
Chapter 3

Hydroelectric System Models

Starting from general equations this chapter presents complete nonlinear models of a

hydroelectric power plant, along with the simplifications that allow the obtaining of new

models. On one hand, nonlinear models of hydroelectric power plants with or without surge

tank effects are proposed -these models are useful in the design of new types of nonlinear

controllers when large power variations are necessary. On the other hand, linearized models

of hydroelectric power plants with surge tank effects are presented. In this case the models

can be used when, for stability studies, a frequency response study is necessary.

Comprehensive tables are included where the new and the old models are classified.

Besides, a practical method of calculating the mechanical power in steady state is shown. A

time domain analysis of all models is presented along with a frequency response study of

linearized models. The last part gives suggestions for modelling hydroelectric plants. The

Appendix summarises the different models described in this chapter.

3.1 Preliminary Concepts

Authors in the bibliography use many kinds of notations to describe the variables and

parameters. In order to study and compare the models, it is necessary to make use of uniform
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the notation of the variables and parameters. This fact, subsequently, allows the description

of different models of hydroelectric power plants. Table 3.1 lists and describes the

parameters used in this Chapter, after making them uniform, and Table 3.2 presents the

variables utilised after the same procedure is carried out.

PARAMETER MEANING

A(p,c,s)
Cross section area of a conduit in [m2] (p: penstock, c: tunnel, s: surge
tank).

L(p,c) Length of the conduit in [m] (p: penstock, c: tunnel).

a Wave velocity in [m/s].

g Acceleration due to gravity [m2/s].

α ( )Ef//1g ⋅φ+κ⋅ρ=α

ρ Density of water [kg/m3].

κ Bulk modulus of compression of water [ 2skg/(m⋅ ].

φ Internal conduit diameter [m].

f Thickness of pipe wall [m].

E Young’s modulus of elasticity of pipe material.

wT Water starting time at any load in [s].

TWP,WC
Water starting time at rated or base load in [s] (WP: penstock, WC:
tunnel).

Cs Storage constant of surge tank in [s].

ec,ep,eT Elastic time in [s] (e: conduit, ep: penstock, ec: tunnel).

Tp Pilot valve and servomotor time constant in [s].

Tg Main servo time constant in [s].

T Surge tank natural period in [s].

0,2p,1pf Head loss coefficients in [pu] (p1: penstock, p2: tunnel, 0: surge chamber
orifice).

Φp,c Friction coefficient in [pu] (p: penstock, c: tunnel).

kf Head loss constant due to friction in [pu].

At Turbine gain in [pu].

z(p,c,n)
Hydraulic surge impedance of the conduit (p: penstock, c: tunnel, n:
normalized).

D1 Turbine damping in [pu/pu].

Table 3.1: List of parameters.

In Table 3.2 the superbar “ - ” indicates normalised values (expressed in [pu]).
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VARIABLE MEANING

)w,0,2l,l,r,t(H Head in [pu] (t: turbine, r: riser of the surge tank, l: loss in penstock, l2: loss
in tunnel, 0: reservoir, w: reservoir).

)NL,0,s,c,p,t(U Velocity of the water in the conduit or flow in [pu] (t: turbine, p: penstock,
c: tunnel, s: surge tank, 0: initial value, NL: no load).

)css,tss(H Head in steady state [pu] (tss: turbine, css: tunnel).

)css,tss(U Velocity or flow of the water in the conduit in steady state in [pu] (tss:
turbine, css: tunnel).

 U  U )rated( Velocity of the water in the conduit in [m/s] (rated: normalised)

) rated ,base(Q Flow in the conduit in [m3] (base, rated: turbine flow rate with gates fully
open and head at the turbine equal to H(base)).

)base(H  H Head in [m] (base: base value of head, i.e. the total available static head).

G  G ∆ Gate opening in [pu]. / Deviation of the gate opening in [pu].

mmechanical PP ∆ Turbine mechanical power [pu]/Deviation of the mechanical power in [pu]

ω∆ Deviation of the rotor speed in [pu].

Table 3.2: List of variables.

In Figure 3.1 a complete layout of a hydraulic power plant is depicted. The main elements

of this plant and some parameters are shown. On the other hand, Figure 3.2 shows the main

variables of a hydroelectric power plant.

Figure 3.1: Plot of the distribution of
parameters in a hydraulic power plant.

Figure 3.2: Plot of the distribution of heads
and flows in a hydraulic power plant.

3.1.1 Definitions

The most significant parameters that govern a hydroelectric power plant are:

•  Elastic time:

α== /g/La/LT )c,p()c,p()c,p(e
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•  Hydraulic surge impedance of the conduit:

( )α⋅⋅= gA/1z )c,p()c,p(

The water starting time TW is defined as the time required to accelerate the flow from

zero to the rated (or base) flow ( ) base(Q ) under the base head ( )base(H ��������	
�et al, 1987).

•  Water starting time in penstock:

   Tz
H

Q
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L
T epp

base

base

p

p
WP ⋅=⋅

⋅
=

•  Water starting time in tunnel:

  Tz
H
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base
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=

•  Storage constant of surge tank:

  
Q

HA
C

base

bases
s

⋅=  

•  Surge tank natural period:

    CT2T sWC ⋅⋅π⋅=

•  Relationship between flow and velocity of water in the conduit (tunnel or penstock):

UAQ ⋅=

•  Relationship between the normalised flow and the normalised water velocity in the

conduit (tunnel or penstock):

UQ
UA

UA
Q

Q

ratedrated

=⇒
⋅

⋅=

3.1.2 System Dynamic Equations

The basic and general equations of the hydroelectric system dynamics (Kundur, 1994) are

given by:

•  Flow Equation (water velocity) in the penstock:

tt HGU ⋅= (3. 1)
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•  Mechanical Power Equations:

HUPmechanical ⋅= (3. 2)

( ) tNLtmechanical HUUP ⋅−= (3. 3)

The difference between equations (3. 2) and (3. 3) is the term NLU  that considers the no

load flow or the minimal flow needed to make the turbine deliver useful power.

•  Newton’s second law:

x

H
g

t

U

∂
∂⋅−=

∂
∂

(3. 4)

•  Continuity equation:

t

H

x

U

∂
∂⋅α−=

∂
∂

(3. 5)

where x indicates the distance between two points and t is the time. The solutions of

these equations (in per units) in the Laplace domain are given by:

 )sT(sinhHz/1)sTcosh(UU e2ne21 ⋅⋅⋅+⋅⋅= (3. 6)

22fe2ne12 UUk)sT(tanhUz)sT(hsecHH ⋅⋅−⋅⋅⋅−⋅⋅= (3. 7)

The subscripts 1 and 2 refer to the conditions at the upstream and downstream ends of the

conduit, respectively, e.g. when the surge tank-penstock-turbine hydraulic circuit is

considered, the subscript 2 indicates downstream water (turbine) and the subscript 1

indicates upstream water (surge tank).

