Chapter 3

Numerical Model of Single-Story
Buildings equipped with a Friction

Dissipator

3.1 Introduction

In this chapter an algorithm to solve the equations of motion for symmetrical, single-story
buildings equipped with a friction dissipator (SSBFD) is proposed. Basically, these structures
can be treated as two planar SDOF systems (the main frame and the bracing-dissipator
combination). In order to formulate the equations of motion, numerical models of a friction
dissipator (FD) and of the SSBFD are presented. Due to the presence of the FD, it is
necessary to consider, besides the equation of motion of the bare frame —SDOF system— ,
the corresponding equation of motion of the FD, therefore there will be, through the entire
analysis, either one or two degree-of-freedom systems, depending on the ’sliding’ or ’sticking’
condition between the dissipator and the main structure. This situation leads to a highly
nonlinear nature of these equations. A numerical solution of this challenging problem is
proposed. The energy balance equation is established.

At the final section of this chapter, some numerical examples, using the proposed algo-

rithm and the commercial program ADINA, are presented.

3.2 Numerical Model of Friction Dissipators (FD)

As mentioned before in Chapter 1, this Thesis deals with the study of the dynamic behavior
of buildings equipped with friction energy dissipation devices (simply FD). These devices
are incorporated to the main structure by means of a bracing system, as shown in Fig. 1.18.

In the following, a mechanical model of a single friction dissipator is proposed. Fig. 3.1
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Main frame

Figure 3.1 Simplified model of a friction dissipator located between the girder and the braces

shows the model and the main parameters involved in the contact analysis between the main
frame and the dissipator.

In Fig. 3.1 z and 2’ represent, respectively, the horizontal displacements of the main
frame and of the dissipation device. The coefficient & is the stiffness of the bracing system
that holds the dissipator.

In the contact surface, the limit condition for the unidirectional constitutive model —

based on Coulomb’s law— is

f(Foun) = g(Fun) = |[F| = pN = |F| = pKyun <0 (3.1)

where f(F,uy) and g(F,uy) are the plastic yielding limit function and the plastic potential,
respectively [57]. F' is the friction force between the dissipator and the structure, p is the
coefficient of static dry friction (u = tan ¢/ where ¢/™ is the roughness angle) and N is
the pressure —acts normally to the contact surface— given by N = Ky uy where Ky and
uy are the penetration stiffness and the penetration displacement, respectively.

If during the calculation process the condition (3.1) is not satisfied, i.e., if |F| > pN, it

means that there is sliding (& # /).

3.3 Numerical Model of a SSBFD

3.3.1 Simplified model

Fig. 3.2a shows a typical single-story building equipped with a friction dissipator (SSBFD).
When the structure of Fig. 3.2a is subjected to the lateral load P(t) and/or to the ground
motion &g, the assumed motion of both the main frame and the friction dissipator will be

as shown in Fig. 3.2b. The coordinates x and 2’ are the horizontal displacements of the
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Figure 3.2 Single-story building equipped with a friction dissipator (SSBFD)

main frame and of the dissipator, respectively, relative to the base (ground). The sliding
displacement is, at any instant, equal to z — 2.

In Fig. 3.2b the dashed line represents the original position of the structure, the grey
line represents the assumed undeformed new position of the structure, and the solid line

represents the ’real’ deformed structure.

3.3.2 Mechanical model

In order to write down the equations of horizontal motion of the SSBFD depicted in Fig.
3.2a its mechanical model is shown in Fig. 3.3a, while Fig. 3.3b shows the free-body diagram

of the blocks corresponding to the main structure and to the dissipator.

