
On�Line Sampling Methods

for Discovering Association Rules

Carlos Domingo and Ricard Gavald�a �

Department de LSI� Universitat Polit�ecnica de Catalunya
Campus Nord� M�odul C�� �����	Barcelona� Spain

fcarlos� gavaldag
lsi�upc�es

Osamu Watanabe

Dept� of Mathematical and Computing Sciences
Tokyo Institute of Technology� Tokyo ��	���� Japan

watanabe
is�titech�ac�jp

December �� ����

Abstract

Association rule discovery is one of the prototypical problems in data

mining� In this problem� the input database is assumed to be very large

and most of the algorithms are designed to minimize the number of scans

of the database� Enumerating association rules is usually an expensive

task due to the size of the input database� A proposed approach for reduc�

ing the running time of this process is random sampling� Of course� any

implementation of an algorithm that uses sampling must solve the prob�

lem of determining which sample size is appropriate� Previous research of

sampling for association rule mining has approached this problem conclud�

ing that� in general� the theoretically obtained sample size bounds are far

from what is observed in practice� In this paper� we try to reduce this gap

between theory and practice� We propose two on�line sampling algorithms

for association rule mining� Our algorithms maintain the same theoreti�

cal guarantees of previous approaches while using a much smaller number
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of transactions in most of the cases� In the experiments we report� this

improvement is often by an order of magnitude�

� Introduction

The problem of mining association rules was �rst proposed in ��� and since then

it has become one of the central tasks in knowledge discovery and data mining�

The prototypical application of association rules is what is known as basket data

analysis� Basket data consists of a list of the items bought by every customer

in	 for instance	 a large department store	 together with a transaction identi�er�

Given this large amount of data the goal is to infer statements of the form �
�� of

the customers that buy beer also purchase peanuts�� Such statements are called

association rules �see a more formal de�nition in the following section� and are

typically used for cross�marketing	 store layout or customer segmentation� Some

other successful applications of association rules have been shown in di�erent

domains like decision support	 telecommunications alarm diagnosis	 prediction	

university enrollments	 etc�

Since its introduction	 e�cient enumeration of association rules and several

related problems have become an important topic in data mining with too many

papers to refer here �see ��� or �
� for further references�� Typically	 when mining

association rules	 a heuristic approach is taken wherein one �rst enumerates all

of the frequent sets in the database� A frequent set is any set of items such that

the fraction of transactions in the database where all those items appears is at

least �	 where � is some minimum frequency threshold provided by the user�

Some algorithms like Apriori ��	 ��� or Partition ���� work with a very large

database stored in a remote system and were designed originally to minimize

the number of passes over the database� The computational bottleneck of these

algorithms is the size of the database� An obvious approach for reducing the

complexity of these algorithms is random sampling� This paper is devoted to

developing e�cient sampling algorithms for association rule discovery�

The importance of sampling for association rule mining has been recognized

by several researchers ���	 �	 �	 ���� The usual approach is to take a portion

of the database randomly of a previously determined size and then calculate

the frequency of the itemsets over the sample using a lower minimum support

threshold �� that is slightly smaller than the user�speci�ed minimum support ��

�



Obviously	 this approach may produce a wrong set of frequent itemsets since

some itemsets with frequency bigger than �� but smaller than � might be wrongly

declared frequent� Some techniques for removing these errors by performing a

posterior check using the whole database have been proposed by Toivonen in ����

Another problem might arise from obtaining a random sample not representative

at all of the database regularities� In general	 the possible errors might be reduced

by obtaining a su�ciently large sample� Therefore	 the most important problem

with sampling is how to determine the sample size appropriately so that we

have certain guarantees that the sample is representative and that the number of

itemsets that are wrongly declared frequent or non�frequent is small� This need

for a �formula� that determines the appropriate sample size for every possible

input problem is particularly important if an algorithm that uses sampling is

going to be implemented in automatic tool�

The main statistical tool used in the literature for deciding appropriate sam�

ple sizes is the Cherno� bound	 in any of its forms� The relevance of this bound

has been recognized in the context of sampling for association rules� All the

theoretical analyses that we are aware of are obtained through the Cherno�

bound ���	 �	 �	 ���� It is a common criticism to this bound that it overes�

timates the necessary sample size� Experimental results ��	 ��� showed that	

compared with the sample sizes obtained through the Cherno� bound	 much

smaller sample sizes su�ce for deciding whether an itemset is frequent or not

with high con�dence� An immediate improvement can be obtained by comput�

ing the exact probabilities from the binomial distribution but this number still

overestimates� It is a worst case upper bound on a probability while we expect

in practice an average case behavior�

While it is true that the Cherno� bound	 being a very general bound as it is	

overestimates	 there is another source of ine�ciency in the analysis of the sample

