

turning on aeronautical structures Modelling and analysis of crack

Doctoral Thesis

Director: Dr. Marc Anglada i Gomila

Llorenç Llopart Prieto

Company director: Elke Hombergsmeier

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Modelling and analysis of crack turning on aeronautical structures

Llorenç Llopart Prieto

Ottoburnn / Barcelona April 2007

"Quia nolunt dimittere credere pro credere, sed credere per intelligere"

Ramón Llull, s. XIII

Abstract

Developments in airplane structures are aimed at making them lighter, more durable, with higher damage tolerance and simultaneously safer than the existing riveted structures. Integral structures, monolithic or welded, offer weight reduction, costs savings and more corrosion resistance than differential structures (riveted). But, occasionally, they have lower tolerance to the damage. However, by testing these structures with cracks, it has been observed that crack turning may occur. This phenomenon produces an improvement of the damage tolerance inducing crack arresting or deflection.

In order to understand and assess crack turning in aeronautical structures, in this work it has been analysed different Finite Element (*FE*) tools capable to perform crack growth analyses on three dimensional models and, at the same time, with the ability to perform design studies. After assessing different *FE*-analysis tools, the commercial tool StressCheck[®] has been selected. The *T*-stress extraction facility has been implemented in StressCheck[®] in cooperation with Engineering Software Research & Development, Inc. The reliability of the tool has been proved to be satisfactory by means of literature and experimental test data. Using this tool and testing Double Cantilever Beam (*DCB*) as well as cruciform specimens under near in-plane opening mode (*Mode I*) loading conditions, different crack turning criteria have been checked.

Based on both testing and simulation results, a more developed criterion is proposed and some hints on the modelling process are recapitulated. The proposed criterion is based on existing criteria related to the *T*-stress and it is implemented with the normalised *T*-stress, T_R . The criterion takes into account the anisotropy of the material and the type of loading, i.e. quasi-static or cyclic loading. Its reliability is successfully proved by testing the *DCB*-specimens. The results of the work provide some confidence for using crack turning for the design process on airplane structures loaded under near *Mode I* conditions.

Keywords: Crack growth simulation; Crack turning; near *Mode I* loading; normalised *T*-stress; anisotropy; airplane structures.

Table of Contents

Lis	List of Figures			i5	
Lis	ist of Tables				
No	mencla	iture		i13	
Ab	Abbreviations				
Ac	knowle	dgments		i19	
1	Intro	duction		1	
2	State of the art			5	
	2.1	Aeronautical structures		5	
		2.1.1	Aeronautical materials	8	
		2.1.2	Inspection intervals	10	
	2.2	Fracture Mechanics		11	
		2.2.1	Linear Elastic Fracture Mechanics	12	
		2.2.2	Elastic Plastic Fracture Mechanics	15	
		2.2.3	Plane strain and plane stress	17	
		2.2.4	The second order term and the two parameter characterisation	18	
		2.2.5	Fatigue	21	
	2.3	Numerical Methods		24	
		2.3.1	Crack growth simulation	25	
	2.4	Crack path		27	
		2.4.1	Rotation of the crack surface	27	
		2.4.2	Crack turning criteria for 2D-structures	31	
		2.4.3	Crack turning criteria for 3D-structures	40	
		2.4.4	Summary of crack turning criteria	42	
	2.5	Crack growth on fuselag	<i>yes</i>	42	
		2.5.1	Load on aircraft structures	44	
		2.5.2	Crack turning on fuselages	45	
		2.5.3	The Doubler Cantilever Beam specimen	48	
		2.5.4	The cruciform specimen	49	
		2.5.5	Assessment of crack turning on the DCB-specimen	50	
3	Objectives and Methodology			53	
	3.1	Modelling tool for crack growth analysis		54	
	3.2	Crack turning assessmer	1t	55	
4	Expe	rimental testing		57	
	4.1	Materials		57	

	4.2	Special characterisati	Special characterisation techniques	
		4.2.1	The direct current potential drop method	58
		4.2.2	Strain mapping system: ARAMIS [®]	59
	4.3	Experimental sets and	l results of testing	60
		4.3.1	Standard tests	60
		4.3.2	The Two-stringer specimen test (set reference DE03)	67
		4.3.3	Crack turning specimens and tests	70
5	Mod	Modelling tool for crack growth analysis		
	5.1	Selection conditions		83
	5.2	Modelling tools		84
		5.2.1	$NASGRO^{\mathbb{R}} / AFGROW^{\mathbb{R}}$	84
		5.2.2	ANSYS®	85
		5.2.3	$FRANC3D^{\textcircled{R}}$	85
		5.2.4	Crack-Kit [®]	85
		5.2.5	<i>StressCheck</i> [®]	86
	5.3	Tested tools		87
		5.3.1	First selection	87
		5.3.2	Working with FRANC3D [®]	89
		5.3.3	Working with StressCheck [®]	94
		5.3.4	Conclusion of the tool analyses	100
	5.4	Implementation of the	tool	100
	5.5	Reliability of the tool		102
		5.5.1	Theoretical Stress Intensity Factor calculation	103
		5.5.2	Simulation results	104
6	Crac	ack turning assessment		107
	6.1	Results from test-set r	eference RU04	108
		6.1.1	COD-F-Crack length	110
		6.1.2	Crack path prediction on DCB-specimens	112
	6.2	Modelling influences	on crack path predictions	116
		6.2.1	3D-effects	116
		6.2.2	Notch geometry and Modelling details	121
		6.2.3	Explanation for the observed crack propagation behaviour	134
	6.3	Results from test-set r	eference DE05	134
		6.3.1	Direction of extrusion	136
		6.3.2	COD-F-Crack length	137
	6.4	Boundary conditions s	study	140
	6.5	Global specimen plass	tification	146
	6.6	Crack path prediction	S	151

