
6  A Dynamic LVQ Algorithm for Improving the
Generalisation of Nearest Neighbour Classifiers

Abstract-  A new dynamic strategy for Kohonen’s LVQ algorithms using growing and

pruning methods is introduced. Once the learning system converges to a solution using a fixed

number of prototypes, the growing method incrementally adds new prototypes in those local

regions where the misclassification error is greater. The initial locations of the new prototypes

are viewed as estimates of the new equilibrium points of the learning algorithm with the

augmented number of prototypes. This constructive process is repeated until the classification

accuracy measured with a validation set stops decreasing. Then, a pruning algorithm is executed

to remove all those prototypes that do not form class borders. Experimental results using NIST

hand-written databases are promising since we show that dynamic LVQ algorithms outperform

their static counterparts for the same codebook size.

Index Terms- Constructive Learning Algorithms, Growing Algorithms, Incremental

Algorithms, Pruning Algorithms, LVQ Algorithms, Nearest Neighbour Classifiers.
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1.  Introduction
The approximation power of a learning system determines the hypothesis space where the

learning algorithm searches a solution. As the hypothesis space augments, the learning system

has more changes to solve the classification or regression problem since the approximation error

will be typically smaller. However the model induced by the learning algorithm will have

presumably worse generalisation capabilities since the estimation error will be (probably) bigger

due to computing the parameters of a model of increased complexity using the same number of

training samples. Consequently, the learning system must solve efficiently a trade-off between

its approximating power and the information about the problem given by the training set. (This

well-known problem appears in the literature under several formulations that in spirit are

similar: bias-variance trade-off  (Geman et. al, 1992), approximation error vs. estimation error

(Niyogi & Girosi, 1994), and the relation between the capacity of the learning system and the

number of training samples (Vapnik, 1995).)

Constructive (or growing or incremental) and Pruning algorithms are concerned with the

problem of choosing the optimal balance between the approximation power and the estimation

error of the learning system given a training set of fixed size. (In multi-layer feed-forward neural

networks, this problem is choosing the right architecture- e.g. the number of hidden layers and

hidden units per layer. In nearest neighbour classification, it is simply the selection of the

number of prototypes for each class.) The first group of algorithms starts with a small model and

grows it until a satisfactory solution is found. On the other hand, pruning algorithms removes

those parameters of a big (and previously trained) model that are not effectively used. Much

work on dynamic learning procedures (that is learning algorithms that deal with adaptive

architectures) has been devoted to feed-forward neural networks. (See  (Kwok & Yeung, 1995)

and (Paresh et al., 1995) for surveys on constructive algorithms for feed-forward neural

networks in regression and pattern classification respectively. (Bishop, 1995) §9.5 can also serve

as an introductory reference for growing algorithm and pruning algorithms using these

architectures as well.) However, in this chapter, we focus our attention on adaptive nearest

neighbour classifiers that use Kohonen’s LVQ algorithms (Kohonen, 1996).

Kohonen’s LVQ algorithms design codebooks (or set of prototypes) for 1-NN (nearest

neighbour) classifiers that exhibit good generalization. (In this chapter, we will refer to these

classifiers as LVQ-based NN classifiers). Kohonen has shown that given certain conditions

these local learning algorithms can estimate the Bayesian borders with arbitrary good accuracy,

depending on the number of codebook vectors used (p. 206; (Kohonen, 1996)). However, in
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practice, we do not know the optimal number of prototypes for each class that achieves a good

balance between the approximating power and the estimation error of the NN classifier.

Typically, the user of the learning algorithm assigns the number of prototypes before the training

process begins. Then several training sessions with different assignations are performed and

finally the user choose the better session according to a pre-established criterion (e.g. choose that

classifier that gives the best classification accuracy of the validation set). Clearly, a better

strategy would be a dynamic assignation of the prototypes according to the errors produced in

the classifier. In this way, we could perform several training sessions linked with a growing

algorithm that adds new prototypes in those local regions where the misclassification error is

greater. This constructive process would be repeated until the classification accuracy measured

with a validation set stops decreasing and finally a pruning algorithm could be executed to

remove all those prototypes that do not form class borders.

