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9   Adaptive Soft K-Nearest-Neighbour Classifiers

with Large Margin

Abstract-  A novel classifier is introduced to overcome the limitations of the K-NN

classification systems. It estimates the posterior class probabilities using a local Parzen window

estimation with the K-nearest-neighbour prototypes (in the Euclidean sense) to the pattern to

classify. A learning algorithm to reduce the number of prototypes (that maximises the

confidence or margin on the correct classification of training patterns) is also presented.

Experimental results in two hand-written classification problems demonstrate the potential of the

proposed classification system.

Index Terms-  Soft Nearest Neighbour Classifiers, Online gradient descent, Hand-written

Character Recognition.
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1. Introduction
Nearest neighbor (NN) techniques are simple but powerful non-parametric classification

systems. Since their introduction in the fifties, many sophistication of the basic schema

appeared, concerned with different topics as condensing, editing, learning or extensions to

include rejection. (See (Dasarathy, 1991) to review much of the existing literature.) In recent

years, interest in these methods has flourished again in several fields (including statistics,

machine learning and pattern recognition) since they remain the best choice in many

classification problems.

This chapter presents a novel classification learning architecture in the context of condensed

K-NN classifiers with the goal of enhancing its generalization properties. In learning systems,

generalization performance is affected by a trade-off between the number of training examples

and the capacity (e.g. the number of parameters) of the learning machine. This global trade-off

can be reinterpreted in local learning systems (like NN methods) as a trade-off between capacity

and locality (how local the solution is) (Bottou & Vapnik, 1992). One of the implications of this

is that the learning system must control the effective number of training samples available for

training locally the system. K-NN techniques are good examples of such local learning systems.

For every testing pattern, they estimate posterior class probabilities with a fixed number of

training points. In this way, good generalization is guaranteed since there is always enough data

to compute the estimations. By contrast, these systems have poor approximation capabilities due

to estimate using a ratio of integers. The quality of the K-NN approximation can be simply

improved if we use instead of the usual ratio, a Parzen window estimate computed with the K-

nearest-neighbor training samples. Hence, the resulting soft estimation could benefit from the

virtues of K-NN and Parzen estimates, since it improves the approximation quality of crisp K-

NN estimators by means of a smooth interpolation and it retains their control of the training

points that contribute to the estimations. However, an important disadvantage of the method,

inherited from their ancestors, would be that all of the training data must be retained to compute

the estimations. So we also present a more sophisticated version of the algorithm to allow fewer

data points to be used. This includes a learning algorithm to compute a condensed set of

prototypes from training data.

The organization of this chapter is as follows. Section 2 derives the soft K-NN classifier in

the context of local learning algorithms (Bottou & Vapnik, 1992). In Section 3 we introduce an

adaptive version of the previous classification rule. The proposed learning algorithm designs a

condensed set of prototypes that minimizes the empirical average number of misclassifications.
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Section 4 shows experimental results that compares successfully the adaptive soft K-NN

classifier with other algorithms using two NIST handwritten character databases (Garris, 1997).

Finally, in Sections 5 and 6 some discussion and conclusion are given.

2. The soft K-NN classifier
Let c:X→{1, ..., C} be a maximum classifier that assigns a input vector x to one of the C

existing classes. This kind of classifiers is defined in terms of a set of discriminant functions

dl(x), l=1, ..., C. The classifier c then assigns x to class j if dj(x)>dl(x) for all l≠j. In the case of

equally misclassification costs, c achieves a minimum expected number of misclassifications

when dl is the posterior probability of belonging to class l, P(Cl\x). Suppose we have N

observations pairs T={(xi, yi)} i=0, ..., N-1 where xi is a random sample taken from input space

X that belongs to one of the classes and yi is an indicator variable. If xi belongs to the nth class,

the nth coefficient of yi is equal to 1 and the other coefficients are equal to 0. To ensure c is a

good classification procedure each discriminant functions dl(x) must estimate the binary random

variable yl (that is equal to 1 if x belongs to the lth class and 0 otherwise). In local algorithms

this estimation is defined for each neighborhood around the testing pattern x as those which

minimizes a weighted empirical average loss function of the following form (Bottou & Vapnik,

1992) p.892:
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where kernel G is a bounded and even function on X that is peaked about 0, γ denotes the

locality control parameters associated to G and( ){ }C,..,1l,;d *
l =γx  are the optimal discriminant

functions. If we use a constant approximation dl (with respect to x) of yl and a quadratic loss

J(yl,dl)=(yl-dl)
2, solving the equation [ ] 0ddI llemplocal =∂∂  l=1,...,C yields
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As we see from inspecting (2), this optimal local discriminants functions computes kernel-based

estimates of the posterior probability of the classes (Bishop, 1995) §2.5. The shape of the kernel
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G controlled by γ then determines different well-known solutions to the same original problem.