3.1.3 Linearized Equations

By linearizing the nonlinear relationships at an operating point, the flow in the penstock

(3. 1) and the mechanical power (3. 2), become:

•  Equation of the flow in the penstock (velocity of water)

GaHaG
G

U
H

H

U
U 1311 ∆⋅+∆⋅=∆⋅

∂
∂+∆⋅

∂
∂=∆ (3. 8)

•  Equation of the mechanical power

UaHaU
U

P
H

H

P
P 2321

mm
m ∆⋅+∆⋅=∆⋅

∂
∂+∆⋅

∂
∂=∆ (3. 9)
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The partial derivatives a11, a13, a21 and a23 depend on the kind of turbine and on the

operating point. In Oldenburger and Donelson (1962) ideal values for the Francis turbine are

a11= 0.5, a13= 1, a21= 1.5 and a23= 1.

3.1.4 Classification of the Models

The models can be classified in two basic groups:

•  Nonlinear Models.

•  Linearized Models.

3.2 Nonlinear Models

Nonlinear models of turbine hydraulic control systems are needed in those cases where large

turbine velocity and power changes exist, for instance in isolated power stations, and, in

cases when a load rejection happens and the electric system restoration follows a break-up.

In Figure 3.3 a block diagram of a hydroelectric system model is depicted, where the

nonlinear dynamics (turbine and mechanical power) are included.

Figure 3.3: Block Diagram of the hydroelectric system used in the models of Kundur (1994).
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Before describing different kinds of nonlinear models of hydroelectric systems, Table 3.3

presents a classification of these models: models with surge tank effects and models with no

surge tank effects. Each one of these types has two more possibilities: the first considers

elastic or non-elastic water columns, and the second takes into account the continuity

equation as modified or non modified.

The associated number to each element of the table corresponds to the number of the

Section of this Chapter where the model is described.

Table 3. 3: Table of nonlinear models.

With Surge Tank Effects
(3.2.1)

With No Surge Tank Effects
(3.2.2)

Nonlinear Models

Elastic Water Column
in the Penstock and

Non-elastic Water Column
in the Tunnel

Kundur (1994)
Model:

K4 (3.2.1.3)

Non-elastic
Water Columns

Kundur (1994)

Models:
K3 K32, K31

(3.2.2.1)

IEEE W. Group (1992)
Quiroga and Riera (1999)

Models:
WG3 QR33, QR32,

QR31 (3.2.2.2)

Kundur (1994)
Model:

K2 (3.2.2.3)

IEEE W. Group (1992)
Model:

WG2 (3.2.2.4)

IEEE W. Group (1992)
Quiroga and Riera (1999)

Models:
WG5, QR52, QR51

(3.2.1.2)

Kundur (1994)

Models:
K5, K52, K51

(3.2.1.1)

IEEE W. Group (1992)
Model:

WG4 (3.2.1.4)

Elastic Water Column
in the Penstock

Non-elastic Water
Column in the Penstock
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3.2.1 Models with Surge Tank Effects

The main function of the surge tank is to hydraulically isolate the turbine from deviations

generated in the head by transients in the conduits. By including the surge tank there appears

an undulatory phenomenon whose time period is T. This Subsection presents those models

that consider the surge tank effects.

3.2.1.1 Model with an elastic water column in the penstock and a non-elastic water column

in the tunnel (Kundur, 1994) - Model K5, K51, K52

The model K5 is the most complete since it incorporates all relevant characteristics in a

hydroelectric plant: it is a nonlinear model that includes surge tank effects, and considers an

elastic water column in the penstock, a non-elastic water column in the tunnel, and the

complete continuity equation.

Firstly, the relationship between the head and the flow in the turbine must be calculated.

In this case equations (3. 6) and (3. 7) should be used in the following hydraulic circuits:

•  Circuit 1: Reservoir-Tunnel-Surge Tank.

•  Circuit 2: Surge Tank-Penstock-Turbine.

By combining conveniently both relationships, a transfer function is obtained, which

connects the turbine flow and its head:

)sT(tanhz)s(G

)sT(tanh
z

)s(G
1

HH

UU
)s(F

eppp

ep

p

0t

0t

⋅⋅++Φ

⋅⋅+
−=

−
−= (3. 10)

According to Oldenburger and Donelson (1962), G(s) is

( )
( ) secccs
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UU
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The hyperbolic tangent function is given by
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NONLINEAR MODELS 29

Kundur (1994) considers for the hydraulic circuit reservoir-tunnel-surge tank the

expansion with n=0, so sT)sT(tanh ecec ⋅≅⋅ . The physical meaning is that the reservoir

water level is considered constant. By replacing this result in (3. 11), G(s) becomes

sWC
2

cs

WCc

0p

0s

CTsCs1

Ts

UU

HH
)s(G

⋅⋅+Φ⋅⋅+
⋅+Φ=

−
−= (3. 13)

The models K52 and K51 are obtained by considering in (3. 10) the approximations n=2

and n=1 of equation (3. 12). Finally, the models K5, K52 and K51 are completed by

combining equations (3. 1), (3. 3), (3. 10) and (3. 13), as is it shown in Figure 3.3.

3.2.1.2 Model with an elastic water column in the penstock and a non-elastic water

column in the tunnel (IEEE Working Group, 1992; Quiroga and Riera, 1999) -

Models WG5, QR52, QR51

The solution of the continuity equation (3. 6) for these models is modified and is given by

sct UUU −= (3. 14)

By applying this last equation in (3. 7), the dynamic equations of the hydraulic circuit 1

and circuit 2, can be expressed as follows.

•  Dynamics of the Tunnel:

2Q2lr HH0.1H −−= (3. 15)

cc2p2l UUfH ⋅⋅= (3. 16)

dt

Ud
TH c

WC2Q ⋅= (3. 17)

•  Dynamics of the Surge Tank:

ss0s
s

r UUfdtU
C

1
H ⋅⋅−⋅⋅= ∫ (3. 18)

•  Dynamics of the Penstock:

2
t1pl UfH ⋅= (3. 19)

( ) teppQ UsTtanhzH ⋅⋅⋅= (3. 20)

( ) Qlrtepplrt HHHUsTtanhzHHH −−=⋅⋅⋅−−= (3. 21)



HYDROELECTRIC SYSTEM MODELS30

•  Mechanical Power:

( ) dampingNLtttmechanical PUUHAP −−⋅⋅= (3. 22)

ω∆⋅⋅= GDP 1damping (3. 23)

The term dampingP  represents the damping effect due to friction and it is proportional to the

rotor speed deviation and to the gate opening. It is indispensable to include equation (3. 1)

that represents the relation among the turbine flow, the turbine head and the gate opening.

Figure 3.4 shows in detail a functional diagram with all the associated dynamics.