In the next section, we will introduce the dynamic procedure. Section 3 presents some

experimental results using NIST hand-written databases (Garris et al., 1997). Finally some

discussion and conclusion are given.

2. The dynamic LVQ algorithm
The complexity of Bayes borders is locally defined so we can reduce bias (the difference

between the Bayes classifier and our classifier) if we adjust locally each border according to the

evolution of the classification error during training phase. This means give dynamically more

approximating resources (i.e. codevectors) to regions in which training data are poorly

classified.  However, if we growing process is not conveniently stopped the risk of over-fitting is

high (i.e. the excessive tuning to the training set). Consequently, a validation set must supervise

the growing process. Besides a pruning process (the removal of useless prototypes) is also

convenient to achieve the simplest solution. This also helps avoiding over-fitting.  Accordingly,

we propose the following dynamic schema based on an earlier proposal (Bermejo et al., 1998):

1. Train using a static LVQ algorithm until the classification error of a validation set stops

decreasing

2. Constructive part: Add a maximum of MAV new prototypes in those Voronoi regions in

which the classification error is greater. The fundamental question of the growing process

is to determine the initial location of the new prototypes. Since LVQ algorithm perform

gradient descent over a cost function (at least LVQ1 (Bermejo, 2000a) and LVQ2
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(Bottou, 1998)), the initial values might be near to an attractor (or an equillibrium) point

of the LVQ algorithm. (Bermejo,2000a) shows that the attractor point of LVQ1 is

3. 

4. Repeat 1 and 2 until the validation error stops decreasing

5. Pruning part: Remove all those prototypes that do not form class borders.

2.1.  The Constructive part
The fundamental question of the growing process is to determine the initial location of the

new prototypes. Since LVQ algorithm perform gradient descent over a cost function (at least

LVQ1 (Bermejo, 2000a) and LVQ2 (Bottou, 1998)), the initial values might be near to an

attractor (or an equillibrium) point of the LVQ algorithm. (Bermejo,2000a) shows that the

attractor point of LVQ1 is
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where {(xi, cl(xi)), i=1,...,N } is the training set, cl(xi) denotes the class label associated to
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regions where the classifier maps any input pattern that falls in it to the class which its

codevector mj
pℜ∈ belongs.

We will place a new prototype m belonging to the same class than some training samples

{ xj} that fall in a particular Voronoi region Rk induced by the codevector mk. An initial value

near the attractor of this new prototype could be the mean of these samples. This agrees with the

heuristic derivation of (Canolli & Valli, 1994). However this mean only takes account on {xj}

and the attractor of the new prototypes will depends on samples previously assigned to the

Voronoi region Rk. A simple dependence on the initial value of the new prototype with other

samples than {xj} assigned to Rk  could relate them with mk.

According with the above observation we propose the following constructive (or growing)

algorithm:
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1. Compute Cerrn+1, a subset of Cn+1 of size ≤ MAV, composed by those prototypes that

cause the greatest number of misclassifications. The formal definition of this set is

{ } { }
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where E(mi) is the number of classification errors due to codebook vector mi. In other words,

E(mi) is the number of input patterns which class is different from vector mi that falls into its

Voronoi region. E(mi) can be expressed as
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where c is the number of classes and E
cl(mi) is the number of class cl classification errors due

to codebook vector mi or the number of class cl vectors that fall in the Voronoi region of mi

with mi
  belonging to a different class.

2. For each mi   that belongs to Cerrn+1:

2.1. Compute those training samples {xm, i=1,...,M} assigned to mi that belongs to the

class that causes the majority of misclassifications in the Voronoi region of mi.

2.2 Compute mean vector xprod of set {xm} as:
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    2.3. Create a new codebook vector with these values:
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2.2. The Pruning part
The pruning algorithm must remove those codevectors that do not contribute to form class

borders. First, we will delete those prototypes in which no training data are assigned to them

(pass 1). Then we erase those codevectors makes hat classification accuracy of the validation set

stands or improves when they are not used in the NN classifier (pass 2). This second step is

repeated cyclically through the codebook until there is no 'redundant' codevector left.

