of consecutive cycles is a non-linear feedback, and also because the external
manipulations of the system are triggered at fixed moments and can affect systems with
slightly different configurations in very unlike manners.

An additional remark specifically regarding the effect of varying the probability of
invasion in the simulations points to a different topic. During the exploration of the
different values of Pinf , it has been found that the behavior of the model is consistent
with the description provided by population-based epidemiological models. A minimum
threshold for the value of the parameter Pinf discriminates between the infections that
extinguish and those that affect the whole system. In this sense, this minimum thresh-
old is analogous to the reproduction factor (R0) employed in continuous models. More
specifically, Pinf plays the same role as the infection rate (β) in the SIR model, therefore
R0 ∝ Pinf (see Section 1.4.3).

Source of RBCs

Several studies indicate that P. falciparum has a preference for infecting young RBCs.
Firstly, age fractionation of RBC populations prior to cultivations shows that the growth
ratios of the infection are significantly greater for those cultures performed with samples
containing more retyculocites (young RBCs aged< 7 days) (Pasvol et al., 1980). Secondly,
studies of multiple infections confirm that the susceptibility to invasion of retyculocytes
is 4-fold the susceptibility of older RBCs (Simpson et al., 1999).

Human RBCs for malaria cultures are usually obtained from outdated blood that is
considered not to be usable for blood transfusions. This blood can be kept frozen (at
temperatures that may reach -80ºC) for several years without lost of harvest viability.
Cultures with blood frozen for 19 months and 24 months do not show significant differ-
ences when compared with control cultures from fresh blood (Pavanand et al., 1974).

In addition, whatever the source and manner of storage of RBCs, they must be pre-
pared prior to the cultivation. They are washed and mixed with culture medium and
usually subsequently stored at temperatures that range from 1ºC to 4ºC, prior to the
cultivation. The time spent in these conditions affects the culture’s performance. The
blood storage regimes have influence on the RBC suitability when storage exceeds 3 or 4
weeks (Capps and Jensen, 1983). Cells can be used for up to 5 weeks of storage at 4ºC
and are typically maintained for 4 days to a week once washed (Trager, 1994).

To sum up, storage spans greater than the age of retyculocytes have no significant effect
on RBC susceptibility to infection, but the performance of the infection still depends on
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this storage. Besides, significant differences in the parasite proliferation are observed
between cultures of young and old RBCs.

The hypotheses assumed in the model are: i) the parasite has a preference for young
cells, and also detects their freshness, and; ii) storage ages RBCs, reducing their freshness
but without changing them. Presumably, low temperatures prevent the retyculocytes
from turning into mature RBC forms. These assumptions are introduced in the model of
the temporal evolution of Pinf in two ways:

1. as the abrupt decay in Pinf after a period in culture tc that stands for the differences
in the infection susceptibility observed for retyculocytes and older RBCs. This
decay is introduced as an exponential factor modulating Pinf , with both the offset
value and time constant equal to the 7-10 days (maximum age of retyculocytes). See
Equation 2.4. Note: tCULT = tRBC−t∗RBC , where t∗RBC is the age at subcultivation;
tCULT does not include the storage time.

2. as a linear decay of the infection susceptibility with the RBC age (tRBC , including
storage time), from a maximum value Pmax at age 0, until reaching a minimum
value Pmin at tRBC = tMRBC = 120 days (Guyton, 1987), which stands for the
decrease in freshness of the RBC. See Equation 2.4. As mentioned above, variations
in Pmax, Pmin and tMRBC entail very small differences in the overall GR of the
system.

A trial of virtual experiments to test this model consists in launching simulations similar
to the candle-jar cultivation of the parasite where the subcultures are fed with RBCs
that proceed from sources stored for different time spans. Two series of static cultures
are simulated, with subcultivations that set the parasitaemia at the new culture to 0.5%,
each 48 h and each 96 h, respectively. Initial parasitaemia is set to %I0 = 0.5% and
infection probability to Pmax = 0.85 , Pmin = 0, respectively.

Each trial explores culturing protocols where the subcultivation are carried out using
increasingly old RBCs (Storage spans are set to: 0 days, 4 days, 8 days, 12 days, up to 3
months). The average parasitaemia of long-term cultures maintained for up to 3 months
is compared for the different renewal protocols. The obtained results are presented in
Figure 2.8.
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Figure 2.8: Simulations showing the modeled effect of the storage of RBCs on the culture perfor-
mance. Average parasitaemia through the culture decreases with the storage time for the source of
RBCs. Grey dots show the mean values obtained from two sets of simulation trials that included
subcultivations each 48 h and 96 h. Errors bars reflect the variability in the simulations.

These results show that with storage times < 16 days, the parasite can grow unhin-
dered. After 20 days of RBC storage, the parasite can be maintained in culture with
a parasitaemia slightly greater than the inoculum (indicating that there is no effective
propagation of the infection, i.e. GR ∼ 1). If the storage time is greater than 60 days,
the viability of cultures is severely limited.

The rules presented above allow reproducing the temporal evolutions observed in sev-
eral cultures and provide an explanation for the reduced performance of the cultures in
which RBCs have been stored for a long time, consistent with the experimental observa-
tions.

No virtual experiments on the multiple infection have been carried out with this version
of the model because a rule limits the maximum number of multiple invasions on an RBC
to 3 merozoites per RBC. This rule was introduced in response to the local limitations
caused by the spatial structure of the model: up to 32 merozoites can be released from
an IRBC at the end of the infection cycle, but each IRBC has 8 healthy RBC neighbors
at most. Not introducing a maximum threshold for the number of multiple invasions led
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to IRBCs infected with 5 or even 7 multiple invasions, which have never been observed
in real systems.

Merozoite egress from IRBCs

At the end of each infection cycle merozoites are released to the extracellular medium
ready to invade RBCs. The three alternative mechanisms for merozoite egress described
in Section 1.2.2 are represented by three mutually exclusive rules (see Figure 2.9):

(i) Membrane fusion: all the merozoites are released into a single spatial cell,
chosen from one of the nearest neighbors of the IRBC (∼ 10 µm).

(ii) Membrane breakdown: each of the merozoites has a probability of being re-
leased into one of the nearest neighboring spatial cells including the same cell
(∼ 10 µm).

(iii) Exploding flowers: egressing merozoites are randomly distributed among the
neighbor spatial cells up to a range of 2-3 spatial cells distance (∼ 25 µm). The
probability of being dumped into a particular spatial cell linearly decreases
with the distance from the source IRBC. The set of probabilities is normalized.

Figure 2.9: Stencils of the models of merozoite egress from IRBCs at the end of the infection cycle
(lysis occurring at the grey central spatial cell). i) membrane fusion: all merozoites are released
to one of the nearest neighbor cells with a probability P(1)=0.4, P(2)=0.1 and P(3)=0.05; ii)
membrane breakdown: merozoites are scattered around, each merozoite is dumped into one of
the nearest neighboring cells with the same probabilities as (i); iii) exploding flowers: Long range
egress. The probabilities of a merozoite being dumped into each cell are: P(1)=0.212, P(2)=0.053,
P(3)=0.037, P(4)=0.026, P(5)=0.022, P(6)=0.019 and P(7)=0.018.

Each mechanism of merozoite egress has been introduced into the model. The outcome
of the 8-days simulation of a closed system was carried out assuming that the values for all
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the parameters are fixed and similar to the ones used in the simulation of the candle-jar
experiments (%I0 = 0.1%, semi-synchronous inocula, Pmax = 0.8 and Pdeath(S) = 0.005,
Pdeath(F ) = 0.01).

In addition, the effect of the spatial structure on the infection process was assessed
for each mechanism. The scale of the spatial cell side was modified to allow up to 1, 2 3
or 4 RBCs per spatial cell. 10 different simulations of 8-day static cultures were carried
out for cultures with different RBC densities and no accidental death rate (Pdeath = 0).
The obtained results are as follows:

i) The punctual egress of merozoites leads to infections that do not propagate
through the hematocrit, GR24 ≤ 1. Unless Pdeath = 0, the parasitaemia
fades out until there are no IRBCs, GR24 < 1. Increasing the RBC density
(ρRBC) leads to an increase in the parasitaemia and in the infection daily
growth ratio, GR24 > 1. The maximum observed growth ratios are achieved
with 4 RBCs/spatial cell: GR24 = 1.8 (between day 7 and day 8 in Figure
2.9a and GR48 = 2.3 (between day 6 and day 8 in Figure 2.10a, respectively.
The growth ratio per infection cycle increases with cell density and rapidly
becomes saturated around GR48 = 2.5 (see Figure 2.10b.

ii) The egress of merozoites at one of the nearest neighboring spatial cells repro-
duces the infection propagation rates. Average simulation growth ratios range
from GR48 = 4.5, when there is 1 RBC per spatial cell (which is consistent
with the behavior observed in real cultures), to GR48 = 10 for 10 RBCs/sc.

The effect of the spatial structure on parasite proliferation is depicted in Figure
2.10.b. The growth ratio increases with the number of RBCs/sc but becomes
saturated around GR48 = 12. This is consistent with the expected behavior
in real systems if there were no limitations due to the local spreading of
merozoites or the availability of RBCs, since ∼ 16 merozoites on average are
released in the lysis at the end of each infection cycle and the probability of
invading a healthy RBC is (at the most) less than one.

iii) When merozoites are released to a fairly extensive area around the IRBC (for
instance, the two first layers of first neighboring cells) the simulation outcome
shows growth ratios that reach values far greater than those observed in real
systems GR24 = 14 and GR48 = 25. The average value obtained with the
10 simulations with 1RBC/sc is < GR48 >= 15. This parasite multiplication
ratio already exceeds the behavior observed in real cultures, so no further
simulations increasing the number of RBCs per spatial cell were carried out.



72 Chapter2. INDISIM-RBC: model of P. falciparum infected RBCs in in vitro cultures

Figure 2.10: Simulation results of the different models for merozoite egress. a) Temporal evo-
lution of the parasitaemia for different cell densities according to the membrane fusion model
(punctual egress of merozoites). Dashed line (–) represents 1RBC per spatial cell (RBC/sc);
triangles (N) represent 2RBC/sc; solid dots (•) represent 3 RBC/sc; diamonds (♦) represent
4RBC/sc. b) Comparison between the growth ratios predicted for different cell densities by two
different egress models: dots (•) stand for the membrane breakdown model (scattered merozoites)
and diamonds (♦) stand for membrane fusion model. The former are in greater agreement with
experimental results.

The results provided by the model suggest that membrane breakdown is the mecha-
nism through which merozoites egress from IRBCs at the end of an infection cycle. These
results are consistent with recent experimental observations (Rayner, 2006).

Serum and culture medium

The cultivation of P. falciparum requires the use of human serum to provide the
proteins and amino acids to the parasite inside the IRBC. As it is a scarce resource,
proposals for alternative serum sources (natural and synthesized) can be found in the
literature (Jensen, 1988; Trager, 1994). Today, several companies provide commercial
serums with different specifications.

In order to assess the appropriateness of different commercial culture mediums, the
group EMG-GSK performed a series of experiments consisting of 1-week cultivation of the
same strain of P. falciparum with the same blood source under the experimental condi-
tions detailed in Table 1.2 and with different culture mediums and degrees of synchronism
of the inoculum. Initial parasitaemia was set to %I0 ∼ 1% and the degree of synchronism
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was qualitatively assessed only distinguishing between synchronous and asynchronous in-
ocula. The experimental results are outlined in Table 2.7. A more detailed description is
presented in Appendix B.1.

Days Medium A Medium B Medium C
in S. A. S. A. S.

culture %Iobs %I calc %Iobs %I calc %Iobs %I calc %Iobs %I calc %Iobs %I calc

0 1 1 1 1 1 1 0.95 0.95 1 1

1 1.3 1.3 3.3 3.3 1.3 2.8 2.3 2.3 1.9 1.9

2 7.8 7.8 3.4( 1
4 ) 13.6 4.4 4.4 5.7 5.7 1.9 1.9

3 7.6 7.6 - - 4.8 4.8 3( 1
4 ) 12 3.8( 1

4 ) 11.5

4 4[ 14 ] 16 2.9( 1
4 ) 47.7 2.9( 1

4 ) 11.4 7.7 30.8 11.6 32.8

5 - - 3.8 60.3 - - - - - -
6 - - - - - - - - - -
7 10.2 40.8 - - 7.9 31.8 - - - -

GR± σ 3± 2 3.0± 1.2 2.5± 0.9 2.9± 0.7 2.7± 1.4

Table 2.7: Cultivation of P. falciparum using 3 different commercial culture mediums. S.:
Synchronous inoculum; A.: Asynchronous inoculum; observed (%Iobs) and calculated (%Icalc)
parasitaemias; GR: average observed growth rate and deviation (σGR). The subscript fraction in
brackets in the observations column indicates the dilution carried out during the subcultivation
prior to measurement, i.e. the fraction of replaced RBCs; - indicates no experimental measure-
ments. Experiments performed the EMG-GSK.

The statistical analysis of the calculated parasitaemias %Icalc with ANOVA (or the
simpler comparison of daily growth ratios GR24) shows: i) that the choice of one of these
culture mediums does not significantly affect the propagation of the infection, and ii) that
synchronous and asynchronous inocula behave in a similar way, both when comparing
the behavior for each culture medium separately and when considering the subsets of
synchronous and asynchronous trials.

INDISIM-RBC does not include information regarding the exhaustive composition of
the extracellular medium, nor a detailed description of RBC metabolism. The effect of
the different culture mediums is introduced into the model as variations in the values of
the probability of accidental death (Pdeath). Post-invasion time distributions among the
inoculated IRBCs are considered uniform, with an amplitude tMAX

INF (t = 0) that decreases
with the observed degree of synchronism. The initial values of %I0 are set according to the
input measured values (at day 0), infection probability is set to Pmax = 0.85, Pmin = 0,
and Pdeath is modified from culture medium to culture medium. A reproduction of three
sample cultures is depicted in Figure 2.11.
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Figure 2.11: Experimental results compared to simulation outcome for cultures using different
culturing mediums. Grey dots correspond to a 7-day trial measurement. Black small dots cor-
respond to simulation outcome. a) Culture medium A, synchronous inoculum with 100% Rings;
Pdeath(T ) = 0.001, Pdeath(S) = 0.007, Pdeath(F ) = 0.01 and tMAX

INF (t = 0) = 20 ts; b) cul-
ture medium B, synchronous inoculum with 90% Rings; Pdeath(T ) = 0.001, Pdeath(S) = 0.01,
Pdeath(F ) = 0.01 and tMAX

INF (t = 0) = 25 ts; c) culture medium C, asynchronous inoculum with
< 80% Rings; Pdeath(T ) = 0.001, Pdeath(S) = 0.005, Pdeath(F ) = 0.02 and tMAX

INF (t = 0) = 35 ts.

2.3.4 Synchronization of the infection process

The degree of synchronism of the inoculated IRBCs has little effect on the long-term
cultivation of P. falciparum because, typically, in vitro synchronization of the parasite
population disappears during the infection course (Kiatkowski, 1989). The statistical
analysis of the simulation results that represent the short-term cultures in Table 2.7
show similar conclusions to those drawn from the analysis of experimental data: no
significant differences can be found in the culture performance (GR) between cultures
with synchronous and asynchronous inocula. Nevertheless, simulations show different
behaviors depending on the degree of synchronism of the inoculum (tMAX

INF (t = 0)). For
instance, the lag period until the disease spreads through the hematocrit (τlag) is τlag =
48− tMAX

INF .

Furthermore, P. falciparum schizogony is stably synchronized for long-term in vitro
cultures only when specific manipulations are carried out, e.g.: sudden increase in tem-
perature or treatment with sorbitol, among others (MR4, 2008; Kiatkowski, 1989). These
treatments mostly affect IRBCs in mature stages of the infection cycle and leave young
ring-stages (post-invasion times tINF <∼ 15 ts) unharmed. In particular, the procedure
to synchronize parasites with sorbitol requires repeating the treatment twice in 48h to
guarantee that only ring forms are left. To keep the parasites synchronized, the sorbitol
treatment must be performed once a week.
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Modeled IRBC populations naturally become desynchronized as a consequence of the
variability in the duration of the infection cycles (see Figure 2.12). Synchronous IRBC
populations can be obtained through the one-time removal of the mature part of the IRBC
population to represent specific synchronizing treatments. In this case, a rule introduced
ad hoc forces the system as a whole to synchronize.

Of note, stage-dependent death probabilities Pdeath(0, R, T, S and F ), together with
periodic subcultivation, also limit the degree of desynchronization of IRBC population
(see Figures 2.12 and 2.13). In this case, the preservation of certain synchronism emerges
from rules that do not directly impose the coordination of the population.

Figure 2.12: Simulated post-invasion-time distributions among the IRBCs (outcome from model
2Dv.2). Relative frequency vs. post invasion time (tINF ). Ts indicates the time in culture
of the sample, #Generation stands for the number of completed infection cycles in the culture.
Synchronous homogeneous inoculum: tMAX

INF (t = 0) = 20 ts, 2 hours. Variability in the duration
of the infection cycle: σ = 2 hr. i) IRBC population gets desynchronized in cultures with
DP (∀) = 0 and no subcultivation; ii) synchronism is maintained by the staggered death of IRBCs
(Pdeath(F ) = 0.001) and periodic 96 hr subcultivation. Grey dashed lines show the best- fitting
normal distributions, with mean value µ and standard deviation σ.

Apart from synchronizing the IRBC population, the use of a staggered Pdeath applied
at each time step entails the reduction of the viability of the infection. The number of IR-
BCs in INDISIM is analogous to I(t) in the SIR model, and increasing Pdeath is analogous
to an increase in the recovery/mortality rate γ (see Equation 1.2 in Section 1.4.3). This
can be derived from the individual scope: the reproduction factor of the infection (R0)
is proportional to the number of IRBCs that successfully undergo a complete infection
cycle (Psurvival).
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R0 ∝ Pinf · Psurvival (2.7)

The probability of survival for IRBCs undergoing a complete infection cycle is the joint
probability of the IRBC surviving each time step psurvival(ts), throughout the infection cycle
tINF = [1, tMINF ].

Psurvival =
tMINF∏
tINF=1

psurvival(tINF ) (2.8)

In turn, surviving is the complementary event of dying. Then,

psurvival(ts) = 1− Pdeath(ts) (2.9)

Combining 2.8 and 2.9, we find:

Psurvival =
tMINF∏
tINF=1

[1− Pdeath(tINF )] (2.10)

Psurvival = Pdeath(R)tMCL(R) · Pdeath(T )tMCL(T ) · Pdeath(S)tMCL(S) · Pdeath(F )tMCL(F )

The custom values of Pdeath in version 2Dv.1, 2Dv.2 and v3D (see Table 2.1) entail the
effective survival of the IRBCs Psurvival = 0.9. Particularly, the probabilities obtained
using the values used to simulate the short-term preservation (see Table 2.3 in Section
2.3.1) and the long-term cultivation (see Table 2.4 Section 2.3.2) of the parasite are:
Psurvival(short− term) = 0.6 and Psurvival(long − term) = 0.9, respectively.

A simple mathematical model describing the population structure in P. falciparum
IRBCs was developed to understand infection dynamics in vivo (White et al., 1992). The
White-Chapman-Watt model (WCW) considers that IRBC post-invasion times are nor-
mally distributed and uses two parameters only; the mean (µ) and the standard deviation
(σµ). At any time (ts), the post-invasion time distribution is represented with the function
q(tINF ). If the infection is fairly synchronous (σ < 12 h), this function is composed of
the underlying intrinsic distribution of parasite stages of the current generation (a normal
distribution fts(tINF )) and the contribution of the previous generation (pts(tINF ) repre-
sents the left tail of the last infection cycle) and next generation of parasites (nts(tINF )
represents the right tail of the next infection cycle). Such shape is no longer observable if
the infection cycle is highly asynchronous (see Figure 2.13a). The WCW model predicts
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a log linear rise in the parasitaemia for asynchronous cultures that becomes increasingly
terraced with the degree of synchronism of the IRBC population (see Figure 2.13b).

Long-term cultivation of synchronous IRBC populations with periodic subcultivations
at 96 hours has been compared to the WCW predictions on the parasitaemia-time curves
of an unimodal IRBC population. The observed left-handed bends on the peaks of the
parasitaemia are consistent with the skew to younger IRBC forms induced by a staggered
Pdeath (see Figure 2.13c). The simulations are carried out using the version 2Dv.2 op-
erating at conditions similar to the candle-jar protocols, with fixed death probabilities
Pdeath(S) = 0.002and Pdeath(F ) = 0.005. These values for Pdeath result in a probability
of completing the infection cycle per IRBC equal to Psurvival = 0.64.

Figure 2.13: Outcome of the Individual-based model compared to the predictions of a continuous
model (White et al., 1992); a) The post-invasion time distribution is composed of the intrinsic
distribution of the IRBCs of an infection generation (fts) plus the contributions of past (pts) and
following (nts) generations; b) log linear rise of parasitaemia in an unlimited culture. Simulation
outcome at each time step (dashed line) and daily samples (•). Terraces and steps smooth in
successive infection cycles. Corresponding asynchronous evolution (solid line). Corresponding
daily growth ratio, GR24 = 5.28, is compatible with the values typically observed in real systems;
c) long-term cultivation of a synchronous culture with a 4-day subculturing period.

2.3.5 Substrate availability

Glucose and lactate concentrations in the RBC culture medium are Cgluc = 2.6 mM
and Clact = 0 mM , respectively. Maximum rates of metabolized glucose and lactate pro-
duced are: d[gluc.]

dt = −(122±34) µM
109RBCs·day and d[lact.]

dt = (143±47) µM
109RBCs·day . Finally, adequate in vitro

parasitaemia yields are obtained when Clact = 12 mM (Jensen et al., 1983). Considering
these data together, global limitations on the parasite development caused by the scarcity
of glucose or the excess of lactate are expected not before 20 days.
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Nevertheless, heuristic knowledge of the handling of in vitro cultures suggests that the
culture medium should be replaced every two or three days at most, and it is commonly
accepted that this requisite is brought about by the substrate limitations on the parasite.
Moreover, it has been claimed that unrestricted parasitaemia yields can be obtained by
increasing the fraction volume of medium per volume of the hematocrit, which indicates
that the concentration of substrate is somehow determinant for parasite viability (MR4,
2008). Specific trial cultivations carried out by the EMG-GSK show that, under standard
static culturing conditions, closed systems can be maintained up to 72 hours, at most (see
Appendix B).

Trials with continuous cultures assuming different regimes for the medium renewal
show that no significant differences are found between cultures with periodic subcultiva-
tions each 48 h and each 72 h (see Appendix B). Figure 2.14 shows the time course of
both patterns in two replicas of 10-day cultures. Replicate cultures show identical evo-
lutions. Similar values for the maximum parasitemia (%Imax) and the growth ratio are
obtained in both subcultivation protocols: %Imax = 4.9 % and GR24 = 2.7± 1.0 for the
48 h pattern; and %Imax = 4.6 % and GR24 = 2.2± 0.9 for the 72 h pattern.

Figure 2.14: Temporal evolution of the parasitaemia for different subcultivation protocols. a)
Periodic subcultures performed each 48 h, and b) periodic subcultures performed each 72 h. Grey
and black solid lines and dots correspond to the two replicas of experimental data.

The nutrient limitations in closed in vitro cultures have been studied through the
exploration of the outcome of INDISIM-RBC, which considers glycolysis as the only
metabolism for RBCs and IRBCs. Results show that in culturing conditions glucose is
the limiting factor, rather than lactate. Simulations of closed systems recreating the cur-
rent culturing medium to hematocrit ratios suggest that generalized scarcity of glucose
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resulting in massive death of IRBCs does not take place (see Figure 2.15a). Thresh-
old parasitaemia yields appear after more than 10 days in culture and at parasitaemias
around %I = 60%. Increasing 100-fold glucose concentration allows reaching %I = 100%
parasitaemias, and massive extinction occurs after more than 10 days, in this case as a
consequence of excessive lactate. The massive death of RBCs when these threshold values
are achieved does not entail the decrease of the observed parasitaemia.

Figure 2.15: Simulated nutrient limitations on the propagation of the infection; a) Parasitaemia
evolution in closed culture systems for different overall initial concentrations of glucose; diamonds
(�) represent Cgluc(t = 0) = 2.6 µM , dotted line (· · · ) Cgluc(t = 0) = 0.26 mM and solid line
(-) Cgluc(t = 0) = 0.026 µM ; b) Auto-scaled visualization of local concentration of glucose and
lactate show that glucose is a more limiting factor on the parasite proliferation.

The results obtained with INDISIM-RBC do not reproduce the observations of real
systems. The decay of the infection after three days that is observed in real cultures only
appears in the simulations when considering glucose concentrations around 100 times
smaller than those of real cultures. These results suggest that the model of the individual
metabolism leaves out a key factor that limits the proliferation of the parasite. Despite
this shortcoming, results shown in Figure 2.15a can be positively used: INDISIM-RBC
is consistent with overall limitations appearing after three days in culture, caused by
the scarcity of some limiting solute other than glucose or lactate. Remarkably, such
limitations appear when the parasitaemia is around %I ∼ 20%, which is consistent with
the experimental observations.

Limitations at a local level appear when the overall conditions are not favorable
enough. INDISIM-RBC shows that conditions near the focuses of the infection are less
favorable to RBC viability. Figure 2.15b shows that around the IRBCs glucose is scarce
and lactate accumulates. RBCs are more susceptible to not being able to fulfill their
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metabolic needs near an infected region. The advantage of focusing on local limitations
is that they can be skipped with simple manipulations of the culture that modify the
spatial structure of the hematocrit (see Section 2.3.6).

INDISIM-RBC-2Dv.2 was designed to better account for the factors at a local scale
that might be responsible for the limitations observed in real systems. In this version,
the temporal scale is reduced with the aim of better capturing the diffusion of substrate
and the spreading of the parasite. The results obtained with the improved version still do
not show local limitations on the IRBC viability with the real glucose and lactate concen-
trations. Again, this suggests that either i) there is another metabolic limiting factor, ii)
the algorithm used to represent the diffusion of substances through the hematocrit at the
current scales is still insufficient, or iii) the current two-dimensional approach obscures
the phenomenon occurring in the real hematocrit layer. The diffusion problem in 3D is
revisited in Section 3.5.

2.3.6 Agitation of the culture systems

An alternative to the static cultivation of P. falciparum (where the RBCs remain
settled forming a hematocrit layer at the bottom of culture vials) is the cultivation in
suspension (where a slurry formed by RBCs and medium is maintained through the
continual agitation of the culture system). Suspended cultures have been claimed to
render more abundant harvests than static cultures (Butcher, 1981). Apparently, they
show increased infection growth ratios (Butcher, 1982) and support higher parasite yields
(Zolg et al., 1982) without unaffordable medium expenses. Furthermore, a method using
low hematocrit and high glucose content apparently only required subculturing every 3
days without medium replacement in between (Fairlamb et al., 1985). These published
experimental results do not provide strictly conclusive evidences to support the preference
of IRBCs for suspended cultures, although they clearly point in this direction.

The expected behavior of the suspension systems is a compromise between two oppo-
site trends:

1. on the one hand, the continual shift of positions of the RBCs favors the propagation
of the disease because the number of potentially healthy RBC targets to be invaded
by an egressed merozoite is no longer restricted to the immediate neighborhood
of the lysing IRBC. In addition, the mix of the hematocrit layer homogenizes the
concentration of solute substances, thereby eliminating the effect of local substrate
limitations.

2. on the other hand, the reduction of cell density hinders the propagation of the
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infection in suspended cultures. This can be understood as the decrease in the
probability of encounter between a merozoite and IRBC due to a reduced density,
which consequently reduces the rate of transmission.

In addition, the death probability is likely to be increased when the RBCs are submitted
to the damaging methods usually employed to maintain cells in suspension (i.e. airlift
columns or stirring, shaking or wiggling of the culture systems). Moreover, the contin-
ual movement of RBCs could hinder the attachment and invasion of healthy RBCs by
merozoites, reducing the infection rate.

Discrete agitation regimes

The above arguments suggest that the agitation of static culture systems at discrete
time spans would increase the performance of static in vitro cultivation of P. falciparum.
Indeed, discrete gentle agitation of the hematocrit combines the increase in the number of
potential healthy RBC targets (trend 1) with the high cell densities within the hematocrit
layer (trend 2). In addition, the potentially harmful effects of agitation are reduced.

Data in the literature suggest that typical RBC sedimentation velocities are around
vsed(RBC) = (2.10 ± 0.18) · 10−3cm/s (Neu and Meiselman, 2001). Settling of RBCs
after agitation would take between two and three minutes for custom culture systems
with Hculture ∼ 2 mm height (MR4, 2008). Measurements of the RBC sedimentation
rate carried out by the EMG-GSK in cultures with several heights provided significantly
different results, vsed(RBC) = (1.1± 0.3) · 10−5cm/s, which entail settling times on the
order of ∼ 1 h (see Appendix B). Nevertheless, culture systems submitted to gentle one-
time agitations at big enough regular time spans (Tagitation > 12 h) can be regarded as
static cultures, because this assumption holds for more than 90% of the time in culture.

Discretely agitated static cultures have been implemented by the EMG-GSK. The
comparison of the short-term cultivation of the parasite in closed systems under different
discrete agitation regimes shows no significant differences between the cultures agitated
each 24h, 48h and 72h (see Appendix B). Closed cultures last for three days at most (no
viable forms are observed in the sample at 96 h), show maximum parasitaeimas around
%I ∼ 5% and growth ratios in the range 6 < GR48 < 10. No correlation can be observed
between the agitation regime and the growth ratio. For this reason, no experiments of
the long term cultivation of discretely agitated cultures have been carried out.