3.3.3 Equations of motion of SSBFD

Considering the free-body diagrams of Fig. 3.3b, the equations of motion of the SSBFD
depicted in Fig. 3.2a are

mi + ¢t + kx = —miy(t) + P(t) — F (3.2a)
m'd + i’ + K2 =—-miy(t) + F (3.2b)
where m, ¢ and k are the mass, the damping and the stiffness of the main structure —lower

block in Fig. 3.3a—; while m/, ¢ and k’ are the mass, the damping and the stiffness of the

bracing-dissipator combination —upper block in Fig. 3.3a.
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Figure 3.3 Mechanical model of the SSBFD shown in Fig. 3.2a

Egs. (3.2a) and (3.2b) show that the structure and the bracing system are assumed to
remain elastic while the nonlinearities are concentrated in the dissipator.
For the particular structure depicted in Fig. 3.2a the stiffness &’ can be obtained by

means of the expression

yoo ALY (3.3)
(4 H2 + L2)3/2
where E' is the Young’s modulus, A is the brace cross section (only the brace under tension
is considered, i.e., the brace under compression buckles), H is the column height and L is
the girder length.

As described previously, x, & and & represent the displacement relative to the ground, the
velocity and the acceleration of mass m, respectively, while 2/, ' and %’ are the corresponding
quantities for the bracing-dissipator combination. P(t) is the external force acting on m,
Z4(t) is the ground acceleration, F is the friction force between the dissipation system and
the main structure and ¢ represents the time.

In the following analysis, the coefficient of friction p, between the ground and mass m
(see Fig. 3.3a), is assumed to be zero. Due to friction terms —F and +F, Egs. (3.2a) and
(3.2b) are nonlinear and coupled.

Egs. (3.2a) and (3.2b) can be expressed in the following matrix form

M% + Cx + Kx = —Mri,(t) + P(t) + F (3.4)
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where

[ 0
M = m = mass matrix
0 m
[ ¢ 0
c=|°¢ = damping matrix
0 ¢
[k 0
K= = stiffness matrix
0 &
3 |
X = , ] = displacement vector
T
_1 |
r= . = unit vector
[ Pt
P(t) = ((] ) = external driving force vector
| —F -
F = P = friction force vector

Eq. (3.4) is the equivalent form of Eq. (C.3) of Appendix C. The following equivalence
relationships apply: Q(x,%) = Cx + Kx, R = —Mr#, + P, GTA = —F. The solution of
Eq. (C.3) by means of Lagrange multipliers is described in Appendix C.

3.4 Proposed Solution of the Equations of Motion

3.4.1 Step-by-step algorithm

Some procedures have been proposed to solve numerically the coupled equations (3.2a) and
(3.2b) [58, 59]. In this work an algorithm based on the linear acceleration method— New-
mark’s method [48, 60, 61]— is developed for this purpose.

The algorithm proposed and used to solve Egs. (3.2a) and (3.2b) is described next. This
procedure is generalized in the next chapter to simulate the dynamic behavior of multi-story
buildings equipped with friction dissipators. A deeper description involving stability and

accuracy and computational efficiency is presented there.
INITIAL INSTANT t;=0

At the first instant ¢, = 0 displacements z(0), 2/(0) and velocities #(0), #'(0) are known.

There are two possibilities:
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1. If ©(0) = 4/(0), there is sticking, hence Egs. (3.2a) and 3.2b) can be added to obtain
(m+m') &(0) + (¢ + )&(0) + kz(0) + k'z'(0) = —(m + m')Z4(0) + P(0)  (3.5)

The acceleration #(0) = #(0) can be obtained from Eq. (3.5) and the friction force
F(0) is found from Eq. (3.2a) or (3.2b). If |F(0)] > uN, F(0) is set equal to uN if
F(0) > uN, or equal to —uN if F(0) < —uN. A sliding condition has to be considered

for next instant ts.