If G=GH where GH is a square kernel whose width is adjusted to contain exactly k samples then

equation (2) is the K-NN algorithm. On the other hand if G=GS where GS is a smooth kernel with

a width modulated by a locality parameter σ then (2) is the Parzen window algorithm.

The K-NN technique considers a hypershere centered at the testing pattern x that exactly

contains K training samples. This feature prevents the estimator from not having enough training

data to ensure good generalization. Although in practice, their estimates poorly approximate

posterior probabilities, since the region around x is not small enough to keep the estimations, a

ratio of integers (Kl/K), valid. By contrast, the Parzen window algorithm can estimate better

since it is based on a smooth interpolation between training points, although it does not

effectively control the tradeoff between the capacity of the learning device and the number of

training samples. This is due to using a fixed width parameter σ for all the training points. If the

distribution of the training patterns in the input space is uneven, it will be impossible to ensure

that there are enough training data that significantly contribute to the estimations for all testing

pattern x.

We propose an approach that benefits from the virtues of these two techniques and can be

understood as a compromise between them: for each testing pattern x, a Parzen window estimate

is computed using the K nearest (in the Euclidean sense) training points. In fact, this algorithm

results of using a composed kernel Gsoft=GHGS in equation (2). As we show in the Appendix, the

resulting equation also estimates the posterior class probabilities. Equation (2) is then called the

soft K-NN algorithm and can be written as follows
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where CK-NN of class j={ }jj
u K,...,1u, =x  are those prototypes of class j among the k nearest

prototypes to x and ∑ =
= C

1j jKK .We remark that the (crisp) K-NN algorithm in equation (3)

is recovered in the limit σ→∞. In the particular case k=2, the resulting classifier is equivalent

to the 1-nearest-neighbor classification rule since only two prototypes are involved in the

decision.

Figure 1 shows the classification borders for the Ripley’s synthetic problem (Ripley, 1994) in

the case of the soft K-NN and crisp K-NN (σÆ∞) rules. Note that the soft K-NN algorithm can

smooth the crisp classification border where σ controls the degree of smoothness.
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a) K=3, σÆ∞

c) K=3, σ=0.1

e) K=11, σÆ∞

g) K=11, σ=0.05

b) K=3, σ=0.001

d) K=3, σ=0.05

f) K=11, σ=0.01

h) K=11, σ=5.0



9-6

h) K=33, σÆ∞

j) K=33, σ=0.05

l) K=55, σÆ∞

n) K=99, σÆ∞

i) K=33, σ=0.01

k) K=33, σ=0.1

m) K=55, σ=0.075

o) K=99, σ=0.075
Fig.1. Soft & crisp K-nearest-neighbor classification borders in the Ripley’s synthetic
problem for several values of sigma and K.  (The soft version uses gaussian kernels)
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3. The adaptive soft K-NN classifier
Given a training set T, we can consider to apply (2) using Gsoft, classifying a new input to

those class whose discriminant function has the highest value. However when training set size is

large, storage and processing requirements make this simple algorithm unusable in engineering

applications. In the case of (crisp) K-NN classifiers, many heuristic sophistication of the basic

algorithm allow to use fewer data points (e.g. Condensed NN (Hart, 1968)). By contrast, our

approach can simply be extended by replacing the local kernel estimation with a simplified

adaptive mixture model (McLachlan & Basford, 1988). Suppose we define for each class density

function a mixture as follows
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where {fX\Cl, l=1,...,C} are the class density probabilities, {P(Cl), l=1,...,C} are the priors and

{f X\Cl,i i=1...M, l=1,...,C} are known parametric models restricted to the form G(x-wi
l;γ) with