Discretely agitated culture systems are represented by INDISIM-RBC as static cul-
tures where the positions of RBCs are periodically shifted at each agitation. INDISIM-
RBC shows no differences between the behavior of static cultures and discretely agitated
cultures with different agitation periods. The results obtained in real and simulated
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cultures suggest that either the local limitations (regarding the spreading of the para-
site and/or the concentration of substances in solution) are not overcome with discrete
agitation, or that there are no such local limitations.

Cultivation of P. falciparum in suspended cultures

The EMG-GSK has performed several trial experiments to assess the differences be-
tween static and suspension culture systems. Suspension cultures are carried out through
the continuous agitation of the system with a magnetic stirrer operating at non-damaging
velocities (see Appendix B). Trials in closed culture systems show that stirred cultures
grow at significantly higher rates than static or discretely agitated cultures do. Never-
theless, like the other closed systems, suspension cultures are still submitted to overall
limitations that do not allow the viability of IRBCs after 72 h. These results suggest that
limitations on the infection exist both at a local and at a global level.

The positive results of cultures in suspension bring about the trial of long-term con-
tinuous cultivation under different agitation regimes (see Appendix B). The growth ratios
observed in the continuous trials, GR24(stirred) = 3.7±1.7 and GR24(static) = 1.8±0.6,
can be used to build a simple PbM for the spreading of the infection between two suc-
cessive subcultivations. This model assumes unrestricted propagation of the parasite and
fits an exponential function to the observed growth ratios. The parasitaemia at each time
step after subculturing are obtained with:

%Istirred(ts) = 0.5% · e0.05/hr·ts (2.11)

%Istatic(ts) = 0.5% · e0.023/hr·ts (2.12)

As discussed in Section 2.3.5, these models are only valid for low parasitaemias be-
cause they assume unrestricted proliferation of the infection. Still, the empirical formulas
2.12 and 2.11 can be considered valid enough during the first 72 h and they can be used
to predict the behavior of different subcultivation regimes maintained for a month. Two
different subculturing protocols were trialed with prospects of using an automated cul-
turing device. Both consist in performing periodic subcultivations each 48 h, but the
man-made renewal sets parasitaemia to 0.5% after subculture, while the semi-automated
renewal sets a fixed RBC dilution rate (ν) that leads to the same parasitaemia, accord-
ing to Equations 2.11 and 2.12. Real static and stirred cultures are compared to the
model predictions. Dilutions in semi-automated subculturing are set to νstirred = 1

11 and
νstatic = 1

3 , respectively. The predictions of the continuous model are not significantly
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different from the experimental observations (Figure 2.16).

Figure 2.16: Course of the parasitaemia, observed daily in stirred (a) and static (b) long-term
cultivation of P. falciparum infected RBCs (see Appendix B) and compared to the predictions by
equations 2.11 and 2.12, respectively. Green solid line corresponds to a culture with daily human
subcultivation, to set the initial parasitaemia %I0 = 0.5 after subculture. Blue dotted line shows
the expected behavior of automatized subcultivation with ratios ν(a) = 1

11
and ν(b) = 1

3
predicted

by the model. Black solid line shows the measurements of real automatized cultures.

Suspension can be represented by INDISIM-RBC as a custom static model with two
modifications:

1. The system is continuously mixed. At each time step, the position of the RBCs
is shifted at random, merozoites are scattered all through the spatial cells and
substrate is continuously homogenized.
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2. The RBC density corresponds to the volumetric hematocrit concentration (ranging
from 5% to 10% in volume) rather than to the cell density observed in the hemat-
ocrit layer (where around 80% of the volume is occupied by RBCs). This marked
reduction in cell density is introduced in the model as a decrease in the total num-
ber of modeled RBCs. For instance, in a model with 100 × 100 spatial cells, the
representation of a static cultivation entails considering up to 10000 RBCs, while
only 500 RBCs are included when modeling a suspended culture.

From the model outcome and the experimental results for the static and stirred cultures,
one can state that the two processes can not be reproduced simultaneously with the same
set of individual-related parameters: simulation results show that the combination of
mechanisms 1 and 2 using the values for Pinf and Pdeath that best fit static cultures lead
to non-viable cultures. Moreover, finding a pair of values that reproduce the behaviors of
real systems is quite difficult and the simulation outcomes show much more uncertainty
than what is observed for static cultures.

It is reasonable to assume that the values of the probability of infection and the
damaged caused to the cells is different in static and stirred cultures. Firstly, invasion of
a healthy RBC by a merozoite placed at its same spatial cell when both cells are settled
in the hematocrit gently touching each other is a process that clearly differs from the
infection when the two cells collide while drifting around. Secondly, cells submitted to
any kind of agitation are necessarily exposed to more mechanical stress, and they can
be damaged more easily. Several experiments carried out by EMG-GSK, which are not
included in this study because they concern the development of a bioreactor, corroborate
this assumption.

A more detailed study of agitated culture systems requires modifying the current
versions of the model. Additional or alternative hypotheses regarding cell-cell interactions
must be introduced into the model to tackle cultures in suspension.

2.4 Discussion and open questions

INDISIM-RBC proposes a set of rules governing individuals (RBCs and IRBCs) and their
local environment (the spatial structure of the system, the extracellular parasite and
substrate concentration in the culture medium) that can be used to better understand
the behavior of Plasmodium falciparum infected erythrocytes in in vitro cultures. Several
patterns observed in real systems have been used to guide the design and development of
the model:
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1. Population structure: Post-invasion time distributions among IRBCs in short-term
and long-term culture systems are quantitatively reproduced by the model.

2. Population dynamics: Temporal evolution of the observed parasitaemia and aver-
age infection growth rates at different time spans (24, 48, 72 and 96 hours) are
quantitatively reproduced by the model.

3. Population variability: The trends and variability observed for cultures with dif-
ferent population structures regarding healthy RBCs (age distribution associated
with different storage times) and infected RBCs (post-invasion time distribution)
are also found in the model outcome.

4. Infection structure: several mechanisms of local spreading of the parasite and their
resulting modeled infection dynamics are compared to experimental results. The
model outcome that is most compatible with the real system-level observations
corresponds with the mechanism that is most consistent with the behavior of the
parasite reported from individual imaging.

5. Infection dynamics: the relation between infection dynamics, IRBC population
structure and culturing protocols is consistent with the observation of long-term
culture system and with the predictions of accepted population-based models.

6. Infection variability: The variability observed for experimental cultures of different
strains of P. falciparum with different infection capabilities is also found in the
model outcome.

This provides a due degree of confidence in the proposed mechanisms and in the underlying
structure of the model. Taking the idea a bit further, it can be stated that the quantitative
reproduction of a single sort of experimental result alone would not be an appropriate
strategy to analyze and validate INDISIM. This can be argued as follows: experimental
in vitro cultures of P. falciparum infected RBCs are complex systems that show both
predictable features (patterns) and erratic behaviors (variability). They are conditioned
by different factors (strain of parasites, RBC source, culturing protocols...) that can
not be disentangled one from the other, and which are hardly assessed through direct
measurements. Even the simplest model that expects to capture the all the essential
mechanisms that govern the culture evolution must be quite complex. INDISIM-RBC
assumes several hypotheses at the same time, each of them concerning a particular aspect
of the system and represented by a set of rules and parameters.The model has too many
degrees of freedom to be compared to a single variety of experimental results (a.k.a.
pattern).
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An analysis of the sensitivity of the model entails the systematic adjustment of its
outcome to a single observable pattern for different experiments and for different sets of
parameters in the model. Yet, this analysis alone does not provide enough arguments to
hold the model. Instead, several independent experimental patterns reproduced at differ-
ent scales entail that, even if the mechanisms proposed by the model are just artifacts,
they capture many aspects of reality. The robustness of the model, the consistency of its
predictions regarding other patterns is also increased: when any experimental observa-
tion contradicts the model’s predictions, any subsequent modification of the model must
reproduce the patterns that are already correctly simulated.

The first versions of the model focus on the processes regarding the individuals and
population structure, and on their relations with characteristic features of the culture
system. Version 2Dv.1 was converted into a more detailed version, 2Dv.2, which allows
a more accurate description and analysis of processes such as synchronization, nutrient
availability and merozoite spreading. Versions 2Dv.1 and 2Dv.2 provide compatible re-
sults, although some of the simulation parameters must be readjusted from version to
version. In particular, the values for Pdeath and Pinf are tuned when shifting from a
version to the other.

Several aspects of the simulator can be improved. The individual model could account
for different metabolites to better reproduce the limitations observed in closed culture
systems. The biological complexity of the RBC model could be increased so that tthe
model was more oriented to the cellular level (i.e. whole cell models in system biology).
However, the next step in this study was to analyze how the spatial structure of the
system and the local environmental affect the infection process.

The approach in 2D does not allow for an accurate description of the local processes.
A 3D model has been developed to better understand the spreading of the extracellular
parasite and the limitations caused by the diffusion of substrate through the hematocrit
layer. Chapter 3 presents this model to analyze how the spatial structure of the culture
at a system level affects the course of static in vitro cultures.



Chapter 3

P. falciparum infected RBCs in
static cultures

The first versions of INDISIM-RBC (see Section 2.2) proved their validity in repre-
senting the mechanisms governing the propagation of Plasmodium falciparum in RBC in
vitro cultures, as well as their capacity to provide understanding concerning the observed
population dynamics (see Section 2.3). However, a more accurate description of the pro-
cesses affecting the local environment of the RBCs is required when comparing different
culturing devices (see Section 2.4).

The current chapter focuses on modeling the spatial structure of static in vitro cul-
ture systems. In particular, on how the geometrical characteristics of the hematocrit
layer of settled RBCs influence the prevalence and the course of the infection. Firstly,
the experiments carried out to explore different culturing setups are presented (Section
3.1). Secondly, the modifications on the 3D version of the Individual-based model are
outlined and an abridged ODD description of INDISIM-RBC.v3D is presented (Section
3.2). Thirdly, some general results used to validate the 3D version of the simulator are
put forward (Section 3.3). Finally, two underlying mechanisms that may cause the be-
havior observed in real static in vitro cultures are analyzed: a) local limitations on the
parasite proliferation (Section 3.4), and b) local degradation of the culture medium due
to insufficient diffusion rates (Section 3.5). These potentially limiting factors are tackled
through population-based models supported by the outcome of INDISIM-RBC.v3D.
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3.1 Geometrical characterization of the static culture
systems

3.1.1 Preliminary considerations on the application of INDISIM-
RBC.v3D

The initial steps in the modeling of any real system consist in finding an appropri-
ate representation of the system under study. INDISIM-RBC correctly reproduces the
observed behaviors of the cultures and apparently captures some of the underlying mech-
anisms of real systems. It can be considered a good tool to simulate real systems.

The next step is applying the results of the model to better understand and control
real systems. INDISIM-RBC.v3D was developed and is used as a support tool to facilitate
the analysis of different culturing setups with the aim of designing improved culturing
devices.

In this sense, it is important to recall that one fundamental aim of the collaboration
between MOSIMBIO and EMG-GSK was to use the models for practical purposes. Ac-
cording to the EMG-GSK, the improvement of the in vitro culturing protocols initially
followed two lines of investigation with different objectives:

1. One of the objectives was to better understand the factors and constraints on the
static cultivation of malaria parasites in order to optimize its performance, better
reproduce the conditions in vivo and interpret the results of drug trials.

2. The second objective was to develop an automated continuous suspension culture,
an automatized bioreactor capable of maintaining steady conditions for the infected
RBCs. Such an apparatus would be used to maintain the culture lines of different
parasite strains and would also serve to perform batteries of drug trials.

The results concerning line (1) were presented in Ferrer et al. (2008) and constitute the
main part of this chapter. They comprise a systematic study of the constraints arising
from the geometry of the hematocrit layer, which covers hematocrit layer depths that
range from 0.06 mm to 3 mm, and a separation between the walls of the culturing device
that varies from 7.5 mm to 9 cm.

The detailed study of experimental systems that differ only in their three-dimensional
configuration demands the development of an explicit 3D model. The setting up of the
version v3D required some additional measurements regarding the spatial structure of
real static culture systems, both on the local scale (e.g.. counting the number of multiply
infected IRBC as an indirect measure of the propagation of the merozoite, or assessing
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the average RBC density within the hematocrit layer) and at the level of description of
the whole system (e.g. measuring the macroscopic geometry of the culture system and
its effects).

The research concerning line (2) led to preliminary considerations on the design of a
prototype of a suspended cell airlift bioreactor. However, the model outcome suggested
that suspension cultures required exploring new roads. The conclusions drawn from
the application of INDISIM-RBC.v3D are similar to those presented in Section 2.3.6:
a different set of rules for the interactions must be developed to deal with suspended
cultures.

The research revealed that it is also beyond the scope of the model to deal with some
technical limitations found in the agitated experimental systems. For instance, how to
handle continuous subcultivation of the parasite (the model cannot explain the observed
loss of infection capability associated with this process) and how to control hematocrit
and parasite leak through the filters and valves of the culturing device, among others.
The study of suspension culture systems is left as a perspective for further work. Thus,
the associated experimental trials are not presented here.

3.1.2 Experimental trials on static culture systems

The model in 3D attempts to capture the essence of the local environment of the
RBCs, in order to analyze how the spatial configuration of the static cultures affects the
infection dynamics. For this reason, the following set of experiments have been carried
out to gain a more a detailed depiction of the hematocrit layer under typical culturing
conditions.

Multiple infections in IRBCs

The simplest hypothesis regarding the invasion of RBCs by merozoites is to assume
that it is a homogeneously random process, in the sense that every healthy RBC is equally
susceptible to invasion. If this hypothesis holds, then the distribution of the number of
malaria parasites per IRBC follows a Poisson distribution. However, if not all the RBCs
are equally susceptible to invasion (i.e. if the pool of susceptible erythrocytes is smaller
than the total number of RBCs, as occurs when the infection is a locally limited process),
the population of IRBCs must bear an increased number of parasites. The result is an
increased proportion of multiparasited IRBCs, which implies that the distribution of the
number of invasions per IRBC has a longer tail than the one predicted by the Poisson
distribution (Simpson et al., 1999).
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The Poisson distribution (fP (k;λ)) expresses the probability of a number of events
(k) occurring in a fixed period of time if these events occur with a known average rate
(λ). It is given by:

fp(k;λ) =
λke−λ

k!
(3.1)

A corrected Poisson distribution function is used to analyze the experimental results.
This is a Poisson distribution that does not consider the probability of no events occurring
(k = 0). It can be used to tackle the distribution of the number of invasions within the
population of IRBCs. The probability of no events occurring can be associated with the
population of non infected RBCs: fp(k = 0;λ) ∼ 1−%I ∼ 90%.

The observations of multiple infected parasites carried out by EMG-GSK (see Ap-
pendix B) have been compared to the corrected Poisson distribution function (Figure
3.1).

Figure 3.1: Percentage of multiple infected RBCs. White dots (◦): observed experimental counts
in over 51 thin smears, each containing 2500 RBCs; grey dots (•) and solid line (-): theoretical
ratio obtained with a corrected Poisson distribution assuming λ = 0.1.

The parameter λ in the Poisson distribution represents the average number of para-
sites per RBC. Assuming a maximum threshold parasitaemia (%I = 10%), the expected
number of parasites is λ ∼ 0.1. The values obtained with the corresponding Poisson
distribution (fp(k;λ = 0.1) are significantly different from those observed in real cultures
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(Figure 3.1). The correlation factor between observed (fobs) and theoretical values is only
r2 = 0.17. More realistic parameters for the parasitaemia (i.e. %I < 10%) yield worse
fits. In conclusion, it may be stated that infection of RBCs is not a completely random
process.

The measurement of multiple infected RBCs in vitro has been carried out to better
understand the process of invasion and to check the validity of the 3D-model for the local
spreading of extracellular merozoites (see Section 3.3.3).

Cell density in the hematocrit layer

A determining factor for the propagation of the infection in the model is the average
distance between RBCs (see Section 2.3.6), which is related to the cell density in the
hematocrit. This is measured as the fraction of volume of the layer occupied by RBCs,
a.k.a. RBCs average packing factor or just packing factor (pf).

Different culture devices are filled with culture medium plus healthy RBCs at 5%
hematocrit, simulating an ordinary static culture. Their base surface (S) is small enough
to allow an accurate measurement of the Hematocrit Layer Depth (HLD) and big enough
to neglect capillarity effects. The real depth (HLDobs) is measured once red blood cells
are completely settled down. The depth expected if RBCs were completely packed without
interstitial space (HLDcalc) is obtained by multiplying the culture depth (Htotal) by the
hematocrit fraction (%H = 0.05). The real packing factor is calculated as the fraction
of expected to real depths: pf = HLDcalc

HLDobs
. A description of the experimental methods is

outlined in Appendix B. The results obtained are shown in Table 3.1.

Culture device S [cm2] Htotal [cm] HLDcalc [cm] HLDobs [cm] pf

Glass 1 2.41± 0.05 8.7± 0.1 0.435± 0.005 0.5± 0.1 0.87± 0.17

Tube 1 0.50± 0.05 42.0± 0.1 2.1± 0.005 2.4± 0.1 0.88± 0.04

Tube 2 0.28± 0.05 66.5± 0.1 3.325± 0.005 3.9± 0.1 0.85± 0.02

Table 3.1: Estimated RBC density within the hematocrit layer, according to the measurements
using three different culture devices: glass 1, a flat-bottomed test tube; tubes 1 and 2, plastic pipes
similar to straws with a flat silicone seal at the bottom; S: base surface, calculated out from the
measured diameter; Htotal: measured culture depth; HLDcalc: expected depth of the hematocrit
layer; HLDobs: measured depth of the hematocrit layer; and pf : calculated packing factor of
RBCs.

The experimental RBC packing factor can be compared with the packing factors cor-
responding to theoretical spatial distributions of different objects. For instance, RBCs
can be approximated to rigid spheres with the same volume (rsphere = 2.71 µm). These



92 Chapter3. P. falciparum infected RBCs in static cultures

spheres can be arranged in a perfectly ordered and optimally packed distribution, with
all the spheres in contact with each other and leaving minimum interstitial space between
them. This spatial distribution corresponds to the so called Face-Centered-Cubic config-
uration (FCC ). Its theoretical packing factor is known to be pfFCC ' 0.74. Or spheres
can be arranged in a random 3D distribution, but still placed so that each sphere is in
contact with its immediate neighbors (RS ). This configuration leaves some gaps between
the spheres, and the resulting theoretical packing factor is pfRS ' 0.64 (Berryman, 1983).

Alternatively, RBCs can be approximated to rigid disks of the same volume (ddisk =
7.4 µm; hdisk = 2 µm). They can be arranged in a perfectly ordered and optimally
packed honeycomb-like distribution (HD), with a packing factor pfHD ' 0.91. Instead,
disks randomly packed in two dimensional layers in contact with each other (RD) give a
packing factor of pfRD = 0.82 (Berryman, 1983).

The packing factor observed in real cultures is pfexp = 0.87± 0.07. The observations
are most consistent with the ordered placement of rigid disk-like RBCs. Such a result
tallies with the tendency of RBCs to form regular aggregate structures (ruleaux). Even
so, a more disordered arrangement of RBCs is still compatible with observations in real
cultures, if we consider RBCs as non-rigid bodies that can be distorted to better fit with
each other.

The experimental results provide additional information: increasing HLD does not
lead to an increase in the packing factor. This supports the hypothesis that there is
no compacting of the hematocrit layer due to hydrostatic effects. It can be assumed
that pfexp remains constant throughout the hematocrit layer, no matter the value of
HLD. This lack of compacting hypothesis is also compatible with theoretical arguments
indicating that the net weight of the settled RBCs over any single cell is negligible when
compared both to the cellular stiffness (Shung et al., 1982; Godin et al., 2007) and to the
interactions among RBCs (Hochmuth and Marcus, 2002).

Shape of the hematocrit layer

The hematocrit layer and the free culturing medium behave as distinct phases in static
cultivation: as long as the culture is not stirred, hematocrit and medium are regions with
distinguishable physical properties. This jibes with the observation of a phenomenon
typically associated with the surface tension of liquids: the formation of hematocrit pud-
dles and the appearance of a meniscus in the interface between the hematocrit, the free
medium and the walls of the culture vial.

The real shape of the hematocrit layer observed for certain geometries of the culturing
vial is not strictly a thin flat deposit that covers all the bottom of the culturing device.
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On a (non-wettable) glass surface, small volumes of culture show hematocrit layers that
resemble a puddle and cover only a fraction of the total surface of the culturing device.
In plastic culture vials (wettable surface), the hematocrit may stick to the walls and form
a meniscus (see Figure 3.2). This observed behavior can be explained as follows.

Both healthy and infected RBCs are subject to some extent to cell-to-cell attractive
interactions: rouleaux and other kinds of RBC-RBC aggregates provide an adhesion
energy per unit surface (ε) estimated to be εRBC = 1 · 10−4N

m (Hochmuth and Marcus,
2002). The enhanced adhesiveness of IRBCs caused by knobs, which is exhibited in the
formation of rosettes, contributes to increasing this stickiness (Chotivanich et al., 2000).
The inter-cellular attraction produces a net inward pull on the cells placed on the border
of the hematocrit, which can be measured as surface free energy (Foty and Steinberg,
2005).

Surface free energy (a.k.a. surface tension) resulting from molecular interactions is
used in physics to describe the behavior of different phases of liquids. This analogy with
liquids can be extended to define a capillary length (LC): LC =

√
ε
g·ρ , where ρ is the

density of the liquid, and g is gravity. LC is the characteristic length scale in which
inter-cellular interactions are comparable to gravitational energy. It defines the shape of
the puddles of liquids, as well as the extent of the observed meniscus.

An estimation of the order of magnitude of the LC corresponding to the hematocrit
can be carried out assuming that the surface free energy between the hematocrit and the
culture medium is εH20 ∼ 1 · 10−1N

m , and that the value of LC of the culture medium is
Lc(H2O) ∼ 2 mm. This results in:

LC(RBC) =
√
εRBC
εH2O

· LC(H2O) ∼ 0.06 mm (3.2)

LC determines the maximum depth that the hematocrit layer can reach when RBCs
are settled forming a puddle in the bottom of a glass vial without contacting its walls.
It can be used to calculate the culturing surface (S) for small volumes of the hematocrit
cultured in big vials. LC is also associated with the range of the meniscus, where the
hematocrit layer is affected by the presence of the walls of the culturing device. It can be
used to interpret the effect of the distance between walls in static cultures.

The usual static culturing conditions imply dimensions much bigger than the capil-
lary length, so the hematocrit layer may be considered a flat thin bed. Then, HLD is
calculated from the total culture volume (V ), the hematocrit concentration (%H), the
observed culturing surface and the fraction of the hematocrit layer occupied by RBCs
(pf).
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HLD =
V ·%H
S · pf

(3.3)

This calculated HLD is used to characterize the effect of the thickness of the hemat-
ocrit layer on the parasite development in static in vitro cultures with different surfaces
and volumes.

Figure 3.2: Observed shape of the hematocrit layer in static culture systems. A) Glass culturing
devices produce a convex meniscus. i) flat bottomed bottles used in the experiment B series. ii)
petri dishes with plastic separators used in the P series (two separators). B) Plastic culturing
devices produce a concave meniscus. Six-well plates used in the W series.

Effect of the geometry of the hematocrit layer on the infection course

Static cultures are often referred to as ’thin-layer cultures’, yet the exact meaning
of ’thin’ is not specified. Standardized protocols recommend two types of static in vitro
cultures to carry out the candle-jar technique (MR4, 2008):

i) V ∼ 4 ml with %H ∼ 5% in plastic flasks with a base surface S = 25 cm2,
and

ii) V ∼ 12 ml with %H ∼ 5% in flasks with S = 75 cm2.

If RBCs are settled in a perfectly compact layer, the thickness of the hematocrit layer is
HLD = 0.09 mm.

In most of the culturing protocols found in the literature, the hematocrit layer depth
is not explicitly defined. Its calculated value ranges from HLD ∼ 0.2 mm (in the candle-
jar method: V = 1.5 ml, %H = 10%, S ' 10 cm2 and pf ' 0.85) to HLD ∼ 1.2 mm
(in cultures in aliquots: V = 0.5 ml, %H = 10%, S ' 1.5 cm2 and pf ' 0.85) (Trager,
1994).

For the smallest cultures, HLD is only one order of magnitude greater than the
characteristic length of RBCs (the diameter of the erythrocyte is DRBC = 6 − 8 µm ∼
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1 · 10−2 mm). In consequence, the HLDs proposed in literature represent significantly
different backgrounds from the RBCs point of view. Such differences in HLD may be
extremely important if the processes occurring at a local level (e.g. uptake of nutrients,
local spreading of the parasites, among others) are limiting factors on the propagation of
the infection.

The base surface of the culture systems found in the literature also varies from trial
to trial, ranging from S = 1.5 cm2 to S = 75 cm2. In this case, the dimension of the
system is always several orders of magnitude greater than the characteristic length of the
RBC, so the relative differences at the RBC scale are not so evident.

The effect of the dimensions of the hematocrit layer (HLD, V ) on parasite develop-
ment (parasitemia %I and growth ratio GR) is analyzed through three series of experi-
ments performed by EMG-GSK. Several static in vitro cultures are raised under similar
culturing conditions and different geometric characteristics. Three trials compare differ-
ent base surfaces, culture volumes and shapes of the culture vials. Their performance in
parasitaemia and daily growth ratio is measured.

P -series) 2-day culture trials covering a range of base areas after fixing both the hemat-
ocrit layer volume and depth. They are carried out to evaluate the effect of the
walls of the culture device. Cultures are set in glass Petri dishes, which have
been previously split into detached sub-regions by gluing plastic separators
onto the plate base surface. Different distances between the glass separators
(L) are trialed. The growth ratio at each sub-region within a plate is evalu-
ated separately. Each plate has a control sub-region with a fixed surface to
rule out differences not associated with the variation of L.

W-series) 14-day trials varying the hematocrit layer depth by modifying the total culture
volume with a fixed base surface. They are carried out to evaluate the effect
of HLD. Cultures are set in plastic trays, each containing 6 culture wells,
and use small culture volumes (from 1 ml to 10 ml) .

B-series) 18-day trials varying the hematocrit layer depth (HLD) by modifying both
the total culture volume (V ) and the culturing surface (S). They are carried
out to evaluate the effect of HLD and of the total culture volume. Cultures
are set in flat-bottomed glass bottles and use large culturing volumes (from
2 ml to 100 ml).

The geometric characteristics of the experimental sets are depicted in Figure 3.2. They
are also presented together with the experimental results in Table 3.3. Specifications of
the culture methods are detailed in Appendix B.
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Trial
name

V

(ml)
VRBC

(µl)
L

(cm)
S

(cm2)
VH

(µl)
HLD

(mm)
%I

(%)
GR48

P1 16.5 825 0.75 6.8 129.2 0.19 0.35±0.19 0.6± 0.8

P2 16.5 825 1 9.0 171.0 0.19 0.6± 0.2 1.3± 0.8

P3 16.5 825 2 16.0 304.0 0.19 0.7± 0.4 2.2± 2.1

P4 16.5 825 4 32.0 608.0 0.19 0.9± 0.3 3.3± 1.6

P5 16.5 825 9 63.6 1208.4 0.19 1.2± 0.5 4.1± 1.5

Trial
name

V

(ml)
VRBC

(µl)
D

(cm)
S

(cm2)
VH

(µl)
HLD

(mm)
%I

(%)
GR48

W1 1.0 49.4 3.5 9.62 73.73 0.060± 0.015 1.5± 1.2 5.2± 1.8

W2 1.5 74.1 3.5 9.62 110.60 0.09± 0.02 1.6± 1.1 5.4± 1.9

W3 3.1 155.5 3.5 9.62 194.03 0.19± 0.05 1.7± 1.3 6± 2

W4 5.8 290 3.5 9.62 232.09 0.34± 0.08 1.5± 1.0 4.9± 1.0

W5 10.0 500 3.5 9.62 388.06 0.59± 0.15 1.4± 1.0 5± 2

B1 2.6 130 3.1 7.54 432.84 0.18± 0.05 1.8± 1.2 6.3± 1.2

B2 5.2 260 3.3 8.55 432.84 0.34± 0.08 1.7± 1.2 6.4± 0.9

B3 5.8 290 3.4 9.08 746.27 0.32± 0.08 1.7± 1.6 7± 3

B4 10.1 506.5 3.6 10.18 755.97 0.56± 0.14 1.4± 0.8 5.1± 0.8

B5 10.4 520 3.5 9.62 776.12 0.60± 0.15 1.4± 1.0 5.1± 1.8

B6 20.8 1040 3.9 11.94 1552.24 1.0± 0.2 1.1± 1.5 3.3± 0.7

B7 26.0 1300 4.1 13.20 1940.30 1.1± 0.3 1.0± 0.4 3.0± 0.5

B8 51.5 2074 5 19.63 3841.79 1.5± 0.4 0.7± 0.2 1.6± 0.3

B9 68.6 3432 5 19.63 5122.39 2.0± 0.5 0.50± 0.19 1.6± 0.6

B10 74.1 3705 5 19.63 5529.85 2.2± 0.5 0.4± 0.2 1.0± 0.6

B11 98.8 4940 5 19.63 7373.13 2.9± 0.7 0.3± 0.16 0.8± 0.4

Table 3.3: Macroscopic geometric characteristics and experimental results of P-, W- and B-
trials. V : measured total culture volume, VRBCs: calculated volume of packed RBCs, VH : cal-
culated volume of the hematocrit layer,L: measured distance between separators; D: measured
diameter of the hematocrit layer deposit, S: calculated base surface, HLD: calculated depth of
the hematocrit layer, %I: average observed parasitaemia and GR48: calculated growth ratio at
48h. W refers to cultures in 6-well plastic plates and B to cultures in 5 cm diameter flat-bottom
glass bottles. W assays with volumes lower than 1.0ml have not been presented because they did
not develop well, due to the effects of surface tension. Reprinted from Ferrer et al. 2008, Malaria
Journal 7: 203.
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3.2 ODD Description of INDISIM-RBC in 3D

3.2.1 Need for a 3D model

The results obtained with versions 2Dv.1 and 2Dv.2 show that the model can be
improved to better reproduce some features observed in real cultures.

