5 A Batch Learning Vector Quantization Algorithm
for Nearest Neighbour Classification

Abstract- We introduce in this chapter a batch learning algorithm to design the set of
prototypes of 1-nearest-neighbour classifiers. Like Kohonen's LVQ algorithms, this procedure
tends to perform vector quantization over a probability density function that has zero points at
Bayes borders. Although it differs significantly from their online counterparts since: (1) its
statistical goal is clearer and better defined; and 2) it converges superlinearly due to its use of the
very fast Newton's optimization method. Experiments results using artificial data confirm faster

training time and better classification performance than Kohonen's LVQ algorithms.

Index terms- Learning Vector Quantization, Newton's optimization, Nearest Neighbour

Classification, Batch learning algorithms

Abbreviations- BLVQ- Batch Learning Vector Quantization, LVQ- Learning Vector

Quantization, NN- Nearest Neighbour.

1. Introduction
Kohonen's LVQ algorithms (Kohonen996) are statistical learning procedures teat to

perform VQ (Cover & Hart, 1967) over a probability density function that has zero points at
Bayes borders. Thus, the labelled prototypes computed with these algorithms together with the
nearest neighbour rule define an estimator of the Bayes classifier.

In this chapter, we introduce a batch learning procedure (hereafter, BLVQ) to design the
set of prototypes of nearest neighbour classifiers. BLVQ relies on the same idea than
Kohonen's LVQ algorithms but its generalization and convergence properties seems better
due to:

1) The minimum points of its loss function are clearer defined from a statistical point of view
and better approximated than Kohonen’s LVQ algorithms

2) BLVQ converges superlinearly to an asymptotically stable point (e.g. a minimum) of its loss
risk function since it uses the very fast Newton's optimization method. By contrast,

Kohonen's LVQ algorithms employ on-line gradient descent.

In the next section the mathematical framework of our formulation is introduced. Section 3
describes the derivation of the BLVQ (Batch Learning Vector Quantization) algorithm. In
Section 4, its generalization properties are analysed. Section 5 shows the experimental results of
our algorithm over Kohonen's LVQ algorithms using artificial data. In section 6 some

discussion is given. Finally, we end with some concluding remarks.

2. Mathematical framework

2.1. Basics of our approach.
We want to design a labelled codebookf@ a nearest neighbour classifier that uses a

K /q
distance metricD, (x,m J.): EZ|Xi —mji|q9 where q is a parameter fixed by the user. We
= 0

compute Cin the learning phase as follows (See fig. 1):
Step 1. First, we compute an unlabeled codeboqle{tn,,i=1....M} for a Nearest-
Neighbour vector quantifier that useg & a distance metric.,ds calculated through a
vector quantization process over a probability density function that has zero points at Bayes
borders. This density function is defined using the original class density functions.
Step 2.We then assign to each codevectpariass label with a labelling schema. The result
of this process is a labelled codebogk{n, , classabellm,)),i =1...,M}.

fxciP(C1) fxuc2 P(C2) facs P(C3)

JOAUNN Al

Original class density functions

Label
* Assignation
A
A modified p.d.f with zero points at 00000 0 Voomoovo 060 O

Bayes Borders

Fig.1. Our approach to the design of the codebook of NN classifiergperform VQ over a
modified density function. This function tends to zero at Bayesian borders and is defined using
the original class density functions. Once the unlabeled codevectors are computed though a VQ

process, we assign them to one of the existing classes.

2.2. Optimal Design of the unlabeled codebook C .
As we have just seen, an unlabelled codebcm;k{lﬁii ,i :L...,M} for a vector quantizer VQ

is computed in the first step of our learning procedure. In this subsection we introduce the loss
functional, called{VQ], which must be minimised to computg @ the vector quantization
process. This functional is presented for the case in which the density functions are known and
for any value of q. Let us start with some definitions before we present in detaih hew |
defined.