	6.7	Compilation of criteria a	nd definitions	156
7	Summary and Conclusions		167	
	7.1	Confirmed observations		168
	7.2	Conclusion		169
	7.3	Future Work		170
Rej	ference	25		171
	Standards			181
	Internet Web sites			182
A	Anne	exes		A1
	<i>A.1</i>	Numerical methods		A1
	<i>A.2</i>	Crack turning criteria		A3
		A.2.1	Crack turning criteria for 2D-structures	A3
		A.2.2	Crack turning criteria for 3D-structures	A6
	<i>A.3</i>	Experimental tests		A8
	<i>A.4</i>	Other modelling tools		A9
Cu	rriculu	m Vitae		A11

List of Figures

Figure 2.1.	Fuselage structure assemblies [1]	6
Figure 2.2.	Typical fuselage loads	7
Figure 2.3.	a) Differential and b) integral structures [11]	8
Figure 2.4.	The three principal fracture mode loadings	12
Figure 2.5.	Cylindrical coordinate system and stress components at a three dimensional (3D) crack front [22]	13
Figure 2.6.	J-integral definition	15
Figure 2.7.	CTOD and CTOA definition	16
Figure 2.8.	$K_{I}-K_{II}$ and $K_{I}-K_{II}-K_{III}$ diagrams for plane/surface mixed mode load with failure curve/surface and threshold curve/surface	16
Figure 2.9.	Variation of stress and strain along a 3D-crack front [31]	17
Figure 2.10.	Schematic representation of a) stress singularity zone an b) process zone, ρ , plastic zone, r_p , and K-field domain, R_k	18
Figure 2.11.	Idealized plot of SIF-range and crack growth rate for a metal at a given mean cyclic stress	22
Figure 2.12.	a) Turning angle φ_c under plane mixed mode loading. b) Twist angle ψ_c under overlay Mode I and Mode III loading [14]	28
Figure 2.13.	Asymmetric crack tip deformation due to tight hydrostatic stresses and shear strains [27]	29
Figure 2.14.	Transition to slant crack growth under a) static loading and b) cyclic loading [16]	30
Figure 2.15.	Fracture surface separation for a) plane strain and b) plane stress [61]	30
Figure 2.16.	Development of the observed stresses by Erdogan & Sih [62]	32
Figure 2.17.	Experimental and assessed crack path on a narrow body fuselage panel test after the MTS-criterion [9]	33
Figure 2.18.	Crack path turning parameters	34
<i>Figure 2.19.</i>	Experimental and assessed crack path on a narrow body fuselage panel test after the WEF-criterion [9]	36
Figure 2.20.	Schematic orthotropic crack growth resistance	39
Figure 2.21.	Experimental and assessed crack path on a narrow body fuselage panel test after the WEFO-criterion [9]	40
Figure 2.22.	Sign of the angle depending on K_{II} , i.e. $ au_{xy}$	42
Figure 2.23.	Failure of a) Comet transport jet aircraft from fatigue. b) Aloha Flight 243 in which the airplane lost a large section of its upper fuselage due to MSD	43
Figure 2.24.	Crack turning and flapping in Boeing 707 barrel-test [8]	45
Figure 2.25.	Schematic longitudinal crack in the Airbus A320 fuselage [24]	46
Figure 2.26.	Asymmetrical CT-specimen [53]	48
Figure 2.27.	Mostovoy specimen. Different crack turning paths due to different tapered angles, $lpha_M[88]$	48
Figure 2.28.	SDCB-specimen	49
Figure 2.29.	Stress flow on the CFS-specimen	50

