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2 Biosorption 

 

 

2.1 Introduction 

 

During the 1970’s increasing environmental awareness and concern led to a 

search for new techniques capable of inexpensive treatment of waste waters 

polluted with metals. These demands led to increasing interest in biosorption. 

  

Mining and refining industries generate a low concentration flow of metals for 

which standard techniques are not well suited, economically or technologically. 

The use of biosorbents has been proposed as an alternative, as it has proven 

effective on low concentration flows. Biosorption is of industrial interest, not 

only for its ability to remove metals from waste waters, but also for the 

possibility of recovering metals. The industries that may use biosorption on a 

large scale are, for example, metal plating, acid mine drainage and metal 

processing. With the accelerating depletion of natural mineral sources, there is 

a need for recycling metals already in use. The prices for some metals have 

risen over recent years, which makes recycling interesting from an economic 

point of view as well. Loaded biosorbents can be treated and adsorbed metal 

recycled. 

 

The use of sorbents of biological origin, biopolymers, for removing heavy 

metals from dilute aqueous solutions has long been recognized, (Tsezos 1986). 

Calcium alginate has been one of the most extensively investigated biopolymers 

for binding heavy metals from dilute aqueous solutions (Chen et al. 1993; Jang 

et al. 1991). Another widely studied biopolymer is chitosan. Chitosan, a poly(D-

glucosamine), is prepared from chitin by deacetylating its acetamide groups 

with a strong alkali solution. Chitin is a natural polymer extracted from 

crustacean shells, such as prawns, crabs, insects, shrimps and fungal 

biomasses. Chitosan has already been described as a suitable natural polymer 
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for the collection of metal ions, trough chelation, due to the presence of an 

amino group of the 2-amino-a deoxy-D-glucose (glucosamine) unit (Muzzarelli 

1973; Masri et al. 1978; Maruca et al. 1982; Inoue et al. 1993).  

 

Biosorption has advantages compared whit conventional techniques (Volesky 

1999). Some of these are listed below: 

 

• Cheap: the cost for biosorbents is low since they often are made from 

abundant or waste material. The price for a biosorbent is around $ 10-15/kg. 

In comparison, the price for ion exchange resins is $ 30-50/kg. 

 

• Metal selective: the metal-sorbing performance of different types of biomass 

can be more or less selective on different metals. This depends on various 

factors, such as type of biomass, mixture in the solution, type of biomass 

preparation and physico-chemical environment. 

 

• Regenerative: biosorbents can be reused, after the metal is recycled. 

 

• Process equipment known. 

 

• No sludge generation: no secondary problems with sludge occur with 

biosorption, as is the case with many other techniques, for example 

precipitation. 

 

• Metal recovery possible: metals can be recovered after being sorbed from 

the solution. 

 

• Competitive performance: biosorption is capable of a performance 

comparable to the most similar technique, ion exchange treatment. Ion 

exchange is, as mentioned above, rather costly, making the low cost of 

biosorption a major factor. 

 28 



 Biosorption  

In order to conduct a thorough study of the biosorption of metals, it is 

necessary to take into account the different areas which affect it, including a 

study of the mechanism of metal sorption, modelling of results and the 

adaptation of the sorbent. 

 

2.2 Experimental procedure for metals sorption 

 

In this section the methods used in a closed reactor (batch system) and then in 

a open reactor (dynamic system) are reported. 

 

2.2.1 Batch system 

 

2.2.1.1 Obtaining isotherms 

 

The most appropriate method for assessing biosorbent capacity is the 

derivation of a whole sorption isotherm. The sorption isotherm is the 

equilibrium between the concentration in the fluid phase and the concentration 

in adsorbent particles at a given temperature. For liquids, concentration is 

usually expressed in units of mass, such as parts per million or mg of metal per 

litre of solution. The concentration of sorbate on the solid is expressed as mass 

sorbed per unit of mass of the original sorbent (Tien 1994).   

