
5 A Batch Learning Vector Quantization Algorithm
for Nearest Neighbour Classification

Abstract- We introduce in this chapter a batch learning algorithm to design the set of

prototypes of 1-nearest-neighbour classifiers. Like Kohonen's LVQ algorithms, this procedure

tends to perform vector quantization over a probability density function that has zero points at

Bayes borders. Although it differs significantly from their online counterparts since: (1) its

statistical goal is clearer and better defined; and 2) it converges superlinearly due to its use of the

very fast Newton's optimization method. Experiments results using artificial data confirm faster

training time and better classification performance than Kohonen's LVQ algorithms.

Index terms- Learning Vector Quantization, Newton's optimization, Nearest Neighbour

Classification, Batch learning algorithms

Abbreviations- BLVQ- Batch Learning Vector Quantization, LVQ- Learning Vector

Quantization, NN- Nearest Neighbour.

5-2

1. Introduction
Kohonen's LVQ algorithms (Kohonen, 1996) are statistical learning procedures that tend to

perform VQ (Cover & Hart, 1967) over a probability density function that has zero points at

Bayes borders. Thus, the labelled prototypes computed with these algorithms together with the

nearest neighbour rule define an estimator of the Bayes classifier.

In this chapter, we introduce a batch learning procedure (hereafter, BLVQ) to design the

set of prototypes of nearest neighbour classifiers. BLVQ relies on the same idea than

Kohonen's LVQ algorithms but its generalization and convergence properties seems better

due to:

1) The minimum points of its loss function are clearer defined from a statistical point of view

and better approximated than Kohonen’s LVQ algorithms

2) BLVQ converges superlinearly to an asymptotically stable point (e.g. a minimum) of its loss

risk function since it uses the very fast Newton's optimization method. By contrast,

Kohonen’s LVQ algorithms employ on-line gradient descent.

In the next section the mathematical framework of our formulation is introduced. Section 3

describes the derivation of the BLVQ (Batch Learning Vector Quantization) algorithm. In

Section 4, its generalization properties are analysed. Section 5 shows the experimental results of

our algorithm over Kohonen’s LVQ algorithms using artificial data. In section 6 some

discussion is given. Finally, we end with some concluding remarks.

2. Mathematical framework

2.1. Basics of our approach.
We want to design a labelled codebook Cl for a nearest neighbour classifier that uses a

distance metric ()
qk

i

q

jiiq mxD
/1

1

, 




 −= ∑

=
jmx where q is a parameter fixed by the user. We

compute Cl in the learning phase as follows (See fig. 1):

Step 1. First, we compute an unlabeled codebook Cul={ }M,...,1i, =im for a Nearest-

Neighbour vector quantifier that uses Dq as a distance metric. Cul is calculated through a

vector quantization process over a probability density function that has zero points at Bayes

borders. This density function is defined using the original class density functions.

Step 2. We then assign to each codevector mi a class label with a labelling schema. The result

of this process is a labelled codebook Cl= ()(){ }M,...,1i,labelclass, =ii mm .

5-3

fX\C1P(C1) fX\C2 P(C2) fX\C3 P(C3)

Original class density functions

A modified p.d.f with zero points at
Bayes Borders

VQ

Label
Assignation

Fig.1. Our approach to the design of the codebook of NN classifiers: We perform VQ over a

modified density function. This function tends to zero at Bayesian borders and is defined using

the original class density functions. Once the unlabeled codevectors are computed though a VQ

process, we assign them to one of the existing classes.

2.2. Optimal Design of the unlabeled codebook C ul.
As we have just seen, an unlabelled codebook Cul={ }M,...,1i,i =m for a vector quantizer VQ

is computed in the first step of our learning procedure. In this subsection we introduce the loss

functional, called I1[VQ], which must be minimised to compute Cul in the vector quantization

process. This functional is presented for the case in which the density functions are known and

for any value of q. Let us start with some definitions before we present in detail how I1 is

defined.