Figure 2.30.	Crack path assessment using the WEFO-criterion on DCB-specimen in a) L-T and b) T-L direction [23]	51
Figure 3.1.	Fuselage zones and crack scenarios with turning potential [89]	53
Figure 3.2.	Schematic representation of the tasks involved in this work	54
Figure 4.1.	Schematic illustration of the current potential drop method	58
Figure 4.2.	a) Standard dog-bone specimens in L, 45° and LT directions, b) test set-up for the specimens in a)	61
Figure 4.3.	True stress-true strain curve for AA 6013-T3 L, 45° and LT directions	61
Figure 4.4.	Dimensions of the MT-specimen reference DE02	62
Figure 4.5.	MT test-rig reference DE02	63
Figure 4.6.	Crack growth rate for all MT-specimens with a thickness of 1.6 mm	64
Figure 4.7.	Crack growth rate for all MT-specimens with a thickness of 2.5 mm	64
Figure 4.8.	Residual strength test curves for L-T specimens	65
Figure 4.9.	Residual strength test curves for 45° direction	65
Figure 4.10.	Residual strength test curves for T-L specimens	66
Figure 4.11.	Dimensions of the two stringer specimen (2SP)	68
Figure 4.12.	Location and form of the dopplers on the specimen. The doppler dimensions are plotted in Figure $A.6$	69
Figure 4.13.	2SP test-rig (reference DE03)	69
Figure 4.14.	Crack growth versus crack length for the 2SP	69
Figure 4.15.	SEM images of the 2SP fractured surface at a) before the stringer and b) direct near the stringer	70
Figure 4.16.	Dimensions of the DCB-specimen	71
Figure 4.17.	Crack path results for a 40 mm notched DCB under quasi-static loading	72
Figure 4.18.	Crack path results for a 90 mm notched DCB under quasi-static loading	73
Figure 4.19.	Crack path results for a 140 mm notched DCB under quasi-static loading	73
Figure 4.20.	Crack path results for a 90 mm notched DCB under cyclic loading	74
Figure 4.21.	Applied load vs. COD results for the DCB with 40 mm notch and under quasi-static loading	74
Figure 4.22.	Applied load vs. COD results for the DCB with 90 mm notch and under quasi-static loading	75
<i>Figure 4.23</i> .	Applied load vs. COD results for the DCB with 140 mm notch and under quasi-static loading	75
Figure 4.24.	a) DCB-specimens corresponding to the set reference DE05 b) definition of the notch angle ψ	76
Figure 4.25.	Clamping device including cylinder bearing	77
Figure 4.26.	Test-rig for set reference DE05	78
Figure 4.27.	Crack path results for the DCB under cyclic loading (reference DE05)	78
Figure 4.28.	Crack path results for the DCB under quasi-static loading (reference DE05)	79
<i>Figure 4.29</i> .	ARAMIS analysis a) focused zone b) graphical representation of the output data. (data worked with $Matlab$ (b)	79

Figure 4.30.	ARAMIS strain analysis. Cyclic loading. DCB_F4540_1	80
Figure 4.31.	ARAMIS strain analysis. Quasi static loading. DCB_S040_hc03	80
Figure 4.32.	a) Dimensions and b) test-rig of the CFS-specimen (reference RU06)	81
Figure 4.33.	Results of testing for the CFS-specimen (reference RU06) under cyclic load conditions a) obtained crack path and b) a vs. N	82
Figure 5.1.	a) MT-geometry model after being treated with OSM, b) 2SP full-meshed model after automatic crack propagation, c) crack mesh after 16 steps of automatic propagation	90
Figure 5.2.	a) Application point (C) of the through crack, b) bilinear mapping of the crack and c) automatic re-meshing for the MT-specimen	91
Figure 5.3.	Extraction of the Paris constants from the crack growth rate results for the MT-specimens loaded with 100 and 180 MPa in L-T direction. Specimen thickness = 1.6 mm	92
Figure 5.4.	Illustration of the analysis line (here red) for the extraction of the fracture mechanics parameters. Every orange line defines a crack front. In this case there are 17 crack fronts	93
Figure 5.5.	Test and simulation of the MT-specimen with a thickness of 1.6 mm and an upper stress of a) 100 MPa and b) 180 MPa	93
Figure 5.6.	Crack propagation on the 2SP using the full model and the crack turning capability	94
Figure 5.7.	Mesh and boundary conditions for a) quarter MT-model and b) half 2SP-model with StressCheck	95
Figure 5.8.	Mesh and boundary conditions for the full 2SP-model without crack modelled with StressCheck	96
Figure 5.9.	Crack tip mesh illustrating the path-integral (hatched contour)	96
Figure 5.10.	Experimental test and simulation results for the MT-specimen with a thickness of 2.5 mm	97
Figure 5.11.	Models for the 2SP-specimen a) with the crack in the skin and b) in the outer flange	98
Figure 5.12.	Experimental test and simulation results for the half 2SP-specimen	99
<i>Figure 5.13.</i>	Contour integral near the crack tip [99]	102
Figure 5.14.	DCB-specimen dimensions [9]	102
Figure 5.15.	Boundary conditions and mesh from the simulated DCB-specimen	104
Figure 6.1.	Representative results of crack path under cyclic and quasi-static loading for an initial notch length of 90 mm	108
Figure 6.2.	Representative results of crack path under quasi-static loading for an initial notch length of 40, 90 and 140 mm in L-T and T-L	109
Figure 6.3.	DCB-model with 40 mm notch with the crack path from test results of reference $RU04$	110
Figure 6.4.	Selected crack path coordinates	111
Figure 6.5.	Test and simulation results of the DCB with a 40 mm notch. F-COD-a relation	112
Figure 6.6.	Crack paths for the DCB-specimen in L-T direction with a notch length of 90 mm	113
Figure 6.7.	Crack path prediction results with a 2D-model with 40 mm notch under quasi-static loading	114
Figure 6.8.	Definition of the relative (Rel.) and absolute (Abs.) turning angle	115
Figure 6.9.	a) Fracture surface of the 2SP-specimen and b) 2SP-model with the crack front on a)	116
Figure 6.10.	Simulation results with straight crack front and curved crack front model [82]	117