The need to impose a maximum threshold on the number of parasites that can invade
a single RBC (Section 2.3.3) is aimed to improving the model of the propagation of
extracellular merozoites through the hematocrit layer.

The absence of diffusive limitations that may cause the local exhaustion of medium
in closed systems (Section 2.3.5), and which could explain the differences found between
static and agitated cultures (Section 2.3.6), demands revisiting the model of substrate
diffusion.

The detailed study of different experimental static cultures also stimulates the de-
velopment of INDISIM-RBC.v3D. The aim is to compare and understand the different
performances observed in culture systems that are distinguished only by differences in
their geometry.

A description of the model is outlined below, following the scheme of the ODD but
detailing only the specific modifications of this version. The complete description of
INDISIM-RBC is found in Section 2.2.

3.2.2 ODD description of the 3D model

Overview

Purpose:
The model aims to decipher how the spatial structure of the hematocrit layer affects the
static in vitro cultivation of Plasmodium falciparum IRBCs.

Entities and state variables:
Two low level entities are those defined in the 2D versions, the RBC and the spatial cell
(sc). Their characteristic variables remain unaltered. The sole modification pertains to
the extracellular merozoites. In the current version merozoites are tackled one by one,
yet they are not considered as individual entities because they do not have individual
characteristics beyond their time spent in the extracellular medium and their position in
the spatial grid (Grimm, 1999).

Characteristic scales:
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The model is spatially explicit and represents a small patch of the hematocrit layer. In
this version (v3D), the space is modeled as a regular 3D grid formed by I×J ×K spatial
cells, typically, with I = J = 20 sc and K = 40 − 1000 sc. Each spatial cell is a square
of lsc = 5 µm side. Therefore, the whole grid represents a column with a base surface of
0.01 mm² and a depth slightly bigger than the thickness of the hematocrit layer (HLD).
Processes are modeled discretely and events take place at finite time steps. The time step
(ts) is set to 1 hour. The value of the simulation unit that represent substrate particles
(su) is set to 106 molecules.

Boundary conditions:
The fraction of the culture system included in the model is a column of the hematocrit
layer and a small fraction of the culturing medium that covers it, the extent of the
Diffusion Boundary Layer (DBL). Therefore, the limiting surfaces of the model have
different boundary conditions.

i) Top boundary: The upper layer of spatial cells represents the free culturing medium.
Bulk medium can be considered as an infinite source of glucose and a reservoir for
lactate during the spans between two successive subcultivations. For this reason, top
cells are considered as a closed boundary, meaning that they exchange substances
only with side and lower spatial cells, and still maintain a substrate concentration
fixed to the initial values: Cgluc(i, j,HLD + DBL; t) = C0 and Clact(i, j,HLD +
DBL; t) = 0.

ii) Bottom boundary: The lower layer of cells lies on the surface of the culturing
device. Bottom cells are considered a closed boundary that may accumulate
the substrate, waste and deposits that settle in the hematocrit layer

iii) Side boundaries: Typically, the modeled fraction of the culture system is placed
in the middle of the hematocrit layer, so it is surrounded by near replicas of
the model. For this reason, the cells of the side surfaces are characterized with
Periodic Boundary Conditions (PBC).

Eventually, side boundaries are considered a closed boundary to represent the
effect of the side walls of the culturing device.

A depiction of the characteristic scales, entities and spatial structure of the model
is depicted in Figure 3.3. The list of variables, their values (in simulation units and
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measured values) and the reference to the reference source to set them are presented in
Table 2.1.

Figure 3.3: Depiction of the entities, variables and spatial structure of the 3D versions of
INDISIM-RBC. a) Side view of an experimental static culture, according to the MR4 protocol:
i) controlled atmosphere, dimensions of the culture vials D ∼ 3 cm ii) free culture medium,
depth of the culture H ∼ 5 mm, iii) hematocrit, iv) modeled fraction of the culture system;
b) spatial model of the hematocrit in 3D, measures X × Y × Z, with X = Y = 0.1 mm and
Z = HLD+DBL, v) boundary layer, measures DBL ∼ 0.1 mm, vi) hematocrit layer, its depth
ranges 0.1 mm < HLD < 2 mm, vii) top layer: reservoir boundary conditions, viii) bottom
layer: closed boundary conditions, ix) side walls: periodic boundary conditions; c) 3D view of a
fraction of the spatial model, size of the spatial cell lsc = 5 µm.

Process overview and scheduling:
The general procedure and scheduling of v3D are the same as in versions 2D (see Section
2.2).

Design concepts

The design concepts stated in Section 2.2 remain unaltered, except for the observation
of the model outcome.
Observation: The graphical interface of the model shows data collected at the end of
each time step (label 7iii in Figure 2.1). Figure 3.4 shows a screen shot of the graphical
interface of the v3D version of the model. It is comprised of four graphical windows
and a numeric display showing system-level variables that are updated on the fly. The
windows represent (1) the temporal evolution of RBCs, (2) merozoites and IRBCs, (3)
the vertical cross-section of the hematocrit layer showing total number of RBCs, IRBCs,
merozoites and packing factor for each stratum, and (4) the IRBC age structure. The
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numeric display (5) shows the number of time steps and equivalent time in real cultures,
and the number of RBCs, IRBCs and extracellular merozoites.

Figure 3.4: Screen shot of the version v3D of the model. This version operates with a time step
set to six minutes. The size of the spatial grid in this simulation is 20x20x60 spatial cells. The
initial population is 24000 RBCs and the initial parasitaemia 1%. Windows show: 1) temporal
evolution of RBC population (red line); 2) temporal evolution of parasitaemia (blue) and mero-
zoites (grey); 3) vertical representation of the hematocrit layer: total number of RBCs (red),
IRBCs (blue) and merozoites (green) per stratum; 4) age structure, histogram of the post inva-
sion times among the IRBC sub-population; 5) Numerical display showing the time step, number
of RBCs, IRBCs and merozoites.

Details

The Initialization and External inputs in version v3D are like those defined in 2D
versions. Most of the Submodels also remain unchanged, except for: 1a) RBC Motion, 1d)
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RBC infection, 1e) RBC death, 2a) SC Diffusion and 2b) SC Propagation of extracellular
merozoites. These modifications are the consequence of considering that the spatial cells
have a finite volume, that can be filled with RBCs, merozoites and the solid RBC remains
that do not dissolve into the culture medium after cell lysis.

1a) RBC Motion. Apart from the processes described in Section 2.2, RBCs can now
move through the hematocrit layer as a consequence of the settling process. Motion
of RBCs may occur when there is enough room in the 9 spatial cells that comprise
the nearest neighbors immediately below them. This shift of positions occurs with
a fixed probability Pfall. Each RBC may fall on one spatial cell, at most, per time
step.

1d) RBC Infection. The infection process does not vary from the mechanism described
in Section 2.2, except for three modifications:

i) merozoites are randomly distributed among one of the 27 nearest neighboring
spatial cells, including the same cell. The probabilities of being dumped into
each of the spatial cells are listed below. Same spatial cell (i, j, k): P (1) = 0.33,
side-to-side cell (for instance (i+1, j, k)): P (2) = 0.035, immediate diagonal
cell (for instance (i+1, j +1, k)): P (3) = 0.025, and double diagonal cell (for
instance (i+1, j+1, k+1)): P (4) = 0.02 (See Figure 3.5).

ii) the extracellular merozoites can spread through the hematocrit layer during
four time steps after merozoite egress (∼ 30 minutes). Each merozoite has a
probability of moving to one of the nearest neighboring spatial cells in the level
immediately below the present cell, at each time step. As for RBC motion,
given that there is enough room, the probability of falling to any of the spatial
cells is given by Pfall (see Figure 3.5).

iii) No limitations are imposed on the maximum number of parasites that can
invade a healthy RBC.

1e) RBC Death. After cell lysis the fraction of volume corresponding to solid unsolv-
able materials, which represent approximately Vremain = 6 µm3, are left in the
same spatial cell. At the end of each time step, just after merozoite propagation,
these remains may fall to any of the nine nearest neighboring cells in the stratum
immediately below, just as RBCs do.
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Figure 3.5: Stencils of the 3D models for: a) the egress of merozoites at the end of the infection
cycle; b) detail showing the four different types of neighboring cells (i.e. 1) same cell, 2) side-
to-side neighbor, 3) immediate diagonal and 4) double diagonal); c) extracellular propagation
through the hematocrit layer to spatial cells. Lysis occurring at the grey spatial cell.

2a) SC Diffusion. Substrate diffusion is initially explicitly modeled with a FCTS as in
Section 2.2.

Ct+1
i,j,k = Cti,j,k + D̃

nn(i,j,k)∑
l,m,q

wl,m,qC
t
l,m,q (3.4)

l, m and q are the spatial coordinates of the 27 cells that constitute the immediate
environment of cell (i,j,k). Equation 3.4 adds up the contributions of each cell to the
diffusive transport of substrate. The set of weights wl,m,q are:
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(3.5)

Substrate diffusiveness is initially set to its maximum values D̃ = 0.8. The choice
of this value is arbitrary, motivated by the best fit of the simulation outcome, but is
not deduced from a description at a lower level. It is not known whether this value
correctly accounts for real diffusion in the hematocrit. The submodel has been switched
off in the applications of INDISIM-RBC in Section 3.4, which focuses on the extracellular
propagation of the parasite. The problem regarding the model of diffusion is analyzed in
Section 3.5.
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3.3 Analysis of experimental observations with the 3D
model

3.3.1 Calibration of version v3D

The experimental results on the evolution of the parasitaemia for the short-term
preservation (Pavanand et al., 1974) and long-term cultivation (Trager and Jensen, 1976)
of P. falciparum in static in vitro cultures are used to calibrate the set of parameters
employed by the model in the current version v3D.

The values for %I0, tINF (t = 0), Pdeath and Pinf are maintained as the ones used
in version 2Dv.2 (see Sections 2.3.1 and 2.3.2). One additional parameter is introduced
to represent a specific three-dimensional phenomenon: the settlement of the hematocrit
layer, which is modeled as the fall of individual RBCs and merozoites (Pfall = 0.05). The
graphical outcome of the simulations that best fit the experimental results are presented
in Figure 3.6 and extended in Ferrer et al. 2007.

Figure 3.6: Simulation results compared to experimental data of the overall infection course
in: a) Continuous-flow static cultivation of P. falciparum; and b) static cultivation through the
Candle-jar method (Jensen and Trager, 1978).

3.3.2 Settling processes in the hematocrit layer

RBCs are slightly denser than the culturing medium. For this reason, they sink to form
hematocrit layers. Once the hematocrit is formed, it can be assumed that the settling
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process may continue wherever there is room available on inferior levels. The subsidence
of RBCs and of the material that remains after cell lysis (cell membrane and organelles
that are not dissolved in the medium) through the hematocrit layer may play a role in
the local limitations to the propagation of the infection. Several mechanisms modeling
this settling process have been trialled, namely:

1. No fall of RBCs, merozoites and remains. Voids are left after each RBC lysis and
the hematocrit layer gradually turns into a porous structure with homogeneously
distributed holes containing 1 spatial cell, and bigger cavities in the regions where
the infection has been spreading. These cavities caused by the successive lysis
of IRBCs are empty enclosed spaces that usually contain 16 spatial cells (this is
the number of RBCs that get infected and burst during the span between two
consecutive sub-cultivations).

These cavities do not impede nor facilitate the spreading of individual parasites,
but they indirectly slow down the propagation of the infection because extracellular
merozoites may spend several time steps in non occupied spatial cells.

2. RBCs, merozoites and remains fall to a lower stratum with a fixed probability Pfall,
only if there is enough room in the spatial cell immediately below them.

Infection growth ratios (GR) are higher when compactation methods (2 and 3) are in-
troduced. However, the simulated GRs do not significantly vary from one mechanism to
the other if the probability of falling is small enough (Pfall ≤ 0.05). Simulations with the
first mechanism eventually show unrealistic configurations of the hematocrit layer (for
instance, a vertical profile where a stratum has nearly no RBCs while the strati above it
are full).

The sedimentation rate of real RBCs in the free culturing medium depends on many
physical constraints (for instance the terminal velocity, achieved when the downward force
of gravity minus buoyancy equals the upward force of drag) and physiological factors (for
instance, the presence of substances promoting or inhibiting RBC adhesiveness, or the
membrane potential of RBCs). The order of magnitude of the RBC sedimentation rate
is around several millimeters per hour (this means that the RBC may fall down several
spatial cells per time step). However, the fall of RBCs through the hematocrit layer
presumably involves much slower precipitation velocities due to the interaction among
cells.

The averaged cell density of the simulated hematocrit (pfsim) depends on the settling
mechanism and on the sedimentation rate. Simulation results that fit the experimental
cell density observed in the real hematocrit layers are obtained with mechanism 2 and
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Pfall = 0.05. Using these values, the simulated cell densities in the hematocrit layer range
from pfsim = 0.7 to pfsim = 0.9.

3.3.3 Multiple invasion of RBCs

The propagation of the infection is modeled as a local invasion process that occurs
when a merozoite contacts a healthy RBC with a probability described by Pinf (tRBC)
that varies with RBC age (tRBC). Given that it is a stochastic process, the distribution
of RBCs invaded by more than one parasite can be assumed to be a Poisson distribution
with λ = Pinf .

Following the discussion in Section 3.1.2, one can posit the inverse question: that is,
to determine the value λ that best fits the observed corrected Poisson distribution. Once
this value has been set, the fraction of RBCs that are effectively susceptible to invasion
can be calculated.

The distributions of multiply parasitized IRBCs that best fit with the distributions
observed in real cultures (see Figure 3.7) are obtained when the model uses average
invasion probabilities that range from Pinf = 0.8 to Pinf = 1.

Of note, no significant differences are found when the values of the parameters defining
Pinf are varied. Therefore, it can be deduced that the lack of availability of healthy RBCs
is more related with local limitations on the process of spreading of merozoites, than with
the values of Pinf . According to the Poisson distribution that best fits experimental
data, the fraction of non-infected RBCs should be fP (0;λ = 0.85) = 40%. Instead, the
observed fraction of healthy RBCs is fobs(0) = 1−%I ' 95%. Therefore, the estimated
fraction of RBCs that are not effectively available to the infection is around half the
population of RBCs (in fact, around ∼ 55%).

This prediction is consistent with the rules defining the local propagation of the par-
asite through the hematocrit with low parasitaemia and randomly distributed IRBCs:
first, as long as the parasitaemia is below 4%, the hematocrit layer is composed of unit
cells that consist on one IRBC and 26 healthy RBCs; second, only 16 (on average) of
these healthy RBCs can eventually be invaded by an egressed merozoite. This makes
the fraction of RBCs susceptible to invasion around ∼ 60%. In conclusion, the observed
distribution of multiply infected parasite forms is consistent with the individual models
of healthy RBC invasion and merozoite spreading.
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Figure 3.7: Multiple infections expected by the model compared to experimental results observed in
in vitro trials. White small circles (◦): experimental counts; big solid grey circles (•): simulation
outcome with the typical Pinf = 0.8; big empty diamonds (♦): simulation outcome with Pinf = 1

for all RBCs.

3.4 Local limitations on the infection process

The experiments performed by EMG-GSK (see Section 3.1) reveal two system-level
geometric characteristics of the hematocrit layer that affect the in vitro development of the
parasite: depth (HLD) and separation between walls of the culturing device (L). Culture
characteristics and observed results for W, B and P trials are presented in Table3.3.

The observed measurements throughout each trial show a strong time correlation, as
a consequence of both the parasite infection cycle and the external manipulation of the
culture system. In fact, each single trial can be regarded as the evolution of a single cul-
ture, thus characterized by the average parasitaemia throughout the whole culture trial
(%I), or as a set of replicas of the evolution of the culture between two subsequent subcul-
tivations, thus characterized by the average growth ratio (GR48). The latter magnitude
is used to compare the trialled geometries.

The data sets from the different trials are compared one with each other using non-
parametric statistics, such as the Kruskal-Wallis (KW ) test (see Appendix C) because
GR48 data sets from any single trial do not come from a normal distribution. Experi-
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mental observations are also compared both to the results obtained with a system-level
model, and to the outcome of INDISIM-RBC. Comparison of theoretical predictions and
experimental results is carried out using parametric statistics.

3.4.1 Effect of the walls of the culturing device

Firstly, the effect of base surface (S) of the hematocrit layer on in vitro development
of the parasite is assessed. Heuristic knowledge of the experimental group indicates that
the extension of the hematocrit turns out to be important when the separation between
the walls (L) of the culturing device is small enough. The data obtained from different
trials (see Table3.3) show that the development of the parasite is significantly hindered by
small separations between walls. However, the functional dependence of this hindrance
on L can not be unequivocally determined: the observed average growth ratio at 48 hours
from the P series can be fitted to the same degree of confidence both to a linear regression
and to an inversely linear regression (see Figure 3.8).

Best fits to the experimental observations are:
the linear fit GR1

48(L) = 0.93 + 0.46 · L, with r2 = 0.86, and
the inversely linear fit GR−1

48 (L) = 4.67− 3.29
L , with r2 = 0.91.

The chi-square (χ2) test applied to the experimental data series shows that either
dependence is supported by a statistical significance of only ∼ 90% (there is a 10%
chance of obtaining equal or better fitting results assuming that experimental data do
not come from the distribution proposed by the model).
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Figure 3.8: Observed dependence of the average growth ratio at 48h on the distance between
separators (L). Dots with error bars represent the observed data. Dashed line (–) denotes the
best linear fit. Dotted grey line (· · · ) denotes the best inversely linear fit (L-model).

System-level model of the effect of the walls (L model )

The inversely linear dependence can be explained by means of a whole-system model
that considers an exclusion region in the vicinity of the walls of the culturing device where
the infection cannot progress (see Figure 3.10a). Under this assumption, the expected
average growth ratio of a culture as a function of the separation between walls (GR48(L))
is described by:

GR48(L) = A1
2LEXC
L

+A2(1− 2LEXC
L

) (3.6)

where A2 is the growth ratio in the exclusion region (LEXC), and A1 is the bulk
growth ratio (A1 > A2). The parameters that best fit this curve to the experimental data
set are shown in Table 3.4. According to this fit, the exclusion region would be spread over
approximately LEXC = 2.5 mm. Many microscopic mechanisms may be speculated as
being responsible for creating this exclusion region (e. g., limitations on the spread of the
metabolic waste products, hindered propagation of the parasite due to the existence of a
meniscus) but it is not possible to discriminate among them with the current information.
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The observed exclusion region is consistent with the expected exclusion region induced by
the capillary length (LC) of the culture medium, but not by capillarity of the hematocrit
layer (see Section 3.1.2).

3.4.2 Effect of the hematocrit layer depth

The KW test showed that data obtained from W and B series come from the same
distribution function with significance greater than 99.9%. For this reason, all the mea-
surements have been grouped in a single data sample. Average values are given for the
data corresponding to similar geometric conditions, for each of the subgroups: {W3+B1},
{W4+B2+B3} and {W5+B4+B5}.

Figure 3.9: Dependence of the parasitaemia on the hematocrit layer depth (HLD). Triangles
with error bars represent the observed data of W (O) and B (4) series. The solid line denotes
the best fit for the system-level model HLD.

Experimental data show asymptotic inversely linear behavior for large values of HLD
(Figure 3.9). Optimum parasite development occurs in cultures with HLD between
0.18 mm and 0.34 mm.
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System-level model of the effect of hematocrit layer depth (HLD model )

A simple system-level model that reproduces the observed behavior consists in splitting
the hematocrit layer into discrete regions that have different behaviors. The inversely
linear decay for deep cultures is reproduced when the hematocrit layer is split into two
horizontal regions: HLD = h1 + h2. The first region has a fixed depth h1 = h and shows
a high fixed infection multiplication ratio B1, while the infection spreads at a lower rate
(B2 < B1) in the remaining part of the hematocrit layer (h2 = HLD − h, see Figure
3.10b). Let B1 and B2 be the multiplication ratio per infection cycle in each of the above
mentioned sub-regions, and HLD the total depth of the hematocrit layer. The average
infection growth ratio at 48 h, GR48(HLD) is then given by:

GR48(HLD) =

{
B2 + (B1 −B2) · h

HLD if HLD > h

B2 if HLD < h
(3.7)

Figure 3.10: Depiction of the whole system model of the hematocrit layer. a) Schema of the
culture system according to the model used to tackle P trials. HLD indicates hematocrit layer
depth, L stands for the separation between walls of the culturing device and Lexc represents the
extent of the exclusion region, where the spread of the infection is hindered. The shaded sub-
region (1) indicates the fraction of the hematocrit layer where the rate of infection spreading is
high. b) Schema of the culture system according to the model used to tackle B and W trials.
HLD indicates hematocrit layer depth, D stands for the diameter of the hematocrit layer and h
represents the extent of the exclusion region, where the spread of the infection is hindered. The
shaded sub-region (1) indicates the fraction of the hematocrit layer where the rate of infection
spreading is high. c) Schema of the model to tackle all the geometric effects simultaneously. The
propagation of the infection is hindered both by the walls of the culturing device and by diffusive
limitations. The shaded sub-region (1) indicates the fraction of the hematocrit layer where the
rate of infection spread is high.

The parameters that define the curve that best fits with the experimental data set
are shown in Table 3.4. The parameters have been estimated using a numerical approx-
imation, and their likelihood given the observations has been checked using both the
Kolmogorov-Smirnoff (KS) test and the chi-squared test (χ2). The former statistic has
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been taken as the reference for the statistical significance of likelihood, because it im-
plies fewer restrictions on both data sets and provides a smaller value for the degree of
confidence of the results.

3.4.3 Whole-system model that accounts for HLD and L together
(WS model)

The models presented in sections 3.4.1 and 3.4.2 can be merged into a system-level
representation of the whole culture (Figure 3.10c). The evolution of the culture as a
function of the geometric variables L and HLD is shown in:

GR48(L;HLD) =

{
K2 + (K1 −K2) · h

HLD · (1−
2LEXC
L ) if HLD > h

K1
2LEXC
L +K2(1− 2LEXC

L ) if HLD < h
(3.8)

The values for LEXC and h have been adopted from the best fit values found in
Sections 3.4.1 and 3.4.2. The two other parameters (K1 and K2) refer to the growth ratios
in the sub-regions with high and low parasite propagation, respectively, and are calculated
from the best fit to experimental data. The obtained values are presented in Table 3.4. A
graphical comparison between the theoretical predictions and the experimental behavior
is shown in Figure 3.11. The KS test applied to expected and observed data sets gives a
confidence between 90% and 95% for the proposed model.

System-level model Characteristic parameters p-value
L-model A1 A2 LEXC (mm)

4.1 0.6 2.45 0.03
HLD-model B1 B2 h (mm)

5.8 0.4 0.48 < 0.001
WS -model K1 K2 h, LEXC

5.4 0.4 set 0.0012

Table 3.4: Characteristic parameters of the PbM that best reproduces the experimental obser-
vations. L-model considers the effect of the distance between the walls of the culturing device.
LEXC is the region near the walls where the propagation of the parasite is hindered; HLD-model
considers the effect of the depth of the hematocrit layer. h is the horizontal layer where the prop-
agation of the parasite is not hindered; WS-model merges both models. LEXC and h maintain
their values from the best fits of the L- and the HLD- models. The values for K1and K2 are set
to optimize the likelihood of the model outcome to experimental data. Significance of the obtained
results (p− value) has been assessed using the Kolmogorov-Smirnoff (KS) test .

This merging allows checking of the consistency of the models proposed above both
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with each other and with the experimental observations. It enables the specification of
the most appropriate geometric conditions for the static in vitro cultures of P. falciparum
infected erythrocytes.

Figure 3.11: Dependence of the parasite growth ratio (GR48) both on the hematocrit layer depth
(HLD) and width (L), represented together as the number of cultured RBCs. Solid dots (•) with
error bars represent observed data from P trials. Empty triangles with error bars represent the
averaged observed values from W (4) and B (O) trials. The solid line (-) represents the best fit
values provided by the WS model. a) Experimental data sets from W and B trials on the whole;
b) detailed view of trials with small culturing volumes.

3.4.4 Outcome of INDISIM-RBC

The experimental results have been compared with the corresponding outcome of the
simulations carried out with a version of INDISIM-RBC.v3D that accounts for whole-
system model. The WS assumptions were introduced as ad hoc constraints on the rules
governing the individuals (parasites and RBCs) at a cellular and local level. The simula-
tion space is split into two horizontal sub-regions (layers 1 and 2, respectively; see Figure
3.4.3b) with different probabilities of infection (Pinf (1) and Pinf (2), respectively). The
simulations also allow assessing of the effect of the walls on real cultures. This is imple-
mented through placing a vertical wall on one of the side boundaries of the simulation
space, thereby changing one of the periodic boundary conditions for a pair of closed and
open vertical boundaries facing each other.

INDISIM-RBC is used to tackle solely the geometric constraints on parasite prolifer-
ation at a cellular level, so just a few parameters from the general model are modified:
Pmax is set to Pinf (1) and Pinf (2) at each of the sub-regions. The probability of infection
for mature RBCs (Pmin = 0), the rate of local spreading of merozoites (Pfall = 0.05)
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and all the remaining parameters have been held to the values fixed by the simulation
results of the candle-jar method (see Section 3.3.1). The estimated values for Pinf (1) and
Pinf (2) are those that provide the simulation outcomes that best fit with the macroscopic
observations on the average growth rate at 48 hours (GR48), and they are presented in
Table 3.5.

Characteristic parameters of the IBM pinf (1) pinf (2) pfall Significance
Best fit values 0.51 0.01 0.05 0.014

Table 3.5: Characteristic parameters of theIbM that best reproduces the experimental observa-
tions. The values for the parameters representing the infection probability in the upper (1) and
lower (2) regions of the hematocrit layer (pinf (1), pinf (2)) as well as the sedimentation rate(Pfall)

have been set through the optimization of the likelihood of the model outcome to experimental data.
Significance of the obtained results has been assessed using the Kolmogorov-Smirnoff (KS) test;
the presented values show the probability of obtaining better results with the null hypothesis.

A graphical comparison between the outcome of the IbM and the whole-system models
is shown in Figure 3.12. The estimation of the optimal values was carried out through
a systematic, yet not exhaustive exploration of the space of parameters; better fits could
be found by the recursive refinement of the optimization protocol.

Such an improvement of the values at a cellular level has not been carried out because
parameters such as Pinf stand for very specific characteristics of the parasite strain, blood
sample and culturing conditions. Therefore, the accurate estimation of the best-fit values
alone does not provide general insight concerning the culture system. The likelihood of
the simulation results, given the experimental observations, was checked using both the
Kolmogorov-Smirnoff (KS ) test and the chi-squared test (χ2). Again, the former statistic
has been taken as the reference for the statistical significance of the likelihood, because it
implies fewer restrictions on both data sets and it provides a smaller value for the degree
of confidence of the results.

3.4.5 Discussion

The systematic study of different macroscopic culturing conditions has allowed for the
building of a quite simple whole-system model which is compatible with the experimental
observations and which may account for some as yet poorly understood phenomena.
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Figure 3.12: Dependence of the growth ratio of the simulations on the hematocrit layer depth
(HLD). Symbols with error bars represent the observed data, (•: P-series, 4:W-series and O: B-
series). Grey solid line denotes the best fit for the INDISIM-RBC simulation outcomes. Dashed
lines represent the deviation in the outcome observed for 4 simulation runs of each of the observed
points.

Some conclusions may be drawn from the experimental results, assuming the whole-
system model:

1. Cell-cell interactions such as erythrocyte aggregation and rosette formation around
parasitized cells can be accounted for as average inter-cellular binding energy that
determines the macroscopic shape of the hematocrit layer in the in vitro cultiva-
tion of P. falciparum-infected erythrocytes. Under custom culturing conditions, the
hematocrit layer can be considered as a flat film, but such depiction is not valid
when the hematocrit volume decreases. At small volumes of hematocrit the intra-
cellular binding energy (which can be tackled as surface tension on the hematocrit
boundaries) is comparable to gravitational energy, so the hematocrit must be re-
garded as a sessile drop at the macroscopic scale. Different shapes of the hematocrit
are observed depending on the material of the culturing device.

2. According to the L-model, the spread of the infection is hampered by short distances
between walls (L), and cultures are expected to be strongly hindered when L <
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LEXC ∼ 2.5 mm. By extrapolating Equation 3.6, it is deduced that the effect of
the exclusion region can be overlooked in the WS-model when L > 2 cm with more
than 95% confidence.