A VQ of dimension k and size M is defined as a mapping from a k-dimensional input space

X that belongs td1¥, into a codebook (or set of prototypes) {&,i =1,...,M}. Associated

with every codevector nthere is a region of influence ®Rhere VQ maps any input vector that
falls in it to m. Since we use a nearest neighbour quantizes,defined by

R = kD, (um,)= minD, (m,) @

k 'a
whereD, (X!mj): EZ‘Xi -m; ‘QH . (Note that in the case q=24 3 the Euclidean distance
= H

metric.) Thus the VQ mapping, denoted as VQ(x), can be expressed as

:Ml(xDR)m wherel(xDR):Dl sixUR, @
2 1 ORm, =3 sixOR,

Now, the goal is to find a suitable measure of performance that the desired codgbook C
minimises. This overall performance in vector quantization can be expressed in terms of a
statistical criterion that measures the average quantization error over the total sequence of input
patterns to be quantized. In our case we do not make use of the density function of the input
space as usual. Instead, we employ a modified probability density function that takes zero values
in Bayes borders. Consequently, the expected error of the vector quantizer is given by the

functional

\ fx\(:I P(CI)_ fx\c P(Cr) (3)

val= 3 [, aevaba (ko= 3 Darvb) o e

where CL is the number of existing classes, {B1,...,CL} are the Bayes regions; Is a
constant that ensures that, {g1,...,CL} is a density function and, &d Gare the classes with
the highest posterior probabilities in the Bayes region Mbre precisely, ¥c/P(G) and
fxcrP(G) are defined by

fx\cI P(CI): max fx\ci (X)P(Ci) (4)

i=1..CL,0x0B,
fye P(C)= max f,. (x)P(C)

i#l,0%08B,

where {fci, i=1,...,CL} are the class density probabilities and {(1...CL} are the class

priors. Since Dq is locally definedd{ (x,vQ(x)) = il(xD R,)D3(m,)), . can be further
£

developed:

Il[VQ]:zIB'Jil(XDRj D3 om, o, (ex = ZZJ-EU\R Dgbm;)g, (<o ©

=1

5-4

2.2. Quasi -Optimal Design of the unlabeled codebook C for D ».
As we pointed out before, we want to compute an optimah@t minimizes the functional

11[VQ]. Let us suppose that it exists a Bayes regipfoBevery Rthat satisfiesB, n R, = R; .

Then (5) can be approximated by

Iz[VQ] = MZIRi Dg (X, m,)glj (X)dX (6)

If g=2, D, is the Euclidean distance and equation (6) admits an analytical solution to the

minimization problem. The partial derivative of lespect to min those points where Iis

differentiable, assuming that the conditions to interchahgém; and I operator are satisfied

(see (Bottou, 1998) for technical details), is

7
alazTE/jQ] = _ZIRi (X -m)glj (X)dx %

Solving the equationg% =0 j=1...Myields

J

foxo (x)dx (8)

m j=1.M

Hopt f. 9 (x)dx

2.3. An empirical estimator of | 3[VQ]
If the expected risk functiona][VVQ] was known, one could computeg, ®y simply applying

eqguation (8). In practice [VQ] is unknown because the class density functions are unknown. In
these cases, the only information available from the classification problem is one or several data
setsDn={(x;, class indexX)), i=0..N-1}. Using one of these sets called the trainingTset

1,[VQ] can be approximated by the empirical risk,{VQ]:

e [VQ]=T,[VQ] = iﬁ Ngl(xi oR, Jlx, O¢,)P(C,)08 (x,,.m,)- o
M 1 N-1

-3 o 2 OR ik €,)RiC, Joitem))

i "%

5-5

whereCj is the first majority class of data samples that fall in(Rjis the second majority class
of data samples that fall in Rj,;i& the number of training samples that belon§jtoN; is the
number of training samples that belon@foand 1 is the indicator function.

If we use /N to estimate P((and Ny/N to estimate P(§} then eq. (9) can be rewritten as

leme[VQ] = T,[VQ]= gﬁgl(xi DRj)l(Xi Dé,j)Dg(xi m,)-

(10)
M 1 N ~
2N 1(Xi DRj)l(Xi DC”.)Dg(xi,mj)
IE i=
. leVQl .
Solving the equatlona— =0 j=1,...,M for g=2 yields
m.
J
NR],(”:“- _ NR],C,, _ (11)
Z X|R;,C; - Z X,|R;,C,
m,| =— = j=1..M
opt N ¢ N ¢

where Ny ¢j is the number of data samples that fall in Rj and belong to@Jaemsd Ny;j¢;; is the
number of data samples that fall in Rj and belon@,jtdt is easy to show that equation (11) is

the empirical estimator of the optimal solution given in equation (8).