G(u) a decreasing function on U and peaked about u=0. Applying Bayes' theorem, we arrive at

the following expression for the posterior probabilities
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Since each model of the mixture is locally defined, we can approximate equation (5) using only

the K-nearest-models to the testing pattern x. If we use this simplification to construct the

classifier, then the discriminant functions give
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where ( ){ }i
K

u,CX K,...,1u,C,...,1i,f
i

==x  are the K-nearest-models to x. Like the mixture

models are locally defined around its centers wi
j, P(Cl\x) then can be approximated by
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where { }C,...,1j,K,...,1u, j
j
u ==w  are the Kj-nearest-mixture-centers to x and ∑ =

= C

1j jKK .

The total number of mixture models (M*C) will be typically much smaller than the number

of training points (N), and the mixture models centers (wi
j) are no longer constrained to coincide

with the training points. The parameters of the mixture models could be estimated using

unsupervised procedures as the EM algorithm (Dempster, 1977), although the followed

approach here make use of a supervised learning procedure based on minimizing the number of

misclassifications.

3.1. The Loss function.
Consider a training set of random pairs T={(xi, yi)} i=0, ..., N-1. If the pattern xi belongs to

the nth class, the nth coefficient of yi is equal to 1 and the other coefficients are equal to 0. As a

loss function we propose a modification* of the cross-entropy error function for multiple classes

(Bishop, 1995) §6.9:
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The absolute minimum with respect to the {dl(xi)} occurs when all the training points are

correctly classified with the highest confidence (or maximum margin) , that is when dl(xi)=yli

for all l and i. In the limit in which the size N of the training set goes to infinity, we can

substitute the sum over patters with the following integral
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where fX is the probability density of the input space. Since yl=1(x∈class l) where 1 is the

indicator function

                                                       
* We will see in the next subsection, when we derive the learning equations, why equation (8)
can be of more practical interest than cross-entropy error.
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where Rl are the decision region of class l, that is the input region in which dl has the highest

value among discriminant functions. <L> would be minimized when dl=1 for all x in Rl and

fX\ClP(Cl)=max fX\CiP(Ci) for all Rl. But as we know the best possible choice for dl is P(Cl\x). If

we use an optimization method to minimize iteratively <L>, since the algorithm will try to

minimize the number of misclassifications it will be possible a convergence of dl to P(Cl\x) (at

least near Bayes Borders). In this case if class overlapping is moderate, the maximum expected

number of correct classifications could approximate the absolute value of <Lmin>,
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This latter result gives us, when N is large enough, a possible tendency of the system from

minimizing equation (8) during the learning phase.

3.2. The learning algorithm.
In real-life pattern recognition problems training sets usually are large and high dimensional.

So algorithmic simplicity of the learning procedure, or the optimization process, is a requirement

in order to achieve a solution with moderated computational resources. Online gradient descent

algorithms (Bottou, 1998) are one of the most simple computational approaches to the learning

problem. Another features of these algorithms include better convergence speed than their batch

counterparts in redundant training sets (e.g. real-world databases) and good mathematical

characterization (Benveniste, 1990)(Bottou, 1998).
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3.2.1. Derivation of the on-line gradient learning algorithm.

We restrict the mixture model parameters to centers and a global defined parameter σ that

controls locality. So the goal in the learning phase is reduced to compute a set of labeled

codebooks Cj= { }jj
i M,...,1i, =w  j=1,...,C, one for each class, that minimizes an estimator of the

expected loss function given in equation (9),

{ }( ) { }( )[ ]C...1j,,QEC...1j,L X === MM && x (13)

Since EX[�] is unknown, an empirical estimator is formed with a (training) set of random

samples pairs L={(xi, class index(xi))} i=0,...,N-1. The online gradient learning algorithm

estimates using the instantaneous loss function { }( )C,...,1j,,Q =M&x . Each step of this algorithm

consists of picking up (cyclically or randomly) one sample pair from the training set L and

applying the following update equation
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The learning rates �i
j[k] are positive numbers and are usually made to decrease monotonically

with discrete time k, although they can be also constant with time. The term H(wi
j, x) is defined

as
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Given a training set of infinite size, the necessary (but not sufficient, see (Bottou, 1998) §5)

condition to ensure the convergence of the iterative equation (14) to a local minimum of <L> is

that
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i

j
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Since Q is not differentiable on a finite number of points and the iterative algorithm has a zero

probability to reach them, this condition is met (see  (Bottou, 1998) p.10). In the case of using a

constant η, we might ensure that η was small enough (see (Benveniste et al., 1990) p.48).