3. The geometric conditions of the culture systems at a macroscopic level of description
play an important role in parasite development. According to the HLD-model, the
spread of the infection is hampered by thick hematocrit layers. In particular the
hindrance appears when the depth of the hematocrit layer exceeds a maximum
threshold value HLD > h ∼ 0.478 mm.

4. A bottom-up approach can be used to check the validity and consistency of the
system-level models. The simulation outcomes are consistent with observations
when the hematocrit layer is split into two sub-regions. Such an IbM also enables
specific study and treatment of the relevant processes occurring on the scale of the
parasite. As a result, some additional conclusions may be drawn from analysis of
the IbM:

(a) The maximum threshold for the growth ratio at the zone of high parasite
proliferation is geometrically fixed: the multiplication of the number parasite
is not enough to ensure an appropriate GR48, but a minimum spreading of the
merozoites is also required. This is shown by the model because increasing the
maximum probability of individual infection (Pinf ) above a certain threshold
value does not entail an increase in the infection growth ratio. In contrast,
greater diffusion rate for the extracellular parasite through the hematocrit
layer (Pfall), or the slight rift of RBCs (Pfall) does affect the global growth
ratio.

(b) The macroscopic sub-regions of different parasite proliferation (layers 1 and 2
in Figure 3.10b) are externally imposed on INDISIM-RBC as ad hoc modifi-
cations on the rules governing the parasite proliferation at a local level. The
reduction of sub-region 1 in Figure 3.10c can be recreated with the IbM as
a consequence of the perturbations caused by introducing a closed boundary
into the simulation. The quantitative reproduction of the observed behaviors
has not been achieved because simulations representing the whole hematocrit
layer are unfeasible due to excessive computational demands.

(c) The observed reduction in the average GR48 for very thin hematocrit layers
(infeasibility of the harvest when HLD < 0.04 mm, and noticeable hindrance
on cultures with HLD < 0.1 mm ) is reproduced with INDISIM-RBC even
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though it has not been introduced as an ad hoc external input on the rules
governing the model. This is an example of an emergent behavior that arises
from the local interactions among individuals. It is caused by the effect of
the existence of a closed boundary of the system on the propagation of the
parasite.

According to the obtained results as a whole, most appropriate dimensions of tested
HLDs range from 0.18 mm up to 0.34 mm and most convenient distances must
exceed L > 2 cm.

To sum up, the systematic study of a wide range of geometric configurations for the hema-
tocrit layer allows for predictive capacity formalized in a system-level phenomenological
model. The resulting whole system model is consistent with INDISIM-RBC as soon as the
hematocrit layer is split into two sub-regions with different infection proliferation rates.

The bottom-up approach can not provide justification for the ad hoc phenomenolog-
ical laws. In particular, the mechanism responsible for the emergence of two phases in
the hematocrit layer is not included (but just assumed) in INDISIM-RBC. Heuristic ar-
guments support the idea that limitations are due to the local scarcity of substrate in
deep regions of the hematocrit layer, as a consequence of a limited diffusion.

3.5 Local substrate limitations in the hematocrit layer

The differences observed between different geometries in the static in vitro cultures
of P. falciparum infected erythrocytes have been reproduced in Section 3.4.4 by defining
a model that splits the hematocrit layer (HL) into two subregions: one with plentiful
proliferation of the parasite and the other where the infection is hindered.

This section analyses how diffusion of substances through the hematocrit layer can
affect the viability of healthy and infected RBCs and lead to the formation of these two
regions. Grosso modo: RBCs need a continuous supply of substrate and clean surround-
ings in order to maintain their viability (IRBCs are even more demanding and dump
more metabolic waste). During the course of the cultivation, the activity of cells leads
to the local exhaustion of the medium, which appears more markedly around the IRBCs
(see Section 2.3.5). The degradation of the environment can harm or even kill the RBCs,
thus hindering or even stopping the proliferation of the infection.
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3.5.1 Diffusion limitations in the hematocrit layer

Diffusion limitation in static cultures arises from the joint effect of the individual
uptake and the limited diffusiveness through the hematocrit layer. Diffusion in the hema-
tocrit layer can be correctly described with the reaction-diffusion equation (Eq. 3.9),
which relates the temporal variation of the concentration (C(−→x , t)) at a given point (−→x )
characterized by the fraction of diffusing medium (εw = 1 − pf , the fraction of volume
not occupied by the cells), with the mechanisms that cause it:

i) the diffusion term, which is proportional to the second derivative of the concentration

(4C =
N∑
i=1

∂2C(−→x ,t)
∂x2
i

) and to the effective diffusivity (De), and

ii) the reaction term, which accounts for local consumption of substrate or average
uptake rate (U(C)).

εw
∂C(−→x , t)

∂t
= De · 4C(−→x , t)− U(C(−→x , t)) (3.9)

The values for the effective diffusiveness in the hematocrit layer are taken from the
literature and presented in Table 3.6.

Free Culture Medium Hematocrit Layer
Glucose D0 = 9.3 · 10−6 cm2/s Deff = 0.24 ·D0 = 2.2 · 10−6 cm2/s

Lactate D0 = 1.5 · 10−5 cm2/s Deff = 0.19 ·D0 = 2.9 · 10−6 cm2/s

Table 3.6: Effective diffusiveness of glucose and lactate. Diffusiveness in the Free Culture
Medium are set to their respective values in water (Jou, 1985). The effective diffusiveness in the
Hematocrit Layer is taken from measures in bio-films (Stewart, 1998).

The hematocrit layer is modeled as a flat infinite film with an averaged homogeneous
distribution of IRBCs. Only the limitations on the RBC viability resulting from the
local scarcity of glucose are taken into account. In consequence, the diffusion problem is
reduced to a problem in 1D: assessing the variations of the concentration of glucose in
the direction normal to the hematocrit surface (z), C(z, t) = Cgluc(

−→x = (∀,∀, z); t).
Two models of the averaged uptake have been considered i) a fixed uptake rate (zero-

order kinetics), and ii) a linear dependence of the uptake with the concentration of glucose
until reaching a maximum value (first-order kinetics).

Diffusion limitation for a 1D model with zero-order kinetics

Zero-order kinetics states that the uptake in Equation 3.9 is a constant value:
U(C(−→x , t)) = UHL. The averaged uptake of a culture with %I ∼ 0.5% is UHL =
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4.7 · 10−7mol · l−1
RBCs · s−1 (Rapoport et al., 1976). The effective volume available for

diffusion is the fraction of volume not occupied by RBCs (εw = 1 − pf = 0.15 ). The
relevant characteristics of the culture system are HLD and the bulk concentration of
substrate in the culturing medium (C0 = 2.67 mM/l). Equation 3.9 can be rewritten in
the following adimensional form:

∂C̃(ζ, τ)
∂τ

=
∂2C̃(ζ, τ)
∂ζ2

− ψ2UHL
C0

(3.10)

where τ = t·Deff
(1−pf)·HLD2 and ζ = z

HLD are adimensional time and length, respectively;

C̃(ζ, τ) = C(ζ,τ)
C0

is the instantaneous substrate concentration profile, normalized to the

concentration at the free culturing medium; and ψ2 = (1−pf)·HLD2

Deff
is a scaling factor.

The contour conditions for Equation 3.10 are:

i) C(1) = C0, meaning that the concentration in the top of the HL is equal to
the bulk concentration. This is actually a super-estimation of its real value,
because a diffusion boundary layer (DBL) should be considered above the top
of the HL.

ii) C ′(0) = 0, meaning that there is no flux in the bottom of the HL because
there is a wall at the bottom of the culturing system.

A maximum threshold to the concentration profile is obtained by considering diffusion
alone. If the uptake is neglected (UHL = 0), Equation 3.10 with the contour conditions
(i) and (ii) has an analytical solution, which is easily obtained with the Laplace transform
(c̃(ζ, s) = L

[
C̃(ζ, t)

]
). The solution of this algebraic equation in the frequency domain

(s) is (Stewart, 1996):

c̃(ζ, s) =
cosh(

√
s

Deff
· ζ)

s · cosh(
√

s
Deff

)
(3.11)

The corresponding solution in the temporal domain is given by an infinite series of
trigonometric terms, with every term multiplied by the factor e−

t
ψ2 that tends to zero

when t → ∞ (Crank, 1990). Such a solution corresponds to a substrate profile that
graphically resembles a complementary error function with a variance that increases with
t (see Figure 3.13). In the limit t → ∞, the concentration profile is a homogeneous
distribution C̃(ζ,∞) = 1, ∀ζ.
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Figure 3.13: Temporal succession of the normalized vertical profiles of glucose concentration
(C(ζ, t)) through the levels of the hematocrit layer (ζ). Initially (t = 0), C(ζ, 0) = C0 in the bulk
culture medium (ζ > 1) and C(ζ, 0) = 0 in the hematocrit layer (ζ < 1). The bulk concentration
is maintained C(1, t) = C0, and glucose accumulates at ζ = 0, ∂C(0,t)

∂t
= 0 . Diffusion makes

the substrate penetrate the layer until reaching a uniform concentration C(ζ,∞) = C0; ψ2:
characteristic temporal scale of the diffusion process; t90 = 7ψ2, when C(0, t90) ' 0.9 · C0.

The characteristic temporal scale of the diffusion process is defined by the scaling
factorψ2. A typical measurement of this characteristic scale is t90 = 7ψ2, which stands
for the time when the concentration of a substances at the bottom of the cultured layer
reaches ∼ 90% of its value at the bulk medium, as a consequence of diffusion alone,
C̃(0, t90) = 0.9 (Stewart, 2003). In the limit t → ∞, the concentration profile reaches
a steady state that does not vary with time. The substrate concentration profile of the
steady state (Cst(ζ)) is reached when t > t90, and is given by:

Cst(ζ) = C0 −
UHL ·HLD2

2 ·Deff
· (1− ζ2) (3.12)

The static cultures studied in this work (P-, W- and B-series) reach the steady state
before the subcultivations take place (see Table 3.7). This means that the steady solu-
tion Cst(ζ) can be considered a good approximation of the concentration profiles in the
hematocrit layer.
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The characteristic spatial scale of the zero-order reaction-diffusion model (Eq. 3.10)
in the steady state (t > t90) is given by the depletion depth (Stewart, 2003):

d0 =

√
2 ·Deff · C

UHL
(3.13)

Once the steady state has been reached, d0 represents the level (position in the z direction)
below which the concentration of substrate is zero. In the P-, W- and B-series: C = C0 =
2.67 · 10−3mols/l, De = 2.2 · 10−6cm2/s. According to the zero-order approximation,
UHL = 4.7 · 10−7mol · l−1

RBCs · s−1. As a result: d0 = 1.6 mm.
Other characteristic scales may be useful for the current analysis: dRBC and dIRBC .

They represent the levels of the HL that can hold RBCs and IRBCs, respectively. These
levels are placed above the depletion depth and fulfill: dRBC > dIRBC .

These characteristic levels define three different sub-regions in the hematocrit layer:

1) z > HLD − dIRBC , where both RBCs and IRBCs have enough substrate to fulfill
their metabolic needs in the stationary state.

2) HLD − dRBC > z > HLD − dIRBC , where RBCs have enough substrate but IRBCs
don’t, in the steady state.

3) HLD − dRBC > z, where there is not enough available nutrient to fulfill the RBCs
metabolic needs in the stationary state.

The growth ratio measured for a culture system is the average of the contributions of
sub-regions (1), (2) and (3). With regards to the overall observed performance of the
culture system, these three sub-regions define three expected behaviors.

i) GR (HLD) is maintained to a maximum value, for those cultures where both
healthy and infected RBCs are viable. GR(HLD) = GRmax as long as
HLD < dRBC .

ii) GR(HLD) decreases with HLD in those cultures that allow two different
sub-regions for the viability of the IRBCs, as long as the ratio of the volumes
of both regions (V (1)

V (2) ) is varied. GR(HLD) = GRmax · dIRBCHLD while dRBC >

HLD > dIRBC .

iii) GR(HLD) is maintained to a minimum value when the thickness of the cul-
ture exceeds the region of RBC viability. GR(HLD) = GRmin = GRmax ·
dIRBC
dRBC

as long as HLD > dRBC
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The values dRBCand dIRBC can not be estimated with the current approximation, because
the model does not consider different uptake regimes for RBCs and IRBCs, but rather
an averaged overall uptake rate.

Diffusion limitations with first-order kinetics

First-order kinetics states that the uptake in Equation 3.9 is described with the fol-
lowing function:

U(C(z, t)) =

Umax ; if C < Cmax
Keff
pf · C(z, t) ; if C < Cmax

(3.14)

The values for the maximum uptake rate are Umax(RBCs) = 4.7·10−7mol ·l−1
RBCs ·s−1

and Umax(IRBCs) = 4.7 · 10−5mol · l−1
RBCs · s−1 , respectively (see Equation 2.3).

Two measurements taken from literature are used to define the parameters in this
model: the kinetic constant for the glucose slow uptake phase Keff = 0.016 min−1 and
the saturation concentration, at which RBCs uptake at their maximum rate Cmax =
40 mM (Leitch and Carruthers, 2007).

Equation 3.14 allows defining the threshold glucose concentrations below which the
uptake requisites of healthy RBCs and IRBCs are not fulfilled. These concentrations
(CV ) determine the viability of healthy and infected cells. Their values are CV (RBC) =
2.4 · 10−5mols/l and CV (IRBC) = 2.4 · 10−3mols/l, respectively.

The values CV (RBC) and CV (IRBC) can be introduced in Equation 3.13, assuming
C = C0 − CV , to obtain a coarse estimation of the threshold depths for cell viability:
dRBC = 1.6 mm and dIRBC = 0.5 mm.

The assumption of constant depletion depths (independent from the HLD of the
culture) constitutes the so called K-model. The decrease in the culture performance
(GR48(HLD)) with HLD predicted by K-model is depicted in Figure 3.15 and compared
with the predictions of other diffusion models described below.

Optimal HL depth estimated with the Thiele modulus

Splitting the HL into three sub-regions with fixed thicknesses is indeed a coarse ap-
proximation. In real systems, the uptake rate (reaction term in Equation 3.9) explicitly
depends on the concentration profile (C(z, t)), which even in the steady state is affected
by HLD (see Equation 3.12). Consequently, the values dRBCand dIRBC must be affected
by HLD and can not be taken for constants. An alternative approach is required.
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An adimensional number usually employed in the study of diffusion-reaction processes
is the Thiele modulus (φ), defined as the ratio between the reaction rate and the diffusion
rate. The Thiele modulus allows for the distinction between two regimes in the reaction-
diffusion models. If φ is small, diffusion is fast compared to reaction, but when it is large
(φ� 1), diffusion is slow (Stewart, 1996).

Assuming zero-order kinetics in a flat thin layer, the Thiele modulus φ0 and the
normalized substrate concentration profile achieved once the reaction diffusion reaches
the steady state C̃0

st(ζ) are defined as:

φ0 =

s
pf · UHL ·HLD2

Deff · C0
; gC0

st(ζ) =

8<:0 ; if 0 ≤ ζ ≤ (1− 1
φ0

)

(1− φ0 − φ0ζ)
2 ; if (1− 1

φ0
) ≤ ζ ≤ 1

(3.15)

For the first-order kinetics, φ1 and the corresponding C̃1
st(ζ) are defined as:

φ1 =

√
(1− pf) ·Keff ·HLD2

Deff
; C̃1

st(ζ) =
cosh(φ1 · ζ)
cosh(φ1)

(3.16)

The calculated values of φ0 and φ1 for the different HLD are listed in Table 3.7. The
vertical profiles obtained for different values of the Thiele modulus are depicted in Figure
3.14.

Figure 3.14: Expected normalized glucose concentration profiles at the steady state eCst(ζ) = C
C0

for different hematocrit layer depths (HLD). a) Predictions of the zero-order kinetics model (see
Equation 3.15); b) predictions of the first-order kinetics model (see Equation 3.16)
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The depletion depths dRBC and dIRBC can be calculated using these profiles and the
estimated threshold concentrations of cell viability (CV (RBC) and CV (IRBC)). They
are listed in Table 3.7. As expected, the values for d0, dRBC and dIRBC decrease with
HLD: more cells entail a more severe exhaustion of the medium.

The concentration gradients obtained assuming zero-order kinetics (0-model) are greater
than those obtained assuming first-order kinetics (1-model) because the former fixes a con-
stant consumption of nutrient within the viability region, while the uptake continually
decreases with nutrient concentration under first-order kinetics.

No measurements of the concentration profiles have been carried out for the experi-
mental culture systems, so it is not possible to determine which model provides a better
approximation to reality. However, the soundness of these models can be indirectly de-
termined by comparing the expected decrease in the culture performance (GR48(HLD))
with HLD predicted by each model.

Expected infection growth rates

The threshold depths for RBC and IRBC viability (dRBC and dIRBC) obtained with
the K-model, 0-model and 1-model can be used to determine the values of the key pa-
rameter h of the HLD-model and the WS-model (see Equations 3.7 and 3.8):

h =


HLD ; if HLD < dIRBC

dIRBC ; if dIRBC < HLD < dRBC

HLD · dIRBCdRBC
; if dRBC < HLD

(3.17)

The expected growth ratios GR48(HLD) obtained when the value h is defined using
Equation 3.17 are depicted in Figure 3.15, together with the experimental values and the
best-fit model.

The obtained results show that models considering just one dimensional diffusion
limitations qualitatively follow the trends observed in the experimental hematocrit layers,
but still fail to reproduce the behavior of real systems. Apart from the decay for very thin
HLs (HLD < 0.1 mm) (which can be explained as an emergent behavior of merozoite
propagation, see Section 3.4), there are two main differences between the predicted and
observed GR48(HLD): firstly, the decrease with HLD is greater in the diffusion models
than in real systems. Secondly, for thick HLs (HLD > dRBC), the slope of GR48 is flat,
while in the experimental systems and in the best-fit WS-model, dGR48

dHLD < 0 in all the
explored domain.
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Figure 3.15: Average infection growth ratio (GR48) as a function of the hematocrit layer depth
(HLD). Crosses (+): experimental results; black solid line: best-fit HLD-model (see Section
3.4); long-dashed line: results obtained with the K-model; short-dashed line: results obtained with
the 0-model, dotted line: results obtained with the 1-model.

The first difference can be explained as the result of considering a constant uptake
for a RBC population that is not affected by nutrient availability. The models here
presented can not take into account mortality due to the scarcity of substrate. In real
systems the average uptake will be drastically reduced below the depletion boundary.
As a consequence, the thickness of the layer with no substrate limitations (h) will be
increased.

The second difference, the asymptotic GR48(HLD) is a consequence of the definition
of h for thick HLs (see Equation 3.17). It is observed in the K-model and 0-model
alone, while the 1-model does not show this behavior because all the trialled HL fulfill
HLD < dRBC . Nevertheless, there is a slight difference in how the K-model and the
0-model define the extension of the sub-region with high infection propagation: in the
K-model dRBCand dIRBC are fixed values while in the 0-model both distances vary with
HLD (d = d(HLD)) and what remains almost fixed is the ratio dIRBC

dRBC
.

Another key difference between the WS-model and the diffusion models presented in
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the current section lies in the fact that the former defines two sub-regions in the HL
with different infection propagation rates, but parasites can still spread in both regions.
In contrast, the sub-regions defined by the diffusion models here presented consist of a
domain where infection spreads and another where it does not.

Zero order kinetics First order kinetics
HLD t90

φ0
d0 dRBC dIRBC

φ1
d0 dRBC dIRBC

(mm) (h) (mm) (mm)
0.06 18 s 0.04 NA NA NA 0.05 NA NA NA
0.09 45 s 0.06 NA NA NA 0.07 NA NA NA
0.2 4min 0.13 NA NA NA 0.16 NA NA NA
0.4 10min 0.23 NA NA NA 0.29 NA NA NA
0.6 1 h 0.41 NA NA 0.5 0.5 NA NA NA
1.0 1.5 0.67 NA NA 0.48 0.82 NA NA 0.48

1.1 1.9 0.75 NA NA 0.21 0.93 NA NA 0.21

1.5 3.6 1.04 NA NA 0.18 1.28 NA NA 0.19

2.0 6.4 1.38 1.2 1.3 0.13 1.7 NA NA 0.14

2.2 7.4 1.49 1.1 0.9 0.09 1.84 NA NA 0.14

2.9 13.2 1.99 0.7 0.6 0.06 2.46 NA NA 0.07

Table 3.7: Characteristic parameters of the reaction-diffusion balance in the hematocrit layer
as a function of its depth (HLD). Characteristic diffusion times (t90 ' 7ψ2). Thiele mod-
ulus (φ) and characteristic lengths for zero order and first order kinetics: depletion depth
(d0) with substrate concentration C(d0) = 0; threshold depth for RBC viability (dRBC) with
C(dRBC) = 2.4 · 10−5mols/l; and threshold depth for IRBC viability (dIRBC) with C(dIRBC) =

2.4 · 10−3mols/l. NA stands for non-applicable, meaning that the threshold concentration values
are not reached.

3.5.2 Explicit model of the diffusion process

The individual-based approach deals with the reaction-diffusion problem stated in
Equation 3.9 accounting for U(C(−→x , t) with the model of the individual cells and solving
diffusion through the hematocrit layer with the model of the local environment.

The simplest numerical method to model diffusion through a discrete spatial grid is
the explicit approach Forward-Time- Centered-Space (FTCS, see Appendix C). Diffusion
is solved iteratively at each time step by converting the spatial derivatives at each point
of the grid (−→x ) to finite differences, and by converting the temporal derivatives to finite
increments to be transferred at the end of the time step (t→ t+ 1).

This method is used by INDISIM (see Equations 2.5 and 3.4 in 2 and 3 dimensions,
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respectively), and has the general form

Ct+1
−→x = Ct−→x + D̃

∑
i∈nn(−→x )

wiC
t
i (3.18)

where i is any of the spatial cells in the surroundings of −→x , nn(−→x ), wi is the weight of
each contribution, and D̃ is the numerical diffusion coefficient, which can be related to
the real experimental coefficient (Deff ) with a correction factor (cf) that depends on the
discretization characteristic scales (spatial lscand temporal ts) of the model:

D̃ = cf ·Deff =
ts

l2sc
·Deff

The numerical analysis of the method (Eq. 3.18) in one dimension reveals that the
characteristic scales must fulfill D̃ < 1

2 to maintain the numerical stability of the solution

(Hoffmann and Chiang, 2004). This means that ts < l2sc
2·Deff , otherwise numerical errors

propagate and multiply through the spatial grid, completely altering the simulation out-
come. For models in 2D and 3D, this constraint is ts ≤ l2sc

Deff
· (1 − max (w)) < l2sc

Deff
,

wheremax (w) is the maximum value of the diffusion weights as they appear in Equations
2.6 and 3.5 respectively.

When the size of the spatial cell is set to the scale of the RBC (lsc ∼ 5 µm), the time
step must fulfill ts < l2sc

Deff
= 10−7cm2

10−6cm2/s = 0.1 s. This time step is too small to simulate
the long-term evolution of cultures (i.e. 48 h ∼ 107ts). Choosing this time step would
also entail that some of the cellular processes that are now considered with simple time-
averaged models (such as cellular metabolism and uptake) would require more elaborate
time-dependent descriptions.

Alternatively, the time step can be set to the current value (ts = 6 minutes, which
is small enough to correctly account for merozoite propagation through the HL and big
enough to use simple average models for the RBC metabolism), and the size of the spa-
tial cell can be fixed to fulfill numerical stability. In this case lsc >

√
ts

1−max (w) ·Deff =

0.02 cm. Adopting this scale would entail that each spatial cell contains ∼ 104 RBCs.
Consequently, many of the current models (such as the release and spreading of mero-
zoites) wouldn’t be correctly implemented.

The FTCS approach forces a compromise regarding the characteristic scales of the
model, between representing the spreading of the parasite (and a coarse model of the
RBC) and the substrate diffusive limitations (and a detailed model of the RBC). The
solution employed in INDISIM-RBC so far (lsc ∼ 10 µm, ts ∼ 6 minutes) opts for
the former, and banks on the spreading of the parasite as the limiting factor to the
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propagation of the infection. The numerical diffusion coefficient corresponding to this
choice (D̃ = ts

l2sc
·Deff ∼ 102s

10−6cm2 · 10−6cm2/s ∼ 102) leads to the numerical instability of
the diffusion model.

So, the values of D̃ and the algorithm employed in the INDISIM-RBC simulations ei-
ther overestimate the restrictions to diffusion whenever D̃ < 1, or do not consider diffusion
limitations at all when D̃ = 1. The diffusion limitations observed in the simulations with
arbitrary values of D̃ (for instance, D̃ = 0.8 in Figure 2.15b, in Section 2.3.5) correspond
to excessively small values of the real Deff .

Yet, the analysis of the reaction diffusion problem obtained in section 3.5.1 states that
diffusion is indeed a limiting factor. FTCS simulations of diffusion alone carried out in
an empty spatial grid using appropriate scales (lsc ∼ 1 µm and ts ∼ 1 ms, D̃ ≈ 0.3)
show that there are differences in the concentration of glucose in the scales employed by
INDISIM-RBC (after 6 minutes, the relative difference in concentration observed at an
RBC distance is δ = 4C(L=10 µm;t=6 minutes)

4C(L=10 µm;0) ∼ 10−3). This is the amount of nutrient

that is not transported during a time step, so it can be assumed that D̃ = 1− δ.
This result is consistent with the application of values of D̃ < 1 above mentioned. The

problem when trying to set the value for D̃ in INDISIM-RBC is that the value calculated
using smaller fractions of the spatial cell and time steps is not a scale invariant. In other
words, that D̃ varies with the resolution of the explicit simulation. The discussion above
indicates that diffusion plays a limiting role in the characteristic scales of the modeled
system, even though our explicit models cannot account for it satisfactorily.

3.5.3 Implicit model of the diffusion process

An alternative to the explicit resolution of any numerical problem is to use an implicit
method. Implicit methods give the future configuration of the system by solving an
equation that involves both the present and future states of the system.

The implicit Crank-Nicholson (C-N) method (Hoffmann and Chiang, 2004) can be
employed to numerically solve diffusion within the hematocrit layer with a 1D model and
the discretization used by INDISIM-RBC.

The reaction-diffusion process described by Equation 3.10 can be expressed with a
finite difference approximation. Discretization of C̃(ζ, τ) leads to a grid containing N
sites (6 < N < 290 to cover the range of observed HLDs using the scales lsc ∼ 10 µm and
ts ∼ 6 minutes), each one characterized by its instantaneous concentration C̃τi . Equation
3.10 results in a linear system containing N coupled equations, one for each spatial cell
i, to be solved at each time step (τ).

The explicit method described in the previous section (Equation 3.18) takes the form
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of Equation 3.19. For each equation i, the FTCS scheme assumes one unknown variable
(C̃τ+1

i ) to be determined through a linear combination of known values at neighboring
sites C̃τi , C̃τi+1 and C̃τi−1.

C̃τ+1
i − C̃τi
4τ

= D̃
C̃τi+1 − 2 · C̃τi + C̃τi−1

(4ζ)2
− Uτi ; i = 1 : N (3.19)

Alternatively, Equation 3.10 can be represented by the set of N linear equations that
constitute the implicit C-N approach. This results in the following system of equations,
one for each site i :

C̃τ+1
i − C̃τi
4τ

= D̃
C̃τ+1
i+1 − 2 · C̃τ+1

i + C̃τ+1
i−1

(4ζ)2
− Uτi ; i = 1 : N (3.20)

In this case, each equation contains three unknown values (C̃τ+1
i , C̃τ+1

i−1 and C̃τ+1
i+1 )

regarding the future concentration at the present and neighboring sites and only two
known values (C̃τi and Ui) that include the information regarding the present state of site
i. The C-N scheme can be expressed in the generalized form:

ai ·̃C
τ+1

i−1 + bi ·̃C
τ+1

i + ci ·̃C
τ+1

i+1 = Dτ
i

where Dτ
i is a linear combination of C̃τi and Ui. This set of equations, together

with boundary conditions (i) C̃τN = 1, and (ii) ∂ eCτ0
∂t = 0, stated in Section 3.5.1, can be

expressed in the matrix form:

0BBBBBBB@

b2 c2
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⇒ Cτ+1·A = Dτ (3.21)

Matrix A in Equation 3.21 is determined and tridiagonal. It can be inverted to
determine Cτ+1

i , ∀i. The results obtained with such an approach are consistent with
the analytical results presented in Section 3.5.1.

This implicit formulation of the reaction-diffusion problem can be worked out through
different numerical methods. The main advantage of such type of algorithms is that they
are numerically stable regardless of the size of the spatial and temporal scales. These
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methods can also be implemented in INDISIM-RBC in order to solve the diffusion of
substances. Their most important drawbacks are i) that the inversion and solution of
matrix A requires a lot of computational effort, and ii) that the differences in the individ-
ual uptake (and the consequent heterogeneity in substrate concentration appearing in the
hematocrit layer) can lead to ill conditioned matrices, not amenable to to computational
solving.

Implementing C-N in INDISIM-RBC entails extending the presented formulation to
2D and 3D, and dealing with band diagonal matrices nn number of terms per row (the
total number of spatial cells that constitute the nearest neighborhood of cell i). Matrix
A in 2D contains nn = 5 terms per row when only side neighbors are taken into account,
and nn = 9 when diagonal nearest neighbors are also included. Matrix A in 3D can
contain up to nn = 27 terms when all the first neighboring cells are considered. The
number of operations to be carried out at each time step linearly increases with N and
the computational time also increases with the number nn.