Figure 6.11.	Modelled 3D crack fronts	118
Figure 6.12.	Definition of the locations at the crack front, where the fracture parameters were calculated	120
Figure 6.13.	Crack paths predicted for different crack fronts and analysed points	121
Figure 6.14.	DCB-solid model and sets definition	122
Figure 6.15.	Crack tip geometries and pre-crack positions	123
Figure 6.16.	Simplified CFS-models	123
Figure 6.17.	Full CFS-models without grooves	124
Figure 6.18.	Full CFS-models with grooves	124
Figure 6.19.	Automatic crack path calculations from the model with the rounded notch	125
Figure 6.20.	Crack path results for different crack increments (quadratic notch model)	126
Figure 6.21.	Crack path results for different polynomial order (round notch model)	126
Figure 6.22.	Crack path predictions on DCB for different notch thicknesses (round notch model)	127
Figure 6.23.	Automatic crack path prediction for different notch geometries and pre-crack lengths with $h_c = 1$ mm	127
Figure 6.24.	CFS-crack path predictions using model 1 until model 3b with a notch gap of 1 mm	128
Figure 6.25.	CFS-crack path predictions using model 3a until model 4 with a notch gap of 1 mm	128
Figure 6.26.	CFS-crack path predictions using model 2 and different notch gaps	129
Figure 6.27.	CFS-crack path predictions using model 3a and different notch gaps	129
Figure 6.28.	Manual mesh and boundary conditions of the CFS-model	130
Figure 6.29.	Modelled crack tip positions	131
Figure 6.30.	Stress intensity factor under Mode I for the crack situated on the middle of the notch (I. Middle crack)	131
Figure 6.31.	T-stress for the crack situated on the middle of the notch (I. Middle crack)	132
<i>Figure 6.32</i> .	a) Stress intensity factor under Mode I and b) T-stress for the crack situated on the side of the notch (II. Side crack)	132
Figure 6.33.	SIF under Mode II for the crack situated on the side of the notch (II. Side crack)	133
Figure 6.34.	Crack paths form the experimental results of testing ref. DE05 with different notch characteristics: $h_c = 1.5$ or 0.3 mm, $\Psi = 0^\circ$ or 45° and notch lengths: $a_0 = 43$, 38 or 33 mm	135
Figure 6.35.	Summary of Figures 4.30 and 4.31; Strain at the crack tip analysed by means of ARAMIS	136
Figure 6.36.	Cube representation of the delivered sheet 2024-T3 analysed by means of an optical microscope	137
Figure 6.37.	Force vs. COD records for the DCB-specimens tested under quasi-static loading	138
<i>Figure 6.38</i> .	Force vs. crack propagation for the specimens tested under quasi-static loading (test ref. DE05)	138
Figure 6.39.	Displacement restrictions applied on nodes or edges with partial and total fixation	142
Figure 6.40.	Displacement restrictions applied on nodes or edges with partial and total fixation (continuation)	144
Figure 6.41.	Boundary conditions in agreement with the deformations obtained on experimental tests ref. DE05	144
Figure 6.42.	100x amplified deformation and stress distribution for the model on Figure 6.41	145