 

An isotherm is favourable if its fixation capacity grows rapidly with 

concentration in equilibrium in the liquid phase, convex form. The maximum for 

a highly favourable isotherm is irreversible adsorption, where the amount 

adsorbed does not depend on the decrease in concentration down to very low 

values, unlike unfavourable isotherms which have a low adsorption capacity at 

low concentrations in equilibrium, concave form (Figure 2.1). 
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Figure 2.1: Shape of equilibrium isotherms (a) favorable, (b) linear, (c) 

unfavorable  

 

In order to obtain the different points of the adsorption isotherm, the method 

in a closed reactor consists of putting different known masses of the adsorbent 

in contact with a given volume of solution containing the solute at an initial, 

known concentration. For each experiment, all the initial conditions remain 

constant (concentration, pH); only the amount of the adsorbent added to the 

reactor varies. After the adsorbent comes into contact with the solute solution, 

the samples are agitated in a uniform manner to reach equilibrium. The time 

necessary to reach equilibrium depends on the system being studied, so it is 

necessary to have prior knowledge of it to be sure the concentration being 

measured is the equilibrium concentration. 

 

Once equilibrium has been reached, the concentration of each sample is 

measured, as is the final pH of the solution. The adsorption capacity is obtained 

by using a mass equilibrium equation. The adsorption capacity is expressed as 

follows: 

 

                                          
( )

q                                           (1) 
C C V

m
eq

=
−0

 

 30 



 Biosorption  

C0  and  being the initial concentration and equilibrium concentration 

respectively,  the experimental volume expressed in litres, and  the 

adsorbent mass expressed in grams. 

Ceq

V m

 

Knowledge of adsorption isotherms is most important; in addition to informing 

us of the adsorption capacity, it enables us to evaluate to what extent an 

adsorption system can be improved, as well as helping us to foresee the type of 

conditions in which we have to work in order to broaden our study to 

adsorption in an open reactor and estimate the necessary operating conditions 

for the system to be as effective as possible. 

 

2.2.1.2 Study of Sorption Kinetics 

 

Kinetic tests show the time-concentration profile for adsorption. The sorption 

reaction itself is inherently an extremely fast one. It is mainly the particle mass 

transfer which controls the overall adsorption kinetics (sorbent particle size, 

porosity, sorbate size and mixing in the sorption system). Monitoring a kinetic 

experiment enables us to see how the system is affected by these factors and 

to understand the stages which limit adsorption. The sorption kinetics thus 

constitutes a major criterion in the determination of the interest of sorption 

processes (Volesky 1999). 

 

Kinetic studies are carried out by mixing an amount of sorbent with a given 

volume of metal solution, with various metal concentrations. The different tank 

reactors are agitated at the same speed. Alternatively, we can keep de same 

metal concentration and vary the amount of adsorbent (or others factors). In 

both cases the samples were regularly withdrawn, filtered and analysed. The 

values of the different concentrations are represented on a timescale. We can 

also represent the evolution of sorption capacity over time.  

 

It is particularly important to analyse the kinetics with a prior knowledge of the 

isotherms. Isotherms enable us to know at all times the deviation from 
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equilibrium which drives the transfer. The isotherm also enables us to know if 

the kinetic has led to the saturation of the sorbent. We must bear in mind that 

the last point of the kinetics refers to the equilibrium concentration; by applying 

the material balance we can obtain the sorption capacity in equilibrium; this 

should coincide with the curve of the sorption isotherm obtained previously. 

 

2.2.2 Dynamic Sorption  

 

A study of sorption in an open reactor is based on determining the effluent-

time concentration curves or the effluent-volume concentration curves, which 

are a function of the sorber geometry, the conditions of the operation and also 

the equilibrium sorption data. The effluent-time (or if applicable effluent-

volume) concentration curve is generally known as “breakthrough” and is 

obtained by passing a fluid containing an sorbable solute with an initial 

concentration of C0 through a bed packed with sorbent particles (column); as 

the fluid passes through the column, the solute is retained and the sorbent 

becomes saturated until the concentration at the outlet is equal to the initial 

concentration, establishing a distribution of the concentration inside the column 

as shown in Figure 2.2. In cases of ideal flow, with piston type reactors, there 

is no axial dispersion and the head is flat. In real cases, the sorption kinetic 

intervenes and perturbation appears due to axial dispersion (Wase and Forster 

1997). 