Built-in libraries and numerical packages prepared to solve diffusion problems using
optimized implicit methods are available from several academic sources (BLAS: Basic-
Linear-Algebra-Subprograms and LAPACK, among others). However, their inclusion in
INDISIM-RBC resulted in excessively time-consuming simulations. The optimization of
the computational methods to solve specific problems like the one here presented con-
stitutes a research field on its own (Morton and Mayers, 1996) and its application to
INDISIM-RBC is regarded as an option for further work.

3.6 Discussion and open questions

INDISIM-RBC.v3D improves the set of rules governing individuals (RBCs and IRBCs)
and the environment (spatial structure, extracellular parasite and substrate concentra-
tion) to better account for local interactions and transport phenomena (Section 3.2).
Three representational goals have been achieved with the 3D version of the model (Sec-
tion 3.3):

1. Population dynamics and structure: The temporal evolution of parasitaemia (%I),
infection growth ratio (GR) and distribution of post-invasion times among IRBCs
(q (tINF )) observed in short-term and long-term culture systems are still quantita-
tively reproduced by the model.

2. Spatial structure of the hematocrit layer: the RBC packing factor within the hema-
tocrit layer (pf) in the model is consistent with the cell density measured for the
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settled hematocrit in experimental systems.

3. Infection dynamics: the distribution of IRBCs with (k) multiple invasions predicted
by the model (fsim(k;Pinf )) is in accordance with the experimental observations
(fobs(k)).

Yet, the foremost advantage of this version is that it allows tackling static in vitro culture
systems with different macroscopic geometries and comparing them with each other (Sec-
tion 3.4). The study of different experimental setups shows that optimal harvests are ob-
tained with the following ranges: depth of the hematocrit layer 0.2 mm < HLD < 0.5 mm
and distance between walls of the culturing vial L > 2 cm.

INDISIM-RBC.v3D alone does not provide a justification for these ranges. However,
when additional top-down phenomenological laws are assumed, the behavior of real sys-
tems is accurately reproduced. These whole-system laws basically consist in splitting
the hematocrit layer into different sub-regions with high/low infection proliferation rates.
This leads to the decrease in GR for high values of the hematocrit layer depth (when
HLD > 0.48 mm) and defines a minimum threshold for the separation between walls.
The reduction in GR observed for smaller cultures (HLD ∼ 0.1 mm) can be explained
through individual-based limitations in the spreading of extracellular merozoites.

A continuous model for diffusion of substrate and waste products has been developed
to support the phenomenological laws (Section 3.5). Further work in this line should
include a better model for diffusion at the individual level, which can give rise to the
limitations observed in real culture systems. Nevertheless, it must be kept in mind that
the restrictions observed in experiments may be caused by other factors besides diffusion
limitations, such as an unaccounted influences of the spatial structure of the hematocrit
layer, merozoite spreading or RBC invasion.

Turning to another topic, INDISIM-RBC can be modified to account for cultures in
suspension. In such models, the invasion of healthy RBCs differs from the one in static
cultures. The development of a model that can correctly describe both static and agitated
culture systems would be of great interest in order to design an operative and reliable
bio-reactor-like culturing device.



Chapter 4

Individual-based Models of
microbial communities

The research in modeling of in vitro cultures of Plasmodium falciparum-infected ery-
throcytes has been carried out by MOSIMBIO in parallel with the individual-based mod-
eling of other microbial communities. The diversity in the scopes of application of IN-
DISIM offers an opportunity to analyze the general characteristics of the methodology
and to review and formalize the procedures followed when trying to develop new models,
alongside with the specific results obtained for each system under study.

This chapter outlines some reflections on the work carried out by the group MOSIM-
BIO that result from applying the same methodology to tackle different microbial systems,
in parallel. This general discussion follows the more specific results previously shown, fol-
lowing a bottom-up strategy, because the tools and results presented in previous chapters
are required for building a more general framework.

Firstly, some practical considerations are presented regarding the use of IbMs to tackle
microbial systems (Section 4.1). Secondly, the approach based on individuals is compared
to the models defined at a system level using an analysis of the strengths and weaknesses of
each kind of approach (Section 4.2). Finally, some general principles underlying the char-
acterization of microbial systems are proposed following the argumentation of bottom-up
approaches. Special attention is placed on the contribution of IbM to the study of variable
and stationary states in microbial population dynamics, in general (Section 4.3).

The application of the model to different kinds of microbial systems (bacteria, yeast
and protozoa) is put together to illustrate this theoretical discussion, and its particular
application to malaria in in vitro cultures is presented as an exemplifying closing.
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4.1 Pattern-oriented modeling

Modeling, the act of representing and interpreting reality in order to anticipate phe-
nomena, is one of the most universal (if often unconscious) human activities. Models
are also the principal instruments in science. Grosso modo, research either consists in
building, testing, comparing and revising models, or in applying models and interpreting
their predictions.

Models can carry out two representational functions. On the one hand, a model can
describe a selected part of the world. The emphasis of the model is on the reproduction of
observed patterns, the best fit to measured data, and the sensitivity of the model outcome
to variations in the model parameters. This type of model is called empirical, or data-
driven, model. The purpose of such models is to gain predictive capability concerning the
modeled system.

On the other hand, a model can represent a theory (or part of it), in expressing the
application of the laws and axioms of that theory to specific systems. The accent is on
the structure, mechanisms and rules proposed by the model, and on assessing to what
extent these are consistent with the real-world observations. This type of model is called
mechanistic, or theoretical, models and its purpose is to increase understanding of the
modeled system. These two aspects of modeling are not mutually exclusive, and scientific
models usually are used in both senses (Silvert, 2001).

4.1.1 Pattern-oriented strategy to build models in microbiology

The central concern of the predictive function of models is to determine the values of
the parameters that best fit with the experimental observations (Bernaerts et al 2000)
and to statistically verify and validate the applicability of models in particular situations
(Giffel and Zweitering, 1999). These problems have recently been addressed in detail by
the group MOSIMBIO (Gras, 2004; Prats, 2008).

As for understanding purposes, the accent in models is placed on quite different issues.
The keystone of mechanistic modeling is to select which features of reality are considered
as objects (entities and variables) and as laws (equations, algorithms and constraints on
the variables) to optimally represent a set of patterns. In other words, to set the structure
and degree of complexity of the model that unravels the underlying causes of the behavior
observed in real systems.

The factors that influence population dynamics of a microbial system operate at vari-
ous spatial and temporal scales, and it might not be straightforward to aggregate all them
into a single model. The coupling of multiple scales plays a significant role in microbial
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dynamics, in particular, and the account of a factor at any scaled is usually critical to
the model outcome.

Deciding which factors must be included in a model is no trivial issue and implementing
the decisions as a set of rules is not an easy task. A strategy to grapple with this problem
is to set the structure of the model by proposing explanations to multiple specific patterns
observed in the real system. This strategy is called Pattern-oriented modeling (PoM)
and is commonly employed in the context of ecological modeling (Grimm et al., 1996).

PoM entails using observations of the real system at multiple levels of description as
the guideline for building a model. The key point is that the only information to be
included in the model is that which serves to reproduce and interpret a given pattern.
Thus, the objective of the model is no longer to integrate all the information regarding the
real system, but to explain as many observed patterns as possible with the least number
of ad hoc assumptions. By assuming this strategy, one should be able to avoid building
either excessively comprehensive and detailed models that are difficult to analyze, or
models that are too naive and fail to capture essential features of the system.

The idea underlying this strategy is that when the system under study is complex
enough, any model will “inevitably either leave out relevant information or become over-
parametrized and lose predictive power” (Grimm et al., 2005). PoM is a systematic plan
to optimize the payoff of modeling: the model must be complex enough to reproduce
and predict many of the patterns observed in reality, but simple enough to be grasped
and applied. It is in this Medawar zone (not too naive, nor too complex) where models
produce fruitful results.

4.1.2 Simplicity and specification in PoM

The law of parsimony (the simplest is the best) is as valid when modeling microbial
systems as in any other field. Yet, the simplest model shouldn’t be mistaken for the
model containing the fewest variables, parameters or rules. The rules included in the
model should be theoretically sound (and more complicated) rather than phenomenolog-
ical (simpler but opaque). The strategy for guaranteeing the mechanistic nature of the
proposed rules is to address multiple patterns at different levels of description, simulta-
neously, with the same set of rules.

Each pattern observed in the real system means an additional constraint on the model.
A rule that explains many unrelated patterns is more likely to be a real mechanism of the
system under study, or at least it will act as if it was so. When a great number of patterns
are reproduced with a minimal assumption of rules (without increasing the complexity
of the model), the confidence in the model is reinforced. In this sense, PoM provides a
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criterion to account for the degree of mechanisticity of a model.
Mechanistically rich models offer several advantages over more empirical models. First,

they are well-grounded and more transparent than simpler models, in which the infor-
mation is put together into parameters or variables that can not easily be related to
measurable data. Second, they are more complete: they can be applied to the study of
different aspects of the same problem. And last but not least, they are more versatile:
they can easily be modified to introduce new features of reality, or to address problems
similar to those modeled. In this sense, PoM provides robustness and credibility to the
model.

An advantage of models built using a pattern-oriented strategy is their robustness:
the simultaneous reproduction of multiple patterns deters the variation of the model.
Any eventual introduction or modification of a rule defined by the model should at least
preserve, if not increase, the number of patterns reproduced. An additional advantage of
PoM is that it requires the explicit description of reality at multiple levels. The model
is forced to consider and include the characteristic scales of the system under study.
Simulation units are then unequivocally related to physical magnitudes, and unrealistic
outcomes are easily detected. In this sense, PoM facilitates the development of models
and helps detect inconsistencies.

In conclusion, multiple patterns help in building realistic models that are not too
simple or too complex. Understanding of the real system is gradually acquired when
the model is tested, modified and corrected to interpret multiple patterns at different
hierarchical levels.

4.1.3 Application of PoM to INDISIM-RBC

Three versions of INDISIM-RBC have been presented in this manuscript, but many
more intermediate or alternative versions have been tested (and improved or discarded)
in the development of the current schemes. The application of PoM strategy in the
development of INDISIM-RBC is presented next.

The development of INDISIM-RBC is the response to the specific demands of EMG-
GSK. It is the result of struggling to apply a single model to reproduce different patterns
and answer the specific questions posed by the experimentalists (see the independently
observed phenomena included in Section 2.3.3), and performing the pertinent modifica-
tions when they were unavoidable. The development of each of the different versions of
the program has followed from the procedure below, which is in accordance with the PoM
strategy:
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i) the information in literature and the heuristic knowledge of the experts are
used to define the characteristic parameters and variables of the model (Sec-
tions 1.2.1, 1.2.2 and 1.3),

ii) the temporal evolution of the infection for different specific cultures is used
as the main pattern to calibrate the parameters and to check the validity of
the model (Sections 2.3.1, 2.3.2 and 3.3.1), and

iii) several independently observable patterns are used to check the consistency
of the proposed rules and model structure, and to detect when the rules must
be modified, and steps i and ii must be repeated (Sections 2.3.3, 2.3.4, 2.3.5,
2.3.6 and 3.2.1).

The list below shows some factors governing the infection dynamics of P. falciparum in
erythrocytic in vitro cultures that are considered/omitted by INDISIM-RBC. They are
sorted into categories that refer to model configuration, spatial/temporal structure and
randomness.

1. Model configuration refers to the entities, variables and rules considered by the
model and to how they are implemented into an algorithm to perform simulations.

The model considers individual RBCs, merozoites and two sample metabolites,
but leaves out most of the composites of the culturing medium. Individual traits
and variables are related to motion, infection, viability and consumption of glu-
cose, but the model does not account for energy trade-offs, cell growth or detailed
metabolisms. Processes are implemented sequentially in the algorithm although
data are updated in parallel when required.

2. Spatial/temporal structure refers to the spatial dimensions and temporal scales
that are considered by the model.

The model considers short-range (L∼ micrometers) of biological interactions (e.g.
uptake of nutrient, egress and spreading of extracellular merozoites) and physical
interactions (e.g. diffusion of glucose and lactate). The model considers only a small
fraction of the system (L∼millimeters) and assumes it to be representative of the
whole (L∼ centimeters). The model has a temporal resolution of minutes.

3. Randomness refers to the diversity among the entities and to the stochasticity in
the rules that are considered by the model.

Diversity in the population, spatial heterogeneity and uncertainty in the processes
occurring at an individual level (e.g. invasion of a healthy RBC by an extracellu-
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lar merozoite, or accidental death) or at a collective level (e.g. variations in the
subcultivation or medium renewal protocols) are key factors in the model outcome.

Many other important factors and processes are not included in the model because they
are not essential to explain the patterns (e.g. temperature and heat dissipation, concen-
tration and transport of other metabolites, genetic variability and phenotypic changes
through the life course) that have not been taken into account.

Modifications of the program arise from observations of new patterns or when a version
is found to be incapable of correctly representing a pattern that was considered relevant
by the EMG-GSK. For instance, the explicit representation of the motion of extracellular
merozoites forced the increase of the temporal resolution of the model from hours to
minutes, and the lack of success in representing merozoite spreading resulted in the 3D
version.

Finally, the current version of INDISIM-RBC is not a closed issue but rather a suitable
platform open to improvement with further versions. For instance, the calibrated study
of diffusion within the hematocrit layer revealed that the explicit formulation of the
transport of glucose implemented in INDISIM-RBC was not appropriate to the operating
scales and should be corrected in subsequent work.

4.2 IbM and PbM approaches in microbiology

SWOT (Strengths-Weaknesses-Opportunities-Threats) analysis is a strategic planning
method used to evaluate a project prior to its implementation. It consists in identifying
the internal factors (characteristics of the project) and external factors that are favorable
and unfavorable to achieving a predefined objective. This results in a list of Strengths
(favorable internal factors), Weaknesses (unfavorable internal factors), Opportunities (fa-
vorable external factors) and Threats (unfavorable external factors).

This analysis is adapted here to evaluate the perspectives of two current approaches:
models built at an individual cell level (IbM) and the more usual continuous approach
at a population level (PbM). In the analysis below, the internal factors are the intrinsic
characteristics of each approach; Opportunities refer to the current and potential appli-
cations of each methodology to specific real systems and Threats describes the risks and
limitations of each method. This consideration aims to be a tool for deciding which kind
of approach is more appropriate to tackle a given problem. Tables 4.1 and 4.2 summarize
the discussion below. Each point listed in the tables refers to symbols in the text, for
instance PS1, PW1 stand for Strengths and Weaknesses of the population models, while
IS1, IW1, etc. refer to Individual-based models. The disquisition below constitutes the
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core of a manuscript published in the International Journal of Food Microbiology (Ferrer
et al., 2009) that is the extension of a communication presented in the 21st symposium of
the International Committee of Food Microbiology and Hygiene (august 2008), for this
reason, citations and examples mostly refer to topics in the ambit of food microbiology.
A complementary discussion on this topic, together with a much broad list of references,
has been recently published (Hellweger and Bucci, 2009).

Population-based Models (PbMs)
PS1 Prevalent and widely accepted formalism
PS2 Standardized methods to build, implement and test models

S PS3 Models are easily shared and communicated
PS4 Rapid and effective simulations
PS5 Feasible experimental measurements at the population level
PW1 Disregard individual variability and the local nature of interactions
PW2 Unspecific translation between levels of description.

W PW3 Aggregated parameters might lack biological basis
PW4 Extra parameters increase likelihood but not soundness
PW5 Hardly integrate measurements at a cell level
PO1 Canonical models can be used in aggregated approaches
PO2 Non-specific models can be exported to different real situations

O PO3 Synthetically incorporate new experimental information
PO4 Provide criteria for analyzing and tracking real systems
PO5 Can use information available in huge databases (i.e. ComBase)
PT1 Phenomenological models might be based on “wrong” biological basis
PT2 Cell diversity and process uncertainty are joined as general randomness

T PT3 The scope of validity of the mechanistic assumptions is hardly determined
PT4 Validation of the model does not entail recognition of the real mechanism

Table 4.1: SWOT (Strengths-Weaknesses-Opportunities and Threats) analysis of the
population-based approach.

4.2.1 Population-based models

Most of the current models in quantitative microbial ecology are continuous models
that describe population dynamics using differential equations or the relations found
when solving them. The equation-based approach is the traditional way to quantify the
functional relations between the characteristic variables of an observed system in science
(PS1). This formalism simplifies and guides the raising, development and communication
of the models because it provides a familiar and structured framework and because it
restricts the complexity of models to the complexity of the equations. Continuous models
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Individual-based Models (IbMs)
IS1 Explicit and transparent use of randomness
IS2 Explicitation of the biological basis of the defined rules

S IS3 Adjustable degree of generalization and complexity of the models
IS4 Capacity to disentangle mechanisms
IS5 Easily deal with small populations and measurements at a cell level
IW1 Lack of standard methodologies to guide model building and analysis
IW2 Slow to implement and requiring higher computing capacity

W IW3 Data hungry models that require hardly available information
IW4 Seldom use unavailable information to define individual parameters
IW5 Multiscale systems are covered with difficulty
IO1 Check the consistency of the hypothesis of PbMs
IO2 Estimate cell parameters that are often indirectly determined

O IO3 Provide new “statistical” indicators of the state of a microbial community
IO4 Integrate information obtained from -omics research and bioinformatics
IT1 Synthetic understanding hardly extracted from the models
IT2 Lack of standards hinders the use and development of the approach

T IT3 Difficulty in analysis of the model outcome (e.g. sensitivity)
IT4 Validation of the model does not entail recognition of the real mechanism

Table 4.2: SWOT (Strengths-Weaknesses-Opportunities and Threats) analysis of the
individual-based approach.

are a good tool for synthesizing experimental observations (PO3): they are rapid to
implement, analyze and evaluate (López et al., 2004) (PS4) and they provide criteria
and indicators for assessing the quality of a given product and estimating the safety of a
proposed process (PO4).

Continuous models are easily communicated and shared among researchers (PS3):
they are comprehensible and provide analytical tools that do not require expert mathe-
matical skills or too much calculus. The wide experience and general use of continuous
models in predictive microbiology have given rise to standardized methodologies in the
process of building, implementing and testing a model (PS2), which facilitate and improve
the efficiency of the research process (Geeraerd et al., 2004). They also provide widely
accepted models that can be used as building blocks for more sophisticated applications
(PO1) (Li et al., 2007).

Continuous models usually employ parameters and variables that may be directly
measured by observing the population and which are common to other models, so it is
quite easy to compare population models with experimental observations (PS5) and with
each other (PS3). The comparison is feasible even between models designed to deal with
different situations or systems (PO2). Besides, there is a great amount of experimental
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information stored in databases such as ComBase (Baranyi and Tamplin, 2004) and the
Pathogen Modeling Program (Buchanan, 1991) in a format compatible with standardized
population models (PO5). These databases also provide modeling tools that may be easily
and effectively used to address specific systems (McMekin et al., 2006).

The basic drawback of the continuous approach lies in the plain fact that the object
under study (the microbial community as a whole) is not an entity per se, but the ag-
gregation of many agents (each of the microorganisms). Continuous models intrinsically
ignore how the collective behavior of a population specifically comes after the activity and
interactions of individual microbes and may overlook important information in situations
where the discrete nature of the system is relevant (PW1).

PbMs can hardly deal with population heterogeneity (e.g. age distribution), local and
cell-to-cell interactions (e.g. propagation of a disease within the population), competi-
tion (e.g. uptake of a finite amount of substrate), collaboration (e.g. use of extracellular
polymeric substances in bio-films) and individual adaptation (i.e. phenotypic modifica-
tions). PbMs are often unable to link the properties of the system with the behavior at
a cellular level (i.e. emergence), can not account for discrete events (e.g sudden changes
in the medium, genetic mutations) and do not represent properly those systems where
the continuum hypothesis is untenable (e.g. small populations). Indeed, For a long time,
there has been a call for innovative approaches that could better tackle these questions
(Dens and Van Impe, 2001), and many concerns are still a challenge to PbMs, for in-
stance: how to deal with the increasing heterogeneity of microbial populations in axenic
cultures (Vives-Rego et al., 2003), and how to describe and predict transitional states (e.g.
lag phase or decay phase) with a mechanistic, rather than phenomenological, approach
(McMekin et al., 2006).

The problem arises from the fact that when building a mechanistic continuous model,
a big abstraction must be made in order to translate the hypothesis regarding the indi-
vidual bacteria to a community level. In doing this, PbMs gain access to dealing with
macroscopic observations, but are restricted to an averaged and plain description of the
population. The results of the model must be translated again to the individual level
to assess the validity of the model and thus gain insight into the microbes (PW2, PT1).
As there is no systematic procedure to perform such a translation process, which is usu-
ally implicitly unspecified, it has been found that sometimes individual properties cannot
be easily retrieved from the information at a system level (Kutalik et al., 2005). This
difficulty often strangles the provision of a biological basis for the interpretation of the
parameters appearing in the system-level model (PW3). Examples of this are the contro-
versy surrounding the definition of the lag parameter λ in food microbiology (Prats et al.,
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2008), or the interpretation of the dependence of the growth rate on the concentration
of nutrient, according to the Monod model (Yu, 2007). These limitations entail that it
is sometimes arbitrary (and therefore difficult) to decide which model to use in order to
describe a particular phenomenon. Another consequence of the problem with the “trans-
lation between levels of description” arises from the meaning associated with probabilities
in the model. The interpretation of the nature of probability (whether it stands for un-
certainty in the measurements or for intrinsic variability) modifies the model outcome
(PT2). This hinders decision making, for example when dealing with risk assessment
(Nauta, 2000).

As a consequence of the above mentioned limitations, it is difficult to discriminate
empirical information from mechanistic rationales in population models (see Section 4.1).
Indeed, adding empirical terms to a model is a commonly used resort to improve the
goodness of fit, yet it does not necessarily make its biological basis any better (PW4).
This makes it very difficult to assess the appropriateness of a model beyond its accuracy
(PT3)

One last challenge of continuous population models is integrating the information
available at a molecular and cell level. The increasing amount of experimental information
obtained at a cellular level (Brehm-Stecher and Johnson, 2004) is not easily covered with
average PbMs. Moreover, the huge amount of data provided by he -omics research, which
is still hardly assembled to build single cell models, is out of range of the PbM approaches,
because the difficulties imposed by the jump from the molecular to the cell level must be
added to those found in the translation from the cell to the population level (PW5).

4.2.2 Individual-based Models

Individual-based models have their basis in the model of the microbial cell and its
immediate surroundings. The main entities of the model are individuals, the natural con-
stituents of real populations (IS2). The provision of a biological basis is more direct for
the parameters defined at an individual level than for those defined at a population level.
As a result, IbMs are an appropriate tool for compiling the experimental information
available at a molecular and cellular level, therefore linking the descriptions provided by
systems biology (-omics data and bio-informatics) to the description of an entire commu-
nity (IO4). The individual-based approach can also integrate different population-based
points of view; for instance, the distinction between ’Survival’ and ’Growth’ models (a
criterion to classify PbMs in the ambit of food microbiology) is not necessary, as IbMs
account for both collective phenomena with the same model for the cellular dynamics
(which copies cell maintenance vs. death, biomass growth and reproduction).
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IbMs often use parameters that cannot be directly measured, or that are much more
difficult to measure than macroscopic variables. Often such parameters must be deduced
from system-level observations (IW4), and other must be fixed ad hoc. This apparent
drawback may be an opportunity to indirectly estimate the values of variables unobserv-
able in real systems (IO2). The value for the unmeasurable parameters can be determined
(or at least delimited) by fitting the model outcome to the observed behavior of a real
system. This has been used, for instance, to estimate the average minimum mass to start
the individual reproduction process for a particular strain (Prats et al., 2008).

IbMs are particularly useful for dealing with small populations, since the smaller the
number of individuals, the more the outcome of the model depends on the distribution
individual traits. Moreover, IbMs have a more transparent and direct use of probabilities
and statistics, which is critical when numbers are not large. In IbM simulations, the
individual traits of the cells that constitute the inoculum are set according to a probability
distribution function defined by the model, which can be contrasted to measurements.
Then, many simulations are run with the same set of parameters and different random
seeds to assess the effect of uncertainty in the processes. Finally, the set of parameters
and/or the initial configuration of the model is varied to check the sensibility of the
simulation. All these processes allow the staggered testing of the contributions to the
variance of the simulations. In conclusion, IbMs can more clearly relate the variability
of the model outcome with the diversity of individual traits, or with the uncertainty
associated to the measurements (IS1, IO1).

Yet, it must be stressed that the problem of understanding and predicting microbial
responses near the survival/death interface (the study of systems with small populations
and/or with high uncertainty in the collective behavior) still persists. First, the results
provided by IbM must still be handled with care so that no misuse of statistics is carried
out (López et al., 2004). Secondly, even when the results seem statistically conclusive
for a particular phenomena, the credibility of the model must be reinforced with predic-
tion/reproduction of independently observable phenomena (see Section 4.1), which might
be difficult for less predictable real systems. A critical factor to predictability is the cell
damage that commonly occurs in the survival/death interface. This potential damage is
phenotypically highly variable and consequently very difficult to assess, still, it strongly
drives the population dynamics. IbMs seem an appropriate tool to deal with this problem,
as they permit taking profit of the advantages typical of probabilistic models (McKellar
et al., 2002).

The main strength of IbMs probably resides in their capacity to disentangle the differ-
ent microscopic (individual-level) factors that cause particular macroscopic (population-
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level) behavior (IS4). IbMs allow a staggered inclusion of complexity in the model. For
example, a given model can initially consider identical bacteria in a homogeneous medium,
and then introduce spatial heterogeneity or individual variability in the population. In-
dividual metabolism, interactions among cells, and any other factor can be taken into
account by the model with increasing detail. With IbMs, each degree of elaboration of
the model can be introduced and studied on its own without modifying the structure of
the model. This implies that the effects of any individual biological hypothesis can be
studied either alone or in combination with other mechanisms. This makes IbM a good
complementary tool for the development of continuous mechanistic models (Ginovart et
al., 2006):

i) firstly, because they allow more thorough characterization and better study of
the underlying factors of empirical terms used in PbMs. For instance, IbMs
can tackle the transitory states of population growth, such as the lag phase
and the stationary and decay states of bacterial growth;

ii) secondly, each IbM can provide a more general applicability and may consti-
tute a common framework for different population models. Once the microbes
are well characterized, the model can explain their behavior in many situations
or systems and with different detail (IS3).

Besides, IbM can inspire the development of novel experimental applications, for instance,
new indicators and monitoring protocols to assess the quality and safety of a product
(IO3). Such indicators could use measurements on distributions among the population
to diagnose the state of a community during the transient states. An example of such
indicator can be used to characterize the progress in the lag phase: it entails measuring the
mathematical distance (D) between the instantaneous normalized biomass distribution for
a sample of an observed population and comparing it to the biomass distribution at the
exponential growth phase, to predict how long will the lag last (Prats et al., 2006). This
method has already been applied to the analysis of experimental measurements (Prats et
al., 2010a).

This freedom from the constraints of analytical models comes at a price: it allows IbMs
to become more complex and thus more difficult to develop, understand and communicate
(IT2). Such complication, together with the relative youth of computer-aided modeling
in the field of microbiology and with the unfamiliarity of the researchers with numerical
(discrete) mathematics, hinders the widespread use of IbM (IT1). Such a limitation is
being faced since recently with the promotion of standardized methodologies to develop,
analyze and communicate IbMs (Grimm et al., 2006).
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The foremost hindrance found when building an IbM is the definition of the essential
individual traits (parameters such as the minimum mass to start the reproduction process
or values for the individual variables) to be included in the model for the micro-organism
(IW4). It is also difficult to choose the structure of the model that will correctly account
for all the important interactions. The tricky task is deciding which of the numerous
combinations of mechanisms and global structures of the model best represents a real
situation. This becomes critical for the assessment of the degree of confidence associated
with a simulation outcome. Assessing the error propagation through the model may not
be enough, because sources of error may reside in the model structure (IW3). There
is a lack of standard methods for guiding model building and analysis, and there is no
conventional way to assess the soundness of a model (IW1) (Grimm and Railsback, 2005).

The lack of standard IbM frameworks makes it difficult to analyze a given model, and
so may hinder the extraction of synthetic understanding (IT1). It also means there are few
established models that can be used as building blocks for other models, which generally
hinders the development of a field. A deeper concern is related to this lack of standards:
models addressed to similar situations often have different parameters and variables and
may show patent differences in their structure. This impedes the comparison between
different IbM models (IT2).

When compared with continuous models that are used to explain the same problems,
IbMs are slower to implement, require more time- and memory-intensive simulations
(IW2), and are more difficult to understand and to communicate (IT2). IbMs also have
to deal with a specific problem that arises from the use of different spatial scales in the
model: the basic unit is the micro-organism (microscopic scale), but some important
environmental processes may take place at the population level (macroscopic scale). The
spatial and temporal scales of the microbial processes and the environmental processes
may also be quite different from each other (IW5). As a result, IbMs are often “difficult
to up-scale to larger spaces when there is heterogeneity at a larger scale” (Hellweger and
Bucci, 2009), and turn to be inadequate to cover wide multiscaled systems. This makes
many problems very difficult to tackle and leaves some of them beyond the scope of IbMs
(see Section 3.5).