<i>Figure 6.43</i> .	DCB-specimen deformation for a turned crack path during a) experimental test ref. DE05 and b) from the simulation results	145
Figure 6.44.	Stability of the solution varying either the crack length or the specimen width	146
Figure 6.45.	Visual degree of plasticity for two representative DCB-specimens. The illustration below (Static 40 L-T) corresponds to an applied force of 10 kN to illustrate the meaning of plastic collapse	149
Figure 6.46.	Crack path prediction by means of different crack turning criteria for the 40 mm notched DCB-specimen	153
Figure 6.47.	Crack path prediction using the WEFO-criterion on L-T and T-L direction	154
Figure 6.48.	Schematic orthotropic parameter dependence (ξ)	158
Figure 6.49.	DCB-crack path prediction using the proposed criterion for the 40 mm pre-notched specimen in L-T direction under cyclic loading	159
<i>Figure 6.50.</i>	DCB-crack path prediction using the proposed criterion for the 40 mm pre-notched specimen in L-T direction under quasi-static loading	160
Figure 6.51.	DCB-crack path prediction using the proposed criterion for the 40 mm pre-notched specimen in T-L direction under quasi-static loading	160
Figure 6.52.	DCB-crack path prediction using the proposed criterion for the 90 mm pre-notched crack specimen in T-L direction under cyclic loading	161
Figure 6.53.	DCB-crack path prediction using the proposed criterion for the 90 mm pre-notched specimen in L-T direction under cyclic loading	161
Figure 6.54.	DCB-crack path prediction using the proposed criterion for the 90 mm pre-notched specimen in T-L direction under quasi-static loading	162
Figure 6.55.	DCB-crack path prediction using the proposed criterion for the 90 mm pre-notched specimen in L-T direction under quasi-static loading	162
Figure 6.56.	DCB-crack path prediction using the proposed criterion for the 140 mm pre-notched specimen in T-L direction under quasi-static loading	163
Figure 6.57.	DCB-crack path prediction using the proposed criterion for the 140 mm pre-notched specimen in L-T direction under quasi-static loading	163
Figure 6.58.	Crack path prediction using the proposed criterion on the CFS-specimen in L-T direction under cyclic loading	164
Figure A.1.	Lagrange shape function a) linear and b) quadratic	A1
Figure A.2.	Cubic shape function a) Lagrange and b) Hermite	A1
Figure A.3.	Schemas showing a) the competition of MHS and MSS criterion b) the type of failure determined by K_I/K_{II} versus the material ductility τ_c/σ_c	A4
Figure A.4.	Crack turning angle as a function of the elastic mixed mode parameters for different hardening exponents n [26]	A5
Figure A.5.	a) stable crack $\beta^* < 0$; $\gamma^* < 0$; b) re-stabilized crack $\beta^* > 0$; $\gamma^* < 0$; c) prediction of instability $\beta^* < 0$; $\gamma^* > 0$ d) unstable crack $\beta^* > 0$; $\gamma^* > 0$	A6
Figure A.6.	Doppler dimensions a) rear and b) front	A8

List of tables

Table 2.1.	Chemical weight composition of the AA 7075-T6 sheet [S1]	8
Table 2.2.	Chemical composition of the AA 2024-T3 sheet [S2]	9
Table 2.3.	Types of aircraft inspection [1]	11
Table 2.4.	r _c literature values	38
Table 2.5.	Frequency of failure mechanisms	43
Table 4.1.	Chemical composition of the AA 2024-T3 sheet [S2]	57
<i>Table 4.2.</i>	Chemical composition of the AA 6013-T6 [S4]	57
<i>Table 4.3.</i>	Mechanical properties of AA 6013-T3 profile	60
Table 4.4.	Fracture toughness of AA 6013-T3 profile	66
Table 4.5.	Mechanical properties of AA 2024-T3 sheet with a thickness between 0.25-3.25 mm	66
Table 4.6.	Test-matrix for set reference RU04	72
Table 4.7.	Test-matrix for set reference DE05	77
Table 4.8.	Test-matrix summary	82
Table 5.1.	Tool evaluation	89
<i>Table 5.2.</i>	Standard elastic isotropic material properties of the AA 6013-T3 in L-direction	91
Table 5.3.	Paris constants	92
Table 5.4.	Number of elements for the meshed models in $FRANC3D^{$ ®	93
Table 5.5.	Forman constants	97
Table 5.6.	Number of elements for the meshed models in StressCheck [®]	99
Table 5.7.	Comparison between StressCheck [®] and FRANC3D [®]	100
Table 5.8.	StressCheck results for the DCB-specimen with $a/w = 0.5$; $h/w = 0.2$	105
Table 5.9.	Computed values of K_{I} , T and B for DCB-specimen	105
Table 5.10.	Theoretical Value of the SIF on the analysed DCB-geometry	106
Table 6.1.	Coordinates of the selected crack path to be analysed by means of simulation	111
Table 6.2.	Correlation between crack tip position, COD and force for the DCB with 40 mm notch	111
Table 6.3.	Crack path calculations with the WEF-criterion with $r_c = 3 \text{ mm}$	115
<i>Table 6.4.</i>	Received crack path data for a notch length of 90 mm in L-T under cyclic loading. Ref. $RU04$	119
Table 6.5.	Example of the notes recorded from specimen DCB S4540 II	139
<i>Table 6.6.</i>	Comparison of forces determined by experimental testing (ref. DE05) and simulation for different crack lengths	140
Table 6.7.	Fracture mechanics results for the boundary analysis on the DCB-specimen with a notch length of 140 mm	143
<i>Table 6.8.</i>	σ_T and K_v calculations for different points at the crack path for the specimen DCB_S4540 loaded under quasi-static loading	148
Table 6.9.	L_{rp} calculations for the DCB_S4540 specimen	149