size needed performed by previous researchers� This source of ine�ciency comes

from the fact that	 in order to obtain the appropriate sample size	 the minimum

support � is used as a lower bound of the real frequency of a given itemset�

Obviously	 this is always done in this way because the real frequency of the

itemset is not known	 it is precisely what we are trying to determine� However	 if

the frequency of the itemset is much bigger or much smaller � than the minimum

�If the minimum support is very small� as it happens in some applications like basket data

analysis� the case where the real support is much smaller than the minimumone can be omitted�

We have also considered it here for completeness�
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support �	 a much smaller sample should be enough to notice whether the itemset

is frequent or not� This factor crucially a�ects the sample size obtained from the

Cherno� bound as we can see in the following numerical example� Suppose that

the we want to test through sampling whether an itemset X is frequent using

a minimum support � � ��� For this	 we set the lowered support threshold to

�� � ���� Using the Cherno� bound we want to obtain a su�ciently big sample

so that the probability that the frequency of X is less than �� in the sample

when X is frequent in the whole database is less than a con�dence value �� A

straightforward application of the Cherno� bound tells us that the sample should

be of size ���� �ignoring constant factors and the dependency on the con�dence

value �� where � � ����� For our choice of parameters this value is ������ Now	

suppose that X was in fact frequent and that its frequency p is slightly larger

than �	 for instance p � ��� If we know the value of p	 we can use the Cherno�

bound in the same way as before to determine the sample size obtaining this time

����� where �� � p � ��� Substituting the numerical values we obtain a su�cient

sample size of ����	 a signi�cant improvement on the bound above�

In this paper	 we try to reduce the gap between theory and practice proposing

a new sampling method that achieves a worst case upper bound on the sample

size of O�ln���������� for one algorithm and O�ln��������� � for the other instead

of the commonly used bound of O������ �ignoring the dependency on ��� This

should be advantageous when p and �� are su�ciently apart� Furtermore	 we

propose a third improvement that	 although also achieving a worst case bound of

O�ln��������
�
� it will perform much better for support thresholds that are below

������	 a very reasonable assumption for the problem we are studying�

The main feature of our method is that it does not need to know p in advance�

The algorithm obtains the transactions randomly one by one in an on�line fashion�

It is adaptively changing so that its performance converges to the real frequency

of the itemset without knowing it� This contrasts with the usual batch approach

where the sample size is calculated a priori using just � and then the whole sample

is required at once� Moreover	 since our algorithms work in an on�line fashion	 we

expect that in practice the number of transactions required will be even smaller

than the worst case bound that we provide�

We have performed some experiments with our algorithms to con�rm that	

in many situations	 they can use much fewer transactions than the usual batch

approach� In our experiments we have ignored the added technological cost of

performing sampling in an on�line fashion� Our experimental results show that	
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for support values slightly apart from above � and below �� the number of trans�

actions used by our algorithms is much smaller than the usual batch approach	

in some cases of more than one order of magnitude�

Some of the ideas described in this paper were developed in ��� for the problem

of model or hypothesis selection�

This paper is organized as follows� In the next section we formally describe

the problem of mining association rules and state the usual batch sampling algo�

rithm� In Section � we give the �rst solution	 an on�line sampling algorithm that

achieves a worst case bound of O�ln����������� In Sections � and  we give two

improvements	 both of them with a worst case bound of O�ln��������
�
�	 where

the second one will perform better for small supports� For all these algorithms

we provide precise statements of their reliability and e�ciency� Section � reports