A VQ of dimension k and size M is defined as a mapping from a k-dimensional input space

X that belongs to ℜk, into a codebook (or set of prototypes) C={ }M,...,1i, =im . Associated

with every codevector mi, there is a region of influence Ri where VQ maps any input vector that

falls in it to mi. Since we use a nearest neighbour quantizer, Ri is defined by

() ()




 ==

= ji mxmxx ,,
..1

q
Mj

qi DminDR
(1)

where ()
qk

i

q

jiiq mxD
/1

1

, 




 −= ∑

=
jmx . (Note that in the case q=2, Dq is the Euclidean distance

metric.) Thus the VQ mapping, denoted as VQ(x), can be expressed as

5-4

() () ()




∉
∈

=∈∈= ∑
= j

j

j

M

j
j Rsi

Rsi
RwhereRVQ

x

x
xmxx j 0

1
11

1

(2)

Now, the goal is to find a suitable measure of performance that the desired codebook Cul

minimises. This overall performance in vector quantization can be expressed in terms of a

statistical criterion that measures the average quantization error over the total sequence of input

patterns to be quantized. In our case we do not make use of the density function of the input

space as usual. Instead, we employ a modified probability density function that takes zero values

in Bayes borders. Consequently, the expected error of the vector quantizer is given by the

functional

[] ()() () ()()
() ()

∑∫∑∫
==

−
==

CL

l l

rCXlCX

B

q
q

CL

l
lB

q
q d

K

CPfCPf
VQDdgVQDVQI rl

ll 11
1 ,, xxxxxxx

(3)

where CL is the number of existing classes, {Bl, l=1,...,CL} are the Bayes regions, Kl is a

constant that ensures that {gl, i=1,...,CL} is a density function and, Cl and Cr are the classes with

the highest posterior probabilities in the Bayes region Bl. More precisely, fX\ClP(Cl) and

fX\CrP(Cr) are defined by

() () ()
() () ()iCX

Bxli
rCX

iCX
BxCLi

lCX

CPfmaxCPf

CPfmaxCPf

i
l

r

i
l

l

x

x

∈∀≠

∈∀=

=

=

&

&

,

,..1
(4)

 where {fX\Ci, i=1,...,CL} are the class density probabilities and {P(Ci), i=1...CL} are the class

priors. Since Dq is locally defined (()() () ()∑
=

∈=
M

j

q
qj

q
q DRVQD

1

,1, jmxxxx), I1 can be further

developed:

[] () () () () ()∑∑∫∑∫ ∑
= =

∩
= =

=∈=
CL

l

M

j
lRB

q
q

CL

l
lB

M

j

q
qj dgDdgDRVQI

jll 1 11 1
1 ,,1 xxmxxxmxx jj

(5)

5-5

2.2. Quasi -Optimal Design of the unlabeled codebook C ul for D 2.
As we pointed out before, we want to compute an optimal Cul that minimizes the functional

I1[VQ]. Let us suppose that it exists a Bayes region Blj for every Rj that satisfies jjlj RRB ≈∩ .

Then (5) can be approximated by

[] () ()∑∫
=

=
M

j
R lj

q
q

j

dgDVQI
1

2 , xxmx j

(6)

If q=2, D2 is the Euclidean distance and equation (6) admits an analytical solution to the

minimization problem. The partial derivative of I2 respect to mi in those points where I2 is

differentiable, assuming that the conditions to interchange jm∂•∂ and ∫ operator are satisfied

(see (Bottou, 1998) for technical details), is

[] () ()∫ −−=
∂

∂
jR lj

j

dg
m

VQI
xxmx j22

&

(7)

Solving the equations
[]

02 =
∂

∂

jm
VQI

 j=1...M yields

()
()

Mj
dg

dg

j

j

R lj

R lj

opt

..1==
∫

∫
xx

xxx
m j

(8)

2.3. An empirical estimator of I 2[VQ]
If the expected risk functional I2[VQ] was known, one could compute Cul by simply applying

equation (8). In practice I2 [VQ] is unknown because the class density functions are unknown. In

these cases, the only information available from the classification problem is one or several data

sets DN={(xi, class index (xi)), i=0..N-1}. Using one of these sets called the training set T,