3. The Batch Learning Vector Quantization Algorithm
In this section, we introduce the BLVQ algorithm that addresses the problem of designing a

codebook for an Euclidean nearest neighbour classifier. The algorithm is divided into two steps:

it performs Newton’s optimization ovesh{VQ] and then it assigns class labels to codevectors.

3.1. Step 1: Vector Quantization
The process of vector quantization simply consist of minimizing the functigngVQ)]

with an optimization algorithm. We have chosen the Newton's optimization method since the

Hessian matrix can be easily computed. Hence the update equation has the following form:

_ 79 enz[VOIn] (12)
m[n +1]—m[n]—H [n]am—[n]

5-6

om, O , .

where m = B % Ht= mﬂi{;r;m‘ZE;/Q]D

m,g 25

Solving %\[ﬁ]}[nﬂ and H yield
alem [VQ] _ 1 Ri i ~ NRi S — (13)
arp;j T K, N g; (Xi|RJ"C'J —mj)— ; (Xu R;.Cy _mj)E
14
gV _ B N s N) =] (1)
om.am o KyN =& o o
o 5 0 otherwise

where | is the kxk identity matrix
As we see from inspecting eq.(14), H is a diagonal matrix, so the iterative equation to

minimize kmp2iS

NRj.6|j | _ NRj.éri . (15)
Z X;|R,,C, - Z X,|R;,C,
m,-[n +1]: NRj,é.j - NRjyéri C= C[n]

where C[n] is the codebook at time n.
An important remark here is the convergence speed of the algorithm. Let {m[n]} a

sequence generated by algorithm (15) which convergence to a poinl. As

lim H[n] = H(m[oo]) thenm[n] - m[e] superlinearly and usually quadratically (See section
1.4. in reference (Hestenes, 1980)).

In summary, the vector quantization process using the Newton's optimization over the
functional kmp2is shown below.

Input: T (training set) rlen (running length)

5-7

1. Initialize Gy
2. ComputeT [:{xi|Rj[n], classlabel(xi|R Inl}

WhereR [n] = %‘Dz(x, mj[n])= imif\MDz(X, m, [n])%

Andx\R[n] are the training samples that fall in region [R]
3. Compute ¢In] (majority class of training samples that fall ig[ij) and G;[n] (second
majority class of training samples that fall isjri)

4. Update C[n] with the following equation onlyM_ . # N . :

U]

Nij6|] NRJ,(:rl
Z xi|Rj,6,j - Z X,|R;,C;
mj[n+1]= = N —I\LIF
R; *élj R, ’éfl C= C[n]
5. n=n+1

6. If (n>rlen) then goto 2
7. End

3.2. Step 2: Assignation of Labels
After vector quantization is done, the class label of each codevector must be computed.

We propose this labelling schema:

Input: T (Training set) C (Unlabeled codebook)

1. ComputeTRj = {xi |Rj , classlabel(xi|Rj)}

WhereR, = %‘Dz(x,mj)::rpinMDz(x,mi)@

Andx\R, are the training samples that fall in region R

2. Class label fn}= majority class of data samples |T1Rj (If the two major classes

have the same number of training samples, choose one of them randomly)

4. Generalization properties of the BLVQ algorithm

4.1. The effect of Finite resources
Given a powerful enough hypothesis space, e.g. a sufficient number of codevectors, one

could expect to solve any classification problem since Bayesian borders can be approximated
by a series of (locally defined) hyperplanes that are formed with two nearest codevectors of

5-8

different classes. Practically, since we deal with finite resources and imperfect optimization

procedures, generalization performance is degraded by three main factors:

1. Afirst cause of degradation is due to the fact that we,)é@] instead of {[VQ] to derive
our algorithm. Since;[VQ]=I,[VQ] when codebook size grows indefinitely, this source of
error reflects the fact we deal with a finite number of parameters (a finite codebook size M)
to approximate the Bayes classifier. In the case ofol large-sample results (Cover &
Hart, 1967) of nearest neighbor classifiers bound the best misclassification rate of our
overall system by E, <E,_, <E,(2-(CL/(CL-1)E,) where E denote the

misclassification rate of the Bayes classifier.