on some of the experimental results obtained with the algorithms� Finally	 in

Section � we brie�y summarize the results and discuss future work�

� Preliminaries

The association rule mining task was introduced in ��� and it can be stated as

follows� Let I � fi�� � � � � ing be a set of n items	 and T a database of transactions	

where each transaction has a unique identi�er and contains a set of items� A set

of items is also called an itemset� The support or frequency of an itemset X	

denoted by fr�X�	 is the number of transactions on which it occurs as a subset�

Given a user�speci�ed minimum support value �denoted by ��	 we say that an

itemset X is ��frequent if its support is more than the minimum support	 i�e�

fr�X� � �� When � is clear from the context we will just say that an itemset X

is frequent� An association rule is an expression of the form A� B where A and

B are itemsets� The support of a rule is given by fr�A � B� and its con�dence

as fr�A � B��fr�A�	 i�e� the conditional probability that a transaction contains

B given that it contains A� We will say that	 given a user�speci�ed minimum

con�dence value �denoted by ��	 a ruleA� B has high con�dence if its con�dence

is more than the minimum value	 i�e� fr�A �B��fr�A� � ��

Given � and �	 the association rule mining task	 as described in ���	 consists

of two steps�

�� Find all frequent itemsets�

�� Generate high con�dence rules�





The second step is relatively straightforward� Rules of the form XnY � Y 	

where X � Y 	 are generated for all frequent itemsets X	 provided the rules have

at least con�dence �� On the other hand	 the �rst step is computationally and

I�O intensive and the algorithms studied in this paper are devoted to solve it

e�ciently�

In order to distinguish between the real frequency in the whole database and

the frequency in a sample S of a given itemset X	 we will extend the fr�X�

notation in the following way� Given a database T and a sample S obtained from

it	 the frequency of an itemset X in the database will be denoted by fr�X�T � and

the frequency of X in the sample will be denoted by fr�X�S�� Through all the

paper we will assume that � is the user speci�ed minimum support and �� is the

lowered threshold level where � � � � ���

We start by describing more precisely the problem we want to solve� Let C be

a collection of itemsets	 � the minimum support threshold	 �� a lowered support

threshold and � a con�dence value� Our goal is to design an algorithm that	

given as input C	 �	 �� and �	 does the following� It randomly selects a sample

S of su�cient size such that	 based on it	 the following two conditions hold with

probability more than �� ��

�C�� If X � C is ��frequent	 that is	 fr�X�T � � �	 the algorithm declares X

frequent�

�C�� If X � C is not ���frequent	 that is fr�X�T � � ��	 then the algorithm

declares X non�frequent�

Therefore	 we do not specify the behavior of the algorithm for the itemsets in

C that are non�frequent but close to being frequent� That is	 the algorithm might

wrongly declare frequent all the itemsets X � C such that �� � fr�X�T � � ��

On the other hand	 for the other itemsets we want the algorithm to classify then

correctly with high probability� Obviously	 the closer we select �� to � the smaller

number of itemsets will be wrongly classi�ed by the algorithm but this higher

precision will translate on a bigger sample� An algorithm like the described above

is particularly suitable to be combined with an algorithm like Apriori to calculate

the frequency of an itemset without using the whole database� Since our sampling

algorithm will �with high probability� detect all the frequent itemsets plus some

others	 we can remove all these errors by doing a posteriori check with the whole

database� See the paper by Toivonen for discussion about this ���� In this paper	
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we just concentrate on the problem of how to e�ciently calculate the value of

fr�C�T � for a collection of itemsets C using random sampling�

Once our problem is formally stated	 we go on describing more precisely the

usual approach for solving it and the number of transactions required to achieve

the performance mentioned above� We call this algorithm BSAR from Batch

Sampling for Association Rules since the sample size needed is calculated in ad�

vance and all the sample can be obtained in batch in contrast with our algorithms

that work in an on�line manner� Algorithm BSAR is shown in Figure ��

Algorithm BSAR �C� �� ��� ��

� � � � � ���

� S � obtain randomly � ln�jCj������ transactions from T �

� for all X � C do

� if fr�X�S� � �� � ��� then declare X frequent�

 else declare X non�frequent�

� end

Figure �� Pseudo�code of algorithm BSAR�

The main tool for proving the correctness of BSAR and the other algorithm in

the paper is the Cherno� bound ��	 ���� More precisely	 we are using the additive