For the models QR52 and QR51 equations (3. 1), (3. 14) to (3. 20), (3. 22) and (3. 23) are

valid; on the other hand if the approximations n=2,1 of (3. 12) in (3. 21) are considered, then

( ) t2,1nepplrt UsTtanhzHHH ⋅⋅⋅−−=
=

(3. 24)

Figure 3.4: Functional diagram of model WG5 from the IEEE Working Group (1992)
including associated dynamics.
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3.2.1.3 Model with non-elastic water columns (Kundur, 1994) – Model K4

This model also considers the approximation sT)sT(tanh ecec ⋅≅⋅  - invariable water level of

the reservoir - (Kundur, 1994). Since this model considers non-elastic water columns, these

columns can be seen as rigid conduits, and the following result is deduced for the penstock:

sT)sT(tanh epep ⋅≅⋅  (IEEE Working Group, 1992). Hence, equation (3. 10) becomes

sTz)s(G

sT
z

)s(G
1

HH

UU
)s(F

eppp

ep
p

0t

0t

⋅⋅++Φ

⋅⋅+
−=

−
−= (3. 25)

where G(s) for this equation comes from (3. 13).

Therefore, to obtain the complete model, as Figure 3.3 shows, equation (3. 25) must be

combined with equations (3. 1) and (3. 3).

3.2.1.4 Model with non-elastic water columns (IEEE Working Group, 1992)–Model WG4

This model is based on equations (3. 14) to (3. 19), (3. 22) and (3. 23). Moreover, this model

is obtained by considering the approximations: sT)sT(tanh ecec ⋅≅⋅  and

sT)sT(tanh epep ⋅≅⋅ . The remaining equation of the dynamics of the penstock for this case

is given by

WP

ltrt

T

HHH

dt

Ud −−=  (3. 26)

3.2.1.5 Comparisons between the models with an elastic water column in the penstock and

a non-elastic water column in the tunnel (3.2.1.1 and 3.2.1.2)

The comparison between models with an elastic water column in the penstock and a non-

elastic water column in the tunnel requires on one hand the analysis of the flow and head in

the hydraulic circuit reservoir-tunnel-surge tank, and on the other hand the analysis of the

equation of the dynamics of the surge tank.
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Analysis of the Heads

The point of departure for model K5 is equation (3. 7), which is applied to the reservoir-

tunnel-surge tank hydraulic circuit. The result is an equation that relates heads in this

hydraulic circuit given by

( ) ccceccrw UUsTtanhzH'H ⋅Φ+⋅⋅⋅+=

( ) 2l2Qr2lcWCrw HHHHdt/UdTH'H ++=+⋅+= (3. 27)

where

( )sThsecH'H ecww ⋅⋅= (3. 28)

This means that the reservoir head 'Hw �	��������	�����������������ω) and Tec.

If the reservoir level is considered constant, as Subsection 3.2.1.3 shows, this means that

the reservoir has considerably large dimensions and implies that sT)sT(tanh ecec ⋅≅⋅  and

1)sT(hsec ec ≅⋅ . Therefore, ww H'H = , and then

2l2Qrw HHHH ++= (3. 29)

In model WG5 the relationship of the heads in the reservoir-tunnel-surge tank hydraulic

circuit is deduced from equation (3. 15), which is depicted in Figure 3.2, and can be

reformulated as

( ) 2l2Qr2lcWCr0 HHHHdt/UdTHH ++=+⋅+= (3. 30)

where 0.1HH w0 == . Hence, this last equation is similar to the equation of the heads of

the model K5 (3. 29).

Analysis of the Flows

The comparison between the models K5 and WG5 requires, moreover, the analysis of the

flows of the reservoir-tunnel-surge tank hydraulic circuit. By applying equation (3. 6) in

model K5, then

( )  )sT(sinhHz/1)sTcosh(UUU ecrcectsc ⋅⋅⋅+⋅⋅+= (3. 31)
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According to the approximation  sT)sT(tanh ecec ⋅≅⋅ , whose significance is equivalent to

1)sTcosh( ec ≅⋅  and sT)sTsenh( ecec ⋅≅⋅ , the continuity equation takes the following form

( )  )sT(Hz/1UUU ecrctsc ⋅⋅⋅++= (3. 32)

In accordance with equation (3. 14), the model WG5 uses the following modified

continuity equation (Figure 3.2)

tsc UUU +=

This equation implies that the impedance of the tunnel (zc) is considered to be quite large,

and in this dissertation is it called the modified continuity equation in order to differentiate it

from the continuity equation, which is represented by equation (3. 31).

Analysis of the dynamic equation of the surge tank

In model K5 the equation of the surge tank without considering the riser (an element present

in some surge tanks) has the following expression

∫ ⋅⋅= dtU
C

1
H s

s
r (3. 33)

In model WG5 this dynamics is given by (3. 18). Therefore, the difference between both

models is that K5 does not consider the surge chamber orifice head loss coefficient. Thus,

the models consider different surge tanks.

3.2.1.6 Comparison between models with non-elastic water columns (3.2.1.3 and 3.2.1.4)

Analysis of the Heads

The analysis of the reservoir-tunnel-surge tank hydraulic circuit is coincident to the one

presented in Subsection 3.2.1.5. The surge tank-penstock-turbine hydraulic circuit takes the

approximation n=0 for the hyperbolic tangent function, or sT)sT(tanh epep ⋅≅⋅  (non-elastic

water column in the penstock). This also means that 1)sT(hsec ep ≅⋅ .

By applying equation (3. 7) to the surge tank-penstock-turbine hydraulic circuit,

( ) tptepprt UUsTtanhz'HH ⋅Φ−⋅⋅⋅−=

lQrt HH'HH −−=

where ( )sThsecH'H ecrr ⋅⋅= , so rr H'H = , and

lQrt HHHH −−= (3. 34)
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In model WG4 the relationship of the heads is deduced from equation (3. 21), which is

similar to equation (3. 34), as can be seen in Figure 3.2. This means that there are not

differences in heads between the models K4 and WG4.

3.2.2 Models with no Surge Tank Effects

In this part a second group of nonlinear models is presented. These are the models that do

not consider surge tank effects.

3.2.2.1 Models with an elastic water column in the penstock (Kundur, 1994) – Models K3,

K32, K31

To obtain the model K3, equations (3. 6) and (3. 7) are applied to the reservoir-penstock-

turbine hydraulic circuit. By combining both equations, then

( )sTtanhz

1

HH

UU
)s(F

eppp0t

0t

⋅⋅+Φ
−=

−
−= (3. 35)

The models K32 and K31 are obtained by considering in (3. 35) the approximations n=2

and n=1 of (3. 12). Finally, the models K3, K32 and K31 are completed by combining

equations (3. 1) and (3. 3), as can be seen in Figure 3.3.