I2[VQ] can be approximated by the empirical risk Iemp2[VQ]:

[] [] () () () ()

() () () ()jiii

jiii

mxxx

mxxx

,DCPC1R1
NK

1

,DCPC1R1
NK

1
VQIVQI

q
qrj

M

1j
rj

1N

0i
j

rjlj

i
q
qlj

M

1j
lj

1N

0i
j

ljlj

22emp

���

�

���

�

�

∑ ∑

∑ ∑

=

−

=

=

−

=

∈∈−

−∈∈==
(9)

5-6

where �lj is the first majority class of data samples that fall in Rj, �lr is the second majority class

of data samples that fall in Rj, Nlj is the number of training samples that belong to �lj, Nlr is the

number of training samples that belong to �lr and 1 is the indicator function.

If we use Nlj/N to estimate P(Clj) and Nrj/N to estimate P(Crj) then eq. (9) can be rewritten as

[] [] () () ()

() () ()jiii

jiii

mxxx

mxxx

,DC1R1
N

1

,DC1R1
N

1
VQIVQI

q
q

M

1j
rj

1N

0i
j

q
q

M

1j
lj

1N

0i
j22emp

∑ ∑

∑ ∑

=

−

=

=

−

=

∈∈−

−∈∈==

�

��

(10)

Solving the equation
[]

02 =
∂

∂

jm

VQI emp j=1,...,M for q=2 yields

M,...,1j
NN

C,RC,R

rjjljj

rjC,jRljC,jR

C,RC,R

N

1u
rjju

N

1i
ljj

opt
=

−

−
=

∑∑
==

��

��

��

�

xx
m

i

j

(11)

where NRj,�OM is the number of data samples that fall in Rj and belong to class �lj and NRj,�UM is the

number of data samples that fall in Rj and belong to �rj. It is easy to show that equation (11) is

the empirical estimator of the optimal solution given in equation (8).

3. The Batch Learning Vector Quantization Algorithm
In this section, we introduce the BLVQ algorithm that addresses the problem of designing a

codebook for an Euclidean nearest neighbour classifier. The algorithm is divided into two steps:

it performs Newton’s optimization over Iemp2[VQ] and then it assigns class labels to codevectors.

3.1. Step 1: Vector Quantization
The process of vector quantization simply consist of minimizing the functional Iemp2[VQ]

with an optimization algorithm. We have chosen the Newton's optimization method since the

Hessian matrix can be easily computed. Hence the update equation has the following form:

[] [] [] [][]
[]n

nVQI
nn1n 2emp1

m
Hmm

∂
∂

−=+ −
(12)

5-7

[]












∂∂
∂

=















= −

ji

2emp
2

1

M

1 VQI
,where

mm
H

m

m

m �

Solving
[][]

[]n

nVQI emp

m∂
∂ 2 and H yield

[] () ()







−−−=

∂
∂

∑∑
==

rjCjRljCjR
N

u
jrjju

N

i
jljj

ljj

emp
CRCR

NK

VQI
��

��

�

,,

11

2 ,,
1

mxmx
m i

(13)

[] ()




 =−

=
∂∂

∂

otherwise

jiifNN
NK

VQI
rjjljj CRCR

lj
ij

emp

0

1
,,2

2 I

mm

��

�

(14)

where I is the kxk identity matrix

As we see from inspecting eq.(14), H is a diagonal matrix, so the iterative equation to

minimize Iemp2 is

[]
[]n

NN

C,RC,R
1n

rjjljj

rjC,jRljC,jR

C,RC,R

N

1u
rjj

N

1i
ljj

j

CC

xx
m

ui

=
−

−
=+

∑∑
==

��

��

��

(15)

where C[n] is the codebook at time n.

An important remark here is the convergence speed of the algorithm. Let {m[n]} a

sequence generated by algorithm (15) which convergence to a point m[∞]. As

[] []()∞=
∞→

mHH nlim
n

 then m[n]→m[∞] superlinearly and usually quadratically (See section

1.4. in reference (Hestenes, 1980)).