form of the Cherno� bound	 that is usually referred to in the computer science

literature as the Hoe�ding bound	 that we state in the following theorem�

Theorem ���� �Hoe�ding bound� For any t � � and p	 � � p � �	 consider

t independent random variables X�� � � � �Xt each of which takes values � and �

with probabilities � � p and p� Then for any � 	 �	 we have

Prf
tX

i��

Xi 	 pt� �t g � exp�����t�� Prf
tX

i��

Xi � pt� �t g � exp�����t��

An straightforward application of this bound yields the following theorem�

Theorem ���� With probability at least �� �	 algorithm BSAR on input C	 �	

��	 � satis�es conditions �C�� and �C�� for all itemsets X � C�
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The lowered threshold �� can be set to any value� For obtaining a very high

precision	 we might want to have a lowered threshold that is an � fraction away

from �	 that is	 �� � ��� � ��� In that case	 the number of transactions used by

the algorithm will be proportional to ��������

Notice that the number of transactions used by algorithm BSAR is totally

independent of the real frequency of itemset X	 it depends mostly on ����� The

rest of the paper is devoted to solving this problem by introducing algorithms

that reduce the dependence on � � � � �� as much as possible and introduce a

dependence on the real frequency of itemset X�

� Variance Based Sampling Algorithm

Here we present our �rst on�line sampling algorithm together with its proof of

reliability and e�ciency� Figure � shows the algorithm that we have called VSAR

from Variance Based Sampling for Association Rules� Here for given � and �	 we

denote by 
 ��� �� the smallest integer 
 that satis�es the following inequality�


 �
�

��
ln

�
jCj�
 � ��

�

�
�

We start showing a theorem about the performance of algorithm VSAR for

the frequent itemsets X in C�

Theorem ���� Let � 	 � be a minimum support threshold	 �� a lowered support

threshold	 where � � � � �� 	 � and let C be a collection of itemsets� Then for

any itemset X � C such that fr�X�T � � p � �	 algorithm VSAR on input C	 �	

�� and � � � declares X frequent with probability more than � � �� Moreover	

algorithm VSAR uses at most 
� � 
���� transactions before classifying X with

probability at least �� � where �� � p� ���

Proof� First we concentrate on a single frequent itemset X � C and we bound

the probability that X is wrongly declared non�frequent by algorithm VSAR� For

this case	 it su�ces to consider the sum of the following two probabilities�

P��X� � Prf 	t � 
 � fr�X�St� � �� � �����
�t � g� and

P��X� � Prf 
t � 
 � fr�X�St� � �� � �����
�t � g�
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Algorithm VSAR �C� �� ��� ��

