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Catalunya - BarcelonaTech (UPC), ESEIAAT, Carrer Colom 11, 08222 Terrassa

(Barcelona), Spain.

Abstract

A complete numerical dynamic analysis of reciprocating compressor mech-
anism is presented, coupling the instantaneous pressure in the compression
chamber, the electric motor torque and the hydrodynamic reactions, which
arise from the piston and crankshaft secondary movements. Additionally,
non-constant crankshaft angular velocity and the piston and crankshaft mis-
alignment torques have also been considered. Two sensitivity analyses have
been carried out to prove that neither the inertial forces in the directions of
the secondary movements, nor the oscillations of the angular velocity pro-
duce significant differences in the compressor behaviour. Finally, a set of
parametric studies have been developed to evaluate the influence of geomet-
rical parameters in the stability of the secondary movements, the friction
power losses and the compressor consumption.
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1. Introduction

The reciprocating compressors are widely used in the refrigeration world.
During the last half century several experimental and numerical studies have
been carried out to improve the performance and the entire lifetime of these
devices. These studies are focused on the most basic mechanism, e.g. journal
bearings to the most complex system, e.g. the compressor itself.

One of the most important parts of these compressors consists of the
reciprocating mechanism coupled with instantaneous pressure in the com-
pression chamber and the electric motor torque. The reciprocating mech-
anism is composed of the piston, the connecting-rod and the crankshaft.
Each of these elements have a primary motion which is macroscopic, and a
secondary motion which is microscopic. Only the secondary motion of the
piston and the crankshaft is considered. Both secondary movements depend
on the lubrication elements. In the piston case, the lubrication element is
the cylinder-piston cavity, while the lubrication elements of the crankshaft
are their journal bearings. Each of these components have been studied
separately. They are well explored topics in the literature.

During the sixties, Campbell et al. [1] reviewed the numerical and exper-
imental studies of the journal bearing behaviour under dynamic loads. The
results presented in this review have been used in this work to validate the
algorithm that calculates the crankshaft trajectories. Other researches were
focused on this area, e.g. Booker, J.F. [2] and Jones, G.J. [3]. Booker created
the mobility method which can easily predict the journal bearing behaviour
under dynamic loads using low computational resources. Nonetheless, Biao,
Yu [4] demonstrates in his research that the difference between the rigorous
method and the mobility method can be higher than 70% in some cases.
The Reynolds equation was used in all these studies to calculate the pressure
field around the bearing. However, during the last decade some studies which
use CFD techniques have appeared. One of them is Gertzos, K.P. [5]. This
author uses a commercial software to simulate a 3-D CFD journal bearing
lubricated by Newtonian or Bingham lubricants. These results have been
used in this document to validate the aligned journal bearing eccentricity,
and its load angle as function of the Sommerfeld number.

All these studies on journal bearings are necessary to understand the
ring-less piston secondary motion since it works like a journal bearing. Thus,
the Reynolds equation can also be used to calculate the pressure distribution
around this kind of pistons. The ring-less technique is used to decrease the
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friction losses of the compressors. However, two main problems appear when
the piston rings are avoided. Firstly, the fluid leakage around the clearance is
increased and it can affect the compressor performance. Secondly, the piston
loses stability and it can slap the cylinder walls, producing a high increase
of the wear. These two problems were studied by Li, D.F. et al. [6], for V8
gasoline engines. Li, D.F. studied the influence of the wrist-pin position to
control the friction forces and the stability. His work was motivated for the
visual studies carried out using transparent cylinders [7; 8]. These studies
showed the importance of the thin layer of oil to delay the piston slaps. Later
on Zhu, D. et al. [9; 10] developed some studies related to the engine mech-
anism and the piston secondary motion, as Li, D.F. This author considered
piston surface waviness, roughness, piston skirt surface profile, bulk elastic
deformation and thermal distortions. Afterwards, Prata, A.T. [11] studied
the same phenomena in reciprocating compressors. Subsequent studies, e.g.
Kim, T.-J. [12], developed new models able to calculate the piston secondary
motion considering that the piston could protrude from the inside of cylin-
der bore due to the shortened length of the cylinder chamber. Both Prata
and Kim studies supposed a crankshaft constant angular velocity. Rigola,
J. [13; 14] analysed the piston leakage and its stability using a numerical
pressure distribution in the pressure chamber and experimental data for the
electric motor torque. This study took into consideration that the crankshaft
angular velocity was not constant. Furthermore, the elastohydrodynamic lu-
brication (EHD) was implemented by Cho, J. [15] in the piston case. Cho,
J. developed an algorithm coupling the lubrication equation with the finite
element method to solve the structural deformation. Today the piston dy-
namics continues to be an active research topic. Some authors as Meng,
X. et al. [16] have worked recently in a new model which couples the tri-
bological performance of the piston skirt-liner system with the dynamics of
the connecting rod, the crankshaft, the flywheel, and the piston. In the
model, the piston secondary motion and the crankshaft angular acceleration
of the crankshaft are both considered. However, this work does not consider
the crankshaft secondary movement and how they are affected by the other
compressor elements.

The journal bearings also affect the crankshaft stability. Several studies
can be found in the literature which study the rotor stability limited for a
system of two bearings. One of the most recent and complete work has been
carried out by Liu, H. [17]. This author studied the rotor-bearing system,
coupling the CFD and fluid-structure interaction (FSI) techniques. His study
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was focused on different materials and showed that the rotor trajectories were
not significantly affected by the structural deformation of the rotor-bearing
system made of steel.

Despite there are several studies focused on the different reciprocating
mechanism components, only few of them look into their interaction. One of
them is Kim, T.-J. [18]. Nevertheless, the shaft misalignment was not cited
by this author, and his study was carried out using a constant crankshaft
angular velocity. Later on Chieh, H. [19] researched in his Ph.D. thesis
a complete analysis of the bearing system in a reciprocating compressor.
However, the inertial terms in the secondary movement directions were not
taken into account, and the crankshaft angular velocity was also constant.
Both Kim, T,-J. and Chieh, H. use the Gümbel boundary condition to treat
the cavitation phenomena.