Practically, an optimal value of η can be estimated using a validation set.
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function for analytical convenience since the added constant does not affect the desired points of

convergence. Hence equation (15) yields
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where CK-NN are those prototypes of class j among the k nearest prototypes (in the Euclidean

sense) to x and dW is equal to
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In the case of σ goes to infinite exp( σ• ) tends to the unity. So H can be simplified since dW

tends to 1/K and dj to Kj/K. Finally the learning equation gives
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where [ ] 0kk Nmod)1k( ≥= −xx  if we pick up cyclically.

3.2.2. Properties of the learning equation.
As we pointed out before, the proposed loss function has the same minimum points than the

cross-entropy error function
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If we derive the on-line gradient equations for this error function, we obtain the equation (17)

divided by dj(x). So practical differences between performing on-line gradient descent using one

loss function or another must be determined with an analysis of how this term can affect to the

evolution of the optimization process. Suppose that several outliers are present in the training

set. This is a typical situation in real-world databases. When we pick up one outlier of class j, the

amount of change in a winning prototype wi
j will be
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Since it is probable that dj(x) takes a low value when x is an outlier of class j, the term (1-

dj(x))/dj(x) tends to infinite. In this way ∆wi
j
cross-entropy can be arbitrarily large and the normal

evolution of the learning process can be enormously degraded by the presence of outliers. By

contrast, if we use our proposed loss function, outliers have a little impact since the term dw

dominates the amount of change and tends to zero since the distance between the winning

prototype and the outlier can be large.

4. Empirical Results
In this section, we compare Kohonen’s LVQX algorithms (Kohonen, 1996) (where X is 1, 2

and 3) and K-NN classifiers with our proposal. We have used the NIST (uppercase &

lowercase) handwritten characters database (Garris, 1997), which can be found in directories

train/hsf_4, train/hsf_6 and train/hsf_7. We have split directory train/hsf_7 in two sets: one for

validation (1100 samples) and one for test (over 10000 samples) preserving the original class

distribution in data. The other two directories were chosen for training (above 24000 samples).

These images (32x32 pixels) have been preprocessed with a Principal Component Analyzer that

extracts 64 components from each image (NIST's mis2evt utility). The correlation matrix of the

PCA was computed using the training set.

4.1. Simulations #1: Adaptive Soft K-NN vs. LVQ
Ten runs for each classification problem, learning algorithm and several codebook sizes have

been made. We have initialized the codebooks using the LVQ_PAK’s eveninit program
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(Kohonen et al., 1995). Then we have applied every learning algorithm until classification error

in validation set increases or stands. (We have monitored this error every 200000 iterations. In

the case of LVQX algorithms, every time we monitored the error, we restart its α value).

Optimal parameters of algorithms have been estimated using the validation set.

4.1.1. Results
Two main aspects are of interest in this section. The first one would be concerned with the

comparison of our classifier and their crisp counterparts when our system is not constrained to

use also the crisp K-NN estimation. The second one would compare the classifier when all of

them make use of this classification rule. In this way we can evaluate if the use of a more

complex classification procedure, the soft K-NN estimation, is of practical interest and,

secondly, what happens when we force our system to compete with other well-established

methods to design prototypes sets for crisp K-NN classifiers.

Tables 1 and 2 summarize the average classification error on uppercase and lowercase test

sets. Each result is the average of ten trials for each learning algorithm (except in the case of K-

NN classifiers that the test error is computed once using the whole training set as the prototypes

set). In table 1, we show the average misclassification rate of our proposed classifier in four

different cases. In the first case, we fix the number of nearest-prototypes (k) equal to 2 and σ to

infinite. While in the second case with k fixed to 2, we make use of the best σ value estimated

by cross-validation. In these two first cases, the resulting classification systems are crisp 1-NN

classifiers since only two nearest-prototypes contribute to form the soft estimations. In the third

case, we fix σ to infinite and make use of the best-estimated k value (with k greater than 2). As

above, our classifier then is the crisp K-NN classifier. Finally in the fourth case, we constrain k

to be greater than 2 and allow σ to take a finite value. Both parameters are estimated with the

validation set using these constraints. Table 2 shows classification results of 1-NN classifiers

whose codebooks are designed using Kohonen's LVQ algorithms and crisp K-NN that use the

whole training database as the prototypes set.