Table 6.10.	L_{rv} calculations for the DCB_S4540 specimen	150
Table 6.11.	Definition of the y-coordinate for the a _i positions	150
<i>Table 6.12</i> .	Plastic Collapse and complete failure positions	151
<i>Table 6.13</i> .	T_{Rc} -values for quasi-static and cyclic load for both L-T and T-L directions	158

Nomenclature

		F 1
α	plane stress/strain constraint factor	[-]
$lpha_0$	$= -2k_{II}/k_{I}$	[-]
α_{l}	$=K_{Ic}/K_{IIc}$	[-]
$lpha_2$	$=K_{Ic}/K_{IIIc}$	[-]
$lpha_e$	$=K_{I}/K_{II}$	[-]
$lpha_{eq}$	$= tan^{-1}(K_{I}/K_{II})$	[-]
$lpha_M$	tapered angles for the Mostovoy specimens	[°]
β	$= 2\sqrt{2} T / K_{I}$	[-]
eta_m	$= \frac{\left(\overline{K}_{m}^{n_{0}}-1\right)}{\left(\overline{K}_{m}^{n_{0}}+1\right)}$	[-]
δ	crack tip opening displacement	[mm]
δ_{il}	Kroneecker symbol, defined to be <i>l</i> when $i = l$ and <i>0</i> when $i \neq l$	[-]
Δa	crack growth increment	[mm]
ΔK	<i>SIF</i> -amplitude	[MPa*m ^{1/2}]
ΔK_0	empirical constant for the determination of ΔK_{th}	[MPa*m ^{1/2}]
ΔK_c	$=K_{c}\left(I\text{-}R\right)$	[MPa*m ^{1/2}]
ΔK_i	SIF amplitude under Mode i with $i = I$, II or III	[MPa*m ^{1/2}]
ΔK_{th}	SIF-amplitude threshold	[MPa*m ^{1/2}]
$\Delta K_{I,th}$	SIF-amplitude threshold for Mode I	[MPa*m ^{1/2}]
Δx	crack increment on the x-axis	[mm]
\mathcal{E}_{ij}	strain field at the crack tip with $i, j = x, y, z$	[%]
Г	arbitrary contour around the crack tip	
φ	first cylindrical coordinate angle contained in the plane xy	[°]
$arphi_c$	turning angle under plane mixed-Mode loading (Mode $I + II$)	[°]
λ	= σ_x / σ_y . Applied stress factor for the <i>CFS</i> -specimens	[-]
$\lambda(x)$	y-component on the crack path corresponding to the x-coordinate for a turned crack	[mm]
μ	shear modulus of elasticity	[MPa]
V	Poisson's ratio	[-]
v'	= 1 for plane stress = $(1-2\nu)^2$ for plane strain	[-]
0		[mm]
ho	process zone maximal applied stress (two-stringer specimen)	[MPa]
σ_0		
σ' _I	special principal stress	[MPa]
$\sigma_{I}, \sigma_{II}, \sigma_{III}$	Principal stresses	[MPa]
σ^{\sim}	far field stress normal to the crack	[MPa]

σ_{c}	critical stress, which defines the unstable crack growth	[MPa]
$\sigma_{\!e}$	Von Mises effective stress	[MPa]
σ_h	hydrostatic stress = $(\sigma_I + \sigma_{II} + \sigma_{III})/3$	[MPa]
σ_{ij}	stress field at the crack tip. <i>i</i> , $j = x$, y , z for Cartesian coordinates and <i>i</i> , $j = r$, φ , ψ for cylindrical coordinates	[MPa]
$\sigma_{\varphi\varphi}(HRR)$	tangential stress on the HRR-field	[MPa]
σ_{max}	maximum applied stress	[MPa]
σ_{T}	$= T - \sigma^{\infty}$	[MPa]
τ	$=T/R_{p0.2}$	[-]
$ au_c$	$=\frac{K_{IIc}}{\sqrt{2\pi r_c}}$	[-]
ω	Twist applied force angle	[°]
ψ	second cylindrical coordinate angle contained in the plane yz	[°]
ψ_c	Twist crack turning angle under overlapped loading modes (<i>Mode I + Mode III</i>)	[°]
ξ	Elliptical function for $\xi = K_c$, R_m and T_R	
A	elongation at fracture	[%]
A_{di}	analysis database	
A_k	empirical constant on the calculation of the fracture toughness	
В	biaxial parameter	[-]
B ₁ , B ₂ B ₃ , B ₄	empirical constant for the SINH crack growth rate law	
B_k	empirical constant on the calculation of the fracture toughness	
С'	Forman-Newman-deKoning constant	
C_{f}	constant for the Forman crack growth rate law	
C_p	constant for the Paris crack growth rate law	
CTOD _c	critical CTOD which defines the transition between stable and unstable crack growth	[mm]
Ε	Young's modulus	[MPa]
\widetilde{E}	$= E/(1-\nu^2)$ for plane strain = E for plane stress	[MPa]
E_{di}	equilibrium database	
F	Force	[N]
G	shear Modulus	[MPa]
G_e	energy release rate	
H	local stress triaxiality	[MPa]
J	$J\text{-integral} = \iint_{\Gamma} \left(w dy - T_i \frac{\partial u_i}{\partial x} ds \right)$	
J_c	critical J-integral which defines the transition between stable and unstable crack growth	
K ₁	SIF at the turned crack tip defined after Richard	[MPa*m ^{1/2}]