 

After time ti, the solute starts to appear at the outlet of the column. Time tb is 

defined as the time necessary to reach the changeover point concentration, 

indicated as Cb. This is the maximum permissible concentration of effluent. 

Time te is the time after which the bed is saturated with the sorbate. At this 

time, the bed is exhausted and has to regenerate. The time period from ti to te 

is the thickness of the adsorption area or mass transfer in the bed and is 

related to the sorption process. The area under the curve represents the 

amount sorbed by the column, which is one point over the equilibrium 

isotherm. 
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Figure 2.2: Adsorption wavefront 

 

2.3 Desorption 

 

The possibility of regeneration of loaded biosorbent is crucially important to 

keeping the process costs down and to opening the possibility of recovering the 

metal(s) extracted from the liquid phase. The deposited metals are washed out 

(desorbed) and biosorbency regenerated for another cycle of application 

(Volesky 1999). The desorption process should result in: 

 

• high-concentration metal effluent; 

• undiminished metal uptake upon re-use; 

• no biosorbent physical-chemical damage. 
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The desorption and sorbent regeneration studies might require somewhat 

different methodologies. Screening for the most effective regenerating solution 

is the starting point. 

 

Different affinities of metal ions for the biosorbent result in a certain degree of 

metal selectivity on the uptake. Similarly, another selectivity may be achieved 

upon the elution-desorption operation, which may serve as another means of 

eventually separating metals from one another if desirable. 

 

The Concentration Ratio (CR) is used to evaluate the overall concentration 

effectiveness of the whole sorption process: 

 

 CR= Eluate metal concentration/Feed metal concentration 

 

Obviously, the higher the CR, the better the overall performance of the sorption 

process, making the final recovery of the metal more feasible with higher eluate 

concentrations. 

 

Following the desorption of the metal(s), the column may still be pre-treated 

for optimum operation in the subsequent metal uptake cycle. The type of pre-

treatment may vary and could be used to optimise the column performance. 

 

2.4 The Mechanism of Metal Biosorption 

 

Sorption and desorption studies invariably yield information on the mechanism 

of metal biosorption: how the metal is bound within the biosorbent. This 

knowledge is essential for understanding the biosorption process and it serves 

as a basis for quantitative stoichiometric considerations which constitute the 

foundation for mathematical modelling of the process (Volesky 1999). 

 

A number of different metal binding mechanisms has been postulated to be 

active in biosorption such as: 
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• chemisorption: by ion exchange, complexation, coordination, chelation; 

• physical adsorption, microprecipitation. 

 

There are also possible oxidation/reduction reactions taking place in the 

biosorbent. Due to the complexity of the biomaterials used it is quite possible 

that at least some of these mechanisms act simultaneously to varying degrees, 

depending on the biosorbent and the solution environment.  

 

When the metal-biomass interaction mechanism(s) are reasonably understood, 

they offer possibilities for: 

 

• optimising the biosorption process on the molecular level; 

• developing economically attractive analogous sorbent materials; 

• simplifying and effectively guiding the screening process. 

 

Simple and economically feasible biomaterial procedures for suitable pre-

treatment procedures for suitable biomaterials may be devised, based on a 

better understanding of the metal biosorbent mechanism(s). 

 

2.5 Modelling 

 

Mathematical modelling of biosorption offers an extremely powerful tool for a 

number of tasks on different levels. It is essential for process design and 

optimisation. The dynamic nature of the sorption process application (columns, 

flow-through contactors) makes this approach mandatory. When reaction 

kinetics is combined with mass transfer which is, in turn, dependent on the 

particle and fluid flow properties computer program is both extremely useful 

and necessary (Volesky 1999). 

 

The mass transfer between the solution and the solid phase is modelled by 

several equations or concepts in both static and dynamic contact. Sorption 

isotherms show the distribution of solute between the liquid and solid phases. 
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This relation is used in several models of dynamic studies for the prediction of 

breakthrough curves, assuming various hypotheses as regards mechanisms and 

performances.  

 

This section presents the different models applied in the study of sorption by 

the processes used, such as the study of sorption in a closed reactor and the 

system in an open reactor. 