In summary, the vector quantization process using the Newton's optimization over the

functional Iemp2 is shown below.

Input: T (training set), rlen (running length)

5-8

1. Initialize Cul

2. Compute [] [] [](){ }nRlabelclass,nRT jijinR j
xx=

Where [] []() []()




 ==

=
n,Dminn,DnR i2

M,...,1i
j2j mxmxx

And x\Rj[n] are the training samples that fall in region Rj [n]

3. Compute Clj[n] (majority class of training samples that fall in Rj[n]) and Crj[n] (second

majority class of training samples that fall in Rj[n])

4. Update C[n] with the following equation only if
rjjljj CRCR

NN ��

,,
≠ :

[]
[]n

NN

C,RC,R
1n

rjjljj

rjC,jRljC,jR

C,RC,R

N

1u
rjj

N

1i
ljj

CC

xx
m

ui

j

=
−

−
=+

∑∑
==

��

��

��

5. n=n+1

6. If (n> rlen) then goto 2

7. End

3.2. Step 2: Assignation of Labels
After vector quantization is done, the class label of each codevector must be computed.

We propose this labelling schema:

Input: T (Training set), C (Unlabeled codebook)

1. Compute (){ }jjR RlabelclassRT
j ii xx ,=

Where () ()




 ==

= i2
M,...,1i

2j ,Dmin,DR mxmxx j

And x\Rj are the training samples that fall in region Rj

2. Class label {mi}= majority class of data samples in
jRT (If the two major classes

have the same number of training samples, choose one of them randomly)

4. Generalization properties of the BLVQ algorithm

4.1. The effect of Finite resources
Given a powerful enough hypothesis space, e.g. a sufficient number of codevectors, one

could expect to solve any classification problem since Bayesian borders can be approximated

by a series of (locally defined) hyperplanes that are formed with two nearest codevectors of

5-9

different classes. Practically, since we deal with finite resources and imperfect optimization

procedures, generalization performance is degraded by three main factors:

1. A first cause of degradation is due to the fact that we use I2[VQ] instead of I1[VQ] to derive

our algorithm. Since I1[VQ]≈I2[VQ] when codebook size grows indefinitely, this source of

error reflects the fact we deal with a finite number of parameters (a finite codebook size M)

to approximate the Bayes classifier. In the case of M→∞, large-sample results (Cover &

Hart, 1967) of nearest neighbor classifiers bound the best misclassification rate of our

overall system by ()()()bbNN1b E1CLCL2EEE −−≤≤ − where Eb denote the

misclassification rate of the Bayes classifier.

2. Another source of degradation comes from the fact that we search, during learning, a

minimum of Iemp2[VQ], an empirical estimator of I2[VQ] constructed using a finite set of

observations (of size N). General theorems (Vapnik, 1982) bound the error between the

empirical functional and the expected functional and thus the error between the minimum

point of Iemp2[VQ] and I2[VQ]. This error decreases as N grows and increases if the capacity

of the learning machine grows. In this case, the number of parameters of the codebook

(Mxk) can approximate the capacity of our system. Thus this kind of error is in conflict with

the above error since if we increase M, I2[VQ] is closer to I1[VQ] but, at the same time, the

distance between Iemp2[VQ] and I2[VQ] increases.

3. Finally, the third source of error is caused by the optimization procedure since it searches a

local minimum of Iemp2[VQ] instead of a global minimum. To guarantee that the iterative

algorithm convergence to a global minimum point of Iemp2[VQ] a good initialization

procedure is needed.

