Corresponding Address:

Nobuhiro Takahashi
Applied Electromagnetic Research Center,
National Institute of Information and Communications Technology (NICT)
4-2-1 Nukui-kita, Koganei, Tokyo 184-8795 Japan
ntaka@nict.go.jp

Toshiyoshi Kimura
EarthCARE/CPR Project Team,
Space Applications Mission Directorate
Japan Aerospace Exploration Agency (JAXA)
2-1-1 Sengen, Tsukuba, Ibaraki, 305-8505, Japan
kimura.toshiyoshi@jaxa.jp
CONTENTS

<table>
<thead>
<tr>
<th>Current Status of eCARE Science Studies in Japan</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Nakajima</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The EarthCARE challenge: Evaluation and improvement of climate and NWP models</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Illingworth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EarthCARE - The cloud, aerosol and radiation core explorer mission from ESA and JAXA: Status of the satellite and instrument design including performance and calibration aspects</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Münzenmayer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Development Status of EarthCARE CPR</th>
<th>21</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bread-board model testing of the EarthCARE CPR</th>
<th>27</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>EarthCARE CPR Level 1 algorithm & Doppler measurement</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. Ohno, H. Hoire, N. Takahashi, and H. Kumagai</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation of particle fall velocity in cirriform cloud by VHF and millimeter-wave Doppler radars</th>
<th>35</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Cloud microphysics and dynamical characteristics inferred from cloud radar, lidar and satellite data</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Sato</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation of microphysical quantities with radar reflectivity of FALCON-I</th>
<th>45</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Study for external calibration method for Cloud Profiling Radar on EarthCARE</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>H. Horie, Y. Ohno, K. Sato, N. Takahashi, and H. Kumagai</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerosol retrieval algorithm using 1α+1β+1δ data of ATLID/EarthCARE</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Nishizawa, N. Sugimoto, I. Matsui, A. Shimizu, B. Tatarov, and H. Okamoto</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>An optimal-estimation based hybrid Rayleigh-Mie extinction and backscatter retrieval method for HSRL lidars</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. P. Donovan and G. van Zadelhoff</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A potential FeatureMask algorithm for the EarthCARE lidar</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. van Zadelhoff and D. Donovan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ICAROHS - Inter-Comparison of Aerosol Retrievals and Observational requirements for multi-wavelength HSRL Systems</th>
<th>73</th>
</tr>
</thead>
</table>
Lidar network for observing tropospheric aerosols in East Asia

N. Sugimoto, A. Shimizu, I. Matsui, T. Nishizawa, Y. Hara, I. Uno, and K. Yumimoto

Long-term aerosol and cloud database from space-borne lidar and ground-based lidar network observations

The EARLINET contribution to the EarthCARE mission

Coordinated airborne high spectral resolution lidar and in-situ observations of different aerosol types

From A-Train to EARTHCARE: Calibration validation and assessment of radiative effect of absorbing aerosol

D. Josset, J. Pelon, Y. Hu, C. Trepte, and P. Zhai

Vertical air motion in midlevel shallow-layer clouds observed by 47-MHz wind profiler and 532-nm Mie lidar

Global analyses of ice cloud properties from CloudSat and CALIPSO

H. Okamoto, K. Sato, Y. Hagihara, and R. Yoshida

The evaluation of CloudSat-derived microphysical products using ground-based cloud radar and lidar observations

A. Protat, J. Delanoë, and E. O’Connor

Development of a combined CloudSat/CALIPSO cloud mask to show global cloud distribution

Y. Hagihara, H. Okamoto, and R. Yoshida

Characteristics of deep convection measured with A-train satellites

Cloud mask and cloud phase techniques for future EarthCARE/MSI data

K. Bartfus and F. Berger

Plan for synergetic observation of cloud properties by using EarthCARE/MSI and active instruments