3.2.2.2 Model with an elastic water column in the penstock (IEEE Working Group, 1992;

Quiroga and Riera, 1999) – Model WG3, QR33, QR32, QR31

The model WG3 is obtained by combining equations: (3. 1), (3. 19), (3. 22), (3. 23) and the

equation of the dynamic of the penstock, which for the present case is

( ) ( ) Qlteppl00t HH0.1UsTtanhzHH/HH −−=⋅⋅⋅−−= (3. 36)

where
( ) teppQ UsTtanhzH ⋅⋅⋅=  

For the models QR33, QR32 and QR31 equations (3. 1), (3. 19), (3. 22), (3. 23) are valid;

on the other hand by considering the approximations n=2 and n=1 of the hyperbolic tangent

(3. 12) in equation (3. 36), the dynamic of the penstock is given by

( ) t2,1nepplt UsTtanhzH0.1H ⋅⋅⋅−−=
=

(3. 37)
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3.2.2.3 Model with a non-elastic water column in the penstock (Kundur, 1994) – Model K2

This model is obtained by considering equation (3. 35) and the approximation  of a non-

elastic water column in penstock: sT)sT(tanh epep ⋅≅⋅ . Apart from this, the friction

coefficient in the penstock is taken as 0p =Φ . The transfer function F(s) is, hence, given by

sT
1

HH

UU
)s(F

WP0t

0t

⋅
−=

−
−= (3. 38)

To obtain the complete set of equations of this model it is necessary to combine this last

equation with (3. 1) and (3. 3), as Figure 3.3 shows.

3.2.2.4 Model with a non-elastic water column in the penstock (IEEE Working Group,

1992) – Model WG2

This model is based on equations (3. 1), (3. 19), (3. 22), (3. 23) and an equation of the

dynamics of the penstock, given by

WP

ltt

T

HH0.1

dt

Ud −−= (3. 39)

3.2.2.5 Comparison between the models 3.2.2.1 and 3.2.2.2

Analysis of the Heads

Equation (3. 36) is taken as a point of departure, thus

( ) ( ) 0.1UfUsTtanhz0.1HUsTtanhzH t1ptepplteppt +⋅−⋅⋅⋅−=+−⋅⋅⋅−=

( ) t1pteppt UfUsTtanhz0.1H ⋅−⋅⋅⋅−=−

( ) 1peppt

t

fsTtanhz
1

)s(F
0.1H

U

+⋅⋅
−==

−

Therefore, a transfer function F(s) is found similar to the one obtained with equation

(3. 35) in Kundur (1994). The distribution of the heads for a hydraulic plant without surge

tank effects are shown in Figure 3. 5.
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Figure 3. 5: Diagram of heads and flows distribution in models WG3, QR33, QR32, QR31
and WG2.

3.3 Linearized Models

These models are obtained by combining the linearized equation of the mechanical power

(3. 2) and the linearized equation of the flow (3. 1). These models are useful in cases of

small signal stability as well as frequency response studies (IEEE Working Group, 1992;

Kundur, 1994). The linearized models are classified in Table 3.4.

Table 3. 4: Table of the linearized models.

Quiroga (1998a)
Model: Qlin

(3.3.1.1)

Non-elastic water columns

With Surge Tank Effects
(3.3.1)

With No Surge Tank Effects
(3.3.2)

Kundur (1994)
Model: Klin

(3.3.2.1)

Gaden (1945)
Model: Glin0

(3.3.2.2)

Linearized Models

Elastic water column in
the penstock and non-elastic
water column in the tunnel

Elastic water column
in the penstock

Quiroga (1998a)
Model: Qlin0

(3.3.1.2)

Non-elastic water
column in the penstock
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3.3.1 Models with Surge Tank Effects

3.3.1.1 Model with an elastic water column in the penstock and a non-elastic water column

in the tunnel (Quiroga, 1998a) –Model Qlin

This model is based on the combination of the flow in the penstock (3. 8), the mechanical

power (3. 9) (both linearized at an operating point) and the transfer functions F(s) (3. 10)

and G(s) (3. 13).
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(3. 40)

This model may be interesting when a frequency response study is necessary, in

particular, when stability studies are required.

3.3.1.2 Model with non-elastic water columns (Quiroga, 1998a) – Model Qlin0

The model Qlin0 is obtained from the model Qlin by considering the approximation n=0 for

the hyperbolic tangent, which means to consider a non-elastic water column in the penstock.

By using equations: (3. 8), (3. 9), (3. 13) and (3. 25), where non-elastic water columns are

considered, the resulting transfer function is
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(3. 41)

3.3.2 Models with no Surge Tank Effects

3.3.2.1 Model with an elastic water column in the penstock (Kundur, 1994) – Model Klin

This model is obtained by combining equations (3. 8), (3. 9) and (3. 35) where an elastic

water in penstock column is considered:
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(3. 42)



HYDROELECTRIC SYSTEM MODELS38

3.3.2.2 Models with a non-elastic water column in the penstock (Gaden, 1945) – Model

Glin0

These models are based on equations (3. 8), (3. 9) and (3. 38). Here the transfer function

F(s) considers a non-elastic water column in the penstock and the penstock head loss

coefficient equal to zero. The transfer function that relates the mechanical power with the

gate opening for the ideal turbine case has the following expression
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(3. 43)

This transfer function has been used for fifty years since the simplicity of representing a

hydroelectric plant with no surge tank effects by a transfer function with one pole and one

zero.

In general, for the non ideal turbine case, the transfer function conserves its shape of one

pole and one zero, the difference are the coefficients that here represent partial

differentiation at an operating point, and coincide with the coefficients in equations (3. 8)

and (3. 9) (Ramey and Skooglund, 1970).
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3.4 Conclusions of the Presented Models

Two ways of classifying the hydroelectric models into groups have been presented. The first

considers the nonlinear models, since two of their equations are nonlinear: the mechanical

power; and the relationship among the turbine flow, the turbine head and the gate opening.

The second takes into account the linearized models, where the above mentioned equations

are linearized at an operating point. Both groups can also be divided into models with and

without surge tank effects. Apart from that, both sub-groups consider the following

possibilities: 1) an elastic water column in the penstock and a non-elastic water column in

the tunnel, and 2) non-elastic water columns.



CONCLUSIONS OF THE PRESENTED MODELS 39

To simplify some models, two approximations are considered. The first supposes the

reservoir level as invariable, or a very large reservoir, which mathematically can be written

as sT)sT(tanh ecec ⋅≅⋅ . The second considers non-elastic water column in the penstock

(rigid conduit), which mathematically is equivalent to sT)sT(tanh epep ⋅≅⋅ .

The nonlinear models allow the representation of the behaviour of hydroelectric power

plants, in an accurate manner, and can be used at every operating point without modifying

the parameters: TWP, TWC or Cs.

On the other hand, when linearized models are considered, these parameters must be

adjusted at the operating point. Furthermore, linearized models allow the studying of models

from the frequency response viewpoint, and thus facilitating the control system stability

study or small-signal stability study.

3.5 Static Analysis

Analysis of the steady state behaviour of some representative models is proposed in this

section. The main objective is to determine the value in steady state of the main process

variables (flow, head and gate opening) and, also, to calculate the mechanical power that the

hydroelectric plant generates in the steady state.

Kundur (1994) uses in his developments the variable 0U , which allows the formulation

of the models as a transfer function represented by means of F(s) (equations (3. 10) or

(3. 25)). Therefore, it is useful to determine 0U  when the models of Kundur (1994) are

considered. First, the flow of the turbine in steady state tssU  is computed and then the

variable 0U  is calculated. There are two ways of calculating this last variable: the first

corresponds to the equation of the dynamics of the penstock (according to Kundur (1994)),

which is taken as an initial step. The second is derived from the comparison between the

models of Kundur (1994) and the IEEE Working Group (1992).