One final remark is valid for both kinds of approach. It must be stressed that, even
when a model has been verified and validated, this does not ensure that the proposed
mechanisms are the real underlying causes of the studied phenomenon (PT4, IT4).
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4.2.3 Applicability of each approach

We will now discuss the applicability of PbM and IbM approaches. The discussion is
summarized in Table 4.2.3.
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Table 4.3: Samples of the different types of models described in Section 4.2.
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The ’Opportunities’ and ’Threats’ presented in the sections above provide a guide
for the development of models in predictive microbial ecology. It is just a matter of
taking advantage of the strong points of each approach and skipping over its limitations.
Continuous models are appropriate to tackle simple systems as a whole (see Section 1.4.2),
even at transient states with macroscopic heterogeneity (Gujer et al., 1999; Sole-Mauri et
al., 2007). Individual-based Models are useful in the study of transient processes related
to the evolution of individual properties and heterogeneity at the cell scale (Ginovart et
al., 2005), whenever the local nature of interactions among individuals may be relevant,
and also in dealing with small populations (Prats et al., 2006).

IbMs and continuous models can also be used together to describe the microscopic
and local scale with an individual-based approach and the coarser scales by means of a
continuous model. Such hybrid approaches are currently being used with notable success,
(Picioreanu et al., 2004; Alpkvist et al., 2006), and may be a keystone in improving the
general holistic knowledge of static microbial systems.

Other examples of the complementary use of these approaches are:

i) IbMs can be used as a source of virtual experiments in order to test the
assumptions of a given mechanistic PbM (Prats et al., 2008), and also to
discriminate between different hypothesis that can not be singled out experi-
mentally (Ginovart et al., 2006).

ii) IbMs can provide a generic scaffold for the study of a given microbial sys-
tem through different empiric PbMs. The rules are describing the cells are
potentially valid under any environmental conditions. Then, the specific re-
sponse of a microbial system under a defined situation (as described by an
empiric PbM) is just a particular solution of the corresponding general IbM.
The compatibility between the particular solutions with the general frame-
work theoretically provides a criterion for the assessment of PbMs (Grimm
and Railsback, 2005).

iii) On the other hand, empirical or phenomenological models can be used to
synthesize experimental information and provide a framework for developing
IbMs proposing the mechanisms that may be operating at a cell level (see,
for instance, the use of the in Section 2.3.6 and the use of the WS-model in
Section 3.4).

Continuous modeling is a well-established methodology that requires little improvement.
However, further efforts must be made in the rationalized provision of biological bases
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to mechanistic models. It would be particularly interesting to revise the cases where the
PbMs and IbMs suggest different biological basis for the same system level observation.

On the other hand, specific improvements are required for IbMs so that they can be
used comfortably in the field of predictive microbiology and become more widespread.
Firstly, it is important to build a standardization of the IbM formalism to make the
models easily communicable between modelers, and extensively available to any researcher
as user-friendly tools. In this sense, it is a good idea to take advantage of the efforts being
made in theoretical ecology toward reaching a consensus on a standard communication
protocol; i.e. the ODD protocol, see Section 2.2 and the reference (Grimm et al., 2006).
Secondly, it is crucial to standardize a methodology for model validation and for parameter
estimation in IbM. And thirdly, it is important to develop quantitative analytic methods
to treat IbMs and population models jointly and to guide the research process (Grimm
et al., 2005).

When dealing with a well-known system or with already understood phenomena and
looking for accuracy in the predictive capacity of the model, the best choice is an empirical
continuous model optimized by its fit to experimental data. Thus, for most industrial
applications under controlled conditions, these models (usually presented as packages
in tertiary models) are the most suitable. However, IbMs may be recommended as a
suitable tool to guide population models? building process, to analyze model coherence
and outcomes and, in particular, to understand population dynamics better. They may
be particularly useful when tackling systems in which the expected behavior predicted by
continuous models is not consistent with the behavior observed in real systems. Once the
IbM has been used as a tool for understanding, the improvement and application of the
population approach may proceed more fluently, and the continuous model can be used
as a more effective predictive tool. Hybrid models that combine the two approaches allow
for multi-scale representations.

4.3 IbM, microbiology and basics of thermodynamics

The IbM approach to microbial communities explicitly tackles the connection between
the microscopic and macroscopic worlds, covering several temporal scales (from the cell
cycle ∼ minutes, to the course of cultures ∼ days or of ecosystems ∼ years) and distances
(from the individual cell ∼ µm, to the aggregate culture ∼ cm or even to ecological
communities ∼ km). Three levels of description are covered by this methodology: a) the
microscopic level, b) the macroscopic level, and c) the mesoscopic connection between the
two levels (see Figure 4.1).
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This aim, to connect the microscopic and macroscopic worlds, evokes the joint ap-
plication of probability theory and deterministic mechanics that eggs on statistical ther-
modynamics in physics. In this section we take advance of this analogy. Methods from
statistical thermodynamics are employed here to gain holistic insight into the general
framework of theoretical microbial ecology, and in malaria cultivation, in particular.

ODD is the standard formalism for communicating IbMs in general (Grimm et al.,
2006), but the specific terminology of each model depends of the context -i.e. bacterial
cultures and cell cultures employ different terms. The following analysis uses the nomen-
clature of physics. In order to avoid linguistic misunderstandings, some clarifications are
outlined first.

Figure 4.1: (a) Levels of description covered by Individual-based modeling of microbial systems
and (b) their characteristic scales.

4.3.1 Basic concepts of thermodynamics in biology

Preliminary considerations

Systems that comprise a large number of elements can be tackled at two different
levels of description: microscopic and macroscopic. Specifying their microscopic configu-
ration requires detailed and exhaustive description of each component element, and this
is not feasible in practice. The observation of any system on the whole takes a finite time,
during which several microscopic configurations are adopted. The correspondence be-
tween the microscopic and macroscopic descriptions is not one-to-one: many microscopic
configurations are compatible with a given macroscopic observation.

The notion of macroscopic state (a.k.a thermodynamic state, or just “state”) of a
system is central to the discussion below. The state of a given system is defined by a



148 Chapter4. Individual-based Models of microbial communities

set of observed macroscopic properties (state variables) that completely characterize its
momentary condition. The definition of the state of a system does not depend on its
previous history.

Thermodynamic systems fulfill the continuum hypothesis, and thermodynamic vari-
ables (e.g. temperature, pressure and volume, among others) are real numbers that
represent statistics of mechanical properties of the elements composing the system (e.g.
velocity, number of collisions). State variables are classified into intensive properties
(which do not depend on the size of the system, e.g. temperature, density) and extensive
properties (which depend on the size of the system, e.g. volume, mass). The ratio of
two extensive properties can be used to define an intensive property (e.g. density is the
volume of a system divided by its mass).

From the thermodynamic perspective, the state of a system is either an equilibrium
state, a stationary state (a.k.a steady state) or a variable state (a.k.a transient state).
A system in the thermodynamic equilibrium exhibit no net fluxes of energy or matter
and its properties (intensive and extensive) are constant. All of its state variables are
uniquely determined once some of them have been specified. Systems that exhibit net
fluxes of energy or matter and whose intensive properties are constant are in a stationary
state. Those systems whose thermodynamic properties vary with time are in a variable
state (see Table 4.4).

From the thermodynamic scope, and strictly speaking, biological systems are open dis-
sipative systems far from the thermodynamic equilibrium. They can be in a steady state
(e.g.: homeostasis of a cell and balanced growth of a population, among others) when they
can continuously exchange energy and mass with their local environment and maintain
their (dynamic) internal organization through the active export of heat to their surround-
ing environment (Prigogine, 1955; Margalef, 1991; Toussaint and Schneider, 1998).

Conservation of mass and energy

Biological systems (each individual cell and the population as a whole) continuously
exchange mass and energy with their surroundings. In doing so, they must obey the
fundamental laws of conservation of mass and energy.

Conservation of mass imposes a balance on metabolic reactions: substrate uptake is
spent in the increase of biomass and (eventually) in the excreted waste products. It also
imposes the return to the medium of biomass after cellular death and lysis, as waste
products or as available substrate.

Conservation of energy imposes additional constraints on cellular metabolism: energy
obtained from substrate uptake is spent on cell maintenance and cell growth (if possible)
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with a certain yield. The remaining fraction of energy is dissipated as heat. Metabolic
heat results in a local increase in temperature, which is transported through the system
and finally exported to the surroundings.

Although models may not explicitly account for every mass and energy exchange,
an overall balance is always taken into account. Any violation of the conservation laws
indicates that the model is not operating correctly.

Entropy and thermodynamic stability

The second principle of thermodynamics states that any isolated system tends towards
a state of equilibrium after a transient state. Steady states can be indefinitely maintained
in non-isolated systems, but this requires a continuous exchange of energy (at least, if
often, also matter) with the surroundings of the system.

The tendency of thermodynamic systems towards equilibrium and towards steady
states can be statistically interpreted as the trend towards those macrostates that are
compatible with the maximum number of microscopic configurations (Kittle, 1958). The
quantity used to measure the number of microscopic configurations that are compatible
with an observed macroscopic state is called entropy (S). In statistical mechanics, the
Boltzmann entropy (SB) is an approximation to this measure (see Equation 4.1, where
N is the number of accessible microstates, pi is the probability of the system being in one
of them, and kB = 1.380·10−23 J

K is Botlzmann’s constant). In classical thermodynamics,
entropy represents the amount of energy spent as heat dissipation per unit temperature.
In information theory, entropy is a measure of the variability of an outcome (Jaynes,
1957). In ecology, the term exergy (amount of energy available to be used) is commonly
employed to account for the increase in entropy (Margalef, 1963).

SB = −NkB
∑
i

pilog(pi) (4.1)

Thermodynamic equilibrium is characterized by the maximization of entropy under
the given macroscopic constraints (see Table 4.4). It shows a lack of heat dissipation and
the entropy of the universe (the sum of the entropy of the system and the entropy of
the environment) is constant (4Suniv = 0). Steady states continually produce entropy
(4Suniv > 0), but the increase in entropy is the least possibly compatible with the
macroscopic observations (d(4Ssyst)dt = 0). In any variable state, entropy is smaller than
in the equilibrium, and entropy production bigger than in a steady state (4S > 0,
d(4Ssyst)

dt < 0).
In far-from-equilibrium systems entropy cannot always be defined, so the characteri-
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Extensive
Variables

Intensive
variables 4Suniv d(4Ssyst)

dt

Energy
fluxes

Equilibrium constant constant 0 0 0
Stationary constant ∃ gradients > 0 0 constant
Variable vary vary > 0 < 0 vary

Table 4.4: Apparent thermodynamic states and their characteristic features. 4Suniv: increase
in entropy of the universe; d(4Ssyst)

dt
: entropy production of the system.

zation appearing in Table 4.4 is not exhaustive but rather orientating. Still, generalized
thermodynamic terms and laws can be applied to biological systems, assuming that they
lack appropriate formalization.

The fluxes of energy and entropy can be quantitatively assessed in biological systems
(Odum, 1969). Any system resists being removed from its equilibrium state by countering
the applied gradients; as applied gradients increase so does the system’s ability to oppose
further movement from the equilibrium, eventually leading to self-organized dissipative
structures (Toussaint and Schneider, 1998). Computer simulations indicate that any
ensemble of agents in a complex interaction may evolve towards temporal or spatial
stable patterns, under the appropriate constraints (Solé and Valls, 1992; Solé et al.,
1992). Understanding the dynamics of open dissipative systems (and biological systems,
in particular) does not require the strict definition of S, but the identification of principles
and mechanisms that can lead towards the evolution of stable patterns (Karsenti, 2009).

Maximum entropy and biomass distribution function

Experimental observations show that biotic communities exhibit stable states during
their evolution; for example, empirical data for the biomass distribution function among
a bacterial colony growing unrestricted fit well with a log-normal distribution function
(Koch, 1966; Akerlund et al., 1995). Such an observed shape is also theoretically obtained
from the optimization of the entropy of the system (MAXENT, Equation 4.1): the log-
normal distribution results from imposing the maximization of biological diversity among
the population, once physical energetic constraints are taken into account (Wagensberg
et al., 1988a; Wagensberg et al., 1988b; Margalef, 1991).

Population diversity is defined using the Shannon entropy (S), with the different
classes of organisms (i) being different bins in a histogram of the biomass distribution
(mi), and the relative frequency (qi), the fraction of individuals with m = mi:
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S = −
∑
i

qilog(qi) (4.2)

The biomass distribution q̃S(m) that maximizes entropy depends on the constraints
imposed on the system. If there is no additional constraint, then q̃S(m) = k is a uniform
distribution, with k = 1

N being the normalization constant and N the total number of i
classes.

If the diversity is maximized assuming the following conditions:

i) normalization of the biomass distribution,∑
i

qi = 1 (4.3)

ii) and finite observed mean mass of the culture m (or limited total biomass).

∑
i

mi · qi = m (4.4)

The resulting distribution is given by the exponential decay (Equation 4.5):

q̃s(mi) =
e−βmi

Z
(4.5)

Where Z = 4m
m is the normalization factor, determined by the choice of the histogram

bins (4m) and the normalization of the probability of the sample space (Equation 4.3),
and β = 1

m is the Lagrange multiplier determined by the mean mass observed in the ex-
ponential growth (Equation 4.4). The log-normal distribution is obtained by introducing
additional constraints into the biomass distribution (Equation 4.6):

iii) uncertainty (L) in the reproduction mass (mRi) and minimum threshold for
bacterial mass (m0):

L =
∑
i

q(mRi)log
[
mRi −m0

4m

]
(4.6)

IbM provides a framework to connect the theoretical approach with experimental obser-
vations. It reproduces the described behaviors (Giró et al., 1985; Bermúdez et al., 1989;
Ginovart et al., 2002a) through the contribution of two simple mechanisms: a) individual
variability on the uptake of nutrients and b) minimum threshold to start the reproduction
cycle (see Figure 4.2).
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Figure 4.2: Comparison of the observed biomass distribution function for a bacterial culture
(dashed line; after Koch and Higgins, 1984), the theoretical prediction from the maximization
of entropy (solid line) and the simulation results obtained with Barcelonagrama, a preliminary
version of INDISIM. Reprinted from Wagensberg et al (1998a).

Mathematical distances and population dynamics

Population diversity is a valuable tool for studying the dynamics of populations. For
instance, in the study of the microscopic causes of the lag phase in bacterial cultures (see
Section 4.3.2), Prats et al. (2006) defined a measure, the “product distance” (Dp), to
assess the similarity of a distribution at a given moment with the one corresponding to
stationary state under given conditions. The product distance consists of two factors,

Dp = Dm ·Dq (4.7)

They are two independent measurements, the mean mass distance (Dm):
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Dm =
m−mexp

mexp
(4.8)

and the mass distribution distance (Dq):

Dq =
∑
i

∣∣∣q(mi)− q(mi)exp
∣∣∣ (4.9)

Where m̄ is the mean mass of the population, mexp is the mean mass during the
exponential growth, q(mi) is the frequency of bacteria with mass mi and qexp(mi) is the
expected frequency of class i during the exponential growth. Unlike other measures of the
similarity between probability distribution functions, such as the chi-square test or the
K-S test (see Appendix C), the product distance has a biological meaning and provides
an increase of understanding that can be used to better study bacterial growth (Prats et
al., 2008; Prats et al., 2010a).

Three major conclusions can be drawn from the arguments above. First, thermody-
namic laws can be applied to microbial populations. Second, IbM constitutes a consistent
method for understanding how cellular mechanisms give rise to the observed macroscopic
(thermodynamic) laws. And third, the application of thermodynamic perspective to mi-
crobial systems allows a quantitative definition of the state of the microbial community.
It must be stressed that assessing the state of a system is crucial to ensure a common
reference to compare different systems.

4.3.2 Characterization of bacterial and cell cultures

Microbial communities prevail only as open dissipative systems: they must contin-
uously exchange heat and mass with their environment. Experimental models of real
systems try to recreate some aspects of the natural world: they can be classified ac-
cording to their mass and energy transfer regimes (see Table 4.5). Batch cultures are
closed systems with finite substrate supply. Fed-batch cultures are open batch cultures
where the substrate is permanently added to supply the microbial community with mass
and exergy. Continuous cultures entail the renewal of both the culture medium and the
bacterial population. The entries and outputs of substrate and cells can be performed
continuously or at at discrete events.
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Bacterial growth in axenic cultures

Different stages or phases can be observed during bacterial growth in a closed system.
After inoculation, cells must adapt to new environmental conditions and the population
undergoes the lag phase. Gradually, each bacterium reaches its optimal uptake rate,
in which its increase in biomass is the fastest, its reproduction cycle is the shortest,
its offspring increases geometrically and the population enters the exponential growth
phase. During the exponential growth phase bacteria may undergo balanced growth, which
entails constant population structure and distribution of properties. This is maintained
as long as the environmental conditions remain favorable and there is enough nutrient
for every cell. When the culture medium runs out of nutrient (or when the medium
conditions become inauspicious, due to a harmful secondary metabolite, for instance),
bacteria start their metabolic adaptation to the new adverse conditions: the culture enters
the stationary phase and, if circumstances remain adverse, subsequently they enter the
death phase (or decay phase). The stationary phase is anything but stationary from
the thermodynamical perspective since the population structure and the distribution of
cellular properties continually vary.

Bioreactors operate under regimes with continuous input of nutrients and output
of exhausted medium and cells. In an ideal bioreactor, a microbial population grows
unrestricted and the exchange regime is set to maintain a fixed cell density inside the
reactor tank. A thermodynamically stationary state of the bioreactor is reached during
the balanced growth phase and when microbial growth rate equals the output (or dilution)
rate. Then, the number of cells and the distribution of properties remain constant.

Intraerythrocytic malaria cultivation

Cultures of Plasmodium falciparum-infected RBCs differ slightly from other microbial
cultures. Firstly, RBCs use the substrate to maintain their structure and metabolism but
do not increase their biomass, whereas the extracellular parasite has nearly no metabolic
requirements. The most important expenses occur during the infection cycle, when the
parasite reproduces itself. Maintenance requisites of each IRBC strongly depend on the
infection stage. Secondly, RBCs act as a ’substrate’ for parasite proliferation, and the
maintenance of the infection requires a continuous input of fresh blood cells. Therefore,
limitations on the propagation of the parasite may arise from the unavailability of RBCs
and from the exhaustion of the medium (scarcity of substrate or excess of metabolic
waste).

Several culture systems are distinguished among the erythrocytic cultivation of malaria.
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Short-term cultivation of IRBCs lasts for three days at most, until healthy RBCs are no
longer viable due to overall substrate limitations (see Sections 2.3.1 and 2.3.5). Short-term
cultures are typically performed under closed conditions (in analogy with batch cultures),
but medium renewal alone (in analogy with fed-batch cultures) does not improve their
continuance (see Section 2.3.5). Continuous long-term cultivation of the parasite can be
carried out either in static cultures or in suspended cultures. Both of these require the
discrete renovation of RBC population every four days, at a minimum (see Section 2.3.6).
Continuous long-term cultivation of the parasite with continuous RBC renovation has
been reported in the literature (see Section 1.3.1). However, no bioreactor-like apparatus
has been successfully developed for continuous malaria cultivation.

Accessible
thermody-
namic
states

Examples in
bacterial
cultivation

Examples in
malaria

cultivation

Conservation EQ., ST., VAR. Spores, quiescent
cells

Frozen RBCs,
parasite strain

Closed culture VAR. Batch culture Preservation of the
infection

Culture open to
substrate exchange VAR. Fed-batch culture Preservation of the

infection
Continuous culture ST., VAR. Bioreactor Continuous flow,

candle-jar method
Natural system VAR. Microbial

community
Murine model,
host infection

Table 4.5: Types of microbial systems and their thermodynamic characterization. EQ.: equilib-
rium state, ST.: stationary state, VAR.: transient state.

4.3.3 Thermodynamic description of microbial populations

The previous general classification of thermodynamic states (see Table 4.4) is applied
to different microbial systems (see Table 4.5) at different levels of description (see Figure
4.1). It is important to note that the definition of the state of a system depends on
the scale of observation. For instance, temporal constancy apparent when observing the
system at a certain level may turn into fluctuations when further detail can be appreciated.
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A) Observation at a cellular level

The description of a single cell during temporal scales of the order of the minutes (i.e.
shorter than the reproduction cycle for bacterial cells and much smaller than the life span
of RBCs in malaria cultivation) allows defining the following thermodynamic states:

i) Equilibrium state. Cell inaction: the cell does not exchange mass or heat with
its surrounding. This occurs when the cell has no activity; strictly, that is only
when the cell is dead. It can also be considered to be the state of dormant
cells with very low metabolic upkeep (e.g. quiescent bacterium, spores, or
frozen RBC).

ii) Stationary state. Upkeep: the cell uptakes a constant amount of nutrient
and excretes a fixed amount of heat and metabolic products. The metabolic
output is spent in the cellular upkeep: maintaining homeostasis, cell structure
and activity (e.g. ideal sustaining of a bacterium or healthy RBCs).

iii) Variable states. Bacterium growth: cellular uptake exceeds the upkeep re-
quirements and the energy surplus is spent in cellular increase of biomass.
If maintained, this stage eventually leads to cells big enough to start a re-
production cycle. Bacterium shrinkage: cellular uptake is not enough to
cover the upkeep requirements and the energy deficiency is fulfilled through
self-digestion. Infection cycle: parasite reproduction entails the continuous
alteration of RBC structure, and the consequent variation of the properties
of the IRBC.

B) Observation at a population level

Description of the system at a population level and consideration of a coarser temporal
scale on the order of several days (i.e. greater than bacterial cellular cycle and malaria
infection cycle) allows us to distinguish the following states:

i) Equilibrium state; macroscopic fixed states appear only if there is (approxi-
mately) no metabolic activity, and require environmental conditions that limit
cellular activity (e.g. reposition of spores, freeze storage of cell cultures).

ii) Stationary state; - balanced growth in ideal bioreactors: any biological activ-
ity requires the consumption of substrate and therefore needs a continuous
regime of substrate exchange. For bacterial cells, ideal sustainment is not
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viable for every cell in a community at once, as some cells will grow while oth-
ers will fail in the competition for nutrients. Constant intensive properties,
characteristic of stationary states, appear only if all bacteria are in optimal
growth conditions, while constant extensive properties require the continuous
extraction of a fraction of the population. The same argumentation holds
for the stationary states in in vitro maintenance of Plasmodium infection in
bioreactor-like cultures.

Discrete renewal of the population can lead to close-to-stationary states (sta-
tionary states that vary periodically). These states can be maintained in the
long run, and they exhibit constant but show periodic variations on their in-
tensive variables related to the short-term discrete renewals (e.g. continuous
long term cultivation of Plasmodium falciparum, see Sections 2.3.6 and 4.3.4).

States that appear to be stationary at this level of description can also turn
into variable at larger scales. For instance, the long-term degradation of
individual cells becomes apparent in the effect of the storage period of the
RBC sources in the continuous cultivation of Plasmodium falciparum (see
Section 2.3.3). Such an effect is also observed in the long-term evolution of
yeast populations, and how it affects industrial fermentation processes (Prats
et al., 2010b, in press).

iii) Variable states. Systems with no population renewal: any other macroscopic
system that maintains cellular activity in a system closed to population re-
newal is unavoidably in a transient state. This is true even for systems in
an apparent steady state, such as the lag phase and the stationary phase of
bacterial growth. In such cases, despite there being no variation in cell density
is observed, other intensive variables (e.g. cellular composition and structure,
or biomass distribution among the population) are continuously changing due
to cellular adaptation to the new conditions (Prats, 2008; Prats et al., 2008;
Prats et al., 2010a).

C) Mesoscopic connection

Knowing the state of any real system is crucial to interpreting the measurements
and having predictive capability. The structure of the population is an indicator of
the thermodynamic state of microbial communities. The quantitative assessment of the
distribution of individual traits among the population is a valuable tool for assessing
such states. The study of distributions among the population and of emerging collective
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patterns constitutes the mesoscopic connection between the microscopic and macroscopic
levels of description (Ferrer et al 2008a).

Recent experimental techniques provide a huge amount of data at the cellular level
(Hellweger and Bucci, 2009). The interpretation and assimilation of this information
requires models that can connect individual variability and measurements of the statistical
properties of the population with macroscopic patterns and quantitative measurements
at a system level. This is another area of application of the mesoscopic analysis of
populations.

A distinctive mesoscopic tool is the statistical distribution of individual properties.
The use of the biomass distribution function for bacterial populations was introduced in
Section 4.3.1. The role of the distribution of post-invasion times (tINF ) among IRBCs
will be examined below.

4.3.4 Population structure in Plasmodium falciparum in in vitro cul-
tures

An apparent population structure of P. falciparum-infected RBC in static cultures
is the distribution of infected forms. In this section, the evolution of the distribution
function of post-invasion times in the simulated IRBCs (q (tINF ), see Section 2.3.4) is
examined through a deeper revision of experimental observations and through the analysis
of INDISIM-RBC outcome.

Real cultures usually start with young populations of IRBCs mainly comprised of ring
stages. This preponderance of young forms is observed all through the cultivation, and
is maintained after multiple subcultures (for instance, note the differences in the average
observed parasitaemias in Figure 2.6 b, c, d and e in Section 2.3.2). The evolution of the
distribution of IRBCs is governed by many synchronizing and desynchronizing factors:
individual diversity, differential mortality for young and mature IRBCs, and external
manipulations, among others.

INDISIM-RBC simulations permit the definition and assessment of these factors one
by one. The qualitative analysis of q (tINF ) shows that the population of IRBCs desyn-
chronises after each infection cycle due to individual variability. The introduction of an
increased accidental death probability for the mature stages of the infection, together
with the periodic subcultivation of the parasite, compensates this disordering trend and
lead to stagnation of desynchronization (see Figure 2.12 in Section 2.3.4).

A more thorough analysis of the population structure requires a minute treatment of
the post-invasion distribution function. Firstly, it must be stressed that the distributions
shown in Figure 2.12 are selected snapshots that resemble Gaussian distributions (a.k.a.
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normal distribution). Such a shape is not the most common one during the course of
a simulation. Indeed, the Gaussian distribution reflects a particular instant state found
in cultures with rather synchronized inocula at the middle of the infection cycle. In
other snapshots, the post-invasion-time distribution may appear truncated or may present
much more disordered populations (see Figure 4.3). Withal, the qualitatively observed
trend, common to all IRBC populations, is a tendency towards increasingly homogeneous
q (tINF ) (although highly fluctuating and with a limited bandwidth).

Figure 4.3: Snapshots of the post-invasion-time distributions (q (tINF )) obtained at different mo-
ments (tINF ) of INDISIM.v3D simulations; (a) population structure after 3 generations showing
a normal distribution at the middle of the infection cycle and the next generation of IRBCs at
0− 6 h; (b) population structure after 5 generations showing a truncated normal distribution of
a rising generation between 0 and 18 hours and the remains of the previous one; (c) Disordered
distribution of IRBCs after 12 generations (completed infection cycles).

The quantitative analysis of q (tINF ) requires defining its relevant statistics: the in-
stantaneous mean value (µ = tINF ) and the standard deviation (σ(tINF )), calculated over
the whole population at each time step. Figure 4.4 shows their temporal evolution in a
static in vitro culture with periodic sub-cultivations under candle-jar culturing condi-
tions. The distribution q (tINF ) does not tend to a stationary state but rather its shape
varies with cycles of 48 hours. The mean value tINF oscillates in regular cycles with
decreasing amplitude, gradually tending to a the mean value that can be estimated to
be half the duration of the infection cycle. Meanwhile, the variance also oscillates with
a periodic 48 hour cycle and 180º out of phase. The standard deviation is maintained
until the first invasion takes place, and reaches its maximum values near the moments
of majority lysis, when most of the IRBCs are in the end of the infection cycle, while
the next generation of parasites is already rising. The variance decreases as the IRBC
population becomes more and more homogeneous and the contrast between young and
mature forms fades.
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Figure 4.4: Evolution of (a) the mean value (µ = tINF ), and (b) the standard deviation
(σ = StdDev(q (tINF )) of the distribution of post-invasion times among a simulated population
of IRBCs under candle-jar culturing conditions, with a synchronous inoculum: tINF 0 = 5 hrs,
σ0 = 3hrs. Solid lines show simulation outcome. Dotted lines show the envelope of µ(tINF ),
and is qualitatively compared with the average evolution of σ(tINF ). Dashed line is the observed
average evolution of σ(tINF ), smoothed each 2 days.

The variability of the distribution function, σ = StdDev(q (tINF ), which periodically
oscillates in counter-phase with q (tINF ), tends towards oscillations of fixed amplitude
around a fixed mean value value, < σ >t . So there is a stationary degree of homo-
geneity of q (tINF ) that is maintained through successive cycles and which results from
the contributions of the distribution among the present (fts), past (pts), and next (nts)
generations of IRBCs (see Figures 2.12 and 2.13 in Section 2.3.4). This tend towards in-
creasingly homogeneous distributions, until reaching an optimal shape that periodically
varies through time, is consistent with the principle of maximum diversity -that is, with
the optimization of S.

The absence of a steady probability distribution function in the long-term cultivation
of the parasite does not impede the application of variational principles similar to those
presented in Section 4.3.1. In the present analysis, the probability distribution function
q (tINF ) continually oscillates, and consequently, no fixed observable can be used to define
and optimize the entropy of the system, S.

However, if the evolution of the population is averaged over the period between two
successive subcultivations, a mean entropy of the system can be defined S<48> (see Equa-
tion 4.10). This entropy monotonically increases until reaching a steady state (see Figure
4.5).
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S<48> = −
∑
i

< qi >48 log(< qi >48) (4.10)

Where < qi >48=< q (tINF ) >48 is the distribution of post-invasion times averaged
over 48 hours. Averages are calculated from the first day and each of them includes a
subcultivation.