This paper aims to study the piston and crankshaft secondary movements
and their interaction with each other, using a non-constant crankshaft angu-
lar velocity. Moreover, the crankshaft misalignment and the inertial forces
in the secondary movement directions are also considered.

First, section 2 presents the mathematical formulation in which the nu-
merical model is based. Section 3 shows the algorithm and the numerical
techniques used to discretize and solve the equations presented in the pre-
vious section. The results are presented in section 4 and they have been
divided into three parts. The first part contains the main proves used to
verify and validate the numerical model. The second part presents two sen-
sitivity studies to analyse the relevance of the inertial forces in the secondary
movement directions and the effect of the non-constant angular velocity, re-
spectively. The third part is composed of a set of parametric studies carried
out to study the impact of different geometrical parameters in the stability
and the friction power losses of the lubrication elements, and the compressor
power consumption. Finally, section 5 shows the research conclusions.
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Nomenclature

Geometry parameters
r Radius
D Diameter
L Length
c Clearance
e Eccentricity
h Distance between surfaces
o Offset
G Gravity centre

Mechanism locations
A Connecting-rod pin connection with piston
B Connecting-rod pin connection with crankshaft
C Main bearing centre
D Secondary bearing centre
O Gravity centre of the crankshaft projected in its rotation axis

Kinematic parameters
v Lineal velocity
a Lineal acceleration

Dynamic parameters
p Pressure
P Power
F Force
T Torque
m Mass
I Inertia
k Friction coefficient
H Angular momentum

Superscripts

�̇ First time derivative

�̈ Second time derivative
∗ Dimensionless variable
n,n+1 Previous and next time instants
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Subscripts
p Piston
cr Connecting-rod
cs Crankshaft
wp Wrist-pin
mb Main bearing
sb Secondary bearing
be Bearing
h Hydrodynamic
fr Friction
g Gas
t Top
b Bottom
cc Compression chamber
M Motor
k Iteration number

Greek symbols
θ Crankshaft angle
α Connecting-rod angle
αo Connecting-rod angle when the piston is in its farthest position from the crankshaft
λ Piston tilt angle in xy plane
δ Crankshaft tilt angle in zx plane
γ Crankshaft tilt angle in yz plane
ε Dimensionless eccentricity
φ Crankshaft mass eccentricity angle
ϕ Local angle around a lubrication element
µ Oil viscosity
ϑ Every unknown in the global algorithm Fig. 6
ξ Equivalent to π + θ − φ
ω Angular velocity
ε Numerical convergence criterion in the global algorithm
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2. Mathematical Model

The mathematical formulation that defines the kinematic and dynamic
behaviour of a reciprocating compressor mechanism is presented in this sec-
tion. Fig. 1 shows a reciprocating compressor scheme, illustrating all the
geometrical parameters. Gravity acts on z-direction.

The content of this section has been divided into three parts which are
(i) the kinematic formulation, (ii) the dynamic formulation and (iii) the lu-
brication formulation.

2.1. Kinematic Formulation

The kinematic of the mechanism is based on the relation between the
angles and the gravity centre motion the piston and the connecting-rod el-
ements. Eq. (1) defines the connecting-rod angle (α) as function of the
crankshaft angle (θ), as well as its first and second time derivatives.

α = arcsin

(
rcs sin θ + ocs

Lcr

)
α̇ = Jα2 θ̇

α̈ = Jα1 θ̇
2 + Jα2 θ̈ (1)

Where:

Jα1 = − rcs sin θ

Lcr cosα
+
r2cs cos2 θ sinα

L2
cr cos3 α

Jα2 =
rcs cos θ

Lcr cosα
(2)

2.1.1. Piston

When the piston is in its farthest position from the crankshaft, the angle
α is defined by Eq. (3).

αo = arcsin

(
ocs

Lcr + rcs

)
(3)

The Eq. (4), Eq. (5) and Eq. (6) describe the position, velocity and ac-
celeration of the piston gravity centre (Gp) on the x direction.

xGp = −Lcr cosα− rcs cos θ (4)

ẋGp = vp = θ̇ (rcs sin θ + Jp2) (5)

ẍGp = (rcs cos θ + Jp1)θ̇
2 + (rcs sin θ + Jp2)θ̈ (6)
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Where:

Jp1 = Jα1Lcr sinα +
rcs cos2 θ

Lcr cosα
Jp2 = Jα2Lcr sinα (7)

2.1.2. Connecting-Rod

The position and acceleration in both axes of the connecting-rod gravity
centre (Gcr) are expressed by the equations Eq. (8), Eq. (9), Eq. (10) and
Eq. (11), respectively.

xGcr = −LGcr cosα− rcs cos θ (8)

yGcr = rcs sin θ − LGcr sinα (9)

ẍGcr =

(
rcs cos θ +

(
LGcr

Lcr

)
Jp1

)
θ̇2

+

(
rcs sin θ +

(
LGcr

Lcr

)
Jp2

)
θ̈ (10)

ÿGcr = −rcs sin θ

(
1− LGcr

Lcr

)
θ̇2

+rcs cos θ

(
1− LGcr

Lcr

)
θ̈ (11)

2.2. Dynamic Formulation

This part presents the dynamic equations used to calculate the main and
secondary motion of each component of the reciprocating mechanism.

2.2.1. Piston

First, Fig. 2a represents the piston free body diagram. Using this dia-
gram, the equations that describe the piston dynamics can be obtained.

Fg + Fpfr − FAx =
(
mp +mwpp

)
ẍGp (12)

Fph − FAy =
(
mp +mwpp

)
ÿGp (13)

Tpfr + Tph − TAfr
= −Ipz λ̈ (14)
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Only the x and y linear movements and the z rotation are studied in
the piston case. The term Fg is the force produced by the refrigerant when
it is being compressed. It is calculated as Fg = πr2p (pcc − pshell), where pcc
and pshell are the instantaneous pressures in the compression chamber and
the shell, respectively. Both pressures have a numerical origin and they are
presented in Fig.3.