The condensed soft K-NN classifiers (the fourth case) always outperforms crisp 1-NN

classifiers based on LVQ algorithms for each tested codebook size. In uppercase and lowercase

recognition, best results are achieved when codebook size is 800. In this case, our classification

systems also outperform K-NN classifiers that use the whole training database as the prototypes

set. On average, our learning system correctly recognized 94,62% of the uppercase handwritten

letters and 87,46% of the lowercase handwritten characters, in front of 91,77% and 85,94%

respectively for LVQ2, the best of the LVQ algorithms. Differences between our procedure and



9-14

LVQ algorithms are notably greater as codebook size decreases. We also note that the evolution

of the misclassification rate, as codebook size grows, is less abrupt in our procedure. This

behavior suggests that our procedure achieves a better graceful degradation in the classification

accuracy as the codebook size is smaller.

Our best crisp 1-NN classifiers, the best solutions of the two first cases, clearly outperform

LVQ-based crisp 1-NN classifiers except in one case. When the codebook size is equal to 200,

codebooks designed with the LVQ2 algorithm are better than ours. It is interesting to compare

the classification accuracy between case 1 and case 2 since both learning algorithms design

codebooks for crisp 1-NN classifier although they differ in the way of doing it. While the first

algorithm uses an infinite σ, the second one do not and can better define how local the solution

is, since σ regulate how many training data contribute to update each prototype during the

learning phase. In both classification problems we observe the same behavior. For small

codebooks (100 and 200), the effect of using a finite σ allows to achieve an optimal solution.

However, the use of an infinite σ works better for medium codebooks.

Classifiers of the third case only achieve better classification accuracy than K-NN classifiers

(that use over 25000 prototypes) when their codebook size is 800. Although these classifiers are

inferior to the best solutions achieved in the above crisp cases. Finally we compare best

solutions of cases 1,2 and 4. We can observe that the soft estimation is in six out of eight cases

superior than the crisp estimation. Only in lowercase hand-written recognition, the crisp

estimation is superior on average when codebook sizes are 400 and 800.

Upper LowerCodebook

Size σ→∞

 K=2

Best σ<∞

K=2

σ→∞

Best K>2

Best σ<∞

Best K>2

σ→∞

 K=2

Best σ<∞

K=2

σ→∞

Best K>2

Best σ<∞

Best K>2

100 18,2 14,52 25,95(3) 11,94(5) 24,7 20,92 31,01(3) 18,8 (11)

200 10,98 10,63 15,8(3) 9,01(5) 17,62 17,26 22,69(3) 15,93(5)

400 7,36 7,97 10,09(3) 6,53(5) 13,3 15,28 17,13(3) 14,02(5)

800 5,45 7,22 5,74(3) 5,38(11) 11,28 14,11 11,82(3) 12,54(5)

Table 1. Experimental Results for our proposed classifier. We show for each algorithm the

average test error over ten runs. The number in parenthesis denotes the value of k.
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Upper Lower

Codebook

Size

LVQ1 LVQ2 LVQ3 K-NN LVQ1 LVQ2 LVQ3 K-NN

100 21,5 15,82 16,02 - 27,89 22,4 22,29 -

200 15,3 9,941 11,4 - 20,85 16,81 18,39 -

400 11,8 8,24 9,08 - 17,27 14,84 15,54 -

800 9,61 8,23 8,26 - 15,53 14,06 14,43 -

Whole

database

- - - 5,84(1) - - - 13,1(7)

Table 2. Experimental Results for LVQ-based and K-NN classifiers. We show for each

algorithm the average test error over ten runs, except in the case of K-NN classification. In K-

NN classifiers, the number in parenthesis denotes the value of k.