2.5.1 Sorption Isotherms 

A wide array of equilibrium-based models have been used to describe sorption 

on solid surfaces. These include the usual isotherms equations such as those 

described by Freundlich, Langmuir, Brunauer Emmett and Teller or Sips 

(Kinniburgh 1986). 

The Langmuir equation was developed by Irving Langmuir in 1918 to describe 

the adsorption of gas molecules on a planar surface. It was first applied to soils 

by Fried and Shapiro in 1956 and Olsen and Watanabe in 1957 to describe 

phosphate sorption on soils. Since that time, it has been widely employed in 

many fields to describe sorption on solid surfaces. The Langmuir model 

suggests, as a hypothesis, that uptake occurs on an homogenous surface by 

monolayer sorption without interaction between sorbed molecules. This model 

is described by the equation:  

 

   q
q bC

bC
m eq

eq
=

+1
                                            (2)       

                                    

where qm is the maximum sorption capacity for monolayer coverage (mg·g-1), 

and b is the affinity coefficient (L·mg-1), while q (mg·g-1), and Ceq (mg·L-1) 

represent sorption capacity and metal concentration in the solution at 

equilibrium respectively. 
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Another widely used sorption model is the Freundlich equation. The Freundlich 

model proposes a monolayer sorption with a heterogeneous energetic 

distribution of active sites, and with interactions between sorbed molecules, as 

described by the equation:  

 

                                               q k     (3) CF eq
n= 1/

 

where kF and n represents the Freundlich coefficients (n dimensionless; kF: mg1-

1/n·g-1·L1/n).  

 

Model parameters qm, b, n and kF are obtained by nonlinear regression analysis 

to avoid statistical bias (Kinniburgh 1986). 

 

2.5.2 Sorption Kinetics 

 

The sorption of solutes on solid particles has been extensively studied (Tien 

1994). The overall mechanism can be described as the succession of various 

steps (Figure 2.3): (1) solute transfer from the bulk solution to the boundary 

film, (2) solute transport from the boundary film to the surface of the sorbent 

(external diffusion), (3) transfer of the solute from the surface of the sorbent to 

the intraparticle active sites (intraparticle diffusion), (4) uptake of the solute on 

the active sites. 

 

The first and fourth steps are considered as non limiting as the agitation 

provided is sufficient to avoid a concentration gradient in the solution, whereas 

the sorption is seen as a quasi instantaneous mechanism. So, external mass 

transfer resistance and intraparticle mass transfer resistance are the major 

controlling stages. 
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Figure 2.3: Steps of mechanism  

 

The study of the rate lows is preceded by a brief discussions of the 

fundamental equation which form the basis for the quantitative treatment of 

ion-exchange and sorption kinetics. 

 

For single-species sorption with spherical particles, the external mass-transfer 

rate may be expressed as 

 

                                          (∂
∂
q
t

k A C CL= − )s                                         (4) 

where 

q = average sorbed-phase concentration (g·kg-1) 

C and Cs = solute concentration in the bulk of fluid and on the particle surface 

(g·m-3) 

A = surface area for the unit mass of sorbent (m2·kg-1) 

kL = interphase (or external) mass transfer coefficient (m·s-1) 
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The magnitude of kL, of course, depends upon the flow conditions around the 

particle.  

 

In a second step, the intraparticle diffusion is the preponderant rate controlling 

factor. The diffusion of solute through the particle was assumed to follow Fick’s 

law. When the diffusion is considered radial, the diffusion equation for a 

constant diffusion coefficient takes the form 

 

                                      
∂
∂

∂
∂

∂
∂

C
t

D
C

r r
C
r

= +








2

2

2
                                      (5) 

 

where r is the radial variable and D is the global diffusion coefficient in the solid 

(m2·min-1 or m2·s-1). 