K _c	under cyclic loading it represents the SIF at which the crack propagates at a given rate, for quasi-static loading it is the fracture toughness	[MPa*m ^{1/2}]
$K_c(\boldsymbol{\varphi})$	fracture toughness dependent on the anisotropy of the material	[MPa*m ^{1/2}]
K_i	SIF under Mode <i>i</i> loading with $i = I$, II or III	[MPa*m ^{1/2}]
K _{ic}	fracture toughness under Mode <i>i</i> loading with $i = I$, <i>II</i> or <i>III</i>	[MPa*m ^{1/2}]
\overline{K}_m	$=\frac{K_{c}(\boldsymbol{\varphi})_{\boldsymbol{\varphi}=90^{\circ}}}{K_{c}(\boldsymbol{\varphi})_{\boldsymbol{\varphi}=0^{\circ}}}$	[-]
K_{ν}	comparative SIF	[MPa*m ^{1/2}]
$K_{vI,II}$	comparative SIF under Mode I and Mode II	[MPa*m ^{1/2}]
$K_{vI,II,III}$	comparative SIF under Mode I, Mode II and Mode III	[MPa*m ^{1/2}]
L_{rp}	Elastic-plastic behaviour of the ligament	[-]
L_{rv}	plastic degree of the ligament	[-]
M_{cf}	middle point at the crack front	
Ν	lifetime	[cycles]
N_i	shape function	
O (<i>l</i>)	contribution of higher order terms on the stress field at the crack tip	[MPa]
Q	triaxiality parameter	
R	stress ratio	[-]
<i>R</i> ₁ , <i>R</i> ₂ <i>R</i> ₃ and <i>R</i> ₄	Richard constants for the determination of crack turning angles	[°]
R_c	effect of crack closure under constant amplitude loading	
R_{di}	representational database	
R_k	K-field domain	[mm]
R_m	ultimate yield strength	[MPa]
$R_{p0.2}$	yield strength	[MPa]
S	energy density	
Τ	uniform non-singular stress, normal to the crack line and dependent on type of loading and specimen geometry	[MPa]
T_i	traction vector	
T_R	normalised T-stress (after Pook [16])	[MPa]
T_{xz}, T_{zx}	shear components on the second order term of the William's expansion series for a $3D$ crack	[MPa]
T_{zz}	<i>z</i> -component of the second order term in the William's expansion series for a $3D$ crack = vT	[MPa]
U'	variable field	
U'_i	Variable field on nodal or integral points	
Wt%	weight %	[%]
Ζ	contraction at fracture	[%]
		_
а	current crack length	[mm]
a_0	initial crack length	[mm]

a_{11}, a_{12}, a_{22} and a_{33}	parameters defining the energy density (S)	
c_{θ}	intrinsic crack length = 0.102 mm	[mm]
d	fatigue crack length	[mm]
da/dN	crack growth rate	[mm/cycles]
erfc	complementary error factor	
<i>f, f</i> *	body forces	[N]
$egin{aligned} &f^{I}_{\ ij}(oldsymbol{arphi}),\ &f^{II}_{\ ij}(oldsymbol{arphi}),\ &f^{III}_{\ ij}(oldsymbol{arphi}), \end{aligned}$	functions dependent on crack length and geometry for <i>Mode I</i> , <i>Mode II</i> and <i>Mode III</i> respectively with $i, j = x, y, z$	
f_F	Forman-Newman-deKoning function	
h	specimen half height	[mm]
h_c	opening gap of the notch	[mm]
k _i	SIF on the crack path before turning under Mode i for $i = I$, II or III	[MPa*m ^{1/2}]
l_d	distance between the crack tip and the CTOD measure point	[mm]
n	strain hardening exponent	
n_f	exponent constant for the Forman crack growth rate law	
n _r	unit vector normal to Γ	
n _o	exponent for orthotropic crack turning calculations	
n_p	exponent constant for the Paris crack growth rate law	
р	Forman-Newman-deKoning exponent	
q	Forman-Newman-deKoning exponent	
r	distance from the crack tip (cylindrical and Cartesian co-ordinates)	[mm]
<i>r</i> ₀	explicit distance from the crack tip $=\frac{9}{128\pi} \left(\frac{K_I}{T}\right)^2$	[mm]
r _c	material specific distance from the crack tip	[mm]
r _{cf}	fatigue characteristic length	[mm]
r _{ch}	crack tip parameter	[mm]
r_{f}	radius of the fuselage	[mm]
r_p	radius of the Irwin plastic zone	[mm]
r-value	anisotropy ratio	[-]
t	thickness	[mm]
t_i	surface traction	[N]
<i>u</i> _i	displacement	[mm]
W	specimen width	[mm]
w _s	strain energy density	
x	cartesian coordinate. Global is defined parallel to the initial notch direction and local in the direction of actual crack propagation	
у	cartesian coordinate. Global is defined perpendicular to the initial notch direction and local perpendicular to the actual crack growth direction	
Z	cartesian coordinate in the specimen thickness direction	