The piston secondary motion (Fig. 2b) has been calculated by using
Eq. (13) and Eq. (14). In this work, the secondary movements have been
defined as function of the top (εit = eit/ci) and bottom (εib = eib/ci) di-
mensionless eccentricities of each lubrication element, which are denoted as
i. They are the cylinder-piston cavity (p), the main bearing (mb) and the
secondary bearing (sb). Specifically in the cylinder-piston case, the ÿGp and

λ̈ are defined as Eq. (16).

yGp = cp

(
εpty −

(
εpty − εpby

Lp

)
LGp

)
λ = cp

(
εpty − εpby

Lp

)
(15)

ÿGp = cp θ̇
2

(
ε̈pty −

(
ε̈pty − ε̈pby

Lp

)
LGp

)
λ̈ = cp θ̇

2

(
ε̈pty − ε̈pby

Lp

)
(16)

2.2.2. Connecting-Rod

The connecting-rod free body diagram is shown in Fig. 4. The connecting-
rod dynamics is defined by Eq. (17), Eq. (18) and Eq. (19).

−FBx + FAx = mcrẍGcr (17)

−FBy + FAy = mcrÿGcr (18)

FAx (Lcr − LGcr) sinα− FAy (Lcr − LGcr) cosα

+FBxLGcr sinα− FByLGcr cosα + TAfr
− TBfr

= Icrz α̈ (19)

The friction torques on the connecting-rod pins are calculated using the
experimental correlations defined by Eq. (20) and Eq. (21).

TAfr
= −sgn (α̇) kArA

(
|FAx|+

∣∣FAy

∣∣) (20)

TBfr
= kBrB

(
|FBx|+

∣∣FBy

∣∣) (21)
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Where kA and kB represent experimental friction factors at each connecting-
rod pin, while rA and rB refer to their internal radius.

Note here how the x and y linear motion and z rotation are considered.
The secondary motion of the connecting-rod are not studied in this work.

2.2.3. Crankshaft

The crankshaft free body diagram is shown in Fig. 5b and Fig. 5a. The
crankshaft sum of forces is presented in Eq. (22), and is calculated only on
the x and y axes. The z linear movement is not studied as a thrust bearing
fixes the crankshaft on this direction.∑

~Fcs = mcs~aGcs (22)

The acceleration of the crankshaft gravity centre (~aGcs) is equal to Eq. (23).

~aGcs = ~aO + ~ωcs × ~ωcs ×
−→
OGcs + ~̇ωcs ×

−→
OGcs (23)

~aGcs =

 ẍO
ÿO
0

+

 γ̇

δ̇

θ̇

×
 γ̇

δ̇

θ̇

×
 rGcs cos ξ

rGcs sin ξ
0


+

 γ̈ − δ̇θ̇
δ̈ + γ̇θ̇

θ̈

×
 rGcs cos ξ

rGcs sin ξ
0

 (24)

The angle ξ is defined as π + θ − φ and the terms ẍO, ÿO, γ̈ and δ̈
are expressed as function of each journal bearing dimensionless eccentricity
accelerations by Eq. (25).

ẍO = ccs θ̇
2

(
ε̈sbx −

(
ε̈mbx − ε̈sbx

Lbe

)
LGsb

)
ÿO = ccs θ̇

2

(
ε̈sby −

(
ε̈mby − ε̈sby

Lbe

)
LGsb

)
δ̈ = ccs θ̇

2

(
ε̈sbx − ε̈mbx

Lbe

)
γ̈ = ccs θ̇

2

(
ε̈mby − ε̈sby

Lbe

)
(25)
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Where ccs represents the clearance of the main and secondary bearings,
which are considered equal.

Only taking into consideration the permitted movements of the crankshaft,
the Eq. (23) is expressed as:

~aGcs =

(
ẍO
ÿO

)
︸ ︷︷ ︸

~aO

+

(
−rGcs θ̇

2 cos ξ

−rGcs θ̇
2 sin ξ

)
︸ ︷︷ ︸

~an

+

(
−rGcs θ̈ sin ξ

rGcs θ̈ cos ξ

)
︸ ︷︷ ︸

~aa

+

 rGcs

(
−δ̇2 cos ξ + δ̇γ̇ sin ξ

)
rGcs

(
−γ̇2 sin ξ + δ̇γ̇ cos ξ

) 
︸ ︷︷ ︸

~aSM

(26)

The ~aSM is assumed negligible as it is composed by the square of the
crankshaft secondary angular velocities, which are relatively insignificant.
Hence, the sum of forces on the crankshaft free solid diagram can be defined
as Eq. (27).

~FB + ~Fmb + ~Fsb −mcs~an︸ ︷︷ ︸
~FcsIn

−mcs~aa︸ ︷︷ ︸
~FcsIa

−mcs~aO︸ ︷︷ ︸
~FcsI

= 0 (27)

Where:

1

mcs

(FBx + Fmbx + Fsbx) + rGcs

(
θ̇2 cos ξ + θ̈ sin ξ

)
−ccs θ̇2

(
ε̈sbx −

(
ε̈mbx − ε̈sbx

Lbe

)
LGsb

)
= 0 (28)

1

mcs

(
FBy + Fmby + Fsby

)
+ rGcs

(
θ̇2 sin ξ − θ̈ cos ξ

)
−ccs θ̇2

(
ε̈sby −

(
ε̈mby − ε̈sby

Lbe

)
LGsb

)
= 0 (29)

Furthermore, the crankshaft angular momentum defined by Eq. (30) is
also needed to calculate the crankshaft angular acceleration, velocity and
position. ∑

~TGcs =
d ~HGcs

dt
(30)
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In this case the rotation movements are taken into account on the three
coordinate axes. The angular momentum ( ~HGcs) is defined as ĪGcs~ωcs. The
angular momentum can be expressed as Eq. (31).

−−−→
GcsB × ~FB + ~TBfr

+ ~TmbGcs
+ ~TsbGcs

− ~TM =
d ~HGcs

dt
(31)

The term ~TM represents the electric motor torque. This is obtained from
Rigola’s [13] study (experimental data). The torques produced by the journal

bearings are denoted as ~TmbGcs
and ~TsbGcs

, while d ~HGcs/dt represents the
crankshaft inertial torque. These terms are defined in the Eq.(32), Eq.(33)
and Eq.(34), respectively.