H. Ishida, T. Y. Nakajima, and K. Suzuki
A unified aerosol retrieval system for multi-channel imagers on past, current
and future polar- & geo-orbital satellites
T. X.-P. Zhao, W. Guo, J. J. Bates, and E. J. Kearns
Assessment of the quality of MODIS cloud products from radiance simulations
B.-J. Sohn, S.-H. Ham, P. Yang, and B. A. Baum
High-level cloud classified by the split window and CALIOP observations
T. Inoue, A. Hamada, Y. Hagihara, and S. Fukuda
Global cloud geometrical properties retrieved from ADEOS-II / GLI data
M. Kuji
EarthCARE L2b retrieval algorithms: longwave instantaneous TOA fluxes
C. Domenech and T. Wehr
CALIPSO, CloudSat, CERES, and MODIS merged product
G. Stephens, P. Minnis, N. G. Loeb, T. P. Charlock, P. W. Stackhouse, K. Xu,
and W. Collins
Polar cloud-radiation climatology, stratosphere-troposphere interaction and MST radar (PANSY)
T. Yamanouchi
The use of ECSIM to simulate ground-based and space-borne observations
S. Placidi, D. P. Donovan, R. A. Roebeling and H. W. J. Russchenberg
Realistic simulations of EarthCARE observations
B. Mayer, F. Faure, L. Bugliaro, T. Zinner, and R. Buras
Preliminary results of satellite radar simulator using cloud-resolving model by the Japan Meteorological Agency
T. Kubota, H. Eito, T. Iguchi, H. Hanado, K. Aonashi, S. Shimizu, N. Yoshida,
and R. Oki
Use of cloud radar and lidar data for model validation and experimentation at ECMWF
M. Janisková, S. Di Michele, O. Stiller, R. Forbes, M. Ahlgrimm and J.-J. Morcrette
Evaluation of cloud properties of global/local cloud-resolving model using the split window analysis and the CloudSat/Calipso simulators
M. Satoh, T. Inoue, and H. Miura
Properties of precipitation and in-cloud vertical velocity in global cloud-system resolving simulations
T. Nasuno and M. Satoh
Comparison of cirrus properties between cloud-resolving model simulations and CALIPSO/CloudSat over the tropical open ocean: Toward an improvement of global cloud-resolving simulations
W. Roh and M. Satoh
Sensitivity of cloud microphysical properties, precipitation, and brightness temperature to nucleation processes in Arctic stratus and tropical convective cloud system
T. Hashino, D. Casella, G. de Boer, A. Mugnai, P. Sano, E. A. Smith, and Greg J.
A-Train analysis of warm cloud microphysics and its application to evaluation of cloud-resolving models.
K. Suzuki, G. Stephens, T.Y. Nakajima, and S. C. van den Heever
LES modeling and observational analysis of low cloud feedback
K. Xu, A. Cheng, and Z. Eitzen
A study of the aerosol direct forcing using ESSP/CALIPSO observation and GCM simulation
E. Oikawa, T. Nakajima, and T. Inoue
Comparison and data assimilation for global aerosol climate model with measured data from active sensors
T. Takemura, K. Yumimoto, H. Okamoto, and T. Nisizawa
A global aerosol assimilation system
N.A.J. Schutgens, T. Nakajima, M. Mukai, T. Miyoshi, and T. Takemura
Range-imaging observation of turbulence around the tropical tropopause by the Equatorial Atmosphere Radar
Surface reference normalized radar cross section values observed by TRMM precipitation radar
J. Komukai, K. Okamoto, S. Shige, and T. Manabe
Cloud and aerosols spin-off products from ESA’s ADM-Aeolus mission
P. H. Flamant, J. Cuesta, M. Olivier, A. Dabas and D. Huber
Conceptual study on post-GPM mission
N. Takahashi and M. Kachi
JEM/SMILES observation capability
Sub-millimeter wave radiometer for observation of cloud ice: Capabilities of 2-receiver instrument
J. Mendrok, D. Wu, S. Buhler, C. Jimenez and Y. Kasai

Appendix
EarthCARE Workshop 2009 Agenda
THE EARLINET CONTRIBUTION TO THE EARTHCARE MISSION