-i16-

Abbreviations

2D	Two Dimensional
2SP	Two Stringer Specimen
3D	Three Dimensional
A/C	Aircraft
AA	Aluminium Alloy
AIMS	Airbus Industries Material Specification (Standard)
BE	Boundary Element
BEM	BE-Method
CAD	Computer Aided Design
CATIA	Computer-Graphics Aided Three Dimensional Interactive Applications
CFS	Cruciform Specimen
COD	Crack Opening Displacement
Cr	Chrome
CRC	Corporate Research Centre
CT	Compact Tension (Specimen)
CTOA	Crack Tip Opening Angle
CTOD	Crack Tip Opening Displacement
CTS	Compact Tension Shear (Specimen)
DCB	Double Cantilever Beam
e	Electron
E&Sih	Erdogan & Sih (Criterion)
EADS	European Aeronautics Space and Defence (Company)
EPFM	Elastic Plastic Fracture Mechanics
ESRD	Engineering Software Research & Development (Inc.)
Fe	Iron
FE	Finite Element
FEA	FE-Analysis
FEM	FE-Method
FNK	Forman-Newman-deKonning
HRR	Hutchinson, Rice and Rosengreen (Field)
IINT	Interaction Integral (Method)
LA	Linear Analysis
LEFM	Linear Elastic Fracture Mechanics
MAI	Moscow State Aviation Institute
Mg	Magnesium
MHS	Maximum Hoop Stress (Criterion)
MM	Mixed Mode

MMPDS	Metallic Material Properties Development and Standardisation
Mn	Manganese
Mode I	In-plane opening mode
Mode II	In-plane sliding mode
Mode III	Out-of-plane tearing mode
MPS	Maximal Principal Stress (Criterion)
MSD	Multi Site Damage
MSS	Maximum Shear Stress (Criterion)
MT	Middle Cracked Tension (Specimen)
NASA	National Aeronautics and Space Administration
NLA	Non Linear Analysis
OSM	Object Solid Modeller
<i>R</i> . <i>T</i> .	Room Temperature
SDCB	Twist double cantilever beam
SED	Strain Energy Density
SEM	Scanning Electron Microscope
Si	Silicon
SIF	Stress Intensity Factor
SwRI	Southwest Research Institute
TsAGI	Central Aerodynamic Institute
UPC	Technical University of Catalonia
UTC	University of Technology of Compiegne
VCCI	Virtual Crack Closure Integral (Method)
WEF	Finnie & Saith, Kosai, Kobayashi & Ramulu and Shimamoto et al. (Criterion)
WEFO	WEF combined with fracture anisotropy (Criterion)
Zn	Zinc
Zr	Zircon

Acknowledgments

The investigation presented in this Ph.D. thesis has been possible with the support of many people. I would like to mention and thank them.

I would like to thank specially my wife Aline Licht for her patience and her predisposition to sacrifice weekends for letting me to work hard on the thesis during all these years.

I thank my family: Llorenç Llopart Domingo, Montserrat Prieto Seva and Roger Llopart Prieto and friend Dr. Lluís Gimeno Fabra for insisting and keeping faith in the outcome of my work.

I am also grateful to my thesis advisors Prof. Marc Anglada i Gomila and Elke Hombergsmeier and I would like to thank them for their efforts to monitor the technical contents and supervise the management activities. Special thanks to Aline, Lluís, Prof. Anglada, Joseph Barnett, Ignacio Morera Pintos and Dr. Claudio Dalle Donne during the process of writing of this thesis.

Particular thanks to my EADS colleagues with whom I shared impressions and opinions: Bernhard Kurz and Vitus Holzinger among others.

I express my gratitude to the staff of the Technical University of Catalonia (*UPC*), for their flexibility and understanding and to the friends there for their help in the bureaucracy: Dr. Jéssica Calvo Muñoz and Montserrat Charles-Harris Ferrer.

Finally, I would like to thank Dr. Herwig Assler and Dr. Alexei Vichniakov from Airbus for their cooperation and contributions on fatigue and damage tolerance applied in airplane structures.