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Abstract 

Developments in airplane structures are aimed at making them lighter, more durable, with higher 

damage tolerance and simultaneously safer than the existing riveted structures. Integral 

structures, monolithic or welded, offer weight reduction, costs savings and more corrosion 

resistance than differential structures (riveted). But, occasionally, they have lower tolerance to 

the damage. However, by testing these structures with cracks, it has been observed that crack 

turning may occur. This phenomenon produces an improvement of the damage tolerance 

inducing crack arresting or deflection. 

 

In order to understand and assess crack turning in aeronautical structures, in this work it has been 

analysed different Finite Element (FE) tools capable to perform crack growth analyses on three 

dimensional models and, at the same time, with the ability to perform design studies. After 

assessing different FE-analysis tools, the commercial tool StressCheck® has been selected. The 

T-stress extraction facility has been implemented in StressCheck® in cooperation with 

Engineering Software Research & Development, Inc. The reliability of the tool has been proved 

to be satisfactory by means of literature and experimental test data. Using this tool and testing 

Double Cantilever Beam (DCB) as well as cruciform specimens under near in-plane opening 

mode (Mode I) loading conditions, different crack turning criteria have been checked. 

 

Based on both testing and simulation results, a more developed criterion is proposed and some 

hints on the modelling process are recapitulated. The proposed criterion is based on existing 

criteria related to the T-stress and it is implemented with the normalised T-stress, TR. The 

criterion takes into account the anisotropy of the material and the type of loading, i.e. quasi-static 

or cyclic loading. Its reliability is successfully proved by testing the DCB-specimens. The results 

of the work provide some confidence for using crack turning for the design process on airplane 

structures loaded under near Mode I conditions. 

 

Keywords:  Crack growth simulation; Crack turning; near Mode I loading; normalised T-

stress; anisotropy; airplane structures. 
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 Rdi representational database 

 Rk K-field domain [mm]

 Rm ultimate yield strength [MPa]

 Rp0.2 yield strength [MPa]

 S energy density 

 T uniform non-singular stress, normal to the crack line and dependent on type of 
loading and specimen geometry [MPa]

 Ti traction vector 

 TR normalised T-stress (after Pook [16]) [MPa]

 Txz, Tzx    
shear components on the second order term of the William’s expansion series for a 
3D crack [MPa]

 Tzz 
z-component of the second order term in the William’s expansion series for a 3D 
crack = νT [MPa]

 U’ variable field 

 U’i Variable field on nodal or integral points 

Wt% weight % [%]

 Z contraction at fracture [%]
  
 a current crack length [mm]

 a0 initial crack length [mm]
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 a11, a12, 
 a22 and a33 

parameters defining the energy density (S) 

 c0 intrinsic crack length = 0.102 mm [mm]

 d fatigue crack length [mm]

 da/dN crack growth rate [mm/cycles]

 erfc complementary error factor 

 f, f * body forces [N]

 fI
ij(ϕϕϕϕ), 

 fII
ij(ϕϕϕϕ), 

 fIII
ij(ϕϕϕϕ) 

functions dependent on crack length and geometry for Mode I, Mode II and Mode III 
respectively with i, j = x, y, z 

 fF Forman-Newman-deKoning function 

 h specimen half height [mm]

 hc opening gap of the notch [mm]

 ki SIF on the crack path before turning under Mode i for i = I, II or III [MPa*m1/2]

 ld distance between the crack tip and the CTOD measure point [mm]

 n strain hardening exponent 

 nf exponent constant for the Forman crack growth rate law 

 nΓΓΓΓ unit vector normal to Γ 

 no exponent for orthotropic crack turning calculations 

 np exponent constant for the Paris crack growth rate law 

 p Forman-Newman-deKoning exponent 

 q Forman-Newman-deKoning exponent 

 r distance from the crack tip (cylindrical and Cartesian co-ordinates) [mm]

 r0 explicit distance from the crack tip 
2

128
9







= T

KI

π
 [mm]

 rc material specific distance from the crack tip [mm]

 rcf fatigue characteristic length [mm]

 rch crack tip parameter [mm]

 rf radius of the fuselage [mm]

 rp radius of the Irwin plastic zone [mm]

 r-value anisotropy ratio [-]

 t thickness [mm]

 ti  surface traction [N]

 ui displacement [mm]

 w specimen width [mm]

 ws strain energy density 

 x cartesian coordinate. Global is defined parallel to the initial notch direction and local 
in the direction of actual crack propagation 

 y cartesian coordinate. Global is defined perpendicular to the initial notch direction 
and local perpendicular to the actual crack growth direction 

 z cartesian coordinate in the specimen thickness direction 
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Abbreviations 

2D Two Dimensional 

2SP Two Stringer Specimen 

3D Three Dimensional 

A/C Aircraft 

AA Aluminium Alloy 

AIMS Airbus Industries Material Specification (Standard) 

BE Boundary Element 

BEM BE-Method 

CAD Computer Aided Design 

CATIA Computer-Graphics Aided Three Dimensional Interactive Applications 

CFS Cruciform Specimen 

COD Crack Opening Displacement 

Cr Chrome 

CRC Corporate Research Centre 

CT Compact Tension (Specimen) 

CTOA Crack Tip Opening Angle 

CTOD Crack Tip Opening Displacement 

CTS Compact Tension Shear (Specimen) 

DCB Double Cantilever Beam 

e- Electron 

E&Sih Erdogan & Sih (Criterion) 

EADS European Aeronautics Space and Defence (Company) 

EPFM Elastic Plastic Fracture Mechanics 

ESRD Engineering Software Research & Development (Inc.) 

Fe Iron 

FE Finite Element 

FEA FE-Analysis 

FEM FE-Method 

FNK Forman-Newman-deKonning 

HRR Hutchinson, Rice and Rosengreen (Field) 

IINT Interaction Integral (Method) 

LA Linear Analysis 

LEFM Linear Elastic Fracture Mechanics 

MAI Moscow State Aviation Institute 

Mg Magnesium 

MHS Maximum Hoop Stress (Criterion) 

MM Mixed Mode 
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MMPDS Metallic Material Properties Development and Standardisation 

Mn Manganese 

Mode I In-plane opening mode 

Mode II In-plane sliding mode 

Mode III Out-of-plane tearing mode 

MPS Maximal Principal Stress (Criterion) 

MSD Multi Site Damage 

MSS Maximum Shear Stress (Criterion) 

MT Middle Cracked Tension (Specimen) 

NASA National Aeronautics and Space Administration 

NLA Non Linear Analysis 

OSM Object Solid Modeller 

R.T. Room Temperature 

SDCB Twist double cantilever beam 

SED Strain Energy Density 

SEM Scanning Electron Microscope 

Si Silicon 

SIF Stress Intensity Factor 

SwRI Southwest Research Institute 

TsAGI Central Aerodynamic Institute 

UPC Technical University of Catalonia 

UTC University of Technology of Compiegne 

VCCI Virtual Crack Closure Integral (Method) 

WEF Finnie & Saith, Kosai, Kobayashi & Ramulu and Shimamoto et al. (Criterion) 

WEFO WEF combined with fracture anisotropy (Criterion) 

Zn Zinc 

Zr Zircon 
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