 

The mass transfer in the fixed-bed sorption is described by the following 

system of equations: 

 

the balance equation of process dynamics, 

 

( )∂
∂

∂
∂

ε
ε

ρ
∂
∂

∂
∂

C
t

u
C
Z

q
t

D
C

Zp+ +
−

=0

2

2

1
                             (6) 

 

where 

C = solute concentration in the liquid and phase (g·m-3) 

q = solute concentration in the solid phase (g·kg-1) 

t = time (s) 

Z = distance from the column inlet (m) 

D = axial diffusion coefficient (m2·s-1) 

u0 = linear flow rate (m·s-1) 

ε  = fixed-bed porosity (m3 voids/m3 bed = m3 fluid/m3 bed) 

 

 

 39 



 Biosorption  

the equation of process kinetics, 

 

                                            (∂
∂
q
t

C q= Φ , )

)i

                                            (7) 

 

the system equilibrium, that is the sorption isotherm, 

 

                                                                                           (8) (q f Ci =

 

The application of these equations are rather complex, even in the 

comparatively simple limiting cases which have so far been solved. In a 

rigorous quantitative treatment of complicated systems, for example, 

adsorption or ion exchange columns, mathematical difficulties are encountered. 

Simplified models are widely used. In the literature on ion exchange and 

adsorption there is no lack of such equations; some of them are empirical and 

others are based on simplified models or plausible assumptions. Most of these 

models were found to hold quite well in the systems investigated by their 

originators. However, they might well fail under only slightly different 

conditions. Then, various models which have been suggested and used are 

showed. 

 

2.5.2.1 External Mass Transfer 

 

A number of single resistance models have been proposed to determine the 

effect of external mass transfer in a sorbent system. The model proposed by 

Findon et al. in 1993 was the boundary method. The Boundary Model assumes 

that the surface concentration of metal ion is negligible at t , and 

consequently, intraparticle diffusion is negligible. 

0=

 

The change in solute concentration with respect to time is related to the liquid-

solid film mass transfer coefficient, , by the equation: Lk
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(dC
dt

k S C CL= − − )s                                      (9) 

where, 

kL = liquid-solid film mass transfer coefficient (m·s-1) 

C = solute concentration in the solution at time t (g·m-3) 

Cs = solute concentration in the solution on the surface sorbent  (g·m-3) 

S = the specific outer surface of sorbent particles per unit of volume of present 

particles (m-1), which is obtained using the following equation:  

 

S
m

d p p
=

−
6

1ρ ε( )
                                            (10) 

with, 

    m
w
V

=                                                   (11) 

being, 

w = mass of sorbent (kg) 

V = volume occupied for the particles (m3) 

dp = mean particle diameter (m) 

ρp = density of sorbent particles (kg·m-3) 

ε = void fraction in the adsorption bed (m3 void/m3 bed) 

 

As t = 0, Cs → 0 and C = C0 the Eq. (9) becomes: 

 

                                         
dC
dt

k SC
t

L






= −
=0

0                                        (12)  

 

Given that with > 0 C > 0 and < C  the Eq.(16) becomes, t s C 0

 

                                       
d C C

dt
k S

t
L

( / )0

0







= −
>

                                    (13) 

 

Hence, in a plot of C/C0 versus time, kL can be determined from the slope as 

t→0. 
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2.5.2.2 Intraparticle Mass Transfer  

 

Morris and Weber (1964) and McKay and Poots (1980) demonstrate that in 

diffusion studies rate processes are usually expressed in terms of the square 

root of the time. So q  or fraction metal sorbed (1-Ct

q

t/C0) is plotted against t0.5. 

Initial slope is determined by the derivative (at ) of the polynomial 

linearisation of (1-C

t = 0

t/C0) versus t0.5. Following (1-Ct/C0) determination, the 

sorption rate (slope of  versus  tt
0.5) is calculated according to the conversion: 

 

q C C V m C C VCt t t= − = −( ) / ( / )0 1 m/0 0                               (14) 

 

The slope of (1-Ct/C0) plot, multiplied by VC0/m, gives the intraparticle diffusion 

rate. 