2. Another source of degradation comes from the fact that we search, during learning, a
minimum of knp{VQ], an empirical estimator of[MQ] constructed using a finite set of
observations (of size N). General theorems (Vapnik, 1982) bound the error between the
empirical functional and the expected functional and thus the error between the minimum
point of kmpdVQ] and b[VQ]. This error decreases as N grows and increases if the capacity
of the learning machine grows. In this case, the number of parameters of the codebook
(MxK) can approximate the capacity of our system. Thus this kind of error is in conflict with
the above error since if we increase BVQ] is closer to J[VQ] but, at the same time, the
distance betweenl,{VQ] and L[VQ] increases.

3. Finally, the third source of error is caused by the optimization procedure since it searches a
local minimum of {mp{VQ)] instead of a global minimum. To guarantee that the iterative
algorithm convergence to a global minimum point gf,JVQ] a good initialization
procedure is needed.

4.2. Relation of the equilibrium points of the BLVQ with the classification
accuracy.

In nearest neighbour classification, the input pattern is assigned to the class of its nearest
prototype. If we use BLVQ, these prototypes are computed from minimigipgWhat is then
the classification accuracy that we can expect from the 1-NN classifier that uses these
prototypes? If BLVQ minimises the classification error in the training set then, according to
(Devroye et al., 1996) 819, the generalisation error could be bounded for the resulting 1-NN

classifier. From differential calculus (Apostol, 1967), we kno{m’f, j =L...,M} is @ minimum

point of the functiondngz (and a equilibrium point of BLVQ) then the eigenvalues of its hessian
matrix evaluated at this point are all positive. In consonance with equations 13 and 14, the

equilibrium points of BLVQ induces a 1-NN classifier whose Voronoi regions {Rj, j=1,...,M}

5-9

force the training data that fall in them to the following constraigfeNNgj ¢ where N ¢y is

the number of data samples that fall in Rj and belong to the majority cIaséjraRg'Jl MRj.cxj IS

the number of data samples that fall in Rj and belong to the second majorigj;cleence, the
equilibrium points do not guarantee a minimisation of the training error. However if we consider
classification as a problem of estimating Bayes borders, the attractors of BLVQ are placed to
induce hyperplanes that only use training data of those two classes which are majority in

Voronoi regions and, accordingly, presumably affect the Bayes decision boundaries.

5. Experimental Results
In this section, we compare Kohonen’s LVQX algorithms (where X is 1, 2 and 3) and our

proposal using an artificial problem due to the fact that comparative studies on real-life data tend
to be less informative than those based on artificial data. Since underlying class densities are
unknown and generally we deal with a particular data set (one random sample) drawn from

these probability distributions, it is difficult to determine the causes that produces performance

differences between methods. One might expect that the classification performance of our
procedure was better than LVQ algorithms in problems where several class densities are
overlapped since estimation of &d G in LVQ algorithms is worse done. Thus, we study one

artificial problem that reflects this behaviour.

5.1 The Atrtificial problem
In the proposed artificial problem (g3c) three classes moderately overlap two-on-two. Data is

not homogeneous and is generated from two (equally probable) normal distributions for each

class (see figure 2).

5.1.1 Simulations
Ten independent training, test and validation sets (of the same gizd,200) are produced

from the g3c problem. Then one hundred runs for the classification problem, training set,
learning algorithm and different codebook sizes (6, 12, 24, 48 and 96) have been made. Error
rates for each codebook size are computed over a total of 1000N classifications.

We have initialized the codebooks using LVQ_PAK's eveninit program (Kohonen et al.,
1995). Then we have applied every learning algorithm until classification error in validation
set increases or stands. (We have monitored this error every 2 epochs. In the case of LVQX
algorithms, every time we monitored the error, we restart the value of the step)size

Optimal parameters of LVQ algorithms have been estimated using the validation set.

5-10

5.1.2 Results
The artificial classification problem was chosen to reflect the deficiencies of LVQ

algorithms. Since their on-line estimation gf&hd G is worse than our batch estimation, one
could expect better performance of the BLVQ algorithm when classes overlap. Empirical
experiments confirm this hypothesis. In figure 3a. we can see the average test misclassification
rate that have been computed over 1000N samples. Our procedure always outperforms LVQ
algorithms. The increase of classification performance was 0.54% to 1.62 %, 0.35% to 1.52 %
and 0.63% to 3% in comparison with LVQ1, LVQZ2 and LVQ3 respectively.