� � � � � ��� 
 � 
 ��� ���

� t� �� St � ��

� while C �� � and t � 
 do

� obtain r from T randomly�

 St�� � St � frg� t� t� ��

� for all X � C do

� if fr�X�St� 	 �� � �����
�t then

� declare X frequent and remove it from C�


 if fr�X�St� � �� � �����
�t then

�� declare X non�frequent and remove it from C�

�� end

�� end

�� declare all remaining X � C non�frequent�

Figure �� Pseudo�code of algorithm VSAR�

Let us �rst consider probability P��X�� Clearly	 it is less than P �
��X� �

Prf fr�X�S� � � �� � ��� g	 which we bound as follows�

P �
��X� � Prf fr�X�S� � � fr�X�T � � �� � �����
�t� fr�X�T � g

� Prf� � �� � �����
�t � fr�X�T �� fr�X�S� � g

� Prf �����
�t � fr�X�T �� fr�X�S� � g

� exp

�
��
�
�

�




t

��



�
�

�
�

jCj�
 � ��

�
�

where the last inequalities follow from the Hoe�ding bound �Theorem ���� and

our choice of 
 � On the other hand	 we bound P��X� as follows�






P��X� � Prf 
t � 
 � fr�X�St� � �� � �����
�t � g

�
X
t��

Prf fr�X�St� � fr�X�T �� �����
�t� g

�
X
t��

Prf �����
�t � fr�X�T �� fr�X�St�� g

�
X
t��

exp

�
��
�
�

�




t

��
t

�

�
X
t��

�
�

jCj�
 � ��

�
� 


�

jCj�
 � ��
�

where again	 in the last line we have used the Hoe�ding bound and the de�nition

of 
 �

Thus	 the probability that VSAR makes an error on any frequent itemset in

C can be bounded as follows�

Perror � Prf 
X � C� fr�X�T � � � and VSAR declares X non�frequent g

�
X
X�C

Prf fr�X�T � � � and VSAR declares X non�frequent g

�
X
X�C

P��X� � P��X� � jCj

�
�

jCj�
 � ��
� 


�

jCj�
 � ��

�
� ��

Now we discuss the second part of the theorem concerning the e�ciency of

the algorithm� Here we count the number of transactions used by every frequent

itemset X � C	 i�e� the case where fr�X�T � � p � �	 before it is removed from

C �and	 by the above proof	 declared frequent with high probability�� We claim

that the probability that a frequent itemset is not removed from C after 
� steps

is very small� More precisely	 we want to bound this probability�

P��X� � Prf	t � 
� � fr�X�St� � �� � �����
�t �g

which can be bounded by probability P �
� as follows�

P �
� � Prffr�X�S��� � �� � �����
�
� g

� Prffr�X�S��� � fr�X�T � � �� � ��������� � fr�X�T � g

� Prffr�X�T �� �� � ��������� � fr�X�T �� fr�X�S��� g

� Prf�� � ��������� � fr�X�T �� fr�X�S��� g

� Prf���� � fr�X�T �� fr�X�S��� g

� exp

�
��
�
��
�

��

�

�
� exp

�
��
�
�

�

��



�
�

�

jCj
�

��



Thus	 the probability that there is a frequent itemsetX that it is not classi�ed

before 
� iterations is the following�

Ptime � Prf
X � C� fr�X�T � � � such that 	t � 
� �fr�X�St� � �� � �����
�t�g

�
X
X�C

Prf	t � 
� � fr�X�T � � � and fr�X�St� � �� � �����
�t � g

�
X
X�C

Prf fr�X�T � � � and fr�X�S��� � �� � �����
�
� g

�
X
X�C

Prf fr�X�T �� �� � ��������� � fr�X�T �� fr�X�S��� g

�
X
X�C

Prf ���� � fr�X�T �� fr�X�S��� g � jCj
�

jCj
� ��

tu

Next we consider the case of the non�frequent itemset X � C such that

fr�X�T � � ��� For this case	 we can prove the following theorem symmetric to

Theorem ����

Theorem ���� Let � 	 � be a minimum support threshold	 �� a lowered support

threshold	 where � � � � �� 	 � and let C be a collection of itemsets� Then	 for

any itemsetX � C such that fr�X�T � � p � ��	 algorithm VSAR on input C	 �	

�� and � � � declares X non�frequent with probability at least � � �� Moreover	

algorithm VSAR uses at most minf
� 
�g transactions before classifying X with

probability at least �� � where 
� � 
���� and �� � �� � p�

Proof� We start with the reliability	 that is	 the probability that VSAR declares

frequent a non�frequent itemset X � C� For this	 we need to bound the following

probability�

Prf 
t � 
 � fr�X�St� 	 �� � �����
�t � g�

Using the same analysis as for probability P��X� in the proof of Theorem ���

we can show that this probability is smaller than ��jCj� Moreover	 considering all

the non�frequent itemsets	 the probability that any of them is wrongly declared

frequent is smaller than � as claimed�

Now we focus on the second part of the theorem	 the number of steps before an

itemset is found to be non�frequent� Obviously	 the algorithm always terminates

within 
 steps and 
 is smaller than 
� for any �� � �� Hence	 we consider the

other case	 that is	 �� 	 � or equivalently fr�X�T � � p � �� � �� For this case	

��



we can show the probability that any itemset X � C with fr�X�T � � p � �� � p

is not declared non�frequent within 
� � 
���� steps is smaller than �� The rest

of the proof mimics the proof of complexity in Theorem ��� and is omitted� tu

� First Re�nement� the Adaptive Sampling

Algorithm

We now show how to improve previous algorithm to obtain a bound on the

number of transactions that has less dependency on �� Recall that algorithm

VSAR had a bound on the number of transactions of 
 � O������� ln������ �for

this discussion we are assuming that � and jCj are �xed and we are ignoring

ln ln����� factors� in the worst case and of 
� � O�������� ln������ in case that