4.2. Relation of the equilibrium points of the BLVQ with the classification
accuracy.

In nearest neighbour classification, the input pattern is assigned to the class of its nearest

prototype. If we use BLVQ, these prototypes are computed from minimising Iemp2. What is then

the classification accuracy that we can expect from the 1-NN classifier that uses these

prototypes? If BLVQ minimises the classification error in the training set then, according to

(Devroye et al., 1996) §19, the generalisation error could be bounded for the resulting 1-NN

classifier. From differential calculus (Apostol, 1967), we know if { }M,...,1j,*
j =m is a minimum

point of the function Iemp2 (and a equilibrium point of BLVQ) then the eigenvalues of its hessian

matrix evaluated at this point are all positive. In consonance with equations 13 and 14, the

equilibrium points of BLVQ induces a 1-NN classifier whose Voronoi regions {Rj, j=1,...,M}

5-10

force the training data that fall in them to the following constraint: NRj,�OM>NRj,�UM where NRj,�OM is

the number of data samples that fall in Rj and belong to the majority class in Rj �lj and NRj,�UM is

the number of data samples that fall in Rj and belong to the second majority class �rj. Hence, the

equilibrium points do not guarantee a minimisation of the training error. However if we consider

classification as a problem of estimating Bayes borders, the attractors of BLVQ are placed to

induce hyperplanes that only use training data of those two classes which are majority in

Voronoi regions and, accordingly, presumably affect the Bayes decision boundaries.

5. Experimental Results
In this section, we compare Kohonen’s LVQX algorithms (where X is 1, 2 and 3) and our

proposal using an artificial problem due to the fact that comparative studies on real-life data tend

to be less informative than those based on artificial data. Since underlying class densities are

unknown and generally we deal with a particular data set (one random sample) drawn from

these probability distributions, it is difficult to determine the causes that produces performance

differences between methods. One might expect that the classification performance of our

procedure was better than LVQ algorithms in problems where several class densities are

overlapped since estimation of Clj and Crj in LVQ algorithms is worse done. Thus, we study one

artificial problem that reflects this behaviour.

5.1 The Artificial problem
In the proposed artificial problem (g3c) three classes moderately overlap two-on-two. Data is

not homogeneous and is generated from two (equally probable) normal distributions for each

class (see figure 2).

5.1.1 Simulations
Ten independent training, test and validation sets (of the same size, Ng3c=1200) are produced

from the g3c problem. Then one hundred runs for the classification problem, training set,

learning algorithm and different codebook sizes (6, 12, 24, 48 and 96) have been made. Error

rates for each codebook size are computed over a total of 1000N classifications.

We have initialized the codebooks using LVQ_PAK's eveninit program (Kohonen et al.,

1995). Then we have applied every learning algorithm until classification error in validation

set increases or stands. (We have monitored this error every 2 epochs. In the case of LVQX

algorithms, every time we monitored the error, we restart the value of the step size α).

Optimal parameters of LVQ algorithms have been estimated using the validation set.

5-11

5.1.2 Results
The artificial classification problem was chosen to reflect the deficiencies of LVQ

algorithms. Since their on-line estimation of Clj and Crj is worse than our batch estimation, one

could expect better performance of the BLVQ algorithm when classes overlap. Empirical

experiments confirm this hypothesis. In figure 3a. we can see the average test misclassification

rate that have been computed over 1000N samples. Our procedure always outperforms LVQ

algorithms. The increase of classification performance was 0.54% to 1.62 %, 0.35% to 1.52 %

and 0.63% to 3% in comparison with LVQ1, LVQ2 and LVQ3 respectively.

Simulations also reflect better convergence speed of BLVQ. Figure 3b. shows the average

speedup in the execution time of the BLVQ algorithm over Kohonen’s LVQ algorithms. This

speedup, denoted by Sx (where x is 1, 2, and 3), is computed with a division between the

training time of LVQx by the training time of BLVQ. Our algorithm (BLVQ) is in average:

23.4 to 9.7 times faster than LVQ1, 24.5 to 11.5 times faster than LVQ2 and 26.7 to 12 times

faster than LVQ3. This happens due to:

1) LVQ algorithms are on-line gradient descent algorithms, so they exhibit poor

convergence because they do not benefit from Newton's effect as our algorithm does.

2) BLVQ employs fewer operations than LVQ algorithms to make one pass through data

(see section 6).