~TmbGcs
= ~TmbC +

−−−→
GcsC × ~Fmb + ~Tmbfr (32)

~TsbGcs
= ~TsbD +

−−−→
GcsD × ~Fsb + ~Tsbfr (33)

d ~HGcs

dt
=

 Icsx γ̈ − Icsy δ̇θ̇
Icsy δ̈ + Icsx γ̇θ̇

Icsz θ̈

 (34)

Where, ~TmbC and ~TsbD are the misalignment torques, while ~Tmbfr and
~Tsbfr represents the journal bearing friction torques. The distance vectors
are defined by Eq.(35).

−−−→
GcsC =

 −rGcs cos ξ
−rGcs sin ξ
−LGmb


−−−→
GcsD =

 −rGcs cos ξ
−rGcs sin ξ
−LGsb


−−−→
GcsB =

 −rcs cos θ − rGcs cos ξ
rcs sin θ − rGcs sin ξ

−LGcs

 (35)

Finally, the crankshaft momentum equations on each coordinate axis are
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expressed by Eq. (36), Eq. (37) and Eq. (38).

FByLGcs + FmbyLGmb
+ FsbyLGsb

+ TmbCx
+ TsbDx

−ccs θ̇2
(
Ix

(
ε̈mby − ε̈sby

Lbe

)
− Iy

(
ε̇sbx − ε̇mbx

Lbe

))
= 0 (36)

−FBxLGcs − FmbxLGmb
− FsbxLGsb

+ TmbCy
+ TsbDy

−ccs θ̇2
(
Iy

(
ε̈sbx − ε̈mbx

Lbe

)
+ Ix

(
ε̇mby − ε̇sby

Lbe

))
= 0 (37)

−rcs
(
FBy cos θ + FBx sin θ

)
+ Tmbfr + Tsbfr + TBfr

−TMz + rGcs (FBx + Fmbx + Fsbx) sin ξ

−rGcs

(
FBy + Fmby + Fsby

)
cos ξ − Iz θ̈ = 0 (38)

Specifically, Eq. (38) is used to calculate the macroscopic motion of the
reciprocating mechanism, while Eq. (28), Eq. (29), Eq. (36), Eq. (37) are
needed to determine the crankshaft secondary movements.

2.3. Lubrication Formulation

The hydrodynamic and friction reactions of the different lubrication el-
ements are necessary to determine the reciprocating compressor behaviour.
These reactions depend on the pressure distribution around each lubrication
element, which is obtained by solving the well-known Reynolds equation. It
is worth noting here that the roughness and asperities are not taken into
account in this equation, because the condition h/σ ≥ 3 is considered satis-
fied. Where h is the local distance between surfaces and σ is the roughness
deviation of the surface. Authors as Patir, N. and Cheng, H.S. [20] or Zhu,
D. et al. [9] demonstrated that the roughness and asperities effects were not
necessary to be considered when this condition was satisfied.

2.3.1. Piston

The Reynolds equation used to determine the pressure distribution around
the cylinder-piston cavity is expressed by Eq. (39).

1

r2p

∂

∂ϕ

(
h3p
∂p

∂ϕ

)
+

∂

∂x

(
h3p
∂p

∂x

)
= 12µp

(
vp
2

∂hp
∂x

+
∂hp
∂t

)
(39)
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The term vp refers to the piston velocity. The geometric variable hp
represents the local film thickness of the cylinder-piston cavity and is defined
by Eq. (40), as the piston skirt is cylindrical on the whole (e.g. barrel profiles
are not considered in this study). This term only depends on the top and
bottom piston dimensionless eccentricities on the y-axis, as it is the only
secondary movement allowed by the piston.

hp = cp

(
1−

(
εpty −

(
εpty − εpby

Lp

)
x

)
cosϕ

)
(40)

The hydrodynamic forces and torques produced by the pressure distri-
bution around the cylinder-piston cavity are calculated using Eq. (41) and
Eq. (42), respectively.

Fph = −
∫ Lp

0

∫ 2π

0

p (ϕ, x) cosϕ rpdϕdx (41)

Tph = −
∫ Lp

0

∫ 2π

0

p (ϕ, x) cosϕ
(
xij − Lwpp

)
rpdϕdx (42)

The term xij defines the distance from the top of the piston to a piston
mesh node on the axial direction (x). The force and the torque produced
by the friction between the piston surface and the fluid film are defined by
Eq. (43) and Eq. (44), respectively.

Fpfr = −
∫ Lp

0

∫ 2π

0

(
hp
2

∂p

∂x
+ µp

vp
hp

)
rpdϕdx (43)

Tpfr =

∫ Lp

0

∫ 2π

0

(
hp
2

∂p

∂x
+ µp

vp
hp

)
cosϕrpdϕdx (44)

The cavitation phenomenon appears on the piston. When it happens, a
linear interpolation between the compression chamber pressure (pcc) and the
shell pressure (pshell) is used to substitute the negative values.

2.3.2. Crankshaft

Eq. (45) represents the Reynolds equation used to calculate the pressure
distribution around the journal bearings.

1

r2i

∂

∂ϕ

(
h3i
∂pi
∂ϕ

)
+

∂

∂z

(
h3i
∂pi
∂z

)
= 12µcs

(
θ̇

2

∂hi
∂ϕ

+
∂hi
∂t

)
(45)
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The subscript i denotes the journal bearing which is evaluated (mb or
sb) and θ̇ represents the crankshaft angular velocity on the z axis. In this
case, the term hi is defined by Eq. (46) and represents the film thickness of
the main or secondary bearing cavity. This variable depends on the top and
bottom dimensionless eccentricities on the x and y axis.

hi = ccs

(
1−

(
εitx −

(
εitx − εibx

Li

)
z

)
cosϕ+

(
εity −

(
εity − εiby

Li

)
z

)
sinϕ

)
(46)

As the crankshaft is considered a rigid body, the main and secondary
bearings share the same tilt angle. These angles in the zx and yz planes are
defined in Eq. (47) and Eq. (48), respectively. These equalities can be easily
understood observing Fig.5c.