4.2. Simulations #2: The utility of Soft outputs for post-processing purposes
An additional feature the soft K-NN approach is that soft labels can be assigned to test

patterns. This can enhance the overall classification accuracy when some post-processing is

performed using context (e.g. relations of patterns in time). This section explores how the

misclassification rate is improved when we accept that the correct solution was among the top M

greatest activation of the discriminant functions. In this way, we can detect if a correct solution

is among the top greatest activation and consequently a post-processor would recover the correct

solution.

We use the best soft K-NN classifiers of section 4.2 for the upper problem and now we

perform ten runs for each classifier checking the validation error every 50000 steps. Table 3 and

4 show the averaged validation and test error respectively using the top M highest activation.

(The classifier will make a correct decision if the label of the training pattern agrees with the

one of the labels of the M discriminant functions with highest activation.) Note that top 1

results in table 4 are slightly different than the fourth column of table 1 since now the

classification error is checked every 50000 steps so the algorithm stops at different points. As

table 3 and 4 show if a correct solution is between the top 2 highest activation the classification

accuracy is reduced by more than a half (except in the case of 100 prototypes).
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Top M 100 200 400 800

Top 1 11.2805 8.2913 6.4394 5.2925

Top 2 7.0670 4.6494 2.9465 2.1813

Top 3 5.5482 3.4134 1.9760 1.3812

Table 3. Averaged validation error over ten runs for the best soft K-NN classification in the

upper problem. (Note: a classification error is produced if the label of the training pattern

does not agree with the one of the labels of the M discriminant functions with highest

activation.)

Top M 100 200 400 800

Top 1 11.4351 8.5248 6.6061 5.4136

Top 2 7.0222 4.6464 3.0445 2.2498

Top 3 5.5754 3.4656 2.1373 1.4601

Table 4. Averaged test error over ten runs for the best soft K-NN classification in the upper

problem.

4.3. Simulations #3: Overtraining and Overfitting in adaptive soft K-NN
classifiers

Overtraining (that is, the excessive tuning to the training set of the solution due to reaching a

deep minimum of the cost function) can lead to solutions with poor generalization capabilities. If

the number of free parameters of the classifier is excessive, overtraining leads to overfitting (the

solution is too fitted to noisy samples). The usual way of avoiding them is to stop at a (local)

minimum of the validation set. However this practice can be too conservative since the learning

algorithm could converge to a local minimum of the training cost function far from the global

minimum so the risk of overtraining would be low.  (See e.g. multi-layer perceptrons trained

with the back-propagation algorithm (Lawrence et al., 1997)).

In table 5 we show the results of the best soft K-NN classifiers for the upper problem over 50

runs when the learning algorithm stops at minimum of training and validation errors. Observe

that classifiers achieve their best results when they stop at a minimum of the training error.
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Codebook sizeStop at a

minimum of the 100 200 400 800

Training error 10.1048 (1.30) 7.2448 (0.4689) 6.2897 (0.2336) 5.2886 (0.143)

Validation error 12.117 (1.4342) 8.7315 (0.837) 6.5257 (0.297) 5.366 (0.18)

Table 5. Averaged test error and variance over 50 runs for the best soft K-NN classification

in the upper problem when the learning algorithm stop at a minimum of the training and

validation errors.

5. Discussion

5.1. Soft K-NN vs. Crisp K-NN
The Soft K-NN algorithm uses the distance to test patterns for its estimation of posteriori

class probabilities. This additional information enhances the approximation quality of the

estimation since it introduces a smooth interpolation in relation with the crisp K-NN estimate.

We have shown in figure 1 that the classification borders of the soft K-NN estimate are a smooth

version of the crisp K-NN borders. As section 4.1 demonstrated, the resulting smoothed borders

increase the classification rate for a hard decision at the expense of a little more computation.

Besides the soft K-NN rule allows a fuzzy classification (Bezdek & Pal, 1992) where soft labels

can be used for post-processing purposes. Section 4.3 show that if a post-processor detect the

correct label among the two greatest outputs of the soft K-NN classifier the classification

accuracy can be notably reduced (more than a half).