Furthermore, it is included in this Section a manner of presenting the calculation of the

minimal flow needed by the turbine to overcome the problem of friction, or the no load flow

( NLU ).
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3.5.1 Determination of the Flow of the Turbine in Steady State

3.5.1.1 Calculation of tssU  for a nonlinear model with surge tank effects

For simplicity in the following explanation the nonlinear model WG4 (Section 3.2.1.4) with

surge tank effects and non-elastic water columns is considered. However, the same results

are obtained if the nonlinear models WG5, QR52 or QR51, with surge tank effects and an

elastic water column in the penstock and a non-elastic column in the tunnel (Section 3.2.1.2)

are used instead.

Equations that describe this model come from equations: (3. 14) to (3. 19), (3. 22), (3. 23)

and (3. 26). If these equations are written in a convenient manner, then the following system

is obtained:
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(3. 45)

Since in steady state the variations of the state variables crt U  and H  ,U  with respect to

time are zero, then
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Operating conveniently, the following equations are obtained
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The solutions of this system are:
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Hence, the values of the state variables in steady state are a function of the friction

coefficients of the tunnel and the penstock, i.e. the tunnel and the penstock head loss

coefficients, and the gate opening.

3.5.1.2 Deduction of tssU  for a nonlinear model with no surge tank effects

The deduction can be made in a similar way by using the model WG2 with no surge tank

effects and a non-elastic water column in the penstock (Section 3.2.2.4). From the equations

(3. 1), (3. 19) and (3. 39) the following expression is obtained







⋅−−⋅= 2

t1p2

2
t

WP

t Uf
G

U
1

T

1

dt

Ud

In steady state the turbine flow variation is zero. Hence, the expression of the flow in

steady state can be written as

1p2
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= (3. 48)

3.5.1.3 Determination of 0U  used in the models of Kundur (1994)

The reasoning starts from equation (3. 7) for the surge tank-penstock-turbine hydraulic

circuit, and the following expression is obtained

( ) ( ) ( )0tpeppep0r0t UU)sT(tanhz)sT(hsecHHHH −⋅Φ+⋅⋅−⋅⋅−=−
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This equation in steady state becomes

( )0tssprsstss UUHH −⋅Φ−= (3. 49)

Equation (3. 7) written for the reservoir-tunnel-surge tank hydraulic circuit is

( ) ( ) ( )0cceccec0w0r UU)sT(tanhz)sT(hsecHHHH −⋅Φ+⋅⋅−⋅⋅−=−

By considering 0.1HH w0 == , then

( ) ( )0ccecc0r UU)sT(tanhzHH −⋅Φ+⋅⋅−=−

For steady state this last expression is

( )0tssc0rss UUHH −⋅Φ−= (3. 50)

Replacing (3. 50) in (3. 49) and recalling that 22
tsstss G/UH = , then
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Therefore, when the models from Kundur (1994) are utilised, the variable 0U  must be

adjusted for each value of the gate opening (G ).

In Figure 3.6 the variable 0U  in steady state for two hydroelectric power stations, whose

values are shown in Table 3.5, is plotted. This figure shows a parabolic shape since it is a

function of the square of the gate opening.
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Figure 3.6: Plot of 0U  in function of the variable G  for two hydroelectric power stations.
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3.5.1.4 Determination of 0U  by using the comparison between equations

In this section the initial flow 0U  is obtained from the dynamics of the tunnel, which is

described by IEEE Working Group (1992), although Kundur (1994) presents a similar

dynamics of the tunnel, as it is explained bellow:

•  The dynamics of the tunnel for the case of Kundur is obtained by writing equation

(3. 7) for the reservoir-tunnel-surge tank hydraulic circuit. Thus,

( ) ( ) ( )0cceccec0w0r UU)sT(tanhz)sT(hsecHHHH −⋅Φ+⋅⋅−⋅⋅−=−

Once again, 0.1HH w0 ==  is considered. By taking the approximation:

sT)sT(tanh ecec ⋅≅⋅ , and recalling that cecWC zTT ⋅= , then

( ) ( )0ccWC0r UU)sT(HH −⋅Φ+⋅−= (3. 52)

•  Combining the equations (3. 15) and (3. 16), the following expression is obtained

cc2pcWCr UUfUsT0.1H ⋅⋅−⋅⋅−= (3. 53)

At this point, it is supposed that the friction coefficient of the tunnel (Φc) is equal to the

tunnel head loss coefficient (fp2). This supposition is replaced in equation (3. 53).

Valuing (3. 52) and (3. 53) for steady state and equalling them, hence

( ) 2
0css css

UUU =−

In addition, as tsscss UU = , the following expression for the flow can be inferred:

2
tsstss0 UUU −=  (3. 54)

3.5.1.5 Verification of supposition made in 3.5.1.4.

In the preceding Section a first consideration has been proposed where the friction

coefficient of the tunnel (Φc) was supposed equal to the tunnel head loss coefficient (fp2). At
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this point a second consideration is needed to make the comparison between the models of

IEEE Working Group (1992) and Kundur (1994). This second consideration supposes that

the friction coefficient of the penstock (Φp) is equal to the penstock head loss coefficient

(fp1).

The next demonstration has the objective to show that these suppositions are completely

valid. The first step is to equal equations (3. 54) and (3. 51):
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operating mathematically the last expression, gives
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equalling (3. 47) and the previous expression, hence
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operating conveniently, then

c2p1pp ff Φ−=−Φ

From this expression a possible and reasonable solution is to consider p1pf Φ=  and

c2pf Φ= .

❏
3.5.2 Determination of the Mechanical Power

3.5.2.1 Calculations for nonlinear models with and with no surge tank effects

•  When the surge tank effects are considered, the expression of the mechanical power is

given by equation (3. 22). Then the following expression for steady state is obtained
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Note that for steady state the term ω∆⋅⋅ GD1  is equal to zero.

If equation (3. 47) is replaced in (3. 55), then
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For a specific power station the values of Φc, Φp, At and NLU  are constants; therefore,

the mechanical power varies as a function of the gate opening G .

•  Following the same procedure for a model with no surge tank effects the equation

(3. 48) is replaced in equation (3. 55), then
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Considering a power station with no surge tank effects, clearly means that the plant has

no tunnel and the tunnel friction coefficient of the tunnel (Φc) disappears from the

expression of the mechanical power in steady state.

3.5.2.2 Calculations for a linearized model with and with no surge effects

For the case of a model with surge tank effects, equation (3. 41) may be taken as an initial

step, and by applying the final value theorem, the following expression can be obtained for

the steady state



















⋅
⋅⋅+⋅+⋅⋅⋅+Φ⋅+

−⋅⋅+⋅⋅−Φ−
⋅=

→ s

G

sT
z

)s(F
)s(F5.0sTz5.05.01

)s(FsT
z

)s(F
sTz1

slimP

ep
p

1
1eppp

1ep
p

1
eppp

0s
mecss

G
5.05.01

1
P

cp

cp
mecss ⋅

Φ⋅+Φ⋅+
Φ−Φ−

= (3. 58 )



HYDROELECTRIC SYSTEM MODELS46

In the case of model with no surge tank effects it is necessary to take, as a starting point,

the equation (3. 42). Applying the final value theorem, then
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 (3. 59)

which evidently is a particular case of the previous one. In Figure 3.7 is plotted the

mechanical power value in steady sate for two hydroelectric plants whose parameters are in

Table 3.5.
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Figure 3.7: Mechanical power generated by the turbine in hydroelectric plants with surge
tank effects as function of G .