Gelsomina Pappalardo¹, Ulla Wandinger², Lucia Mona¹, Ina Mattis², Anja Hiebsch², Aldo Amodeo¹, Albert Ansmann², Holger Linne², Arnoud Apituley³, Lucas Alados Arboledas⁶, Dimitris Balis⁶, Anatoli Chaikovsky⁷, Giuseppe D’Amico⁸, Ferdinando De Tomasi⁸, Volker Freudenthaler⁹, Elina Giannakaki¹⁶, Aldo Giunta¹, Ivan Grigorov¹⁰, Marco Iarlori¹², Fabio Madonna¹, Rodelize-Elizabeth Mamouri¹¹, Francisco Molero¹³, Alexandros Papayannis¹¹, Aleksander Pietruczuk¹⁴, Vincenzo Rizi¹¹, Francesc Rocadenbosch¹⁵, Franziska Schnell⁹, Nicola Spinelli¹⁶, Xuan Wang¹⁶, Matthias Wiegner⁹

¹Istituto di Metodologie per l’Analisi Ambientale CNR-IMAA, Potenza, Italy
²Leibniz-Institut für Troposphärenforschung, Leipzig, Germany
³Max-Planck-Institut für Meteorologie, Hamburg, Germany
⁴Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven, The Netherlands
⁵Universidad de Granada, Granada, Spain
⁶Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
⁷Institute of Physics, National Academy of Sciences, Minsk, Belarus
⁸Università del Salento, Department of Physics, Lecce, Italy
⁹Ludwig-Maximilians-Universität, München, Germany
¹⁰Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
¹¹Università degli Studi dell’Aquila - Dipartimento di Fisica - CETEMPS, L’Aquila, Italy
¹²National Technical University of Athens, Department of Physics, Athens, Greece
¹³Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
¹⁴Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
¹⁵Universitat Politècnica de Catalunya / IEEC CRAE, Barcelona, Spain
¹⁶Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Napoli, Italy

1. INTRODUCTION

The uncertainty about radiative forcing is mainly related to tropospheric aerosols and their interactions with clouds, because of the high variability both in space and time of tropospheric, and in particular anthropogenic, aerosols (Forster et al., 2007).

A new generation of satellite borne aerosol measurements, such as lidar provided aerosol vertical profiles gives us the opportunity to improve the knowledge about aerosol impact on climate and radiative forcing.

Started on April 2006, the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission provides for the first time the opportunity to address the 4-dimensional distribution of aerosols and clouds on a global scale. Since June 2006, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), the first satellite-borne lidar specifically designed for aerosol and cloud study, is providing near-continuous global data set of aerosols and clouds high-resolution vertical profiles (Winker et al., 2007). Stratospheric and free-tropospheric layer dynamics (Liu e al., 2008) and the complex effects of mixing processes that influence the microphysical and optical properties of aerosols and clouds have been studied thanks to CALIPSO high-resolution vertical profiles.

The near global 4D dataset of aerosol and clouds optical properties provided by CALIPSO will be virtually extended by the next space missions equipped with lidar designed for aerosol and cloud investigation: the ESA’s ADM-Aeolus (Atmospheric Dynamics Mission) (Stoffelen et al., 2005; Ansmann et al., 2006) and the EarthCARE (Earth Clouds Aerosols and Radiation Explorer) mission of the ESA and the Japan Aerospace Exploration Agency JAXA (ESA, 2004).

All together the 3 missions observations will provide a unique long data set on the global aerosol and cloud distribution, allowing the investigation of trends in cloud cover, cloud amount, and aerosol pollution state. In addition, such long-term global aerosol record is strongly needed in order to quantify the direct and indirect climate forcing by aerosols, and in particular by anthropogenic aerosols.

2. EARLINET

EARLINET, the European Aerosol Research Lidar Network, is the first aerosol lidar network, established in 2000, with the main goal to

*Corresponding author address: Gelsomina Pappalardo, Istituto di Metodologie per l’Analisi Ambientale CNR-IMAA, Tito Scalo (Potenza), Italy, e-mail: pappalardo@imaa.cnr.it
provide a comprehensive, quantitative, and statistically significant data base for the aerosol distribution on a continental scale.

At present, the network includes 25 lidar stations distributed over Europe, as shown in figure 1. The geographical distribution of the current 25 EARLINET stations covers the whole European continent from Madrid to Belsk and from Andøya to Athens. There are midlatitude near-costal stations like Bilthoven, Cabauw, Hamburg but also lidar sites with continental climate like Belsk and Minsk. The Mediterranean Sea is covered by 3 Spanish stations in the west, 5 sites in Italy, and 2 Greek stations in the east.