6. Discussion

6.1. BLVQ-based NN Classification.
The BLVQ algorithm is divided in two main steps. The first step consists in performing a

particular kind of supervised clustering to obtain a codebook of unlabelled prototypes. The

interest of performing this supervised clustering process is that the algorithm place prototypes

in regions where training data is with the exception of regions where the density of training

data belonging to different classes is the same. (If the training set size were large enough,

these regions would agree with Bayes borders). The second step executes a simple schema

labelling algorithm that assign class labels to them based on a majority vote among the

training data that falls in the Voronoi cells. Since some of the prototypes computed with

BLVQ could be arbitrary close to Bayes borders then the BLQ-based Euclidean 1-NN

classifier might achieve good classification accuracy. However, as we have shown in section

4.2, the equilibrium points of BLVQ do not guarantee a minimisation of the classification

error in the training set. Consequently we cannot use theoretical results of method (Devroye

et al., 1996) §19 that bound the generalisation error (e.g. the expected differences between the

5-12

minimum achieved in the training set and the real). However, since the BLVQ-based 1-NN

classifier is a data-dependent partitioning method, the consistency of this classifier (that is, its

convergence to the Bayes classifier as M, NÆ∞) could be studied using the mathematical

tools developed in (Devroye et al., 1996) §21. Other clustering algorithm like the K-means

(Gerscho & Gray, 1992), followed by a labelling schema, allow that the resulting 1-NN

classifier was consistent (Devroye et al., 1996) §21.5. Nevertheless, it remains as an open

question if BLVQ can ensure it too.

Fig.2. Simulated data used in experiments.

6.2. Kohonen’s LVQ algorithms vs. BLVQ.
Kohonen’s LVQ algorithms are on-line learning algorithms that tend to convergence to the

minimum points of Iemp2 [VQ] (equation 15). This is notoriously evident in the LVQ1 algorithm

since it exactly converges to equation 15 for binary classification (CL=2) (see e.g.(LaVigna,

1990)). On the other hand, LVQ2 and LVQ3 are heuristic modifications of LVQ1 that have been

designed with the idea of estimating each Clj and Crj on-line and their exact statistical

convergence seems very difficult to precise (Kohonen, 1996). By contrast, BLVQ uses the

whole training data to estimate {(Clj,Crj), j=1...M} so these estimates are more robust. Besides,

as we have just mentioned above, the minimum points of BLVQ are clearly defined and

coincide with those optimal points that Kohonen had in mind when he designed his LVQ

algorithms (Kohonen, 1996).

5-13

The BLVQ algorithm employs the Newton optimization method to minimise its loss

function (Iemp2). Instead, Kohonen’s LVQ algorithms uses the gradient descent method (at

least in LVQ1 (LaVigna, 1990) and LVQ2 (Bottou, 1998)). Consequently, our algorithm

converges faster than LVQ algorithms (e.g. in fewer epochs). Furthermore, the execution of

our algorithm does not involve more operations than LVQ algorithms. The assignation of the

whole training data into one of the Voronoi regions (step 1.2) is also done in one epoch of

LVQ algorithms. (One epoch of LVQ algorithms is equivalent to an iteration of the BLVQ).

It happens the same with the determination of class label’s training data. However, the

estimation of Clj[n] and Crj[n] (step 1.3) is only performed in our algorithm but it is a mere

counting of class labels. The most remarkable difference between BLVQ and LVQ are steps

1.5 and 2. Step 2 can be considered as a computational effort of one epoch more, since data

assignation to Voronoi regions is a time-consuming operation. However, step 1.5 requires

fewer operations than the updates of one epoch of LVQ algorithms. In table 1, we display the

number of operations computed in one epoch of the simplest LVQ algorithm (LVQ1) and in

step 1.5 of the BLVQ algorithm. (Note that the number of operations in one epoch of LVQ2

and LVQ3 easily exceeds LVQ1’s since they can update two codevectors for each step.)