3.5.2.3 Calculation of the gate opening (G ) for 0Pmecss=

It is important to determine the minimum value of the gate opening that the turbine needs to

generate net power. Two possible cases are analysed:

•  Case 1: Plant with surge tank effects.

If 0Pmecss=  is considered in equation (3. 56), then

( ) ( )( ) 2/1

pc
2
NL

NLt
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G

mecss Φ+Φ⋅−
⋅==

The expression ( )pc
2
NLU Φ+Φ⋅  takes a very small value for real parameters of

hydroelectric plants, hence, the minimum value of the gate opening may be approximated by
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( ) NLt0P UAG
mecss

⋅≅= (3. 60)

•  Case 2: Plant with no surge tank effects.

In the same way in equation (3. 57) is considered 0Pmecss= , then
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In this case the expression p
2
NLU Φ⋅  takes a small value for real power plants, and it can

be affirmed that ( ) NLt0P UAG
mecss

⋅≅= .

Parameters

IEEE W.
Group

(1)
With STE

IEEE Working
Group (1992)

Appalachia

(2)
With STE

Oldenburger and
Donelson (1962)

Susqueda

(3)
With STE

Quiroga (1999)

Blenheim-
Gilboa 3

(4)
With no STE

Hannet et al.
(1994)

St Lawrence
32
(5)

With no STE
Hannet et al.

(1994)

Niagara 1

(6)
With no STE

Hannet et al.
(1994)

TWP [s] 1.77 1 0.82 1.72 0.39 0.9

TWC [s] 5.79 52 9.15 - - -

Cs [s] 138.22 900 170.7 - - -

Tep [s] 0.42 0.25 0.208 0.06246* 0.0205 0.0328*

fp1 [pu] 0.0138 0.03 0.01 0.01* 0.01* 0.01*

fp2 [pu] 0.046 0.12 0.05 - - -

f0 [pu] 0.1854 0 0 - - -

At [pu] 1.004 1 1.67 1.4 1.65 1.17

NLU  [pu] 0.0538 0.0538 0.13 0.185 0.184 0.094

Tg [s] 0.5 0.5 0.5 0.67 0.5 0.1

zp 4.187 4 3.95 27.5376 19.024 27.439

T [s] 178 1370 248 - - -

Table 3.5: Parameters for different power plants. (* Means estimated parameters)
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3.6 Time Domain Analysis of Models

In this section a time domain analysis for all models presented in Sections 3.2 and 3.3 is

proposed. The simulation toolbox SIMULINK of the MATLAB software is utilised to

obtain the time response of nonlinear and linearized models. For a good comprehension of

the dynamic study, the analysis is divided into four subsections.

3.6.1 Nonlinear Models with Surge Tank Effects

This set of models may also be divided into two groups. On one hand the models of the

IEEE Working Group (1992) and the derived models of Quiroga and Riera (1999); on the

other hand the models of Kundur (1994) and their derived models.

3.6.1.1 Models WG4, QR51, QR52, WG5

In Figure 3.4 the functional diagram of model WG5 is depicted and Figure 3.8 presents the

block used for the calculation of the hyperbolic tangent, which is a part of the penstock

dynamic used in this nonlinear model with surge tank effects and elastic water column in the

penstock and non-elastic water column in the tunnel.

Figure 3.9 represents the block used in the calculation of the hyperbolic tangent. Here the

hyperbolic tangent is approximated by equation (3. 12) (models WG4, QR51, QR52).

Figure 3.8: Representation of the block used for the calculation of the hyperbolic tangent
(model WG5).
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Figure 3.9: Representation of the block that can be used for the calculation of the hyperbolic
tangent function in the models WG4 (n=0), QR51 (n=1) and QR52 (n=2).

Several lumped-parameters approximations of the hyperbolic tangent are considered:

•  For n=0, hyperbolic tangent has the following expression
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•  For n=1:
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•  For n=2:
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•  For n=3:
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Figures 3.10 and 3.11 show the responses after applying a step function of a ten per cent

on the gate opening for different nonlinear models with surge tank effects. The models from

(IEEE Working Group, 1992) these are: WG5 and WG4 and the derived models from the

lumped-parameters approximations of the hyperbolic tangent (Quiroga and Riera, 1999)

equation (3. 24). In both figures the response of the turbine mechanical power is depicted.
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Figure 3.10: Comparison among the models WG4, QR51, QR52 and WG5, detail.
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Figure 3.11: Comparison among the models WG4, QR51, QR52 and WG5.
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Figure 3.10 shows the non-minimal phase behaviour of the models of hydroelectric

systems. The model WG4 (non-elastic water columns, graphic a) presents a phase lag

compared to the group formed by the models QR51 (graphic b), QR52 (graphic c), and the

model that considers the exact value of the hyperbolic tangent WG5 (graphic d).

It is important to note the oscillation period caused by the surge tank, which is presented

in Figure 3.11. The period (T) of this oscillation depends on the physical characteristics of

the hydroelectric system such as the cross sections of the tunnel and the surge tank, and the

length of the tunnel, and is given by

sWC
T

Ts CT2
Ag

LA
2T ⋅⋅π⋅=

⋅
⋅⋅π⋅= (3. 62)

3.6.1.2 Models K4, K51, K52

To simulate the models of Kundur 1994 and models derived from them, the hyperbolic

tangent must be approximated; therefore, equation (3. 10) is turned into
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Figure 3.12 shows a block diagram that is used for the temporal dynamic study of the

models of Kundur (1994) and his derived models.

Figure 3.12: Block diagram for the models of Kundur (1994) and his derived models.
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In Figures 3.13 and 3.14 the simulation results for the models K4, K51 and K52 (Kundur,

1994) by using the approximations of the hyperbolic tangent are presented. The variable 0U

is adjusted according to the value of the gate opening (equation (3. 51)).
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Figure 3.13: Comparison among the models K4, K51 and K52, detail.
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Figure 3.14: Comparison among the models K4, K51 and K52.
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Graphics a, b and c of Figure 3.13 correspond to graphics a, b and c of Figure 3.10. Both

figures are obtained, according to the parameters of Table 3.5, by simulating nonlinear

models with surge tank effects. The steady state is reached when the oscillation of period T

is completely damped, as Figure 3.14 shows.