Figure 1 shows also the geographical distribution of the different kinds of EARLINET stations: 7 simple backscatter lidars are reported in blue, 9 Raman lidar stations with the UV Raman channel for independent measurements of aerosol extinction and backscatter are reported in green. Finally the red dots represents 9 multi-wavelength Raman lidars (elastic channel at 1064 nm, 532 nm, 355 nm, Raman channels at 532 nm and 355 nm, plus depolarization channel at 532 nm) for the retrieval of aerosol microphysical properties.

EARLINET stations perform measurements almost simultaneously 3 times per week following a regular schedule: one daytime measurement per week around noon, when the boundary layer is typically well developed, and two night-time measurements per week, with low background light, in order to perform Raman extinction measurements. Besides routine measurements that provide a long unbiased dataset for aerosol climatological study, additional observations are performed to address specifically important events like Saharan dust, forest fires, volcanic eruptions, and photochemical smog.

Data quality is assured by a specific program for the quality assurance. The quality of the different instruments participating to the network is checked through direct intercomparison with reference transportable systems and through tools, developed and optimised within the network, for the continuous quality check of the instruments. The quality of the retrieval algorithms for both backscatter and Raman lidar data used by the EARLINET stations is continuously checked and improved thanks to blinded intercomparison exercises and developed tools.

This data quality control establishes a common European standard for routine quality assurance of lidar instruments and algorithms and ensures that the data products provided by the individual stations are homogenous and permanently of the highest possible quality according to common standards.

3. THE EARLINET-CALIPSO EXPERIENCE

Because of its geographical coverage and its high quality data, EARLINET represents an optimal tool to validate satellite lidar data and to support the fully exploitation of the information from present and future satellite missions.

EARLINET ground based lidars as reference points are strongly necessary to increase and validate the accuracy of aerosol optical properties retrieved from CALIPSO. In particular EARLINET Raman station’s data are important to validate and improve, if it is the case, the aerosol retrievals from the pure backscatter lidar on board CALIPSO.

Furthermore, an integrated study of CALIPSO and EARLINET correlative measurements opens new possibilities for spatial (both horizontal and vertical) and temporal representativeness investigation of polar-orbit satellite measurements also in terms of revisit time.

Since June 2006, EARLINET has extended its program of measurements in order to perform measurements also in correspondence of CALIPSO overpasses. Within the EARLINET correlative program for CALIPSO, still in
progress, a great experience has been gained in developing suitable strategies, on the base of the analysis of the high resolution ground track data provided by NASA, for correlative observations, validation and full exploitation of satellite lidar data.

In particular, each EARLINET station performs measurements as close as possible in time and space to CALIPSO ones, within 4 h and 100km. Additional measurements are performed in order to take advantage from the geographical coverage of the network, especially in cases of interesting transport of aerosol, like Saharan dust outbreaks. Each EARLINET correlative measurement lasts for 150 minutes (centered around the overpass), whenever atmospheric conditions allow it, for investigating the temporal variability of aerosol/cloud fields.

After about 3 years of correlative observations, more than 6500 hours of correlative measurements have been performed and about 3200 correlative files are available for comparisons. Preliminary results in terms of direct comparison between CALIPSO data and ground based data are quite promising (Mattis et al., 2007; Mona et al., 2009; Mamouri et al., 2009; Pappalardo et al., 2009).

3.1 Level 1 comparisons

The comparison between EARLINET and CALIPSO vertical profiles of the aerosol optical properties cannot be correctly carried out without a previous assessment of the accuracy of CALIPSO raw signals (namely Level 1 data) (Winker et al., 2009). Comparing EARLINET ground-based measurements with the CALIPSO Level 1 data products, any potential problems and biases already contained in the calibrated CALIPSO lidar signals can be distinguished from any errors and uncertainties due to assumptions needed for the inversion.

A methodology for the comparison is presented and discussed in details by Mona et al., 2009, where it is shown that a comparison in terms of the main CALIPSO Level 1 product, the attenuated backscatter, starting from ground-based measurements is possible without assumptions only if independent extinction and backscatter profiles are available, i.e. with the elastic/Raman technique and High Spectral Resolution Lidar (HSRL).