3.  Experiments in Hand-written character Recognition
In this section, we present several simulations using the LVQ_PAK (Kohonen et al., 1995) as

a software toolbox to compare our dynamic LVQ algorithm with static LVQ. Since the

constructive part of our algorithm can employ any of the LVQx algorithms, we have chosen

LVQ3 as a core. We will refer to this part as CLVQ3.

3.1  NIST Database and its preprocessing
This handwritten data set can be found in (Garris et al., 1997) in directories train/hsf_4,

train/hsf_6 and train/hsf_7. We have spilt directory train/hsf_7 in two sets (one for validation

and one for test) to preserving the original data’s class distribution. The other two directories

were chosen for training (see Table 1). These images (32x32 pixels) have been pre-processed

with a Principal Component Analyser that extracts 64 components from each image (NIST's

mis2evt utility). The correlation matrix of the PCA was computed using the training set.

Database Training Set Size Validation Set Size Test Set Size
Upper 24420 1031 10453

Lower 24205 1078 10914

Table 1. Sets Size.

3.2. Codebook Initialization and default parameters in CLVQ3.
Every experiment related to CLVQ3 applies in cascade first eveninit, balance, olvq1, lvq1 &

lvq2 programs from LVQ_PAK to obtain a CLVQ3's initial codebook. Here it is the parameters

values employed in calling these programs: eveninit: noc=<initial codebook size>; olvq1:

rlen=90000; lvq1:  rlen=90000, alpha=0.01; lvq2:  rlen=90000, alpha=0.01, win=0.3. Default

parameters values used throughout experiments, those related with LVQ3 algorithm embedded

in CLVQ3, are the following: alpha=0.01, win=0.3, epsilon=0.1.
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3.3. Experiment #1
We have done three sub-experiments to characterize the parameters of the constructive

algorithm and the accuracy of then to compare the accuracy of CLVQ3 with its static

counterpart. Besides, we will add new prototypes every EPUP epochs instead of estimating the

optimal number of epochs using a validation set to observe if this sub-optimal procedure have a

big impact the test error.

3.3.1. Sub-Experiment 1.

CLVQ3 was trained with two MAV values (2 & 10) for several initial codebook sizes (50,

150, 234 & 280), BETA values (0.2, 0.5, 0.7, 0.9 & 1.0) & EPUP values (1, 5 & 20). We apply

in cascade 4 times CLVQ3 with RLEN=500000. A total of 480 CLVQ3 simulations were

performed.

3.3.2. Sub-Experiment 2.

CLVQ3 was trained with a low initial codebook size (50) for two values of MAV (2 & 5) &

BETA (0.2, 0.5, 0.7, 0.9 & 1.0). We apply in cascade 4 times CLVQ3 with RLEN and EPUP

having these values: (100000, 1), (500000,5), (500000,10) and (15000000, 20).

3.3.3. Sub-Experiment 3.

We compare best results obtained in experiment 1 with results from applying in cascade

LVQ_PAK learning systems (evenint->balance->olvq1->lvq1->lvq2->lvq3) to obtain a

codebook of similar sizes. Parameter values are the same of those appeared in the above sub-

experiment 1 except RLEN (2500000 in lvq3 and 150000 otherwise).

3.3.4. Experimental Results.

 We can observe in table 2 the results of sub-experiments 1 and 2, the learning rate increases

smoothly as BETA does and is more stable in time with low values of EPUP. Besides, there is

an optimal value of BETA (≤1.0) in terms of generalization (test) error and this value is affected

by EPUP. On the other hand, the number of vector pruned basically depends on MAV, although

EPUP plays a secondary role (High values of EPUPÎ fewer redundancy). If MAV increases

redundant vectors does, even when EPUP is high. If EPUP & RLEN vary dynamically on

training, we can obtain reducer codebooks.

Table 3 shows the results of sub-experiment 3. Generalization is better in CLVQ3 than in

LVQ's system with the same codebook size, even when CLVQ3 begins on a small codebook.