2. If ©(0) # 2'(0), there is sliding, hence the initial friction force F'(0) can be calculated

with the following expression:
F(0) = sgn [4(0) — &(0)] uN (3.6)

and the initial accelerations #(0) and ’(0) can be calculated from any of the following

equations:

mi(0) + ¢i(0) + kz(0) = —miy(0) + P(0) — sgn [£(0) — &/(0)] uN (3.7)
m/&(0) 4 ¢'&'(0) + k'2'(0) = —m/@4(0) + sgn [£(0) — &'(0)] uN (3.8)

ANY INSTANT ¢t 4

At any instant k + 1, Egs. (3.2a) and (3.2b) become

MEp1 + Clp1 + kg = —midg(teir) + Ptes1) — Fea (3.9)

1 gy Kl =~y () + P (3.10)

1. If at previous instant k there was sticking, this same condition is assumed at current
instant &k + 1, therefore @1 = @), &p41 = &), Thy1 — Ty = T — 7, and the
entire structure can be described as a SDOF system. Its equation of motion is obtained
by adding Egs. (3.9) and (3.10):

(m+m) &pg1 + (c+ )drp + (B + K)zppr = —(m+m')ég(tgs)
+ P(tgy1) + K (2 — ) (3.11)

The displacement zj1 and velocity @41 are obtained from Eq. (3.11) using New-
mark’s method, as described in Appendix B. The friction force Fy1; can be calculated
afterwards using Eq. (3.9) or (3.10).

(a) If |Fr41| < N, the sticking condition keeps for next instant k + 2.
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(b) If |Fxy1] > uN, the sticking condition no longer prevails for next instant k + 2.
Since the maximum absolute value of the friction force is limited to uN, Fyy1 is
either set equal to uN if Fi11 > uN, or to —ulN if Fpy1 < —puN. For instant
k 4 2 the sliding condition will be assumed.

2. If at previous instant k there was sliding, this same condition is assumed at current
instant k + 1, i.e., Fy1 = Fy, =sgn(&y — 4},) pN. In this case there are two uncoupled
SDOF systems described by the following equations of motion:

M1 + CTpt1 + kTpr1 = —mig(tk+1) + P(tx+1) — sgn (ZL‘k — w%) uN (3.12)
m' @ g+ i + K2 = —m/Eg(tegn) + sgn (B — &) pN (3.13)
Eqgs. (3.12) and (3.13) are solved using Newmark’s method (see Appendix B).

The sliding condition keeps as long as the sign of the relative velocity & — 2’ remains

the same:

(a) If (g — @) (#r41 — 4}, ) > O, the sliding condition prevails for next instant k+2.

(b) If (ig, — i},) (Zk41 — @4 q) < 0, the sliding condition no longer keeps for the next

instant k + 2 (i.e., a sticking condition will be assumed at instant k + 2).

As pointed out in the above procedure, the same sticking-sliding condition keeps for at

least two consecutive time steps. In this way, the response tends to be smoother.
This algorithm is represented schematically in the flow-chart of Fig. 3.4.

In Section 3.6 the preceding procedure will be applied to solve some practical cases.

3.5 Energy Balance Relations

If Eq. (3.4) is pre-multiplied and post-multiplied by x” = [&, 4] and dt, respectively, and

then integrated through time, the following equation is obtained

Ex+Ep+ FEg=FE;— Ep (3.14)

where
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Figure 3.4 Flowchart that shows the proposed solution of the equations of motion of SSBFD
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t t 1 1
Ey = / miadt + / m'#' 3 dt = §m(:i’2 — #(0)%) + §m'(§c’2 —i'(0)?)
0 0

t t t t
Ep = / ctidt + / di'ddt = / ci?dt + / di?dt
0 0 0 0

t t 1 1
Eg = / kxzdt + / K'2'&'dt = 51{:(@“2 —2(0)?) + —k'(x'2 —2/(0)?) (3.15)
0 0

/mxgxdt /mxgx dt+/ Pxdt = / migdr
—/ m'jv'gd:r'—i—/ Pdx
z'(0) z(0)
t t T !
EF:/ Fidt—/ Fi/dt:/ Fda:—/ Fdx'
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The terms included in the left member of Eq. (3.14) represent the kinetic energy (Ek)
of the entire structure, the energy dissipated by means of the viscous damping (Ep) of the
entire structure and the strain energy (Eg). The addition of these terms must be equal to
the input energy introduced to the structure (Er) due to any lateral force minus the energy
dissipated by friction (EF).