 

Crank (1975) proposed a model whereby diffusion is controlled only by 

intraparticle mass transfer for a well-stirred solution of limited volume (V), 

assuming the solute concentration to always be uniform (initially C0), and the 

sorbent sphere to be free from solute. Under these conditions after integration 

of Eq. (5), the total amount of solute  (mg·g-1) in a spherical particle after 

time t, expressed as a fraction of the corresponding quantity after infinite time 

( , mg·g-1), is given by:  

M t

M ∞

 

                            
( ) ( )M

M
D g t d
g

t i n p

nn∞ =

∞

= −
+

+ +∑1
6 1

9 9

2

2 2
1

α α

α α

exp /
                           (15) 

 

                       

where  are the non-zero roots of: g sn
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g
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+
3
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and α
π

=
3

4 3

V
a( )

, the ratio of the volumes of solution and sphere, or if there is a 

partition factor k between solute in equilibrium in the sphere and the solution, 

α
π

=
3

4 3

V
a k( )

. The parameter α is expressed in terms of the final fractional 

uptake of solute by the sphere by the relation: 

 

                                             
M
VC

∞ =
+0

1
1 α

                                          (17) 

 

The fractional approach to equilibrium, FATE ( / , may be used to 

estimate the intraparticle diffusion coefficient D, when the external diffusion 

coefficient being neglected.  

)M Mt ∞

 

Urano and Tachikawa (1991) proposed an intraparticle diffusion coefficient  

based on the concentration in solids, assuming simple hypotheses such as the 

following: the sorption rate is independent of the stirring speed, and external 

mass transfer is non-limiting. The mass transfer is governed by the differential 

Eq. (5). 

Di
'

 

The solution of this differential equation, assuming boundary and mechanism 

hypotheses, is given by the following equation: 

 

[ ]f q q q q
D t
dt m t m

i

p
( / ) log( / )

.

'

= − − =1
4
2 3

2
2

2

π
                           (18) 

 

where  and  are the metal concentration in the solid, at t and at 

equilibrium t→∞, and d  is the mean particle diameter. The ratio q /  

represents the fractional approach to equilibrium. So the diffusion coefficients, 

, is obtained by evaluation of the initial slope of f( q / ) versus time, 

between 0 and 120 min. 

q t q m

p t q m

Di
'

t q m
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In the models presented above, the external mass transfer resistance 

coefficients and the intraparticle diffusion (pore and/or solid diffusions) 

constants were examined separately, but numerous, more sophisticated models 

were investigated, amongst which we could mention the shrinking core model 

(SCM), (Levenspiel 1999), with special definitions for film diffusion, intraparticle 

diffusion, and chemical reaction control. This model was developed for the first 

time by Yagi and Kunii (1961). Tien (1994), describes a model which include 

external, intraparticle diffusion and sorption isotherm. Yiacoumi and Tien 1995, 

describe and compare sorption kinetics controlled by either reaction or diffusion 

mechanisms.  

 

2.5.2.3 Modelling of Breakthrough Curves 

 

Much has been written about the prediction of breakthrough curves. Recently, 

Ko et al. (1999), have analyzed the data using a model originally proposed by 

Bohart and Adams (1920) for the adsorption of chlorine and hydrogen chlorine 

on carbon. Considering a given portion of adsorbing material, its adsorption 

capacity diminishes at a rate given by 

 

                                              
∂
∂
N
t

kNC= −                                           (19) 

 

considering the liquid phase, the solute concentration is diminishing at a rate 

given by 

 

                                              
∂
∂
C
Z

k
u

NC= −
0

                                       (20) 

 

where  

N = volumetric sorption capacity (g·m-3), [ ]  N q p= −ρ ε( )1

C = solute concentration in solution (g·m-3) 

k = kinetic constant (m3·g-1·s-1) 
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u0 = linear flow rate (m·s-1) 

Z = distance from the column inlet (m) 

 

If N0 is the maximum volumetric sorption capacity and C0 is the initial solute 

concentration in solution, the following non-dimensional parameters can be 

defined: 

 

N
N
N

' =
0

;    C ;    
C
C

' =
0

Z
kN Z

u
' = 0

0
     and     t kC' = 0 t

 

its derivatives being as follows: 

 

∂
∂

N
N

N
' =

0
;    ∂

∂
C

C
C

' =
0

;    ∂Z
kN
u

Z' = 0

0
∂ t    and     ∂ ∂t kC' = 0

 

introducing these new parameters into the Eq. (19) and (20): 