A first systematic comparison between EARLINET and CALIPSO data in terms of Level 1 data has been carried out on the base of almost 18 months of EARLINET and CALIPSO correlative measurements performed in the June 2006 - November 2007 period before the change of CALIPSO pointing angle from 0.3° to 3° off nadir (Pappalardo et al., 2009).

CALIPSO Level 1 data (Version V2.01) averaged on a horizontal scale of 5 km are used. In order to avoid any significant assumptions in the attenuated backscatter calculation, only EARLINET cases for which independent measurements of extinction and backscatter at 532 nm are available are considered. For a first comparison only cases without observation of cirrus clouds both in EARLINET and CALIPSO data are considered.

Figure 2: CALIPSO and EARLINET mean profiles of attenuated backscatter profile at 532 nm (a) and corresponding mean percentage difference (b) for Potenza EARLINET station. The maximum and minimum values of percentage differences are reported too as black squares.

As example, figure 2a reports the mean attenuated backscatter profiles at 532 nm as measured by CALIPSO and EARLINET Potenza station. Figure 2b shows vertical profile of the corresponding mean percentage differences, together with the minimum and maximum values of these observed differences.

There is on average a good agreement between CALIPSO and EARLINET measurements, demonstrating the good
performances of CALIPSO and the absence of evident biases in the CALIPSO raw signals. In particular, there is a very good agreement apart from the low altitudes, where horizontal distances between the two sensors in conjunction with the high variability in the aerosol content at these altitudes leads to larger differences.

This kind of comparison has been performed for each EARLINET station providing aerosol extinction and backscatter at 532 nm. On the base of this multi-station dataset, we found a good agreement with relative mean difference of 4.6%, typically within 20%, and with a relative standard deviation of 50% (Pappalardo et al., 2009).

3.2 Representativeness study

CALIPSO level 2 data, i.e. profiles of backscatter and extinction coefficients and aerosol layer products, can be directly compared with EARLINET data for nearby overpasses.

Furthermore EARLINET Raman lidars allow to investigate intensive optical parameters (like lidar ratios and Ångström exponents) and their dependences on the specific aerosol and cloud types, information strongly needed for the development and optimisation of space-borne lidar algorithms.

Finally, an integrated study of CALIPSO and EARLINET correlative measurements opens new possibilities for spatial (both horizontal and vertical) and temporal representativeness investigation of polar-orbit satellite measurements also in terms of revisit time.

Since April 2008, the European Space Agency supports the EARLINET-CALIPSO correlative measurements program, with two main goals: providing conversion factors in dependence of aerosol and cloud type, and investigating representativeness of CALIPSO data in describing aerosol and cloud fields through correlation analysis with EARLINET measurements.

First results concerning conversion factors and first comparisons of CALIPSO Level 2 and EARLINET data, performed on the basis of an extended experimental data set related to a major Saharan dust outbreak, are presented in a companion paper (Wandinger et al., 2009).

In the following, an example illustrates the approach for the representativeness study.

Figure 3 reports vertical profiles of the aerosol backscatter and extinction coefficient at 532 nm as measured almost simultaneously at Potenza EARLINET station (PO) and CALIPSO at different horizontal distances. Additional profiles measured at Potenza at a different time are reported to provide information about the temporal variability. Profiles measured at Naples EARLINET station (NA) are reported too in order to provide information related to a larger horizontal distance between independent observations (Naples is about 130 km far away from Potenza).

For the closest and simultaneous measurements, reported in Figure 3 as solid lines, large differences are observed also in terms of the vertical layering. These observed differences are an effect of the horizontal inhomogeneity of the aerosol field. For the backscatter profiles, a better agreement is observed between the CALIPSO observation related to a horizontal distance of about 107 km far from Potenza and Potenza measurement on 29 May evening (temporal shift from CALIPSO of 320 min). This corresponds to a wind speed of about 5.6 m/s in agreement with the typical wind speed of 5-10 m/s observed over Potenza at 2-5 km a.s.l.. A similar agreement is not observed for the corresponding aerosol extinction coefficient, however it has to be kept in mind that CALIPSO extinction measurements are strongly affected by the lidar ratio assumption needed for the retrieval, that can lead to the observed differences.

This example shows that it is necessary to take into account the aerosol spatial and temporal variability in comparison between no-perfectly coincident measurements.