Eqgs. (3.15) are useful to determine the values of the time-history energies of a particular

SSBFD subjected to any driving force.

3.6 Numerical Examples

3.6.1 Structure description

Basically, the SSBFD is the one depicted in Fig. 3.2a and shown again in Fig. 3.5. The
dynamic properties of the structure are registered in Table 3.1. The main structure stiffness,
k, was calculated using Eq. (B.3) with F = 200 GPa, I — oo, I. = 576 cm*, H = 480 cm,
L = 800 cm; and the brace stiffness (tension only) k' was calculated using Eq. (3.3) with
A =198 cm?.

3.6.2 Free vibration

For an initial displacement of 10 cm (2(0) = 2/(0) = 10 cm; #(0) = #'(0) = 0; P(¢t) = 0 and
Z4(t) = 0), the dynamic response for the frame of Fig. 3.5 will be obtained.

The sliding threshold, N, is set equal to 39.325 kN. The time increment is At = 0.00115
s and the total duration of the analysis is 0.55 s.

The frame and the dissipator displacement responses are depicted in Fig. 3.6. The thick

black line corresponds to the main frame displacement and the thin black line corresponds
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Friction
dissipator

%, (1)

Figure 3.5 Single-story building with a friction dissipator (SSBFD)

Main structure Bracing system + dissipator
m = 5740.390 kg m' = 19.614 kg

¢ =13121.77 N:s/m (£ = 0.05) | ¢ = 0.0 (¢’ = 0.0)

k = 2999.471 kN/m k' = 2597.01 kN/m

T =0.2749 s

Table 3.1 Structure and bracing + dissipator data

to the dissipator displacement, respectively. The upper and lower horizontal grey lines corre-
spond to the thresholds uN/k'and —uN/E', respectively. These values limit the displacement
of the dissipator (see Fig. B5 in Appendix B). The smaller the values of m’, the lesser the
oscillation amplitudes of 2’ around these thresholds (see Eq. (3.2b)).

Fig. 3.7 shows a plot of F' — (x — 2’). This is actually a plot of the theoretical hys-
teresis loops due to the sticking-sliding behavior of the friction dissipator. The shape of the
hysteresis loops are rectangular, according to Coulomb’s law of dry friction (see Subsect.
2.2.2).

3.6.3 Harmonic loading applied to the main structure

In this case the external input force is a harmonic loading P(t) = Pysinwt (i.e., Z4(t) = 0).
This driving force is plotted in Fig. 3.8 and will be applied to the frame of Fig. 3.5. The
values of Py and @ are, respectively, 127.491 kN and 15.9781 rad/s. On the other hand, the
values of m, ¢, k and m’, ¢/, k' are the same shown in Table 3.1. The values of uN and At
are also the same as before. However, in this case the total duration of this driving force is
1.18 s.

The displacement responses of the frame and of the dissipator are shown in Fig. 3.9.

The thick black line corresponds to the main frame displacement and the thin black line
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Figure 3.6 Displacement response of a SSBFD subjected to an initial displacement
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Figure 3.12 Energy response of a SSBFD subjected to a harmonic loading

corresponds to the dissipator displacement. In this figure the horizontal grey lines that
restrain the dissipator displacement, as in Fig. 3.6, are depicted too.

Fig. 3.7 shows the plot of F' — (x — ) for this case. As said above, the shape of the
hysteresis loops are rectangular, according to Coulomb’s law of dry friction.

Also for this case, a plot of F'— (& — ') is shown in Fig. 3.11. It can be seen easily that
the shape of this plot fits the theoretical one shown in the theory of Appendix A (see Fig.
A.3). Around the corner, however, there are some ’bevels’ that result from the inaccuracies
of the numerical solution.