Furthermore, the variance of class training error (training error for each class) is higher in LVQ

systems than in CLVQ3 (a relation 15:1 and the variance decreases in CLVQ3 as MAV
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augments. Finally, CLVQ3 offers at the end of the growing process a solution more redundant

than LVQ's. So after pruning, CLVQ3's codebook is smaller than the pruned codebook of LVQ

algorithms.

3.4. Experiment #2
In this section, we apply the CLVQ3 and the pruning algorithms (hereafter, DLVQ3) in upper

and lower handwriting characters. In a first phase we have estimated with a validation set the

optimal parameters. Ten training runs with DLVQ3 and LVQ algorithms executed in cascade

were computed using ten different random sequences of the training set. Table 3 Results can be

found on Table 4. We can observe that DLVQ3 generalises better and is more stable (lower test

error variance) than LVQ-based system. Also, it has superior performance than other neural

approaches reported in (Garris et al., 1997), where test error on upper & lower recognition are

14.7% and 23.1 % with PCA64+PNN & 10.1% and 20.3% with PCA128+MLP respectively.

MAV 2 10 2 5
Initial Codebook Size 50 150 234 280 50 150 234 280 50 50
EPUP 1 1 1 1 1 1 1 1 Dyn Dyn
BETA 0.7 0.9 0.9 1.0 0.9 0.5 0.9 0.5 0.7 0.7
RLEN= (5x105)x 11 4 4 4 4 4 3 4 - -

Final Codebook
Size

494 278 361 723 730 830 723 908 723 908

Training Error 6.12 6.13 4.9 4.51 4.65 4.17 3.18 3.07 7.04 5.85

N
o

P
ru

ni
n

g

Test Error 9.01 8.48 7.92 7.79 8.01 7.81 7.39 7.23 9.28 8.85
Final Codebook
Size

351 277 351 413 504 484 656 622 208 242

Training Error 6.22 6.13 4.9 4.51 4.65 4.17 3.18 3.07 7.04 5.85
Test Error 9.01 8.48 7.92 7.79 8.01 7.71 7.39 7.23 9.28 8.85

Med. 5.86 5.39 4.93 4.47 4.45 4.18 3.01 2.87 6.61 4.96

P
ru

ni
n

g

C
la

ss
tr

a
in

in
g

er
ro

r

Var. 5.17 5.14 3.45 3.23 1.98 1.37 1.47 1.17 4.35 4.76

Table 2. Best Simulation Results of sub-experiment 1-1 (first 8 columns) and sub-experiment

1-2.

Codebook  Size 198 245 298 349 412 498 624
Training Error 8.53 8.48 7.55 6.83 6.81 6.25 5.96
Test Error 11.16 11.27 10.66 9.94 10.13 9.67 9.25

Med 6.505 6.195 5.83 5.65 5.28 4.69 4.785

C
la

ss
tr

a
in

in
g

er
ro

r

Var 60.64 62.75 56.74 55.7 52.56 53.16 52.49

Table 3. Simulation results of the LVQ_PAK learning strategy for upper handwriting

characters (sub-experiment 1-3).
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Upper Lower
Test Error Final C size Test Error Final C sizeExpert

Med Var Med Var Med Var Med Var
PCA64+DLVQ3 (without pruning) 7.27 0.016 893 605.5 15.28 0.021 419 31.15

PCA64+DLVQ3 (with pruning) 7.22 0.015 671 870.8 15.27 0.021 322 62.45
PCA64+LVQ_PAK 9.16 0.074 729 0 17.01 0.843 325 0

Table 4. Upper & Lower Handwriting Recognition with DLVQ3 & LVQ algorithms

executed in cascade  (LVQ_PAK).

4. Discussion

4.1. Bias and Variance reduction
As we pointed out before, the learning system must solve efficiently a trade-off between its

approximating power and the information about the problem given by the training set. This can

be stated as a bias-variance trade-off (Geman et. al, 1992). Bias models the difference between

the learner's hypothesis and the optimal solution (the Bayes classifier in our case), while

variance gives account on the dependence of learner's hypothesis on training data and also on

optimization algorithms.

In local learning algorithms used for regression, variance are governed largely by the number

of training samples that form each local region, while bias is mostly governed by its size (p.3;

(Friedman, 1996)). If more data produces a region the hypothesis has a smaller variance; the

smaller the region is, the more accurately the approximation is. Bias and variance using LVQ

algorithms can also be interpreted in a similar way.