Since M<<N, BLVQ reduces the number of sums by more than a half and the number of

multiplication by a factor N/M. Besides, another parameter determines the differences in the

training time: the number of epochs to reach a local minimum of the validation error that is

reduced in BLVQ since it employs the Newton’s optimization method. Hence, BLVQ

decreases the training time in comparison with LVQ algorithm, due to 1) the Newton’s effect

in its dynamics and 2) the reduced number of operations that are needed to update the

codevectors.

Algorithm Number of sums Number of multipl./divisions

LVQ1 2Nk Nk

BLVQ <(N+M)k Mk

Table 1. Number of operations computed in one epoch of the LVQ1 algorithm and in step 1.5 of

the BLVQ algorithm. (N is the number of training samples, M is the number of codevectors and

k is the input space dimension).

5-14

7. Conclusion
A batch learning procedure to design condensed nearest neighbour classifiers has been

introduced. It tends to perform vector quantization (using a Dq metric) over a probability density

function that has zero points at Bayes borders. If we choose the Euclidean distance as a metric

and perform Newton's optimization over Iemp2 then the resulting algorithm, called BLVQ,

resembles a modified batch K-means algorithm that takes into account class densities. BLVQ

shares several properties with batch K-means as their statistical convergence to (class) centroids

in a superlinear way.

As other learning systems, three main factors contribute to the generalization error of BLVQ.

First cause comes from the fact that we deal with finite codebook sizes. Second source of error

arises from minimizing an estimation the expected loss function I2 constructed from finite

observations (of size N). And finally another error stems from searching a local minimum point

of Iemp2 instead of a global minimum point. The first two factors are mutually dependent so a

balance between the codebook size M and the training set size N must be done to ensure good

generalization.

Experimental results using a simulated classification problem shows the potential of the

BLVQ algorithm since it achieves an increase of 0.35% to 3% in the classification accuracy

and a speedup in the training time of 9.7 to 26.7 times.

8

9

10

11

12

13

14

15

16

17

6 26 46 66 86
Codebook Size

A
ve

ra
ge

 T
es

t E
rr

or

Blvq Lvq1

Lvq2 Lvq3

a)

5-15

9,5
12

14,5
17

19,5

22
24,5

27

6 26 46 66 86
Codebook Size

S
pe

ed
up

S1 S2
S3

b)

Fig.3. Experimental Results: a) average test error computed over 1200000 test samples and b)

average speedup in the training time of the BLVQ algorithm over Kohonen’s LVQ

algorithms (Sx denotes the speedup over the LVQx algorithm where x is 1,2, and 3).

Empirical evaluation of BLVQ and Kohonen’s LVQ algorithms has been presented.

References
Apostol, T. M. (1967). Calculus, Multi-variable Calculus and Linear Algebra with Applications to Differential

Equations and Probability, Waltham, MA: Blaisdell Publishing Company.

Bottou, L. (1998). Online Learning and Stochastic Approximation. David Saal (Ed.). Online Learning and

Neural Networks. Cambridge, UK: Cambridge University Press.

Cover, T.M. & Hart, P.E. (1967). Nearest Neighbor Pattern Classification, IEEE Transactions on Information

Theory, 13, 21-27.

Devroye, L., Györfi, L. & Lugosi, G. (1996). A Probabilistic Theory of Pattern Recognition, Berlin: Springer-

Verlag.

Gersho, A. & Gray, R. M. (1992). Vector Quantization and Signal Compression, Boston, MA: Kluwer

Academic Publishers.

Hestenes, M. (1980). Conjugate Direction Methods in Optimization, Berlin, New York: Springer-Verlag.

Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J., & Torkkola, K. (1995). LVQ_PAK. The Learning Vector

Quantization Program Package. Version 3.1, Helsinki: Helsinki University of Technology, Laboratory of

Computer and Information Science.

Kohonen, T. (1996). Self-organizing Maps, 2nd Edition, Berlin: Springer-Verlag.

Lavigna, A. (1990). Nonparametric classification using learning vector quantization. Ph. D. Dissertation,

University of Maryland.

Vapnik, V. (1982). Estimation of Dependencies based on Empirical Data, New York: Springer-Verlag.

5-16