3.6.2 Linearized Models with Surge Tank Effects

The time starting constants of the tunnel and penstock (TWC and TWP) for the linearized

models must be adjusted according to the variation of the gate opening (G ). In these cases,

according to Kundur (1994), the constant wT  is used, and is calculated by
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The surge constant Cs must also be adjusted according to the following expression

0

s
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Equation (3. 40) is used to simulate these models, where the hyperbolic tangent is

approximated for n=0,1,2:

( ) ( )
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3.6.2.1 Model Qlin0

Figure 3.15 shows the response obtained when the gate opening varies a one per cent. The

behaviour is similar to that produced by a nonlinear model with surge tank effects and non-

elastic water columns WG4 and K4, see graphic a from Figures 3.10 and 3.13

Figure 3.16 shows the way the steady state is reached after a damping oscillation whose

period is T.
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Figure 3.15: Simulation of the linearized model Qlin0, for a variation of 0.01 [pu] in the gate
opening, detail.
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Figure 3.16: Simulation of the linearized model Qlin0, for a variation of 0.01 [pu] in the gate
opening.

3.6.3 Nonlinear Models with no Surge Tank Effects

The following figure represents a functional scheme of model WG3 with no surge tank

effects according to IEEE Working Group (1992).

Figure 3.17: Functional scheme of a model WG3 from (IEEE Working Group, 1992).
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On one hand, the “In-Out” block of Figure 3.8 is used to simulate the model WG3. On

the other hand, the blocks of Figure 3.9 are utilised to simulate the models: WG2, QR31,

and QR32.

3.6.3.1 Models WG2, QR31, QR32, QR33

Using the approximation of the hyperbolic tangent function, the equation of the turbine head

is expressed as

( ) t3,2,1,0nepplt UsTtanhzH1H ⋅⋅⋅−−=
=

(3. 65)
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Figure 3.18: Comparison among the models WG2, QR31, QR32, QR33 and WG3.

Figure 3.18 depicts the simulation results for models with no surge tank effects, which

correspond to the hydroelectric plant of St. Lawrence 32 and whose parameters are shown in

Table 3.5. A slightly different behaviour during the transient can be seen, which does not

appear in hydroelectric plants with surge tank effects. This difference can also be observed

in the model that considers a non-elastic water column in the penstock (WG2, graphic a).
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When surge tank effects are not considered; there is no phase lag between the responses

of the models with an elastic or a non-elastic water column in the penstock.

It can be seen, moreover, that simulations for n=0,1,2,3 approximations have a similar

behaviour. There appears a slight difference for the response of the model WG3 (graphic e).

3.6.3.2 Models K2, K31, K32

These models are based on equation (3. 35), where the hyperbolic tangent function is

approximated for n=0,1,2. Therefore, the transfer function becomes
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Figure 3.19: Comparison among the models K2, K31 and K32.

Once again, in these models one can observe the phase lag behaviour described in section

(3.6.3.1).
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3.6.4 Linearized Models with no Surge Tank Effects

These models are based on schemes given by equation (3. 42). Since these models are

linearized at an operating point, it is necessary to use wT , which is calculated using equation

(3. 63).

3.6.4.1 Model Klin

The dynamic response of this model is simulated by using the parameters from the following

plants: G-Gilboa 3, St. Lawrence 32 and Niagara 1 (Table 3.5). In Figure 3.20 different

characteristics can be observed when the gate opening varies by a one per cent according to

a step function (0.01 per units). In order to compare the different responses, the steady state

of the mechanical power has been forced to be the same for the three power plants by using

the same value of the penstock head loss coefficient (fp1).
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Figure 3.20: Simulation of the model Klin (n=0) by using the parameters of G-Gilboa 3, St.
Lawrence 32 and Niagara 1.

Figure 3.20 shows the way the behaviour of a hydroelectric model with no surge tank

effects varies during the transient, for different parameters Tep, TWP and At.
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3.6.4.2 Classic linear model with ideal turbine (Gaden, 1945) - Model Glin0

In this model the friction or head loss coefficients of the penstock are not considered, and

the value of the steady sate is uniquely determined by the gate opening G .
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Figure 3.21: Simulation of the classic linear model Glin0.

Figure 3.21 represents the way the parameters Tep, TWP and At affect the behaviour of the

hydroelectric plant with no surge tank effects during the transient.

3.6.5 Conclusions of the Time Domain Analysis

From the time domain analysis some interesting conclusions can be deduced, they are

enumerated below:

•  In Figures 3.10 and 3.13 the responses of the models WG4 and K4 present a phase lag

in the transient that is not observed in models with similar characteristics but without surge

tank effects. This fact can be checked in Figures 3.18 and 3.19, where the response after
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applying a step function of a ten per cent on the gate opening of the models (WG2, QR31,

QR32, QR33, WG3; and K2, K31, K32) are depicted. This phenomenon is due to the

parameter Tep, whose value for the model without a surge tank is up to a magnitude order

less than the case of a model with a surge tank, as Table 3.5 shows, i.e. Tep = 0.208 s

(Susqueda, with a surge tank) and Tep = 0.0205 s (St. Lawrence 32, without a surge tank).

•  In Figure 3.10, moreover, it can be seen that the models QR51 and QR52, where the

approximations of the hyperbolic tangent are n=1 and n=2 respectively, have a great

similarity respect to the model WG5. This similarity is improved by taking larger values of n

in the approximation.

•  After the transient, the models WG5, QR52, QR51, WG4, K52, K51 and K4 have the

same response. This means that there appears a damped oscillation whose period is given by

T. This behaviour is shown in Figures 3.11 and 3.14.

•  Another way to verify that the supposition made in Subsection 3.5.1.4, (fp1 = Φp and

fp2 = Φc) is correct, it is by means of the similarities among the responses of the models of

WG4, QR51 and QR52 (graphics a, b and c, respectively, in Figure 3.10), with respect to the

models K4, K51 and K52 presented in Figure 3.13.

•  The models WG3, QR33, QR32, QR31, WG2, K32, K31 and K2, as Figures 3.18 and

3.19 show, have similar behaviours since there is not phase lag during the transient.

•  In the case of linearized models with surge tank effects, only Qlin0 is considered since

the models Qlin1 and Qlin2, with approximations of the hyperbolic tangent greater than n=0,

are unstable, as is it shown in Section 3.7.

•  Linearized models without surge tank effects (Klin and Glin0) have a particular interest

since they allow to observe the variations that appear during non-minimal phase behaviour,

which, in essence, are due to differences among parameters TWP and Tep.
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3.7 Frequency Response Analysis of Models

In this Section is presented an analysis of the linearized models described in Section 3.3.

The parameters of Table 3.5 are also utilised for this study. For an easier understanding of

this study, the different analyses are separated into two sections. Each section presents the

frequency responses, Bode plots and the Nyquist diagrams, where the stability is verified.

The sections are:

•  Section 3.7.1, where the behaviours of the models Klin and Glin0 without surge tank

effects are presented.

•  Section 3.7.2, where the behaviours of the models Qlin and Qlin0 with surge tank effects

are presented.

Moreover, it is important to mention that Oldenburger and Donelson (1962) present a

complete frequency response study of linearized models for different working points. In this

Section the analysis for the linearized models working at an operating point is presented in

order to illustrate the behaviour of them in a certain situation.