Simulations also reflect better convergence speed of BLVQ. Figure 3b. shows the average
speedup in the execution time of the BLVQ algorithm over Kohonen’s LVQ algorithms. This
speedup, denoted by Sx (where x is 1, 2, and 3), is computed with a division between the
training time of LVQx by the training time of BLVQ. Our algorithm (BLVQ) is in average:
23.4 to 9.7 times faster than LVQ1, 24.5 to 11.5 times faster than LVQ2 and 26.7 to 12 times
faster than LVQ3. This happens due to:

1) LVQ algorithms are on-line gradient descent algorithms, so they exhibit poor
convergence because they do not benefit from Newton's effect as our algorithm does.
2) BLVQ employs fewer operations than LVQ algorithms to make one pass through data

(see section 6).

6. Discussion

6.1. BLVQ-based NN Classification.
The BLVQ algorithm is divided in two main steps. The first step consists in performing a

particular kind of supervised clustering to obtain a codebook of unlabelled prototypes. The
interest of performing this supervised clustering process is that the algorithm place prototypes
in regions where training data is with the exception of regions where the density of training
data belonging to different classes is the same. (If the training set size were large enough,
these regions would agree with Bayes borders). The second step executes a simple schema
labelling algorithm that assign class labels to them based on a majority vote among the
training data that falls in the Voronoi cells. Since some of the prototypes computed with
BLVQ could be arbitrary close to Bayes borders then the BLQ-based Euclidean 1-NN
classifier might achieve good classification accuracy. However, as we have shown in section
4.2, the equilibrium points of BLVQ do not guarantee a minimisation of the classification
error in the training set. Consequently we cannot use theoretical results of method (Devroye
et al., 1996) 819 that bound the generalisation error (e.g. the expected differences between the

5-11

minimum achieved in the training set and the real). However, since the BLVQ-based 1-NN
classifier is a data-dependent partitioning method, the consistency of this classifier (that is, its
convergence to the Bayes classifier as Mpd) could be studied using the mathematical
tools developed in (Devroye et al., 1996) 821. Other clustering algorithm like the K-means
(Gerscho & Gray, 1992), followed by a labelling schema, allow that the resulting 1-NN
classifier was consistent (Devroye et al., 1996) §21.5. Nevertheless, it remains as an open

guestion if BLVQ can ensure it too.

Fig.2. Simulated data used in experiments.

6.2. Kohonen'’s LVQ algorithms vs. BLVQ.
Kohonen’s LVQ algorithms are on-line learning algorithms that tend to convergence to the

minimum points of dnp2 [VQ] (equation 15). This is notoriously evident in the LVQ1 algorithm
since it exactly converges to equation 15 for binary classification (CL=2) (see e.g.(LaVigna,
1990)). On the other hand, LVQ2 and LVQ3 are heuristic modifications of LVQL1 that have been
designed with the idea of estimating each &d G on-line and their exact statistical
convergence seems very difficult to precise (Kohon&96)L By contrast, BLVQ uses the
whole training data to estimate {(C), j=1...M} so these estimates are more robust. Besides,
as we have just mentioned above, the minimum points of BLVQ are clearly defined and
coincide with those optimal points that Kohonen had in mind when he designed his LVQ

algorithms (Kohonen, 1996).

5-12

The BLVQ algorithm employs the Newton optimization method to minimise its loss
function (kmpy. Instead, Kohonen’s LVQ algorithms uses the gradient descent method (at
least in LVQ1 (LaVigna, 1990) and LVQZ2 (Bottou, 1998)). Consequently, our algorithm
converges faster than LVQ algorithms (e.g. in fewer epochs). Furthermore, the execution of
our algorithm does not involve more operations than LVQ algorithms. The assignation of the
whole training data into one of the Voronoi regions (step 1.2) is also done in one epoch of
LVQ algorithms. (One epoch of LVQ algorithms is equivalent to an iteration of the BLVQ).