δ = −ccs
(
εitx − εibx

Li

)
= −ccs

(
εmbx − εsbx

Lbe

)
(47)

γ = ccs

(
εity − εiby

Li

)
= ccs

(
εmby − εsby

Lbe

)
(48)

The hydrodynamic forces and misalignment torques produced by the pres-
sure distribution around the journal bearings are calculated using Eq. (49)
and Eq. (50), respectively.

~Fi = −
∫ Li

0

∫ 2π

0

p (ϕ, z) (cosϕ, sinϕ, 0) ridϕdz (49)

~Ti =

∫ Li

0

∫ 2π

0

p (ϕ, z) (sinϕ,− cosϕ, 0) (zij − 0.5Li) ridϕdz (50)

The term zij represents the distance from the centre of the bearing to the
crankshaft mesh node. The friction torque is evaluated on the bearings using
Eq. (51).

Tifr =

∫ Li

0

∫ 2π

0

(
hi
2ri

∂p

∂ϕ
+ µcs

θ̇ri
hi

)
ridϕdz (51)

The Gümbel boundary condition is used to deal with the journal bearings
cavitation problem.
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3. Numerical Procedure

This section presents the global resolution algorithm (Fig. 6) and the
numerical techniques used to properly solve the equations described in the
previous section.

The algorithm is based on a temporal implicit formulation organised in
three sub-iterative blocks: the main motion of the reciprocating mechanism
(Block 1), the piston secondary motion (Block 2), and the crankshaft sec-
ondary motion (Block 3). These procedures are inter-dependent. Thus, they
must be calculated iteratively in order to couple them well.

Initially, the crank angle is zero and its angular velocity is known. The
eccentricities of the lubrication elements as well as their rate of change are
assumed zero at the first calculation. The main dimensions, weights, physical
properties and geometry of the full mechanism are considered input data.
The instantaneous pressure of the refrigerant fluid inside the compression
chamber is also assumed as known data. This information can be obtained
by means of other numerical approaches that address the fluid dynamics of
the refrigerant gas over all the different compressor phases. In this work, the
instantaneous pressure in the compression chamber, as well as the electric
motor torque, are obtained from Rigola’s [13] study.

3.1. Block 1: Main motion of the reciprocating-mechanism

This procedure is focused on the macroscopic motion of the elements
of the reciprocating mechanism. In particular, it is aimed to obtain the
instantaneous values of the angular acceleration of the crankshaft (θ̈) and

the force reactions on the connecting-rod (~FA, ~FB). Other parameters such
as the piston velocity (vp), the angular velocity (θ̇) and the crank position (θ)
are derived from these data.

The macroscopic motion is driven by Eq. (12), Eq. (17), Eq. (18), Eq. (19)
and Eq. (38). These equations are expressed as function of the crankshaft an-

gular acceleration (θ̈) and the force reactions on the connecting-rod (~FA, ~FB),
by using the kinematic relations presented in subsection 2.1.

A Runge-Kutta/Ralston second order implicit scheme method is applied
for advancing the time variable. The resulting system of equations is resolved
by means of the Lower-Upper (LU) solver. To use this approach the values
of F n+1

pfr
, F n+1

mbx
, F n+1

mby
, T n+1

mbfr
, F n+1

sbx
, F n+1

sby
and T n+1

sbfr
must be supposed. These

data is calculated in the further resolution of the piston and the crankshaft
secondary motions.
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3.2. Block 2: Piston secondary motion

This procedure is aimed to obtain the hydrodynamic and friction reactions
on the piston element. For doing this, the secondary motion of the piston is
resolved.

This motion is mathematically expressed in Eq. (13) and Eq. (14). These
equations depend on the piston gravity centre accelerations in the secondary
movement directions (ÿGp , λ̈), which are defined in terms of the top and
bottom linear accelerations of the piston (ε̈pt , ε̈pb) in Eq.(16).

A first order Euler implicit scheme method is applied for advancing the
time variable. The resulting system of equations is solved through a Newton-
Raphson (NR) based method. The hydrodynamic and friction reactions de-
pend on the pressure distribution around the cylinder-piston cavity. That
pressure is mathematically modelled by means of the Reynolds equation,
which is solved using a Finite Volume Method (FVM) strategy. The system
of equations arising from the FVM discretization is solved by means of the
Cholesky solver.

It is necessary to emphasise that this procedure depends on θn+1, θ̇n+1,
F n+1
Ay

and T n+1
Afr

. These data are provided by Block 1 procedure, explained in
subsection 3.1. Hence, the piston secondary motion is preceded by Block 1.

3.3. Block 3: Crankshaft secondary motion

This procedure is aimed to obtain the hydrodynamic and friction reactions
on the crankshaft element. For doing this, the secondary motion of the
crankshaft is resolved.

This motion is mathematically described by Eq. (28), Eq. (29), Eq. (36)
and Eq. (37). These equations depend on the crankshaft gravity centre ac-
celerations in the secondary movement directions (ẍO, ÿO, γ̈, δ̈), which are de-
fined in terms of the main and secondary linear accelerations of the crankshaft
(ε̈mbx , ε̈mby , ε̈sbx , ε̈sby) in Eq. (25).

In a similar way as in Block 2, a first order Euler implicit scheme method
is applied for advancing the time variable. The resulting system of equations
is solved using Newton-Raphson (NR) based method, too. The hydrody-
namic and friction reactions are also calculated through the resolution of the
Reynolds equation using a FVM discretization in each bearing.

Again, this procedure depends on data that is calculated in Block 1 pro-
cedure. In particular, the crankshaft motion depends on θn+1, θ̇n+1, F n+1

Bx
,

F n+1
By

and T n+1
Bfr

. For this reason, the part is preceded by Block 1 in the global
resolution algorithm.
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4. Results and discussions

The reciprocating compressor mechanism simulations are based on the
design parameters presented in Table 1. This section is divided into three
parts which contain: (i) a group of studies to verify and validate the devel-
oped code; (ii) a sensitivity analysis of the inertial forces on the secondary
movement direction first and the crankshaft angular acceleration later, for
evaluating their impact on the overall behaviour of the reciprocating mech-
anism; (iii) and a set of parametric studies.