either fr�X�T � � p � � or fr�X�T � � p � �� where �� � jp � ��j� Let us

concentrate on this latter case� While we are in the loop of algorithm VSAR	 if at

any time step t an itemsetX falsi�es the condition jfr�X�St����j � �����
q

�t �

then the algorithm correctly classi�es such an itemset with high probability as

shown in Theorems ��� and ���� In fact	 the ��� factor in our time bound comes

from the choice of such a condition� So supposse that instead of ��� we could

use ���� in the condition� In that case	 we should be able to obtain a bound of

O�������� ln������ instead of previous one	 a signi�cant improvement� Obviously	

this cannot be done in a straightforward way since the value of �� is not known

in advance� One way to get around this di�culty is the following� We use an

estimate of �� that it is calculated adaptively as we collect transactions in an on�

line fashion� As soon as we realize that this estimate is close enough to ���� for a

certain itemset	 the algorithm classi�es that itemset� The algorithm in Figure �	

that we call ASAR from Adaptive Sampling for Association Rules	 implements

this idea�

Notice that by the choice of 
 and the choice of �t in algorithm ASAR	 when

t � 
 �and thus	 the condition of the while�loop is falsi�ed� then �t � ��� and

we are in the same situation as algorithm VSAR� So for the worst case situation	

both algorithms are identical� However	 in the situations where �� is bigger than

�	 we will see that as soon as �t becomes smaller than ���� we will correctly

�In algorithm VSAR� this condition is tested in two separate if�then statements�

��



Algorithm ASAR �X��� ��� ��

� � � � � ��� 
 � 
 ��� ���

� t� �� St � ��

� �t � ��

� while �C �� �� and �t � 
 � do

 obtain r from T randomly�

� St�� � St � frg� t� t� ��

� �t �
q
ln�jCj�
 � �������t�

� for all X � C do


 if fr�X�St� 	 �� � �t then

�� declare X frequent and remove it from C�

�� if fr�X�St� � �� � �t then

�� declare X non�frequent and remove it from C�

�� end

�� end

� declare all remaining X � C non�frequent�

Figure �� Pseudo�code of algorithm ASAR�

classify the itemset with high probability using much fewer transactions� This is

what it is proved in the following two theorems�

We start showing the performance of the algorithm for the frequent itemsets

in C� In this case	 as shown in the following theorem	 the algorithm declares those

itemsets frequents with high probability� Moreover	 the number of transactions

that the algorithm uses to classify those itemsets is proportional to the square of

the inverse of the distance of their real frequency to the lowered support threshold

�that is	 ���� The dependency on the inverse of � is now only logarithmic�

Theorem ���� Let � 	 � be a minimumsupport threshold	 �� a lowered support

threshold where � � ���� and C a collection of itemsets� LetX � C be a frequent

itemset such that fr�X�T � � p � � and let �� � p � ��� Then	 algorithm ASAR

on input C	 �	 �� and � � � correctly declares any frequent itemset X � C as

frequent and it uses 
� � 
  ������� transactions to classify X with probability

at least �� ��

��



Proof� The proof of this theorem follows the same lines of the proof of Theo�

rem ���� We �rst show the reliability of the algorithm for a single itemset� In

order to do this	 we need to bound the probability that the algorithm declares a

frequent X � C as non�frequent at some step t� That is	 we need to bound the

sum of the following probabilities�

P��X� � Prf 	t � 
 � fr�X�St� � �� � �t � g� and

P��X� � Prf 
t � 
 � fr�X�St� � �� � �t � g�

We start bounding probability P��X�� Clearly	 P��X� � P �
��X� �

Prf fr�X�S� � � �� � �� g which we bound as follows�

P �
�
�X� � Prf fr�X�S� � � fr�X�T � � �� � �� � fr�X�T � g

� Prf� � �� � �� � fr�X�T �� fr�X�S� � g

� Prf � � �� � fr�X�T �� fr�X�S� � g

� Prf �� � fr�X�T �� fr�X�S� � g

� exp�����
�

 � �

�

jCj�
 � ��

where the inequalities in the last line hold by the Hoe�ding bound and our choice