Figure 4.5: Evolution of the entropy of the population of IRBCs in continuous static cultivation;
(a) entropy calculated with the distribution of post-invasion times; (b) entropy calculated with the
distribution of post-invasion times averaged over a subcultivation period of 48h. Dashed line
corresponds to the entropy averaged over 8 days.

The definition of this entropy has an academic interest, but it is hardly applicable to
real culture systems because the post-invasion time of IRBCs is not easy to measure.

Mathematical distance to the stationary state

The distribution of post-invasion stages (qICL) can be used as a measurement of the
entropy of the system (see Figures 4.6 and 4.7). The first thing to note from Figure 4.6.a
is that the simulated stationary distribution of infection stages (q̃S (ICL)) agrees with
the experimental measurements averaged over time 〈q(ICL)〉. The prevalence of young
forms of IRBCs observed in real systems is reproduced by the simulation outcome. But
does this distribution really arise from the optimization of a variational principle?

According to the ergodic hypothesis, if the system is in a stationary process, the
distribution of tINF averaged through time (〈q (tINF )〉) should be similar to q̃S (tINF )
at the stationary state, a distribution that maximizes population diversity under the
observed constraints. If the only constraint is the observed mean value tINF , the expected
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distribution function is an exponential decay similar to that presented in Equation 4.5.
Figure 4.6 shows 〈q (tINF )〉 covering multiple infection cycles and sub-cultivations.

Figure 4.6: Distribution of post-invasion times among IRBCs, averaged through a complete sim-
ulation of a static culture. (a) Histogram representing the cumulative prevalence of the different
infection stages < qICL >. Simulation outcome (grey bars) are compared to the experimental data
(blue bars) of the candle-jar and continuous flow cultures (Trager and Jensen, 1976). Dashed
line shows that simulation results best fit an exponential decay. (b) Averaged distribution of post-
invasion times < q(tINF ) > in a static culture with Pdeath(∀) = 0. Simulation outcome best fits
a linear decay (solid line).

The distribution
〈
q(tINF )

〉
does not resemble the inverse exponential function found

in Equation 4.5, but better fits a linear decrease (see Figure 4.6b). The decrease in〈
q(tINF )

〉
for increasing tINF does not result from the optimization of any analytical

function, but is a consequence of the particular course of the IRBCs’ life.
IRBCs have a mortality rate that results from the joint effect of Pdeath(RBC) and

Pdeath(tINF ). The distribution
〈
q(tINF )

〉
also reflects the repeated removal of IRBCs

in subcultivation (see Section 2.2). If there were no mortality of RBCs and no subcul-
tivations, Figure 4.6b would show a flat line: every IRBC would undergo its complete
infection cycle. The slope of the linear fit is only slightly steeper than the slope corre-
sponding to the expected removal rate due to subcultivation (∼ −0.0005). The result is
consistent with the optimization of diversity, but the constraints on

〈
q(tINF )

〉
are stricter

than the observable mean value.
In any case, the distribution of post-invasion times allows for the definition of an en-

tropy function (S(ICL), see Equation 4.2). This entropy can be compared to the entropy
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corresponding to the stationary system (< Sexp(ICL) > ), which can be calculated from
the measurements on real systems averaged over time, to define a mathematical distance
between the two (D(ICL)).

Figure 4.7: Evolution of the (a) entropy and (b) mathematical distance calculated with the
distribution of infection stages (ICL). a) Black dots indicate the evolution of S(ICL) according
to the simulation outcome. Red dashed line indicates the measured entropy averaged over a
continuous cultivation using the candle-jar method < Sexp(ICL) > ; b) calculated mathematical
distance between S(ICL) and < Sexp(ICL) >.

The mathematical distance D(ICL) can be used to assess the degree of closeness to
the stationary state of a given culture. In fact, as S(ICL) continuously oscillates, only
high values of D(ICL) indicate that the culture is in a state far from the stationary
state, but low values of D(ICL) are not enough to evaluate whether the culture is near
stationarity or in a local minimum of the oscillation. All in all, D(ICL) can be a useful
tool for measuring to what extent two cultures are comparable, or at least for ruling out
their equivalence.

4.4 Closing remarks

In the recent years, Individual-based Modeling has become a fully incorporated part
of the methodologies used in predictive microbial ecology. Beyond the specific contri-
butions of IbM to particular problems, this bottom-up approach involves a shift in the
representation of microbial populations. Models based on individuals allow us to check
the validity fundamental mechanistic assumptions regarding cellular behavior.

The rules proposed by different models can be used to evaluate the consistency and
biological basis of the empirical rules defined at a system level. They can also be experi-



164 Chapter4. Individual-based Models of microbial communities

mentally contrasted through recently available measurements of population heterogeneity
(e.g. fluorescence, cytometry and scanning microscopy, among others).

The joint use of IbM and the perspective of statistical thermodynamics, provides with
tools that explicitly tackle mesoscopic connection between theoretical fundamentals (set
at a cellular level) and observations on the real systems (usually obtained at a collective
level). The application of such a view to INDISIM-RBC has been put forward as an
example of the potentiality of combining the theoretical, experimental and computational
approaches in predictive microbiology.



Chapter 5

Conclusions and perspectives

This chapter outlines the main results and consequent specific conclusions of this
manuscript. Section 5.1 summarizes the general conclusions drawn from the thesis. Sec-
tion 5.2 presents, in table form, a synthesis of the results in accordance with the structure
of the specific objectives presented in Section 1.5. Finally, Section 5.3 compiles the pend-
ing issues and proposes lines for further work.

5.1 General conclusions

Malaria is still a major burden that causes approximately one million deaths annually
worldwide. It is also a complex challenge to scientific research that covers many areas
of work: biology of malaria parasites and their vectors, clinical disease management and
treatment, biochemistry and molecular biology, epidemiology, and transmission dynamics,
among many others. In vitro cultivation of the parasite is essential for the development of
new drugs, but the control of the cultures and the interpretation of the observed behavior
is not straightforward.

Progress in malaria research requires multidisciplinary collaboration. The contribu-
tions of experts in each specific field must be combined with those of experts in other
disciplines, who offer a different and eventually revealing perspective. The constitution
of a common framework for development analysis and communication among experts in
each field is an imperative to this end. In this thesis, PoM has been adopted as the most
appropriate way for approaching the raising of models in predictive microbiology and the
ODD protocol has been proposed as the standard tool for communicating them.

Modeling can be more oriented towards increasing predictive capability or towards
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understanding. In this thesis, the main objective of the model has been the interpretation
of the results of pre-existing experiments. But the model has served to propose novel
experimental procedures, such as the discrete and gentle agitation of static cultures for
increasing and stabilizing the harvests. The model has also served to explore different
experimental setups as model-generated hypotheses were tested, such as the packing of
RBCs in the hematocrit layer. Finally, the model has been used to estimate the values
of some magnitudes that are difficult to assess, such as the depths of RBC and IRBC
viability.

PbM and IbM are two complementary strategies to tackle microbial populations; the
former is more oriented towards empirical prediction and the latter is more oriented
towards comprehension. In this thesis, the suitability of each approach to tackle specific
problems in predictive microbiology has been evaluated.

IbMs define a set of rules governing each cell and its interactions with others and with
its immediate surroundings. From these sets of rules, and taking into account diversity
within the population and a certain degree of randomness in the individual processes,
IbMs explicitly show the emerging behavior of the system as a whole. Methods from
statistical thermodynamics can be applied to microbial communities to analyze the meso-
scopic connection between the distribution of individual properties among the collectivity
and the macroscopically observed features. In this thesis, IbM and the thermodynamic
approach have been used together to better understand the emergence of macroscopic
patterns from the characteristics of the population structure.

The specific application of the IbM methodology to cell cultures of Plasmodium falci-
parum-infected erythrocytes in in vitro cultures has been carried out through the develop-
ment of the model and simulator INDISIM-RBC. The general conclusions to be extracted
from the work here presented can be outlined as follows.

We have shown that INDISIM-RBC is a good tool to improve understanding of Plas-
modium falciparum-infected RBCs in in vitro cultures. It is a mechanistically rich model,
because it quantitatively reproduces and predicts several patterns observed in real cul-
tures at different levels of description.

We demonstrated that INDISIM-RBC can be used to study in detail aspects of malaria
cultivation that remain unclear, to perform virtual experiments, and to prompt novel lines
of research and examine potential experimental techniques.

In particular, INDISIM-RBC has been used to predict the behavior of the current
experimental culturing protocols in static cultivation, to set the subcultivatuion periods
and renovation rates that lead to a stable and well performing continuous culture system,
and to define the optimal sizes and shapes of the hematocrit layer in cultivations that
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less harm the cells in culture.
The specific results obtained with this simulator are outlined in the following section,

in accordance with the specific objectives listed in Section 1.5.
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5.2 Synthesis of specific results

A) Conceptual approach

A1) Key experimental measures that provide information relevant to the study of
malaria-infected RBCs in in vitro cultures.
The usual indicators of the performance of the in vitro cultivation of Plasmodium
falciparum are the growth ratio GR, and the percentage of infected RBCs, or
parasitaemia %I. These observations are taken at discrete events, usually prior to
subcultivation, every 48 hours.

• INDISIM-RBC used these indicators for the calibration of the model (Sections
2.3.1, 2.3.2 and 3.3.1). Increasing the resolution of the samples to periods
smaller than 24 h did not lead to a significant improvement in the information
obtained (Section 2.3.6).

The characterization of the population structure gives additional information. The
distribution of individual properties among the population is often measured as an
indicator of the degree of synchrony, which is considered to influence the growth
ratio.

• INDISIM-RBC used the distribution of infection stages among IRBCs as an
indicator to calibrate and validate the model (Sections 2.3.1, 2.3.2 and 3.3.1).

• The characterization of the population proved to be essential for assessing the
state of the culture and for gaining predictive capability (Sections 2.3.4 and
4.3.3).

Finally, the conditions of the culturing medium are often evaluated by measuring
the concentrations of different metabolites in the supernatant.

• INDISIM-RBC reproduced the overall consumption of glucose and production
of lactate (Section 2.3.5). The local distribution of substrate was pointed as
one of the mechanisms that limit the proliferation of the parasite in static
cultivation (Sections 2.3.5 and 3.5.1 ).
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A1) - extension- Characterization of the population structure
Bacterial populations and cell cultures can be thermodynamically characterized as
open dissipative systems that continuously incorporate mass from their
environment and release heat. Different culture systems can be classified according
to their mass transfer regimes. Different states are accessible to each kind of culture
(Section 4.3.2).

• We showed that the definition of the state (i.e. equilibrium, stationary or
variable) of a microbial system depends on the scale of observation (i.e.
micro-/macro-scopic; short/long-term) and that it can be assessed through
the measurement of the appropriate characteristics (Section 4.3.3).

A thorough characterization of the state of populations allows for drawing a
mesoscopic connection between microscopic and macroscopic levels of description
(Section 4.3).

• The statistical distribution of individual features among the population
(a.k.a. population structure) proved to be a good tool for assessing the state
of microbial communities.

• The distribution of post-invasion times q(tINF ) and of infection stages
q(ICL) among IRBCs proved to be good indicators of the state of the
infection in Plasmodium falciparum in in vitro cultures (Section 4.3.4).

• The analysis of IbM data suggested that the state with maximal population
heterogeneity under the continuous cultivation of P. falciparum can lead to a
stationary state characterized by a certain q(tINF ) which is periodically
oscillating (Section 4.3.4).
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A2) Individual features and local mechanisms that must be considered in order to
describe the proliferation of the malaria infection in in vitro cultures.
INDISIM-RBC comprises RBCs, IRBCs, merozoites and medium. The local
interactions that govern the infection dynamics were the competition for nutrients
among RBCs (Sections 2.3.5 and 3.5) and the local transmission of the parasite
(Sections 2.3.3 and 3.4). The most relevant features of RBCs are:

• Packing factor of RBCs; this controls the spatial structure of the hematocrit
in static cultures.

• Age and time in cultivation; these govern the evolution of the susceptibility to
invasion by the parasite.

• Metabolic requisites; these set the suitability of the local environment, which
determines the viability of RBCs and IRBCs

• Susceptibility to infection of the RBC; this varies with the blood source and
affects the infection growth rate and parasitaemia.

In addition to these features, IRBCs are characterized by:

• Duration of the infection cycle; this affects infection growth rate.

• Fragility of the infection stages; this affects infection growth rate.

Merozoites are not described in such detail, but are characterized by:

• Egress; this describes their expulsion during the lysis of IRBCs at the end of
an infection cycle. The mechanism that performs best in INDISIM-RBC is
consistent with recent observations at a cellular level.

• Mobility; this depends on the packing factor of RBCs and controls the
spreading rate within the hematocrit layer in static cultures.

• Prevalence in the extracellular medium and capability of infection of the
parasite strain; these control the infection growth rate.
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A3) External manipulations of the system on the whole influence the dynamics of
the infection.
External manipulations on the culture system consist of agitation, medium renewal
and subcultivation. INDISIM-RBC tested different cultivation protocols and
simulation outcomes were compared with experimental observations.

• Simulations matched real systems in that:

i) period and extent of subcultivation affects the population structure,
modifying the infection dynamics. The GR48 is slightly affected by this
modification (Sections 2.3.4 and 4.3.3).

ii) medium renewal is required every 72 hours at most to avoid the local
degradation of RBC surroundings resulting from diffusive limitations
(Sections 2.3.5 and 3.5).

iii) Periodic agitation does not have an effect on the short-term evolution of
closed systems (Section 2.3.6).

iv) Cultures in suspension perform better than static cultures under similar
periodic subcultivation regimes (Section 2.3.6).

• According to the model, subcultivation is required every 5 days at most to
avoid infection of the whole culture, while real cultures require subcultivation
every 3 or 4 days (Section 2.3.6).

• The restriction of maintaining %I < 10%, which is observed in static real
cultures, was not reproduced by the model (Sections 2.3).

• Limitations on static cultures appeared in the model as a consequence of
geometrical limitations on the system (Section 3.3).
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A3) - extension- Macroscopic constraints and geometrical limitations on static
cultures.
INDISIM-RBC showed that several factors may influence the static in vitro
cultivation of P. falciparum

• The shape of the hematocrit layer (HL) is determined by cell-to-cell
interactions and by the shape and size of the culturing vial (Sections 3.1, 3.2
and 3.3).

• Cell density in the HL is not affected by the shape and size of the culture vial
(Sections 3.1.2 and 3.3).

• Shape of the HL affects the performance of cultures under similar culturing
conditions (Sections 3.1.2 and 3.3).

• The HL can be split into two sub-layers, each of them with a different parasite
proliferation rate (Section 3.4). This allows for the reproduction and
prediction of the performance of different static cultivation regimes:

i) The depth of the upper sublayer is fixed by cellular features, by the
spreading of the parasite and by substrate diffusion. The model cannot
completely disentangle the contribution of each factor to the performance of
real cultures.

ii) The upper sublayer of the HL shows unrestricted propagation of the
infection, while in the lower, a reduction of the number of IRBCs emerges
from local diffusive limitations.

iii) A region of fixed depth in the lower sublayer has reduced proliferation of
the parasite due to the mechanism governing merozoite spreading.

Withal, the first general objective, to gain understanding and predictive capability of
a specific kind of microbial system, the long-term in vitro culture of human RBCs infected
with Plasmodium falciparum under different controlled conditions, has been achieved.
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B) Methodological approach

B1) The pattern-oriented (PoM) strategy was followed to build the model.
PoM is a protocol for building models in the context of theoretical ecology
described by Grimm et al (2006), which consists in proposing a basic model for the
individuals that includes only those features and mechanisms relevant to the
behavior observed in real in vitro culture systems; including only those constraints
observed in the experimental systems at different levels of description and refining
and rebuilding the model repeatedly to obtain a structurally realistic representation
of a culture system. Its application of PoM in microbiology requires:

• The identification of the specific questions to pose. This means the detection
and observation of patterns to reproduce, predict and explain, in
collaboration with the field experts that are familiar with the specific features
of the system to be modeled.

• The definition of the scales and level of description of the model. This requires
determining the ultimate agents of the system (the microbial cell), which are
the ones that actively govern the ongoing processes. Their characteristic
scales will probably define the appropriate level of description of the model.

• The identification of the relevant features and variables in real systems.
Microbes are very complex autonomous organisms, and they have multiple
features that have no influence over a given process. It is essential to neglect
these irrelevant features, and to stick to those explaining a pattern. This must
be carried out even at the risk of loosing realism.

In following these steps, modeling became a continual process, and the development
of models with increasing complexity, INDISIM-RBC versions 2Dv.1 2Dv.2 and 3D,
favored the use of assumptions with a biological basis over those with only empirical
efficacy. As a consequence, we obtained a mechanistically rich model (Section 4.1).



174 Chapter5. Conclusions and perspectives

B1) -extension- PoM favored the development of mechanistically rich models.
Mechanistically rich models in microbiology offer (Section 4.1):

• Versatility: models built following PoM are less dependent on the values of
the parameters and rely more on the structure of the model. A single model
can reproduce and explain a variety of complex behaviors.

• Simplicity: rules defined following PoM are the simplest found to reproduce a
group of selected patterns. In this sense, models are transparent and intuitive
because they include only those assumptions that must be considered to
account for the observations

• Specificity: models are built to reproduce specific properties of real systems
and they have predictive capability over similar systems in a wide range of
situations. This can be used to explore technically unachievable experiments
or situations.

• Generality: in order to correctly account for microbial ecosystems we must
consider the local range of interactions, the temporal nature of entities and
processes, the diversity among the population and noise in the deterministic
rules describing the system.

B2) SWOT analysis of modeling strategies
Tackling microbial populations entails choosing between two complementary
approaches: IbMs and PbMs.

• The SWOT analysis was used to evaluate the suitability of each approach
(Section 4.2). It comprised the description of the advantages and drawbacks
of IbMs and PbMs, and the definition of the optimal application and
complementarity of these approaches.

• The joint application of IbMs and PbMs allowed a better approach to the
diffusion process through the hematocrit layer in static cultures.
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B3) Basic concepts of thermodynamics in biology.
The terms employed in physics and in biology differ. Stipulating the language is
crucial in a multidisciplinary research to avoid misunderstandings (Section 4.3).

• A central concept is the (thermodynamic) state of a system: equilibrium,
stationary or variable. The characterization of the state of a population is
essential for comparing different systems and for increasing the predictive
capability of models.

• At a system-level, one-time observations are usually not sufficient to assess
the state of the population. This state strongly depends on the constraints on
the system (e.g.: open/closed boundaries), and on the features we focus on.

• The application of the first law of thermodynamics and of the law of
conservation of mass imposes some basic constraints on microbial systems (i.e.
equations of balance). Application of the second law of thermodynamics
imposes additional limitations (i.e. optimization of entropy S and
minimization of entropy production).

• These laws can be used to study, analyze and predict the structure of the
population regarding a set of individual characteristics. The obtained results
can be compared to measurements of real systems and to simulation outcomes
of IbMs.

The use of the theoretical, experimental and computational approaches allowed for
the characterization of the state of microbial populations in general, and of malaria
cultures, in particular.

• The distributions of post-invasion times among IRBCs (q(tINF )) of infection
stages (q(ICL)) proved to be good indicators of the state of the infection in
Plasmodium falciparum in in vitro cultures.

• The entropy related to population diversity S(q(ICL)) was measured and
compared to the one corresponding to the stationary state < Sexp(ICL) >.

• The mathematical distance between the two entropies, D(ICL), was used to
assess the state of infected cultures.
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B4) The ODD (Objective- Design Concepts-Details) protocol (Grimm et al., 2006)
used to describe, analyze and communicate the model.
The ODD protocol is a standard method for presenting Individual-based Models
(Sections 2.2 and 3.2). It requires a detailed and thorough description of many
aspects of the model. It comprises the following tasks: i) identification of the
questions to pose; ii) definition of the scales and level of description of the model;
iii) identification of the relevant features and variables and iv) the critical review
and repeated application of points (i) to (iii) as the model is developed. Some
conclusions may be drawn from the application of this method.

• Sticking to this protocol when communicating INDISIM-RBC revealed weak
points and inconsistencies in the model structure and in the defined rules.

• The use of a standardized convention and terminology favored the
communication with the experts in malaria research and with other groups
that develop IbMs, thus stimulating the improvement of INDISIM-RBC.

• The joint application of ODD and PoM in the process recursively rebuilding
the model helped in the development of a mechanistically rich model.

Withal, IbMs have been used to tackle multiple spatial and temporal scales of microbial
communities using fundamental mechanistic assumptions. However they have proved to
be more difficult to develop, communicate and analyze than PbMs, and standardized
protocols have been adapted to facilitate their sharing and application.

Techniques from statistical thermodynamics have been used to thoroughly characterize
the population structure of the systems under study, and its relation with observations
at a system level. The joint application of IbM and of statistical thermodynamics has
provided results that can be contrasted with real systems through the recently available
measurements of population heterogeneity (e.g. fluorescence, cytometry and scanning
microscopy, among others).

The combination of measurements at a cellular level and the IbM perspective has
lead to an increase in the understanding and in the predictive capability regarding the
dynamics of specific microbial communities and cell cultures.
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C) Application approach

C1) Quantitative criteria for the comparison of different RBC storage periods,
parasite strains and commercial sources of culture medium.
In addition to the parameters usually employed to assess the performance of P.
falciparum infected RBCS in in vitro cultures (%I and GR), our group proposed
the quantitative measurement of the population structure of IRBCs (q(tINF ),
q(ICL) and D(ICL)). The joint use of %I, GR and q(tINF ) allowed us to draw
some specific conclusions regarding the variation of the culturing conditions:

• The growth ratio is measured every 72 h or 96 h in the first of the long-term
cultures found in the literature. GR72 takes values ranging over
3 < GR72 < 15 and exhibits great variability (Section 2.3.3).

• No significant differences are found in GR72 when comparing different
parasite strains, RBC sources or commercial culture mediums (Section 2.3.3).

• A significant decrease in the GR is observed for high RBC storage periods,
which entails increasing RBC ages (tRBC). When tRBC < 16 days, the
parasite can grow unhindered. After 20 days of RBC storage, the parasite can
be maintained in culture with GR ∼ 1. After 60 days, cultures are not viable,
%I = 0 (Section 2.3.3).

• Synchronization of the population does not significantly affect GR48 in
short-term cultivation. However, continuous cultures show different
performances depending on whether they are synchronous or asynchronous
(Section 2.3.4).

• The distribution of post-invasion times q(tINF ) and infection stages q(ICL)
among IRBCs evolve through time and can be used to assess the state of the
infection (Section 4.3.3).

• The latter can be used to define a mathematical distance between an observed
population structure and a supposed stationary distribution D(ICL), which
provides criteria for the comparison of different culture systems.
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C2) Mechanisms at an individual or local level and macroscopically observed
patterns.

• The mechanism of merozoite egress that leads to best-fit simulations is
membrane breakdown. This is consistent with recent microscopy observations
and reproduces several patterns: GR, %I, and the distribution of
multiply-infected RBCs (Section 3.3.3). The system-level limitations on the
spreading of merozoites is tackled in Table C4.

• The best-fit model of the infection susceptibility of healthy RBCs (pINF (t)) is
a monotonically time-decreasing function with an abrupt fall after three
weeks. Appropriate storage of RBCs (control of storage times and protocols)
is relevant to optimization of the performance of the cultures (Section 2.3.3).

• The simplest model of RBC metabolism that reproduces local need for
nutrients considers the local concentration of nutrient in a range ∼ 10 µm
(Section 2.2). The amount of glucose does not significantly affect the culture
on the whole (Section 2.3.5). Local limitations on nutrient availability may
lead to reduced performance of static cultures (Section 3.5).

• In vitro cultures of IRBCs tend towards increasingly asynchronous
populations. This can be attributed to the inherent diversity among IRBCs.
Synchronization of the IRBC population may result from appropriate
subcultivation protocols, combined with stage-specific treatments (Section
2.3.4).

• No significant differences are observed between the culture performance of
continuous cultures with subcultivations every 48 h and 72 h. No significant
differences are observed between static and suspended short-term cultures,
but they do appear in the long-term continuous cultivation (Sections 2.3.3
and 2.3.6).

• Discrete agitation significantly affects the GR in long-term continuous
cultivation. The effect depends on the parasite strain: some strains are
favored by agitation, while others are hindered by the same process (Sections
2.3.3 and 2.3.6).
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C3) Benefits of different culturing protocols.

• We trialled various methods for discrete and continuous medium renewal, but
they led to no significant improvements in the harvests (Section 2.3.5).

• We assisted in the design of semi-automated cultures with periodic
subcultivation programmed at regular time spans of 48 h and 72 h. These
cultures were either discretely agitated or continuously agitated with magnetic
stirrers to create suspended cultures. Suspended cultures performed better, in
the long-term, than those discretely agitated or set still (Section 2.3.6).

C4) Geometry and dimensions of the culture vials that lead to optimal static
cultivation of the parasite.
Results obtained from the detailed analysis of the macroscopic geometrical
constraints on static cultures are outlined below:

• The shape of the HL depends on the macroscopic dimensions and composition
of the culture vial. The HL can take the form of a sessile drop or it may fill all
the bottom of the culturing vial. It may form convex or concave menisci.

• The dimensions and shape of the HL affect the culture performance. Optimal
depths of the HLs range 0.18 mm < HLD < 0.34 mm and optimal distance
between walls of the culturing vials must exceed L > 2 cm.

• These geometric constraints can be attributed to the stratification of the HL.
According to this model, the optimal development of the infection occurs
solely in the upper surface of the hematocrit, in an interface with the culturing
medium that spans around half a millimeter. Very small HLs are hindered
because they impede the optimal spreading of the extracellular merozoite.

• The hypothesis of a stratified HL is consistent with the models for diffusive
limitations in nutrient availability (Section 3.5).

Withal, the application of INDISIM-RBC has proved to be a more than adequate
representation of the cultivation of Plasmodium falciparum and has provided with a better
characterization of its dynamics. It has been used for improving current culture protocols
and for designing novel strategies.
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5.3 Perspectives and further work

The results presented in this thesis attempted to answer some questions regarding
the in vitro cultivation of Plasmodium falciparum-infected RBCs, but they have also
suggested new ones and opened new avenues for exploration. Below are a few of the
many possibilities for further developments on this field.

To begin, we present some limitations of the current model and the work to be done
in order to get over their hurdle. First, diffusion of nutrient in the hematocrit layer is
crucial for the static cultivation of the parasite. INDISIM-RBC operates at spatial and
temporal scales that do not allow an explicit model of the diffusion process that connects
the information at a molecular level (random walk of particles) with the macroscopic
observations. Greater efforts should be undertaken to obtain a fully mechanistic model
of diffusion within the hematocrit layer. Second, resource-based limitations may not be
caused by glucose or lactate, but by other key metabolites or harmful substances. A
better model of RBC and IRBC metabolism should be built to tackle substrate limita-
tions in vitro. Third, the current model defines an individual degree of stress, and an
individual fragility, which do not correspond to any measurement, nor are they directly
linked to any measure of the physiological state of the cell. A better description of cell
damage and the possibilities and costs of cell repair should be developed. And finally,
descriptions of static and suspended cultures require different sets of parameters in the
model. The connection between the two sets could improve our understanding of the
process of invasion of merozoites in healthy RBCs.

An improved version of INDISIM-RBC would potentially allow for the expansion of
its application to real systems. Some of the experimental situations that could be tackled
when the limitations of the current model have been addressed are described below. First,
the model could be used to better understand and predict the results of the evolution of
the infection after drug treatment. The relation between the effectiveness of a drug and
the lag in the outbreak of the disease observed in treated culture is a central concern of
in vitro cultivation. A model that provided better understanding of the relation between
the effect of the drug at a cellular level and the behavior observed at a system level would
be a boon to the pharmaceutical industry. Second, the use of the model could help in the
establishment and design of automated bio-reactor-like culture systems. These systems
would not require daily human supervision and would imply a great saving in resources
and effort. Moreover, the continuous input and output fluxes of medium and treatments
would be a better recreation of the conditions in vivo. Finally, in vivo cultivation of the
parasite in murine models is a recent achievement of the pharmaceutical industry. An
application of a mechanistically rich model to these culture systems would be a great



5.3 Perspectives and further work 181

contribution to the understanding of the observed results.
To conclude, the development of the platform INDISIM-RBC paves the way to the

potential application of the same methodology in similar systems. For instance, the model
could be used to tackle the cultivation of other species of Plasmodium, such as P. vivax,
which is to date non-culturable for reasons that remain unknown. In addition, a model
similar to INDISIM-RBC but with major changes could be used to support the design of
cultures of other forms of the parasite, such as the gametocytes and the hepatocytes. The
same IbM methodology could be used to model and simulate other problems related to
malaria such as the macroscopic propagation of the disease within the human population.
However, such an epidemiological approach would require a completely different model
with a different set of rules and agents.