In LVQ algorithms, each local region is the Voronoi region or the region of influence of each

codevector. Each codevector is formed due to a certain number of training samples. If there are

many codevectors, less training samples contribute to its formation, so they are more dependent

on particular training data, although Voronoi regions are smaller and hence we can define

classification borders with more accuracy (getting closer to Bayes classifier). Instead, if there are

few codevectors, they are less dependent on training sets but Voronoi regions are bigger and the

difference between our classifier and Bayes one is greater. Here it appears what we call, loosely

speaking, a 'bias-variance' tradeoff since we must achieved a number of codevectors (and an

allocation of them) that balance properly between difference of the solution respect to Bayes'

('bias') and its dependence on training data and optimization algorithms ('variance').

The proposed dynamic strategy is concerned with bias reduction since it places new

algorithms where those regions in which the classification error is greater. Consequently the

approximation power of classifier is locally augmented and bias is reduced.  However, if do not
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stop the constructive process, the algorithm can place too many prototypes to compute them

reliably with a finite training set. This leads to over-fitting, that is an excessive tuning to the

training set produced by a high estimation error (or high variance) in the computation of

prototypes. Consequently, the addition of prototypes is monitored with a validation set to avoid

poor generalization due to high variance.

On the other hand, variance could also be reduced using a complementary strategy based on

the local extreme method (Bermejo, 2000b). This method stabilises locally the class borders of

an ensemble of nearest neighbour classifiers. If the generate different classifiers with the

dynamic LVQ algorithm using different initial conditions (and ordering of the training samples),

we will obtain different solutions due to reaching different local minimum points. Then the

application of local extreme will reduce the variance of the solutions respect to the optimization

algorithm. The synergistic combination of both strategies is displayed in figure 1. This

association can be useful as (Bermejo, 2000b) shows.
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4.2. Capacity control
In order to ensure good generalization, the capacity of the learning machine must be

controlled (Vapnik, 1995). One possible measure of the capacity of a classifier is its VC

dimension h. In nearest neighbour classifiers, h is a function that increases as the input

dimension d and the number of protoypes of classifier m augments (Devroye et al., 1996).

Vapnik’s work ensures a low estimation error if n/h>20 where n is the number of training

samples. Unfortunately, this relation cannot be used in real-world sets. Besides, the structural

minimization risk (SMR) principle (Vapnik, 1995) (Devroye et al., 1996), which explicitly

controls capacity, cannot be applied since the penalised term is too loose for this kind of

classifiers. However, since h increases as the number of prototypes, the SMR principle

converges to Occam’s razor: if we have two NN classifiers with the same training error, choose

the simplest (that is the classifier with fewer prototypes). Consequently, the constructive process

of the SRM principle that uses a sequence of classifier of increasing capacity, which minimises

the training error, could be emulated with our dynamic algorithm. First, we start with a simple

solution minimising the validation error. Then we add new prototypes (and hence we increase

the capacity of the classifier) and we start again the training phase using the previously

computed solution. This growing process ends when the validation error stops decreasing.

4.3. The problem of local minima in LVQ algorithms

The common problem of local minima causes that gradient systems achieve a poor solution.

Proper initialisation procedures are a mandatory. However we cannot place the prototypes near a

solution if we do not where the solution resides. The dynamic initialisation performed in DLVQ

could solve, at least partially, this problem since the new prototypes are placed near their

attractors using an estimation based on the training samples that cause its creation and the

nearest equilibrium point of the codebook computed in the previous static learning session.

5. Conclusions
We have proposed a dynamic LVQ algorithm concerned with the reduction of bias. DLVQ

tries to define more carefully 1-NN classifier's class borders. As a consequence of its dynamic

addition of prototypes with the guidance of the training classification error, the generalisation

error can be reduced due to the variance of the number of misclassifications of each class is

reduced in comparison with LVQ algorithms. DLVQ also uses a validation set to avoid over-

fitting and a pruning algorithm that simplifies the final solution.
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