4.1. Verification and validation results

4.1.1. Verification results

Different results are presented analysing two spatial and one time dis-
cretization error studies. The assessment of the spatial discretization error
is focused on the use of different meshes in the FVM based resolution of the
Reynolds equation. Furthermore, the time discretization error is based on
the use of different time integration steps for solving the overall mathematical
model.

The first spatial discretization error study consists of analysing an aligned
and static journal bearing. In particular, the bearing is uncoupled from
the remain compressor components. The Sommerfeld number and the load
angle have been evaluated for every tested mesh, using different eccentricities.
In order to show the asymptotic tendency of the numerical solutions, the
different results have been compared to those obtained with the mesh80x80

1.
The average relative errors using the mesh10x10 are lower than 9.2% for the
Sommerfeld number and 13% for the load angle. The errors for the mesh20x20
are lower than 3.1% in both cases. Finally, the mesh30x30 and the mesh40x40
provide errors below 1.2% and 0.6% respectively. Thus, it is considered
that the mesh20x20 solves the lubrication phenomena in uncoupled journal
bearings problem with an acceptable precision in a reasonable computational
time.

The second spatial discretization error study is focused on the calculation
of the crankshaft and the piston trajectories. Unlike the previous study, this
is solving all the mechanism fully coupled. In this case, the asymptotic
tendencies are obtained by comparison of every numerical solution to the

1The nomenclature meshNxM is used to define the size of the uniform mesh, where N
and M are the nodes in the circumferential and the axial direction, respectively
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one obtained using the mesh30x30. The relative errors with the mesh10x10
are lower than 2.2% for the crankshaft trajectory while the errors for the
mesh20x20 are below 0.7%. In addition the average absolute difference of the
piston trajectory is lower than 10−2µm in all cases. Thus, according to these
data the mesh10x10 provides sufficient accuracy.

With regard to the time discretization error study, the different time steps
are determined on the basis of the cyclic nature of the addressed problem.
Namely, the whole crank rotation is divided in n equally separated time
instants wherein the mechanism is solved. In that way, the time step is
altered by changing the number of divisions, or just steps, the cycle is divided
in. The study comprises different cases ranging from 100 to 800 steps. For
verifying the asymptotic behaviour, all the numerical solutions have been
compared with the results obtained with 800 steps. Using 100 steps the
average relative errors are lower than 5% for both the main and the secondary
bearing trajectories, using 200 steps the error is lower than 2.3% and using
400 steps the error is below 0.8%. Moreover, the average absolute errors of
the piston trajectory are lower than 10−2µm in all cases. Thus, according to
this study the discretization of the crank cycle in 200 steps gives a sufficient
adequate accuracy.

4.1.2. Validation results

The results obtained by the developed code are validated using the nu-
merical results of several authors. These validations have been focused on
the Reynolds Equation as it is essential to properly evaluate the secondary
movements of the reciprocating mechanism.

In the literature, there are some analytical solutions regarding the Reynolds
equation applied on the aligned journal bearings. The most famous are the
infinitely long and short bearing cases, although their applicability is limited.
More recently, another much less restrictive analytical solution has been de-
veloped by Sfyris, D. and Chasalevris, A. [21; 22]. This analytical solution,
along with the numerical results obtained by Gertzos [5] and the results ob-
tained by the developed code, are shown in Fig. 7. A good agreement is
observed among the results, specifically with the code and Gertzos’ results.

The analytical solution of Sfyris, D. and Chasalevris, A. [21; 22] can be
also used to determine the pressure distribution of a journal bearing when
it has a dimensionless eccentricity (ε) and a non-zero rate of change (ε̇). A
comparison of this analytical solution and the numerical code results is shown
in Fig.8. A good concordance is observed.
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The following numerical experiment shows the aligned journal bearing
behaviour under dynamic loads. The results obtained by the developed code
are compared with the experimental studies by Campbell et al. [1] and the
numerical studies by Jones, G.J. [3] in Fig. 9. This figure shows a journal
bearing trajectory during one cycle when different dynamic loads are applied.
A close concordance between these trajectories is also observed.

Finally, the misaligned journal bearing behaviour is taken into consider-
ation. A shaft misalignment produces misalignment torques on the journal
bearing which tend to align the shaft again. These torques depend on the
misalignment degree (Dm), the misalignment orientation (δmis) and the ec-
centricity of the journal bearing centre. All these parameters are defined by
Wisbeck, H.J. [23]. As there is no analytical solution for misaligned jour-
nal bearing, this phenomenon has been studied numerically in the literature.
Some of the authors who developed studies in this area are Wisbeck, H.J. [23]
and Chieh, H.[19]. Their results have been used in Fig. 10 to validate the
code. Once again, the results present a good agreement.

4.2. Sensitivity analysis

This section numerically concludes the influence of two physical phenom-
ena in the compressor behaviour: (i) the relevance of the inertia in the sec-
ondary movement directions (piston and crankshaft), and (ii) the importance
to take into account the oscillations of the crankshaft angular velocity.

4.2.1. Inertial Study

The computational cost of the numerical approach can be significantly
reduced by means of simplification hypothesis. This study is aimed to inves-
tigate how the inertial forces in the secondary motion directions influence the
compressor secondary motions. If these forces are not affecting the secondary
movements, it can be assumed that the dynamics and the kinematics of the
lubrication element can be uncoupled in the mathematical formulation. In
this way the cost of the calculations can be reduced using appropriate nu-
merical techniques.

To that end, two simulations have been carried out. The first one taking
into account the inertial forces in the secondary motion directions and the
other without considering them. The differences in the trajectories of the
crankshaft and the piston have been calculated. The average relative differ-
ences (Fig. 11) in the crankshaft trajectory is lower than 4% and below 0.2%
in the piston trajectory.
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The differences are higher in the crankshaft because it is heavier than the
piston. Even so, that difference is still low so that one can safely assume that
the inertial terms do not affect the lubrication element trajectories, at least
for the target compressor.