The energy time-histories are plotted in Fig. 3.12. The values of each curve were calcu-
lated with Egs. (3.15). The line corresponding to the energy dissipated by friction is very
close to the curve of the input energy, which gives an idea of the energy dissipated by friction

(see the energy balance equation (3.14)).

3.6.4 Seismic input

The accelerogram corresponding to the Northridge earthquake (Santa Monica station, Jan-
uary 17, 1990, 90° component) is shown in Fig. 3.13. This ground acceleration, scaled by
a factor of 5.0, is going to be applied to the frame of Fig. 3.5 (P(¢t) = 0). Once more, the
values of m, ¢, k and m/, ¢, k' are the same previously given (see Table 3.1). However, in
this case uN = 78.456 kN, a time increment of 0.00125 s was used and the total time of
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Figure 3.13 Northridge earthquake, January 17, 1994 (90° component)

analysis is 15 s. Since the accelerogram ordinates were scaled by a factor of 5.0, the PG A is
equal to 4.415g (g = 980.7 cm/s?).

Fig. 3.14 shows a plot of F — (z — 2/).

The energy time-histories for the SSBFD, calculated with Eq. (3.15) are shown in Fig.
3.15. Again, the energy dissipated by friction lies just down the line showing the total input
energy due to the earthquake.

3.7 Comparison between the Proposed Algorithm and
ADINA

The practical cases seen in the prior section, were solved with the ADINA program too.
The responses of the main structure have been plotted for the three cases above studied. In
Fig. 3.16 the displacement response of Fig 3.6 plus the displacement response of the same
structure obtained using ADINA are compared. On the other hand, in Fig. 3.17 the response
of Fig. 3.9 and the response of the same structure obtained with ADINA are plotted. Finally,
Fig. 3.18 shows the response of Fig. 3.13 obtained with the proposed algorithm, and the
response of the same structure obtained with ADINA. The agreement is satisfactory.

The proposed algorithm has been tested with more examples using both different struc-

ture properties and different driving forces (including impulse loadings, harmonic loadings
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Figure 3.16 Displacement responses obtained with the proposed algorithm and ADINA for an
initial displacement

and other registered earthquakes). The results obtained are practically the same given by
ADINA. This evidence does not necessarily mean that the proposed algorithm is accurate,
rather it means that using different approaches to those considered in the Lagrange mul-
tipliers (see Appendix C), the problems involving contact problems can be solved using

direct-time integration procedures, as in the proposed algorithm.

3.8 Efficiency of Friction Dissipators

The reduction of the displacement response is highlighted in Figs. 3.19, 3.20 and 3.21 for the
three inputs above considered. The black line shows the response for the SSBFD (protected
frame) and the grey line shows the response for the bare frame (SSB without dissipator nor
bracing).

Fig. 3.19 shows that the period of the free response tends to shorten while there is sliding.
After the final sticking, the frame behaves as a SDOF (braced frame) and, obviously, the
period keeps constant.

As a preliminary conclusion, the plots of Figs. 3.19, 3.20 and 3.21 show that friction
dissipators reduce the response of SSB subjected to lateral loads. Other analyses show that
this reduction of response, however, is never greater than the reduction obtained if rigid

connections between the main frame and the braces are used (braced frames). This fact
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Figure 3.20 Displacement responses of a SSBFD and a bare frame for a harmonic loading



68 3. Numerical Model of Single-Story Buildings equipped with a Friction Dissipator

20.0

15.0 1

10.0 1

Displacement x (cm)

-10.0 T

-15.0

-20.0 1 —SSBFD
— Bare frame

-25.0
Time t (s)

Figure 3.21 Displacement responses of a SSBFD and a bare frame for a ground acceleration

seems to confirm the conclusions stated in [52].