Shifting to another topic, the consolidation of standard protocols for developing, com-
municating and analyzing IbMs in the context of theoretical and applied microbiology is
of great interest for the short- and middle-term development of the research in this field.
The work carried out by MOSIMBIO consists of individual-based modeling of various mi-
crobial communities and cell cultures, in parallel. The diversity in the areas of application
of INDISIM offers an opportunity to analyze the general characteristics of the methodol-
ogy and to review and formalize the procedures followed when trying to develop, analyze
and communicate new IbM models. To date, such a strategy has provided good results,
as it allows for the sharing problems and solutions from different fields of application,
and it provides a holistic view of IbM in microbial systems, in general. Further research
will also require the periodic review of the advances and results achieved in each field of
application.
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Appendix A

Glossary

List of acronyms

AbM Agent-based Model (computational science)
ANOVA ANalysis Of VAriance (statistical analysis)
ATP Adenosine Triphosphate
C-N Crank-Nicholson Method (computational science)
DBL Diffusion Boundary Layer
DDT Dichloro DiphenilTrichloroetane
DDW Diseases from the Developing World
EMG Experimental Microbiology Group
FCM Free Culture Medium
FTCS Forward Time Centered Space Method (computational science)
HL Hematocrit Layer
HLD Hematocrit Layer Depth
IbM Individual-based Modeling (computational science)
IbMs Individual-based Models (computational science)
INDISIM INDividual DIScrete SIMulation
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INDISIM-
RBC

INDividual DIScrete SIMulation of Red Blood cells

IRBC Infected Red Blood Cell
IRBCM Plasma Membrane of the Infected Red Blood Cell
MC Monte Carlo Method (computational science)
MD Molecular Dynamics Method (computational science)
MMV Medicines for Malaria Venture
MOSIMBIO MOdeling and computer SIMulation of BIOlogical systems group
MSE Mean Squared Error
NMR Nuclear Magnetic Ressonance
ODD Objectives-Design concepts-Details (protocol to communicate models)
PBC Periodic Boundary Conditions
PbM Population-base Model (computational science)
PHIL Public Health Image Library
PoM Patter-oriented Modeling (computational science)
PVM Parasitophorous Vacuolar Membrane
RBC Red Blood Cells
RBM Roll Back Malaria
SbM Systems-based Model (computational science)
SEIR Susceptible-Exposed-Infectious-Resistant (epidemiological model)
SEM Scanning Electron Microscopy
SIR Susceptible-Infectious-Resistant (epidemiological model)
SIRS Susceptible-Infectious-Resistant-Susceptible (epidemiological model)
SSE Sum of Squared Errors
SWOT Strengths-Weaknesses-Opportunities-Threats
UPC Universitat Politècnica de Catalunya
WCW White-Chapmann-Watt model (PbM on IRBC synchronization)
WHO World Health Organization
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List of abbreviations
2Dv.1 First version of INDISIM-RBC in two dimensions
2Dv.2 Second version of INDISIM-RBC in two dimensions
mero extracellular merozoite
gluc glucose
GRh Growth Ratio at h hours
HgB Hemoglobin
INF infected, infection
lac lactate
max maximum
min minimum
obs observed
sim simulated
sc spatial cell
su simulation units
susp suspended culture
stat static culture
ts time step
X0 initial value of ’X’
XMy maximum value of ’Xy’
X mean value of ’X’ averaged over the population
〈X〉 mean value of ’X’ averaged over time
σX standard deviation of the variable X, assuming a normal

distribution
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List of symbols

Chapter 1

R0 reproduction number in epidemiological models
β infection rate in epidemiological models
γ recovery rate in epidemiological models
S, E, I, R Susceptible, Exposed, Infectious and Recovered

sub-populations in epidemiological models
%H hematocrit
% parasitaemia
f fraction of daily medium renewal in continuous-flow

cultivation
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Chapter 2

ICL: 0, R, T ,
S, F

Healthy, Ring, Trophozoite, Schizont and Fragmenter stages
of the RBC infection cycle

Pinf (t),
Pmax, Pmin

parameters to set the susceptibility of individual RBCs to
invasion by extracellular merozoites

IM metabolic stress index
Pdeath death probability of RBCs
tRBC , tCULT age and time in culture of RBCs
tMRBC ,
tMSUS

maximum age and time in culture of RBCs

tINF , tMINF post-invasion time and maximum duration of IRBCs
tICL, τICL duration and post-invasion times of each infection stage
tmero duration of merozoites in the extracellular medium
u, Uin, Ueff uptake needs, instant uptake requisite and effective uptake
f(tINF ) factor governing the uptake needs
D̃s diffusion coefficient of a substance s
wijk weights of the neighboring cell (i, j, k) to local diffusion
nn nearest neighboring spatial cells
Cs local concentration of substance s
(x, y, z) coordinates of a spatial cell
ρJ , nJ cell density, and number of cells of species J
vsed settlement velocity of RBCs in suspended cultures
Tagitation agitation period
psurvival probability for an IRBC to survive a complete infection cycle
ν fraction of the RBC population replaced in subcultivation
q(tINF ) distribution of post-invasion times in IRBCs
fts, pts, nts q(tINF ) of present, previous and next infection cycles at a

time step ts



188 ChapterA. Glossary

Chapter 3

fP (k, λ) Poisson distribution function of k events occurring with
average appearance λ

RS, FCC,
HD

spatial configurations within the hematocrit layer

pf packing factor of RBCs
S surface of the culturing vial covered by the HL
Htotal thickness of the culture system
V culture volume
VJ volume occupied by an individual entity of type J
ε binding energy per unit surface of individual RBCs
LC capillary length of the HL
LEXC calculated boundary of the HL that excludes propagation of

the infection
L separation between the walls of the culturing vial
pfall velocity settlement
h, h1, h2 parameter is the population based models of the HL
Deff effective average diffusivity in the hematocrit layer
D0 average diffusivity in the culturing medium
εw fraction of culture medium within the HL
Keff kinetic constant for minimum glucose uptake
ψ temporal scale of diffusion in the HL
t90 time until reaching the stationary substrate distribution in

the HL
d0 depletion depth in the HL at the stationary state
dRBC ,
dIRBC

maximum depths for RBC and IRBC viability

φ Thiele modulus
φ0 Thiele modulus for zero-order uptake kinetics
φ1 Thiele modulus for first-order uptake kinetics
δ relative difference in substrate concentration
cf diffusion calibration factor in the explicit methods
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Chapter 4

L spatial scale of the system
T temporal scale of the system
λ lag parameter of a bacterial culture
D difference between q(mi) of instant and exponential growth in

bacterial cultures
mi class of biomass
q(mi) biomass probability distribution of a bacterial culture
qi general form of a normalized probability distribution in the

population
i one of the N classes used to set qi
S thermodynamic entropy
S Shannon entropy,/ diversity in the population
β Lagrange multiplier
Z normalization factor of the probability distribution function
q̃S distribution function that maximizes diversity
µ mean post-invasion time of the IRBC population
σ deviation of post-invasion times of the IRBC population
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Appendix B

Experiments carried out by
EMG-GSK

The general culturing procedure follows the recomendations of the MR4 standardized
protocols described in Section I:A in Methods for Malaria Research (MR4, 2008). Some
especifications of the particular conditions of the experiments carried out by the EMG-
GSK presented in this work are listed below.

Trial run of different serums

Outline

In order to select the most appropriate source of serum, the product of three different
commercial providers were used for the one-week cultivation of the same strain of the
parasite.

Experimental methods

The experiment comprises eight trial runs comparing four different commercial human
sera (provided by the trademarks Cambrex, Biorreclamation, Sigma-Aldrich and PAA)
to complement the RPMI culture medium. Cultures are inoculated with %I0 = 0.5% and
%I0 = 1%, and either with synchronous (showing other four combinations of the only
ring forms of the IRBCs) or asynchronous inocula (consisting of rings and mature tropho-
zoites), and maintained during seven days at most. Medium provided by Sigma-Aldrich is
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tested with the four possible combinations of inocula (That is, synchronous/asynchronous
with %I0 = 0.5% and %I0 = 1%). Medium provided by Cambrex is tested with two
degrees of synchronism and only for inocula with %I0 = 1%. Mediums provided by
Bioreclamation and PAA are tested only for synchronous inocula with %I0 = 1%.

Samples of 4 ml of culture are maintained in flat-bottom plastic flasks of 25 cm2

base surface under low oxygen atmospheres. Parasitaemia is measured daily through
the extraction of samples with minimal perturbation of the culture. Subcultivations are
carried out during the first 4 days, during the first two cycles of infection. When a first
threshold parasitaemia is exceeded (%I > 3%) a subculture is inoculated with a sample
of the harvest with a dilution ratio of 1

2 in volume. When the parasitaemia exceeds a
second threshold value (%I > 4%), subcultibvation is carried out with a 1

4 dilution ratio.
The experimental protocols are summarized in Table B.1.

Input measurements Initial hematocrit (%H0), initial parasitaemia (%I0)
RBC source Human AB-, supplied by Spanish Red Cross. No storage.
Initial Hematocrit (%H0) 5 % Hematocrit
Parasite source P. falciparum 3D7A supplied by the MR4
Initial Parasitaemia (%I0) 0.5 % - 1 %
Culture medium RPMI 1640, 25 mM HEPES, 10% human serum, 3 %

Hypoxanthine.
[glucose] 2.67 mM/l
[lactate] 0 mM /l
pH 7.2
Culturing method Static cultivation
Medium renewal 100% discrete renewal every 48h.
Culturing conditions Temperature: 37º C; Atmosphere: 5% O2, 5% CO2, 90% N2
Subcultivation Every 48, 72 or 96 hours, triggered by excessive parasitaemia

(%I > 3%)
Dilution ratio 1/2 or 1/4 of culture volume, depending on the observed

parasitaemia
Output measurements Parasitaemia (%I), through optical microscopy and Giemsa

stained thin blood smears.
Data analysis Worksheet and GrapPad Prism

Table B.1: Specifications of the experimental procedure for the comparison of different culture sera.

Conclusions

i) No significant differences are found between the serums from different com-
mercial providers.
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ii) No significant differences are found between cultures with synchronous and
asynchronous inocula.

Agitation regimes in short-term culture systems

Outline

In order to study the geometric factors affecting the short-term proliferation of the
parasite, P. falciparum is cultured in closed systems with several agitation patterns: no
agitation of the culture, discrete agitation every 24 h, 48 h and 72 h, and continuous
agitation.

Experimental methods

The experiment comprises ten trial runs comparing five different agitation regimes in
a closed culture during four days, with no subcultivation of IRBCs, nor medium renewal.
Parastiaemia is assessed every day with gentle sampling of the culture system (with
minimal perturbation of the hematocrit layer). A static and three discretely agitated
culture systems cultures with V = 50 ml are maintained in T-flasks with 25 cm2 base
surface. Discretely agitated cultures are shaken by hand with different agitation periods,
in order to re-suspend the cells and modify the spatial structure of the hematocrit layer,
but with minimal damage of RBCs.

A static and two continuously agitated cultures with V = 40 ml are kept in 100 ml
glass bottles with 20 cm2 base surface under similar conditions. The two replicas of the
static cultures are carried out using different culturing sera, without significant difference
in the resulting performance.

The source of RBCs, parasites and culture medium are detailed in Table B.1, together
with the specifications of the culture medium and the culturing conditions. The speci-
fications of the culture method (volume and agitation method) for the different regimes
are outlined in Table B.2
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Input measurements Initial hematocrit (%H0), initial parasitaemia (%I0)
Output measurements parasitaemia (%I), through optical microscopy and Giemsa

stained thin blood smears.
Initial Hematocrit (%H0) 5 % Hematocrit
Initial Parasitaemia (%I0) 0.5 %

Culturing method static cultivation in a closed system
Volume: 50 ml

Base surface: 25 cm2

Agitation regime: - static (no agitation)
- discrete shaking every 24h, 48h and 72h

Culturing method suspended cultivation in a closed system
Volume: 40 ml

Base surface: 20 cm2

Agitation regime: Stirred with magnetic stirrer
vstirr = 30 R.P.M. (revolutions per minute)

Table B.2: Specifications of the experimental procedure for the comparison of different discrete
agitation protocols.

Conclusions

i) No significant differences are found between the static cultures and those
agitated at discrete periods. Continuously agitated culture systems show in-
creased performance.

ii) All the culture systems are exhausted after 4 days(at most) in a closed culture.

Renovation regimes for static cultivation

Outline

In order to study the viability of continuous cultivation of the parasite, P. falciparum
is cultured under static conditions with two actuation patterns: simultaneous medium
renewal and subcultivation of the hematocrit every 48 hrs and daily medium renewal
with dilution of cultures every 72 hrs.

Experimental methods

The experiment comprises four (10-days) trial runs comparing two different culturing
protocols with fixed medium renewal and subcultivation periods. Medium renewal re-
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places 100% of the culture medium and the dilution fraction at subcultivation is variable
and set to obtain a resulting parasitaemia of 0.5%.

Samples of 5 ml of culture are maintained in glass bottles of 20 cm2 base surface
under low oxygen atmospheres. Parasitaemia is measured daily through the extraction
of samples with minimal perturbation of the culture. Daily parasitaemia measurements
of the samples extracted from the two replica of each trial are compared with ANOVA.
The experimental protocols are summarized in Table B.3.

Input measurements Hematocrit, initial parasitaemia (%I0)
RBC source Human AB-, supplied by Spanish Red Cross. No storage.
Initial Hematocrit (%H) 5 % Hematocrit
Parasite source P. falciparum 3D7A supplied by the MR4
Initial Parasitaemia (%I0) 0.5 %
Culture medium Specified in TableB.1

Culturing method static cultivation
Medium renewal 100% discrete renewal, daily or every 48h.
Culturing conditions Temperature: 37º C; Atmosphere: 5% O2, 5% CO2, 90% N2
Subcultivation Every 48 or 72 hours
Dilution ratio Variable, depending on the observed parasitaemia
Output measurements Parasitaemia (%I), through optical microscopy and Giemsa

stained thin blood smears.
Data analysis GrapPad Prism and ANOVA

Table B.3: Specifications of the experimental procedure for the comparison of different cultiva-
tion regimes.

Conclusions

No significant differences are found between the cultures with a 48 h-period for both
medium renewal and subcultivation, and those cultures with daily medium renewal and
subcultivations every 72 h.

Renovation regimes for automatic cultivation

Outline

In order to determine the appropriate dilution of subcultures for the continuous auto-
matic cultivation of the parasite, P. falciparum is cultured with two agitation patterns:
under static undisturbed cultivation regime and under suspension culturing conditions,
through the continuous agitation of the hematocrit with a magnetic stirrer.
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Experimental methods

The experiment comprises four (10-days) trial runs comparing two different culturing
protocols with fixed medium renewal and subcultivation periods. Medium renewal re-
places 100% of the culture medium and the dilution fraction at subcultivation is variable
and set to obtain a resulting parasitaemia of 0.5%.

Samples of 5 ml of culture are maintained in glass bottles of 20 cm2 base surface
under low oxygen atmospheres. Parasitaemia is measured daily through the extraction
of samples with minimal perturbation of the culture. Daily parasitaemia measurements
of the samples extracted from the two replica of each trial are compared with ANOVA.
The experimental protocols are summarized in Table B.4.

Input measurements Hematocrit, initial parasitaemia (%I0)
RBC source Human AB-, supplied by Spanish Red Cross. No storage.
Initial Hematocrit (%H) 5 % Hematocrit
Parasite source P. falciparum 3D7A supplied by the MR4
Initial Parasitaemia (%I0) 0.5 %
Culture medium: Specified in Table B.1

Culturing method static cultivation
Medium renewal 100% discrete renewal, daily or every 48h.
Culturing conditions Temperature: 37º C; Atmosphere: 5% O2, 5% CO2, 90% N2
Subcultivation Every 48 hours
Dilution ratio Variable, depending on the observed parasitaemia
Output measurements Parasitaemia (%I), through optical microscopy and Giemsa

stained thin blood smears.
Data analysis GrapPad Prism and ANOVA

Table B.4: Specifications of the experimental procedure for the comparison of different cultivation
regimes.

Conclusions

i) Static culture systems can be continuously maintained during 5 cycles when
the fraction of subcultured cells to the fresh healthy RBCs at subcultivation
is equal to ν = 1

3 .

ii) Stirred culture systems can be continuously maintained during 5 cycles when
the fraction of subcultured cells to the fresh healthy RBCs at subcultivation
is equal to ν = 1

11 .
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Long-term semi-automatized cultivation

Outline

In order to study the semi-automatized cultivation of the parasite, P. falciparum is
cultured during one month using the methods and fractions presented in Section B.

Conclusions

Both static and suspended culture systems can be continuously maintained during
one month. The population-based model defined in Section B correctly predicts the
experimental behavior.

Measurement of the depth of the hematocrit layer and
of the RBC sedimentation rate

Outline

In order to study the spatial structure of the hematocrit layer, the settlement of RBCs
and the dimensions of the hematocrit layer are analyzed for different geometries (base
surface) of the culturing vials.

Experimental methods

Different culture devices are filled with the same volume of culture V = 20 ml at
5% hematocrit, simulating ordinary culturing conditions. RBC sedimentation lasts until
the culture is split into two phases: the hematocrit layer and the completely transparent
culture medium. Height of RBC layer is measured once red blood cells finish settling
down. RBC packing factor (pf) is calculated as pf = HLDobs

HLDcalc
. Where HLDobs is the

measured HLD and HLDcalc = 0.05 ·H , being the total culture height. Sedimentation
rate (vsed) is calculated with H and the span until reaching the settled hematocrit layer
(tsed), vsed = H

tsed
.
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Input measurements Culture volume (V ), hematocrit (%H), base surface of the
vial (Sbase)

Output measurements Duration of the settling process (tsettle), height of the culture
(H), height of the hematocrit layer (Hobs)

Culture volume V = 20 ml

Hematocrit %H = 5%

Glass tube Sbase = 2.41 cm2

Silicone tube 1 Sbase = 0.5 cm2

Silicone tube 2 Sbase = 0.28 cm2

Table B.5: Specifications for the analysis of the hematocrit settlement for different geometries

Conclusions

i) The observed sedimentation rate of RBCs is vsed(RBC) = (1.1±0.3)·10−5cm/s.

ii) The packing factor of RBCs within the settled the hematocrit layer is pf =
0.87± 0.07

Multiple invasion of IRBCs

Outline

In order to study the spreading of the extracellular merozoite, the number of IRBCs
with multiple invasions is counted for several samples of static in vitro cultures.

Experimental methods

Cultures of RBCs are carried out following the protocols described by the MR4 and
specified in Section . The number of IRBCs with multiple invasions is measured for 51
samples of the culture through optical microscopy and Giemsa stained thin blood smears.
The statistics of the counts are presented in Table B.6.

Statistic 1-Ring 2-Rings 3-Rings 4-Rings 5-Rings 6-rings +6-Rings
Mean 66.37 22.43 9.31 1.65 0.23 0.06 0

St dev. 13.31 10.46 8.28 2.61 0.96 0.42 0

Table B.6: Mean value and standard deviation of each category of multiparasited IRBCs after
51 samples of a static in vitro culture of P. falciparum.



199

Effect of the base surface of the hematocrit layer on the
culture performance

Outline

In order to study the influence of walls distance in static cultures, P. falciparum 3D7A
cultures with different separation between walls are maintained in plastic dishes during
two days and their performance is assessed (%I and GR).

Experimental methods

Closed static cultures with the same volume are implemented in petri dishes with
different geometries. Several plastic pieces are attached to the plates in such way that
they maintain the total base surface (Sbase) and depth of the hematocrit layer (HLD) but
measure different distances between side walls, and therefore split the hematocrit layer
into areas of different culturing surfaces (S). Modified plates cover distances: L = 9 cm
(plate with no pieces), L = 4 cm (2 separators), L = 3 cm (3 separators), L = 1 cm (5
separators) and L = 0.75 cm (7 separators). Each plate with separators leaves an enclo-
sure of fixed volume, to compare the behavior of different trials (control area). Another
plate, covered with the glue used to attach the pieces but without separators, is used in
comparison with the plate with no separators as a toxicity control. The specifications for
the culture method are described in Section B, the specifications of the culture system
are shown in Table B.7. The specific geometries and the obtained results are presented
in Table 3.3.

Input measurements Culture hematocrit %H, initial parasitemia %I0

Output measurements Parasitemia (%), growth ratio (GR48)
Culture volume V = 16.5 ml

Total base surface Sbase = 63.6 cm2

Depth of the hematocrit layer HLD = 0.19 mm

Culture initialization %H = 5% ; %I = 0.5%

Table B.7: Specifications for the P series: static closed cultivation of P. falciparum.

Conclusions

i) Material used to attach separators to petri dish has not effect in multiplication
ratios GR24 or GR48.
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ii) The performance observed in the control areas is the same for every trial
culture.

iii) Separation distance between walls significantly affects the culture perfor-
mance. Growth ratio decreases with decreasing distances.

Effect of the depth of the hematocrit layer on the culture
performance (W series)

Outline

In order to study the influence of the thickness of the hematocrit layer in static cul-
tures, P. falciparum 3D7A cultures with different culture volumes are maintained in
plastic dishes during 10 days and their performance is assessed.

Experimental methods

Static cultures with different volumes (V ) are implemented in 6-well petri dishes with
the same total base surface (Sbase). Therefore, the thickness of the hematocrit layer
(HLD) varies from trial to trial. Static cultivation is maintained during 14 days, following
the procedures proposed by the MR4. The specifications for the culture trials are outlined
in Table B.8. The specific geometries and the obtained results are presented in Table 3.3.

Input measurements Culture hematocrit %H, initial parasitemia %I0

Output measurements Parasitemia (%), growth ratio (GR48)
Culture initialization %H = 5% ; %I = 0.5%

Total base Surface Sbase = 63.6 cm2

Medium change Every 48 hours
Subcultivation Every 48 hrs, 96 hrs after inoculation
Dilution Manual, to initial parasitaemia %I = 0.5%

Table B.8: Specifications for the in the W series: static cultivation of P. falciparum following
the candle-jar method .

Conclusions

i) The performance of the culture significantly varies with the thickness of the
hematocrit layer (HLD).
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ii) Cultures with HLD < 0.06 mm show non viable or extremely hindered per-
formances. For these geometries, the hematocrit sticks to the walls of the
culturing device and does not form a thin layer.

Effect of the depth of the hematocrit layer on the culture
performance (B series)

Outline

In order to study the influence of the thickness of the hematocrit layer in static cul-
tures, P. falciparum 3D7A cultures with different culture volumes were maintained in
glass bottles during 14 days and their performance was assessed.

Experimental methods

Static cultures with different volumes (V ) are implemented in 100-ml glass bottles
with the same total base surface (Sbase). The hematocrit layer forms a sessile drop that
does not cover Sbase. The real culturing surface (S) and thickness of the hematocrit layer
(HLD) vary from trial to trial with V . Static cultivation is maintained during 14 days
following the procedures proposed by the MR4. The specifications for the culture trials
are outlined in Table B.9. The specific geometries and the obtained results are presented
in Table 3.3.

Input measurements Culture hematocrit %H, initial parasitemia %I0

Output measurements Parasitemia (%), growth ratio (GR48)
Culture initialization %H = 5% ; %I = 0.5%

Total base Surface Sbase = 19.64 cm2

Medium change Every 48 hours
Subcultivation Every 48 hrs, 96 hrs after inoculation
Dilution Manual, to initial parasitaemia %I = 0.5%

Table B.9: Specifications for the B series: static cultivation of P. falciparum following the
candle-jar method .

Conclusions

i) The culture performance does not depend on the total culture volume (V ).

ii) The performance of the culture significantly varies with the thickness of the
hematocrit layer (HLD).
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Appendix C

Statistical tests and tools

Tests of similarity

There are several standard statistical tests to compare different distribution functions
and data sets. Some of them are briefly outlined below. For a detailed description and
further technical considerations, a wide amount of specialized literature is available, see
for instance: (Zar, 1999; Corder and Foreman, 2009 ). Further information can also be
found on-line in open access handbooks, for instance the NIST/SEMATECH e-Handbook
of Statistical Methods:
http://www.itl.nist.gov/div898/handbook/index.html,
and the e-Handbook of Biological Statistics: http://udel.edu/~mcdonald/statintro.html.

• ANOVA: ANalysis Of VAriance is a general statistical procedure that can be used
to test the hypothesis that the means among two or more groups of data are equal,
under the assumption that the sampled populations are normally distributed. The
guiding principle behind ANOVA is the decomposition of the sums of squares of the
data samples and mainly focuses on the sum of differences, or SSE.
A factor affecting the datasests is any modification on the source of data, which
can be independently controlled. ANOVA can be used to assess the effect of either
one experimental factor or of multiple factors simultaneously. If a single factor
is evaluated, this technique allows measuring the similarity of the means, but if
multiple factors are evaluated, ANOVA gives information regarding the similarity
of the means and the correlation of the factors.

• SSE and MSE: The Sum of Squared Errors (or differences between two samples)
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and the Mean Square Error are two basic objective functions, or measures of the
similarity of two distributions, and are also employed to evaluate the likelihood of
a particular observation or simulation outcome.
When performing any statistical test, the hypothesis regarding similarity or likeli-
hood with a prefixed degree of confidence is usually assessed by relating the mea-
sured SSE or MSE with a parameter defined by the test (p − value). Then, this
parameter is compared with its expected value when the hypothesis of likeliness is
true with a certain degree of confidence. Finally, the tested hypothesis is rejected
if the calculated p− value exceeds the expected one.

• Student’s t-test (t-test): It is usually employed to compare one nominal variable
with the mean value of one measured variable. Slight variations of the t-test are
used to compare a single observation to a sample, or to compare a sample mean to
a theoretical mean. The t-tests assume that the observations within each group are
normally distributed and the variances are equal in the two groups.
T-test is not particularly sensitive to deviations from these assumptions, but if the
distribution of values within the samples strongly differ from normal distributions,
then other tests shall be used.

• Kolmogorov-Smirnov test (KS-): The Kolmogorov-Smirnov test is used to decide
if a sample comes from a population with a fully specified distribution function.
A fully specified distribution is completely characterized by an analytical function.
The comparison is not carried out by using the SSE or MSE but the cumulative
distribution function. The hypothesis regarding the distributional form is rejected
if the test statistic is greater (p− value) than a critical value obtained from a table.

• Kruskal-Wallis test (KW-test): The Kruskal-Wallis Test is used to compare popula-
tions with unknown distributions. It is a non parametric test, this meaning that it
compares raw data rather than their mean or variance. It tests the hypothesis that
k samples from different populations actually originate from similar populations.

Methods for parameter estimation

Parameter estimation is essential to set and to evaluate the predictive capability of a
computational modeling. Basically, it consists on determining the set of parameters in
the model that provide a response most similar to the one observed in real systems. A
parameter estimation problem is usually formulated as the optimization of an objective
function between the observed data and simulation outcome under fixed conditions, while



205

varying just a few experimental factors (e.g.: the best fit between the simulated and
observed growth ratios for different temperatures).

Because of different objective functions and optimization techniques, parameter es-
timation can be solved in many ways. The most usual objective functions are MSE
and SSE. Three optimization techniques are compared below. They correspond to three
methods tested by the group in previous research (Prats, 2008).

• Grid search: it consists in exploring the phase space of the parameters of the model
step by step. It evaluates all the possible combinations of parameters. For each com-
bination, a set of simulations is run. Finally, we select the set of parameters that
provides the best-fitting outcome to the experimental observations. This method is
not effective because many sense-less and bad performing combinations of param-
eters are evaluated. In fact, grid search becomes unfeasible for IbM, where there
are many parameters to be evaluated and where each simulation lasts for several
minutes.

• NMTA: the Nelder Mead Threshold Accepting is a direct search method to opti-
mize the exploration of the parameter space. The basic unit of this method is the
simplex : a geometric figure in an n-dimensional space that is a convex hull of n+1
vertexes, with each vertex representing a certain combination of the n parameters
to be estimated. The value of the objective function is assessed in each simplex
vertex, and a new simplex that is closer to the objective function is constructed in
each step.
The rules for constructing each new simplex are based on a set of geometric opera-
tions: reflection, expansion, outside contraction, inside contraction and shrinkage.
The value of the objective function determines whether new vertexes are accepted
or rejected. If a new vertex is accepted, a new simplex is constructed by rejecting
the worst existing vertex, always according to the objective function values. The
selected combination of parameters can be set after a certain number of simplex
explorations.
In order to avoid tending towards local minima of the objective function rather than
towards an absolute minimum, new vertices are accepted even if the value of the ob-
jective function is slightly greater than the preceding values, unless the acceptance
threshold is exceeded.

• NEWUOA: The NEWUOA algorithm fits a quadratic approximation of the objec-
tive function, which is valid inside a trust region. NEWUOA finds the minimum of
the quadratic within the trust region and compares it to the real cost: if the decrease
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in the real value is less than the decrease predicted by the model, the radius of the
trust region is scaled down; otherwise, the radius is not changed. The optimization
is achieved by successive quadratic approximations. The algorithm finishes when
the radius of the trust region achieves a lower prefixed threshold.

Computational methods for solving systems of equations
with finite differences

Partial differential equations are used to formulate problems involving several vari-
ables, for instance, to model transport phenomena. Unfortunately, closed analytical ex-
pressions for their solutions can be found only in very special circumstances, which are
mostly of limited theoretical and practical interest. Therefore, such kind of problems are
usually tackled by means of computational methods (Crank, 1990; Hoffmann and Chiang,
2004). In this thesis we compare two very basic approaches to the diffusion of substrate,
an explicit method, Forward-Time-Centered-Space (FCTS) and the Crank-Nicholson ap-
proach.
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Links

The following link leads to the web of the group MOSIMBIO: http://mosimbio.upc.edu/
In this web, the interested reader may find some updated and complementary material:

• Outline of the model and simulator INDISIM-RBC

• Sample simulations, executable and code source of INDISIM-RBC.v2D.2

• Sample simulations, executable and code source of INDISIM-RBC.v3D

• Additional models and simulators on malaria spreading.
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