4.2.2. Crankshaft angular velocity study

The crankshaft angular velocity is not imposed in the current mathe-
matical model, but it is derived from the inclusion of Eq. (38) into the dy-
namic balances. Because of this, the crankshaft angular velocity is not con-
stant and their oscillations could affect the compressor secondary movements.
These have been analysed through the piston and crankshaft trajectories with
variable and constant angular velocity. Fig. 12 shows the oscillation of the
crankshaft angular velocity and the crankshaft angular acceleration during
one cycle. It can be seen that the difference between the maximum and the
minimum angular velocity is approximately 1 Hz (≈ 2%). The average an-
gular velocity used to simulate the constant case is also shown in the figure
(equal to 48.73Hz).

The results show that the crankshaft trajectory presents an average rela-
tive difference lower than 0.65%, while the average absolute difference in the
piston case is lower than 5e-3µm. Thus, the tiny differences prove that the
oscillation effect is negligible in this case. Again, it does not mean that this
phenomenon could not be important if other geometries were considered.

4.3. Parametric Studies
A set of parametric studies have been carried out to analyse the in-

fluence of different geometrical parameters in the stability and the fric-
tion power losses of each lubrication element, as well as in the compressor
power consumption. The chosen parameters are (i) the angular position of
the crankshaft mass eccentricity, (ii) the clearance of the piston and the
crankshaft and (iii) the compressor offset. All these studies have been simu-
lated using a mesh10x10 and a number of steps equal to 200, as they provide
sufficient accuracy (see 4.1.1).

4.3.1. Angular position of the crankshaft mass eccentricity (φ)

This section aims to analyse the influence of the angular position of the
crankshaft mass eccentricity in the compressor behaviour. Preliminary re-
sults reveal that the crankshaft is the only element of the reciprocating mech-
anism affected by this parameter. Thus, the studies are focused on this
element.
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First, a maximum crankshaft stability point close to 270o is observed in
Fig. 13a, while the minimum is around 90o. Specifically, the secondary bear-
ing is more affected than the main bearing as it is closer to the crankshaft
gravity centre. Moreover, Fig. 13b shows how the compressor power con-
sumption remains practically invariable (small fluctuations) along φ. These
consumption fluctuations are due to the fact that the angular position of the
crankshaft mass eccentricity affects the bearing friction power losses. There-
fore, if the angle φ is changed, the journal bearings stability can be improved
without altering the consumption and the piston behaviour.

4.3.2. Clearances (cp, ccs)

The clearance is an important geometrical parameter which affects the
stability of the lubrication element and its friction power losses. The pre-
liminary studies show that the clearance of one lubrication element does not
alter the performance of the other lubrication elements, only its own. For
this reason, the piston and the journal bearing clearances have been studied
separately.

First, the effects of the piston clearance in the piston behaviour are com-
mented. As shown in Fig. 14a, the maximum top eccentricity remains prac-
tically constant, while the maximum bottom eccentricity is increased. Thus,
the piston is closer to the wall if its clearance is increased, which means a loss
of stability. Instead, when the piston clearance increases, the friction power
losses produced by the piston motion (Fig. 14a) decrease . These tendencies
are not exactly the same as those observed by Prata, A.T. [11] and Kim,
T.-J. [12]. The reason for this is that the piston stability is complex and it
depends on several parameters.

Similarly to the piston case, the clearances of the journal bearings have
also been studied. Fig. 14b shows how the crankshaft apparently loses stabil-
ity and produces less friction power losses when the journal bearing clearances
augment. This behaviour is also observed in the piston analysis although the
trends are more pronounced in the crankshaft case.

4.3.3. Offset (ocs)

The compressor offset determines the distance in the y-direction between
the points A and B (ABy) along the compressor cycle (Fig. 4). An appropri-
ate offset produces a decrease of ABy during the compression stage, which
is an interesting property. The shorter this distance during the compression
stage is, the higher the compressor torque dedicated to produce the force in
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the x-direction to compress the gas. This also means that the forces on the
y-direction are smooth, improving the stability of the piston and crankshaft
secondary movements. Moreover, the compressor power consumption de-
creases, as the average motor torque required to compress the gas is reduced
(see Fig.15a). Consequently, the crankshaft angular velocity increases so that
the crankshaft stability, the friction power losses and the flow rate pumped
by the compressor augment.

These phenomena can be observed in Fig. 15b and Fig. 15c. The first
figure shows the piston behaviour under different offsets. A maximum stabil-
ity and a minimum friction power losses are identified. In the second figure
it can be seen how an increase of the compressor offset improves the jour-
nal bearings stability, but it also produces more friction power losses. Both
effects are related to the increase of the crankshaft angular velocity.
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5. Conclusions

The current work describes the compressor mechanism behaviour based
on the numerical resolution of several effects, which have been separately
solved by other authors. The novelty of the present paper focuses on the
capacity of coupling all these effects allowing to know the influence of different
parameters from a global point of view. Hence, the developed model is a
valuable tool to design reciprocating mechanisms as the compressor. It is not
only able to predict the main motions of the different mechanism elements
and their instantaneous behaviour over the cycle, but it also calculates their
stability and their friction power losses. A great strength of the current work
is the capability to evaluate all these features using different electric motors.

Two sensitivity analyses and a set of parametric studies have been car-
ried out for assessing the modelling approach and better understanding of
the compressor behaviour. First, the sensitivity analyses have concluded that
neither the inertial forces in the directions of the secondary movements, nor
the oscillations of the angular velocity affect the behaviour of the compressor
studied in this research. Instead, the parametric studies have shown the high
relevance of the selected parameters into the reciprocating compressor mech-
anism. The first parametric study reveals that the angular position of the
crankshaft mass eccentricity affects the crankshaft stability and the friction
power losses of their bearings (specially the second one). The angle φ, which
provides the maximum stability without increasing the compressor power
consumption, has been localised. The second parametric study exposes that
the clearance of one lubrication element does not alter the performance of
the other lubrication elements, only its own. Moreover, the piston stability
as function of its clearance does not present the same tendency than other
authors. This phenomenon can be explained to the fact that the piston sta-
bility is complex and it depends on several parameters. Finally, the last
parametric study demonstrates the high influence of the offset on the com-
pressor behaviour. This work has shown numerically that the compressor
offset is able to improve the stability of the lubrication elements, reduces
the electric motor torque, decreases the compressor power consumption and
augments the flow rate pumped by the compressor. However, the friction
power losses of the lubrication elements increase, due to an increase of the
crankshaft angular average velocity.