5.2. The Adaptive Soft K-NN algorithm vs. LVQ algorithms
 The adaptive soft K-NN algorithm computes a reduced set of prototypes for the soft K-NN

classification rule. The learning algorithm minimises a modification of the cross-entropy

function whose absolute minimum points ensure the minimisation of the training classification

error. However the learning rule resembles a fuzzified version of Kohonen’s LVQ algorithm

(Kohonen, 1996) so this fact can indicate some similarity between our algorithm and LVQ when

hard decisions are employed (σÆ ∞) and K=2. Suppose that mi[k] and mj[k] are the two nearest

prototypes to pattern x[k] then equation 19 yields
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Equation 21 is the LVQ2.1 algorithm when the training pattern x[k] falls in a window defined

in LVQ2 and LVQ3 algorithms. This result is not a surprise since (Bottou, 1998) showed that

the LVQ2 algorithm performs gradient descent over an instantaneous loss function based on a

continuos approximation of the (binary) classification error function.

5.3. The loss function
The loss function that we use in the learning phase has interesting properties. It is less

sensitive to outliers as section 3.2.2 shows (see (Bermejo, 2000) for an additional discussion).

Besides, our error function is, for a two-class problem, the margin function of the classifier

averaged over the whole training patterns. If K=2 for a two-class problem, the learning rule

coincides with the learn1NN algorithm (Bermejo, 2000). So the computed prototypes uses the

support vectors to build Optimal Margin (OM) hyperplanes (Schölkopf, 1997) as it was

empirically shown in (Bermejo, 2000).

5.4. Overtraining and Overfitting
Experimental section 4.4 shows that if we stop at a local minimum of the training

classification error instead of using the early stopping criterion, the test error is reduced. This

result can suggest that overtraining is harder that expected (Lawrence, 1997). Since the learning

algorithm can hardly achieve a global minimum the risk of overtraining is reduced so the use of

a validation set makes the algorithm to stop too early. Furthermore, If overtraining is difficult

then the risk of overfitting is notably reduced.

6. Conclusion
Crisp K-nearest-neighbour classifiers estimate posterior class probabilities using a fixed

number of training data. This feature prevents them, unlike other approaches, for not having in

some input regions enough data to ensure good generalization. Although the quality of their

estimations (a simple ratio of integers) is too poor to properly approximate the true probabilities

when finite data sets are employed.

An extension of K-NN estimation was presented in order to overcome this limitation: for

each testing pattern x, a Parzen window estimate is computed using the K nearest (in the
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Euclidean sense) training points. This simple algorithm also estimates the posterior class

probabilities although all the training data points must be retained in order to compute the

estimations.

An improvement of this approach can be achieved, in terms of storage and processing

requirements, by replacing the local kernel estimation with a simplified adaptive mixture model:

since each model of the mixture is locally defined, for each testing pattern we only take into

account its K-nearest-models. The total number of mixture models will be typically much

smaller than the number of training points and the mixture models centers are no longer

constrained to coincide with the training points. We have proposed a supervised learning

procedure to estimate the mixture models parameters based on minimizing a modification of the

cross-entropy error function. This error function has the same minimum points that the cross-

entropy error function while it allows the derived on-line gradient learning algorithm to have a

more robust behavior in presence of outliers in the training set.

Experimental results in two handwritten classification problems demonstrate the potential

and versatility of the proposed classification system. Since the soft K-NN classifier includes as a

special case the crisp version, in numerical simulations we always find an optimal solution that

achieves better classification accuracy than crisp 1-NN classifiers designed with LVQ

algorithms and K-NN classifiers.
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Appendix: The Soft K-NN Kernel Estimation
Consider a training set of random pairs T={(xi, class label(xi))} i=0, ..., N-1 where xi is a

random sample belonging to one of the C existing classes. Suppose we take the region R(x) to

be a small hypersphere centered at the point x that contains precisely K training data points. Let

us denote R as the event X belongs to R(X). This event is always true due to any vector belongs

to a region centered at itself. So the following equation can be written

( ) ( )R,CPCP ll xx = (A.1)

Making use of Bayes' theorem in the right hand-side of equation (A.1) we have
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(A.2)

If the training data belonging to class l that fall in R(x) are denoted by {(xi
l)} i=1...Kl l=1...C, we

obtain the following Parzen window estimates (equation (2.57) (Bishop, 1995)) for the

probability density functions fX\R and fX\Cl,R
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Since the probability of belonging to class l conditioned to belong to region R, P(Cl\R) can be

approximated by Kl/K, we have as an estimation of P(Cl\x)
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