 

∂
∂
N
t

N C
'

'
'= − '                                            (21) 

  
∂
∂
C
Z

N C
'

'
'= − '                                           (22) 

 

On the following initial conditions: 

 

                                    when   ⇒                                  (21 bis)       

when  ⇒                                  (22 bis) 

t ' = 0

Z' = 0

C' = 1

C' = 1

 

Integrating Eq. (21) with the initial condition (21 bis), the following is obtained: 

 

N e t' '

= −                                               (23) 
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Integrating Eq. (22) with the initial condition (22 bis), the following is obtained: 

 

C e Z' '

= −                                                (24) 

 

If Eq. (24) is divided by ( : )C' 2

 

−
∂

∂
C C

Z
N
C

' '

'

/ ( )2

=
'

                                        (25) 

 

Introducing Eqs. (23) and (24) into Eq. (25): 

 

 − = −∂
∂

C C
Z

e Z t
' '

'
(/ ( ) ' '

2
)                                      (26) 

Integrating Eq. (26): 

 

1
C

e fZ t
'

( ) '' '

( )= −− t                                       (27) 

 

Introducing the initial condition (22 bis) into Eq. (27): 

 

f t e t( )'
'

= −− 1                                          (28) 

 

Then, introducing Eq. (28) into Eq. (27): 

 

( ) ( )1
1

1
1 1

C
e e

C
e eZ t t Z t

' '
' ' ' '= − + ⇒ − = −− − '                       (29) −

 

Applying logarithms to Eq. (29): 

 

( )ln ln'
''1

1
C

eZ−




 = − 1 t−                                  (30) 
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Doing again the change of initial variables, Eq. (30) remains: 

                              

                                 ( )ln /C
C

ekN Z u0
01 10 0−





 = − −ln                            (31) kC t

 

Because the exponential term, , is usually much higher than unity, the 

unity term within the brackets on the right-hand side of the Eq. (31) is often 

neglected. A linear relationship between the bed depth and service time can be 

written as 

ekN Z u0 0/

 

                                  t
N Z
C u kC

C
C

= − −






0

0 0 0

01
1ln                                   (32) 

 

For the current system, the critical bed depth, , is the theoretical depth of 

sorbent to prevent the solute concentration from exceeding the breakthrough 

solute concentration (C

0Z

0b) at . By letting  in Eq. (32),  is obtained: t = 0 t = 0Z

 

                                       Z
u

kN
C
Cb

0
0

0

0 1=






ln −

0

                                     (33) 

 

According to Eq. (32), the service time, t , and the bed depth,  can be 

correlated with the process parameters: the initial solute concentration, the 

solution flow rate, the sorption capacity, and the sorption rate constant. Eq. 

(32) is the bed depth service time (BDST) equation with the form of straight 

line , as suggested by Hutchins (1973). Thus, the slope of the BDST 

plot, which equals , is the time required to exhaust a unit length of 

the sorbent in the column under the test condition. The intercept on the 

ordinate wave front to pass through the critical bed depth and is given by 

Z

t mZ b= +

N C u0 0/

 

                                     b
kC

C
Cb

=
−






 −









1
1

0

0ln                                        (34) 

Wolborska (1989), shows that the phenomenon obeys the following equations, 
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the balance equation of process dynamics: 

 

  
∂
∂

∂
∂

∂
∂

∂
∂

C
t

u
C
Z

a
t

D
C

Z
+ + =0

2

2                                    (35) 

 

where: 

C = solute concentration in the liquid and phase (g·m-3) 

a = solute concentration in the solid phase (g·m-3) 

t = time (s) 

Z = distance from the column inlet (m) 

D = axial diffusion coefficient (m2·s-1) 

u0 = linear flow rate (m·s-1) 

 

and the kinetic equation: 

 

∂
∂

β
a
t

C Ci= −( )                                              (36) 

being, 

β = kinetic coefficient of the external mass transfer (s-1) 

Ci = solute concentration at the solid-liquid interface (g·m-3) 

 

The initial conditions are as follows: 

 

      C     ∀                                                   (37) t = 0 = 0 Z

                                             a     ∀                                                   (38) t = 0 = 0 Z

 

The boundary conditions are: 

 

                                                                                          (39) Z = 0 C C= 0 ∀t

                                           C     ∀                                                   (40) Z = ∞ = 0 t

 

New variables were introduced: 
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time  and bed height , where  corresponds to the migration 

velocity of concentration fronts in the bed ( m·s

τ = t h Z= − νt ν
-1). 