Some other features could be included to extend the developed model.
For example, an interesting experiment is the coupling of the reciprocating
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mechanism with the fluid dynamics and the heat transfer of the refrigerant
gas. In this context, the instantaneous pressure in the compression chamber
would be calculated, instead of being imposed as a boundary condition. In
addition, this would also enable the COP prediction in the basis of any
other parameter. Another improvement is focused on the coupling of the
distinct secondary movements. These movements are coupled by the dynamic
formulation, so the kinematics of the secondary movements can only affect
through the dynamic reactions which they produce. An improvement of
the coupling grade between the secondary movements would be achieved
through the calculation of the connecting-rod secondary movement in the
existing model, as it could link the information of the piston and crankshaft
secondary movements.
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List of Tables

1 Design parameters.



Piston

Radius rp 13.5 mm
Length Lp 21.0 mm
Clearance cp 5.0 µm
Dynamic viscosity µp 4.0e-3 Pa s

Connecting-Rod

Length Lcr 42.0 mm

Crankshaft

Radius rcs 8.7 mm
Offset ocs 3.0 mm
Gravity centre radius rGcs 0.1 mm
Gravity centre angle φ 0.0 deg
Distance between bearings Lbe 42.0 mm
Clearance ccs 9.0 µm
Dynamic viscosity µcs 6.0e-3 Pa s

Main bearing

Radius rmb 7.5 mm
Length Lmb 10.0 mm
Position LGmb

50.0 mm

Secondary bearing

Radius rsb 7.5 mm
Length Lsb 7.5 mm
Position LGsb

8.0 mm

Table 1: Design parameters.



List of Figures

1 (a) Front view and (b) top view of the reciprocating compres-
sor and its geometry.

2 Piston dynamic: (a) free body diagram and (b) a detailed
image of its secondary movement.

3 Dimensionless pressure in the compression chamber (p∗cc) and
the shell (p∗shell) along the crank angle (θ).

4 Connecting-Rod free body diagram.
5 Crankshaft dynamics: (a) front and (b) top views of the free

body diagram and (c) a detailed figure of its secondary move-
ment, where the tilt line represents the crankshaft gyration
axis.

6 Global algorithm. The procedure is divided into three sub-
iterative blocks. For simplicity, the ϑ symbol represents every
unknown in the list. To assure a good coupling, the three
blocks are resolved iteratively until convergence criterion (ε)
is reached. The time advancing loop is repeated until each
unknown achieves periodic state conditions.

7 (a) Eccentricity and (b) load angle as function of the Sommer-
feld number (S) of static and aligned journal bearing with dif-
ferent ratios L/D. Comparison between the code results (Re-
sults), the Gertzos’ results [5] (Gert) and the results obtained
by the analytical solution (AS) by Sfyris, D. and Chasalevris,
A. [21]- [22].

8 Dimensionless pressure distribution (p∗) along the angular co-
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different rates of change (ε̇) and an eccentricity equal to 0.7.
Comparison between the code results (Results) and the re-
sults obtained by the analytical solution (AS) by Sfyris, D.
and Chasalevris, A. [21; 22].

9 Trajectory of an aligned journal bearing under a dynamic load.
Comparison between the code results (Results), and the (a)
experimental results obtained by Campbell [1] and (b) the
numerical results obtained by Jones [3].



10 Dimensionless misalignment torques in the (a) x-direction a
(Tx) and (b) y-direction Ty) as function of the misalignment
degree (Dm) using different orientations (δmis). Comparison
between the results obtained by Wisbeck, H.J. [23], and Chieh,
H.[19] and the results obtained by the code.

11 Comparison of the (a) piston and (b) crankshaft trajectories
during a compressor cycle when the inertial forces in the sec-
ondary motion directions are considered and when they are
not. The detailed view shows the differences among the sec-
ondary bearing trajectories.

12 Crankshaft angular velocity (θ̇) and acceleration (θ̈) along the
compressor cycle (θ).

13 (a) Maximum dimensionless eccentricity (εmax) of the main
and secondary bearings and (b) compressor power consump-
tion (Pmec) as function of the angular position of the crankshaft
mass eccentricity (φ).

14 Friction power losses (Pfr) and maximum dimensionless ec-
centricities (εmax) of (a) the piston as function of its clearance
(cp) and (b) the journal bearings as function of their clearances
(ccs).

15 (a) Average motor torque (Tm) and average angular velocity
(θ̇) during a compressor cycle (θ) as function of the compres-
sor offset. (b) Piston and (c) journal bearings friction power
losses (Pfr) and maximum dimensionless eccentricities (εmax)
as function of the compressor offset (ocs).
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Figure 1: (a) Front view and (b) top view of the reciprocating compressor and its geometry.
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Figure 2: Piston dynamic: (a) free body diagram and (b) a detailed image of its secondary
movement.
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Figure 5: Crankshaft dynamics: (a) front and (b) top views of the free body diagram
and (c) a detailed figure of its secondary movement, where the tilt line represents the
crankshaft gyration axis.
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Figure 11: Comparison of the (a) piston and (b) crankshaft trajectories during a compres-
sor cycle when the inertial forces in the secondary motion directions are considered and
when they are not. The detailed view shows the differences among the secondary bearing
trajectories.
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Figure 13: (a) Maximum dimensionless eccentricity (εmax) of the main and secondary
bearings and (b) compressor power consumption (Pmec) as function of the angular position
of the crankshaft mass eccentricity (φ).
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Figure 14: Friction power losses (Pfr) and maximum dimensionless eccentricities (εmax)
of (a) the piston as function of its clearance (cp) and (b) the journal bearings as function
of their clearances (ccs).
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Figure 15: (a) Average motor torque (Tm) and average angular velocity (θ̇) during a
compressor cycle (θ) as function of the compressor offset. (b) Piston and (c) journal
bearings friction power losses (Pfr) and maximum dimensionless eccentricities (εmax) as
function of the compressor offset (ocs).
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