Horizontal and temporal variability of aerosol/clouds fields are investigated on different scales following two different approaches: a point-to-point comparison, in which each EARLINET observation is compared with the corresponding CALIPSO overpass measurement and a multiple-point approach, in which observations of more EARLINET stations are compared with satellite data opportunely averaged, for different scenarios, such as long-range aerosol transport. In order to illustrate the approach for the representativeness study, an example based on a peculiar case is shown in the following.

The observational period of 26-31 May 2008 has been chosen for a first correlation analysis because EARLINET stations performed a large number of measurements for investigating dust coming from Saharan over Mediterranean and Central Europe.

Comparisons within 100 km and different time shifts are used to study the temporal variability of the aerosol field, while almost simultaneous measurements (within 10 minutes by CALIPSO) at different horizontal distances are selected in order to study the spatial variability. In particular, the backscatter coefficient at 532 nm are
considered in the following, because it is a primary product of CALIPSO and it is available from most of the EARLINET participating stations, so that a large number of data is available. Profiles of differences (absolute and relative) related to space-borne vs ground-based lidar are investigated and classified in classes on the base of the time shift and horizontal distance between the 2 observations. For different distances (in time and space), count distributions of CALIPSO and EARLINET backscatter coefficient measurements these classes are compared (Pappalardo et al., 2009).

Figure 3: Aerosol backscatter (left panel) and extinction (right panel) coefficient at 532 nm measured at Potenza (PO) and Naples (NA) EARLINET stations, and CALIPSO at different horizontal distance from Potenza lidar station for the 29-30 May 2008 night-time case.

Figure 4a reports the behaviour of the correlation coefficient between CALIPSO and EARLINET backscatter counts distributions for horizontal distances lower than 100 km as a function of the maximum considered time shift between the two observations for a maximum time shift of 10 minutes. Figure 4b reports the correlation coefficient between CALIPSO and EARLINET backscatter counts distributions as a function of the maximum considered horizontal distance between the two observations for a maximum time shift of 10 minutes. These plots show that within 100 km, the time shift does not have a strong influence on the observed differences, even if obviously large temporal distances correspond to a decrease in
the agreement between the two observations. On the contrary, there is a strong dependence of the agreement, and therefore of the representativeness of the measurements, on the horizontal distance over 10 minutes as timescales. In particular, the correlation coefficient goes from 0.9 for 50 and 100 km as maximum horizontal distance down to 0.6 for 2000 km as maximum distance following an exponential decay law (r = 0.993) characterized by a length scale of about 500 km.

![Figure 4](image)

Figure 4: Correlation coefficient between CALIPSO and EARLINET backscatter counts distributions for horizontal distances lower than 100 km as a function of the maximum considered time shift between the two observations (a) and for time shifts lower than 10 minutes reported as a function of the maximum considered horizontal distances between the two observations (b).

4. **SUMMARY**

Since June 2006, the number of EARLINET measurements is increased for CALIPSO correlative study. Development of a suitable strategy for correlative measurements started well before the first CALIPSO measurement. In May 2008, this strategy was optimised taking advantage from the EARLINET expertise gained in almost two years of CALIPSO correlative measurements.

First results concerning comparisons between EARLINET and CALIPSO data are promising. In particular, the investigation of the spatial and temporal representativeness is approached through an integrated study of CALIPSO and EARLINET correlative measurements.

In addition, the EARLINET experience can be transferred to next satellite missions with lidar on board. In particular for the EarthCARE mission that will involve a High Spectral Resolution Lidar at 355 nm able to give independent measurements of aerosol extinction and backscatter coefficient in the UV.

The GAW Aerosol Lidar Observations Network (GALION) will be essential for extending the investigation on global scale (Bösenberg, J. and R. Hoff, 2008).

ACKNOWLEDGMENTS

The financial support for the improvement of the EARLINET infrastructure by the European Commission under grant RICA-025991 is gratefully acknowledged.

The authors also acknowledge the ESA financial support under the ESTEC Contract No. 21487/08/NL/HE and the ESRIN Contract No. 21769/08/I-OL.

REFERENCES

Wandinger U. et al., 2009: Long-term aerosol and cloud database from space-borne lidar and ground-based lidar network observations, this issue.