It happens the same with the determination of class label's training data. However, the
estimation of ¢In] and Gj[n] (step 1.3) is only performed in our algorithm but it is a mere
counting of class labels. The most remarkable difference between BLVQ and LVQ are steps
1.5 and 2. Step 2 can be considered as a computational effort of one epoch more, since data
assignation to Voronoi regions is a time-consuming operation. However, step 1.5 requires
fewer operations than the updates of one epoch of LVQ algorithms. In table 1, we display the
number of operations computed in one epoch of the simplest LVQ algorithm (LVQ1) and in
step 1.5 of the BLVQ algorithm. (Note that the number of operations in one epoch of LVQ2
and LVQ3 easily exceeds LVQ1’s since they can update two codevectors for each step.)
Since M<<N, BLVQ reduces the number of sums by more than a half and the number of
multiplication by a factor N/M. Besides, another parameter determines the differences in the
training time: the number of epochs to reach a local minimum of the validation error that is
reduced in BLVQ since it employs the Newton’s optimization method. Hence, BLVQ
decreases the training time in comparison with LVQ algorithm, due to 1) the Newton’s effect
in its dynamics and 2) the reduced number of operations that are needed to update the

codevectors.
Algorithm Number of sums Number of multipl./divisions
LVQ1 2Nk Nk
BLVQ <(N+M)k Mk

Table 1. Number of operations computed in one epoch of the LVQL1 algorithm and in step 1.5 of
the BLVQ algorithm. (N is the number of training samples, M is the number of codevectors and

k is the input space dimension).

5-13

7. Conclusion
A batch learning procedure to design condensed nearest neighbour classifiers has been

introduced. It tends to perform vector quantization (using méric) over a probability density
function that has zero points at Bayes borders. If we choose the Euclidean distance as a metric
and perform Newton's optimization ovesJ. then the resulting algorithm, called BLVQ,
resembles a modified batch K-means algorithm that takes into account class densities. BLVQ
shares several properties with batch K-means as their statistical convergence to (class) centroids
in a superlinear way.

As other learning systems, three main factors contribute to the generalization error of BLVQ.
First cause comes from the fact that we deal with finite codebook sizes. Second source of error
arises from minimizing an estimation the expected loss funcfiatoristructed from finite
observations (of size N). And finally another error stems from searching a local minimum point
of lempz instead of a global minimum point. The first two factors are mutually dependent so a
balance between the codebook size M and the training set size N must be done to ensure good
generalization.

Experimental results using a simulated classification problem shows the potential of the
BLVQ algorithm since it achieves an increase of 0.35% to 3% in the classification accuracy

and a speedup in the training time of 9.7 to 26.7 times.

17
16 2 ——Bl\vg —m—Lwyl

15 f\ —a—Lvg2 —¢«—Lwg3

o 1)
T\

11

Average Test Error

10 ~ * —— =

6 26 46 66 86
Codebook Size

a)

5-14

27
245 & —0—2% —m—S?2

22
$19,5 [\

§ 17 ;»/ \ %\\
3145 ;

T T T T v

6 26 46 66 86
Codebook Size

b)
Fig.3. Experimental Results: a) average test error computed over 1200000 test samples and b)
average speedup in the training time of the BLVQ algorithm over Kohonen’s LVQ
algorithms (Sx denotes the speedup over the LVQx algorithm where x is 1,2, and 3).
Empirical evaluation of BLVQ and Kohonen’s LVQ algorithms has been presented.

References
Apostol, T. M. (1967). Calculus, Multi-variable Calculus and Linear Algebra with Applications to Differential

Equations and Probability, Waltham, MA: Blaisdell Publishing Company.

Bottou, L. (1998). Online Learning and Stochastic Approximation. David Saal (Ed.). Online Learning and
Neural Networks. Cambridge, UK: Cambridge University Press.

Cover, T.M. & Hart, P.E. (1967). Nearest Neighbor Pattern Classification, IEEE Transactions on Information
Theory, 13, 21-27.

Devroye, L., Gyorfi, L. & Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition, Berlin: Springer-
Verlag.

Gersho, A. & Gray, R. M. (1992). Vector Quantization and Signal Compression, Boston, MA: Kluwer
Academic Publishers.

Hestenes, M. (1980). Conjugate Direction Methods in Optimization, Berlin, New York: Springer-Verlag.

Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., & Torkkola, K. (1995). LVQ_PAK. The Learning Vector
Quantization Program Package. Version 3.1, Helsinki: Helsinki University of Technology, Laboratory of
Computer and Information Science.

Kohonen, T. (1996). Self-organizing Maps, 2nd Edition, Berlin: Springer-Verlag.

Lavigna, A. (1990). Nonparametric classification using learning vector quantization. Ph. D. Dissertation,
University of Maryland.

Vapnik, V. (1982). Estimation of Dependencies based on Empirical Data, New York: Springer-Verlag.

5-15

5-16