3.7.1 Models with no Surge Tank Effects

3.7.1.1 Models Klin and Glin0

The point of departure is equation (3. 42) that represents the relationship between the

mechanical power and the gate opening. In Figure 3.22 is depicted a Bode plot for the

linearized model without surge tank for the approximations n=0,1 of the hyperbolic tangent.
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Figure 3.22: Bode plot for models of Klin, approximations n = 0, 1. Parameters B. Gilboa 3.
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In Figures 3.22, 3.23 and 3.24 the parameters from B. Gilboa 3 (a hydroelectric plant

without a surge tank Table 3.5) are used.

3.7.1.2 Stability Study

In Figures 3.23 and 3.24 Nyquist diagrams for models Klin with n = 0, 1 are presented. In

both cases the point (-1,0) of the complex plane is rounded in the clockwise sense, which,

for a non-minimal phase transfer function, means that this is a stable system.
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Figure 3.23: Nyquist diagram for the model of Glin0, approximation n = 0. Parameters from
B. Gilboa 3.
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Figure 3.24: Nyquist diagram for the model of Klin, approximation n = 1. Parameters from B.
Gilboa 3.
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3.7.2 Models with Surge Tank Effects

3.7.2.1 Models Qlin and Qlin0

The Bode plots are obtained by using the equation (3. 41) when is considered non-elastic

water columns, and equation (3. 40) when an elastic water column in the penstock and non-a

elastic water column in the tunnel are considered.

In Figure 3.25 the Bode plot for the model with the approximation of n=0 is shown. The

models with the lumped parameter approximations, n=1,2, represent unstable transfer

functions, as can be seen in Figures 3.29 and 3.31.
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Figure 3.25: Bode plot for the model of Qlin0, approximation n = 0. Parameters from (IEEE
Working Group, 1992).

Figures 3.25 to 3.32 consider the parameters of the hydroelectric plants of IEEE Working

Group and Appalachia (Table 3.5). The reason of considering two power plants is mainly to

verify whether the model Qlin for the approximations n=1,2 is stable or not.
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Figure 3.26: Bode plot for the model of Qlin, approximations n = 1, 2. Parameters from
(IEEE Working Group, 1992).
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Figure 3.27: Bode plot for the model of Qlin0 and Qlin, approximations n = 0, 1. Parameters
from Appalachia power plant.
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3.7.2.2 Stability Study

The Nyquist diagram shows that the model of Qlin, where non-elastic water columns (n=0)

are considered, is stable since the diagram rounds the point of the complex plane (-1,0) in a

clockwise sense. This can be verified in Figure 3.28.
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Figure 3.28: Nyquist diagram for the model Qlin, approximation n = 0. Parameters from
(IEEE Working Group, 1992).

When the lumped approximations (n=1,2) of the model Qlin are considered, the system

becomes unstable since the Nyquist diagram does not round the point (-1,0) in the clockwise

sense, which for a non-minimal phase system means instability. This fact is shown in

Figures 3.29 and 3.30.
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Figure 3.29: Nyquist diagram for the model of Qlin, approximation n = 1. Parameters from
(IEEE Working Group, 1992).
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Figure 3.30: Detail of Figure 3.29.
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Figure 3.31: Nyquist diagram for the model Qlin, approximation n = 2. Parameters from
(IEEE Working Group, 1992).
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Figure 3.32: Detail of Figure 3.31.



SUGGESTIONS FOR MODELLING HYDROELECTRIC POWER PLANTS 69

3.8 Suggestions for Modelling Hydroelectric Power Plants

After presenting the time domain and frequency response analyses of different models for

hydroelectric power plants, some suggestions are given below that add more information to

the Guidelines for Modelling Hydraulic Turbines presented in Section 9.1.5 of Kundur

(1994). These complementary suggestions are divided into two parts, on one hand the

hydroelectric models that consider surge tank effects, and, on the other hand, the

hydroelectric models without surge tank effects.

3.8.1 Models with Surge Tank Effects

3.8.1.1 Nonlinear Models

For this case some models deduced according to two different ways are presented:

1) The model WG5 allows the best approximation since it represents all the phenomena

in detail. On one hand, the model WG5 shows the non-minimal-phase behaviour for a step

input. On the other hand, the model WG5 has the inconvenient of incorporating the

hyperbolic tangent function of complex variable in an equation system of state variables.

Therefore, when a control must be designed, instead of WG5, it is necessary to take the

lumped approximations of this function and the model WG5 is turned into QR52, QR51 or

WG4.

The greater the value of the lumped approximation, the greater the number of state

variables. In the case of working with an interconnected system, it is probable that the

models WG4 and QR51 are sufficient to represent, in a very accurate manner, the behaviour

of a hydroelectric plant with surge tank effects.

2) The models of Kundur (1994) K5, K52 and K51 have the disadvantage that the

variable 0U  must be updated for each value of the gate opening (G ). Apart from this, the

models of Kundur (1994) have similar behaviours with respect to the models WG5, QR52

and QR51. For these reasons the models of Kundur are interesting in the analysis of the

hydroelectric plant in a general sense but not for the design of a speed system control.



HYDROELECTRIC SYSTEM MODELS70

3.8.1.2 Linearized Models

These models are interesting when a frequency response study is necessary for stability

studies. However, only the simplest model can be used since these models are unstable for

lumped approximations greater than n=0.

3.8.2 Models with no Surge Tank Effects

3.8.2.1 Nonlinear Models

In this case there appears a similar situation to the case of nonlinear models with surge tank

effects: the model that considers the hyperbolic tangent function, calculated according to

Figure 3.18, gives the best approximation to the real system, and there is only a slight

difference among the four lumped approximations n=0,1,2,3 and the model that takes the

complete hyperbolic tangent (WG3).

For the K3, K32 and K32 models the conclusions exposed for hydroelectric plants with

surge tank effects are still valid. Therefore, these models are interesting for performing

behaviour analysis and not for designing controllers.

3.8.2.2 Linearized Models

The models Klin and Glin are useful in those cases when small-signal stability studies are

required (Kundur, 1994).

3.9 Summary

A study of hydroelectric models has been presented in this Chapter. This study classifies the

models into two groups: nonlinear models and linearized models, Sections 3.2 and 3.3,

respectively. Each group has been subdivided into models with and without surge tank

effects. Moreover, each of these has two particularities: the first considers elastic water

column in the penstock and non-elastic water column in the tunnel, and the second

contemplates non-elastic water columns. In the group of nonlinear models, with or without

surge tank effects, a comparison has been performed where differences and similarities

among the models are shown.
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Subsequently, Section 3.5, presented a way to calculate the turbine and tunnel flows in

steady state, which allows to calculate the mechanical power in steady state as function of

the gate opening.

Section 3.6 presented a time domain analysis where all models have been simulated for

different real hydroelectric plants (parameters are shown in Table 3.5). The behaviours have

been compared.

All linearized models have been used in the frequency response analysis, which is

exposed in Section 3.7. Bode plots and Nyquist diagrams have been presented for the

determination of the stability of these models.

In Section 3.8 suggestions for modelling hydroelectric plants are proposed.