 

Balanced Eq. (35) takes the form of the ordinary differential equation: 

 

( )u
C
h

a
h

D
C

h0

2

2− − =ν
∂
∂

ν
∂
∂

∂
∂

                                   (41) 

 

and Eq. (36) becomes: 

 

− = −ν
∂
∂

β
a
h

C Ci( )

β

                                        (42) 

 

Moreover, initials and boundary conditions are transformed in : 

 

                                                                                                   (37 bis) τ = 0 C = 0 ∀h

                                        τ =       a        ∀                                         (38 bis) 0 = 0 h

                                                                                                (39 bis) h = 0 C C= 0 ∀τ

                                                                                                 (40 bis) h = ∞ C = 0 ∀τ

 

For the other hand, as Ci<<C and when , Eq. (42) remains: τ β→ ⇒ =0 0

 

− ≅ν
∂
∂

β
a
h

C0                                             (43) 

 

Substituting Eq. (43) into Eq. (41), upon transformations, the equation 

describing mass transfer in the bed at the initial stage of the process was 

obtained: 

 

∂
∂

ν ∂
∂

β2

2
0 0 0

C
h

u
D

C
h

C
D

−
−



 − =                                  (44) 
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The integration of this equation with initials and boundary conditions proposed 

before takes to the following solution: 

 

C
C

u h
D

D
u0

0 0

0
22

1
4

1= −
−

+
−

−






















exp
( )

( )
ν β

ν
                        (45) 

 

Then, the parameter β  (the effective kinetic coefficient) (Zolotarev et al. 1972) 

can be defined as following: 

a

 

β
ν β

νa

u
D

D
u

=
−

+
−

−










( )
( )

0
2

0

0
22

1
4

1                              (46) 

 

Therefore, Eq. (45) becomes: 

 

C
C u

ha

0 0
= −

−








exp

( )
β

ν
                                      (47) 

 

When the effect of the axial dispersion is negligible, the Eq. (47) has the form: 

 

  

C
C u

h
0

0

0
= −

−








exp

( )
β

ν
                                      (48) 

 

Moreover, the migration velocity according to the Wicke law can be 

determinated by: 

 

ν =
+

u C
a C

e

e e

0                                               (49) 

where Ce, ae = the sorbate concentrations in both phases under equilibrium 

conditions. 
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For ae >> Ce and moreover, assuming that the process conditions are steady for 

low concentrations of the breakthrough curve ae =  and CN0 e = , the Eq. (49) 

becomes: 

C0

 

ν =
u C
N
0 0

0
                                              (50) 

 

For the other hand, v << u0 , therefore: 

 

u0 − ≅ν u0                                              (51) 

 

Substituting Eq. (51) into Eqs.(47) and (48), these are transformed to: 

 

C
C u

ha

0 0
= −









exp

β
                                        (52) 

 

C
C u

h
0

0

0
= −









exp

β
                                        (53) 

 

Doing again the change of initial variable, , and Eq. (50) is 

introduced, before  Eqs. finally becomes: 

h Z= − νt

 

� in the process with the axial dispersion: 

 

ln
C
C

C
N

t
u

Za

0

0

0 0
= −

β βa                                    (54) 

 

with                             β                                      (55)                       
β

a

u
D

D
u

= +








0

2
0

0
22

1
4

1−

 

� in the process without the axial diffusion: 
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ln
C
C

C
N

t
u

Z
0

0 0

0

0

0
= −

β β
                                       (56) 

 

The expression of the Wolborska solution is usable in the low concentrations 

range and is equivalent to the Adams-Bohart relation if coefficient k is equal to 

. So the drawing of ln C/Cβa N/ 0 0 versus t would give information on both 

models. 
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