of 
 and �� �

Now	 we bound P��X� as follows�

P��X� � Prf 
t � 
 � fr�X�St� � �� � �t� g

�
X
t��

Prf fr�X�St� � �� � �t g

�
X
t��

Prf �t � fr�X�T �� fr�X�St� g

�
X
t��

exp�����
t
t� �

X
t��

�

jCj�
 � ��
� 


�

jCj�
 � ��

where again	 the inequalities in the last line hold by applying the Hoe�ding bound

and by our choice of �t� Therefore	 since P��X� � P��X� � ��jCj the probability

that any frequent itemset is misclassi�ed by ASAR can be shown to be at most

� by using the union bound as in the proof of Theorem ����

This proves the �rst part of the theorem that deals with the reliability of

algorithm ASAR�

Next	 we study the e�ciency of ASAR	 namely	 the number of transactions

that need to be sampled from the database� Notice that while we are in the loop	

��



the value of �t is always strictly decreasing� Consider the �rst step t where the

value of �t has became small enough so that ��t � p � ��	 that is	 the smallest t

such that t � 
�� We will show that at that time step the probability that the

algorithm does not remove a frequent itemset X from C is very small� That is	

we will show that the following probability P��X� is smaller than ��jCj�

P��X� � Prf ��t � p� �� and �jfr�X�St�� ��j � �t and t � 
 � g

� Prf ��t � p� �� and fr�X�St� � �� � �t g

� Prf �t � p � fr�X�St� g

� Prf �t � fr�X�St�� fr�X�T � g

� exp�����
t
t� �

�

jCj

From the above bound	 we can conclude that for any non�frequent itemset

X � C such that fr�X�T � � p � ��	 as soon as t � 
� �and thus	 ��t becomes

smaller than �� � p � ��� algorithm ASAR removes X from C with probability

at least �� � as claimed� tu

Now we analyze the case where the itemset input to the algorithm is non fre�

quent� The proof is symmetric to the proof of previous theorem and Theorem ����

Theorem ���� Let � 	 � be a minimumsupport threshold	 �� a lowered support

threshold where � � ���� and let C be a collection of itemsets� Then	 algorithm

ASAR on input C	 �	 �� and � � � declares any X non�frequent with fr�X�T � �

p � �� as non�frequent and it uses at most minf 
� 
�� g steps to remove X from

C with probability at least �� � where �� � �� � p and 
� � 
  ��������

Proof� For showing the reliability	 we need to show that the probability that X

is declared frequent by ASAR is smaller than �� That is	 we need to bound the

following probability�

Prf 
t � 
 � fr�X�St� 	 �� � �t �g

Using the same analysis as for probability P� in Theorem ��� we can show that

this probability is smaller than �� Now we prove the complexity of the algorithm�

Obviously	 the algorithm �nishes in at most 
 steps and 
 is smaller than � ln��
�

��������� for any �� � �� So consider the other case where �� � �	 that is

fr�S�T � � p � ����� We claim that in this case	 when ��t becomes smaller than

�� � p	 the algorithm stops with probability at least � � �� This claim is shown

�



by the same analysis used in Theorem ���� By our choice of �t this happens for

t � 
� � � ln��
 � ��������� and the theorem follows� tu

To summarize	 we can see from the statements of Theorems ��� and ��� that

algorithm ASAR uses O�ln�����maxf����� �����g� transactions �ignoring the de�

pendency on � and jCj� to classify an itemset�

� Further Improvement of the Bounds�

Algorithm ImpASAR

We can improve the previous algorithm with the following observation� One

of the central ideas of algorithm ASAR is that at any time step t we are always

calculating a value for �t such that our estimate is at most �t away of the real

frequency of the itemset with very high probability� In order to guarantee this

property we are using the Hoe�ding bound stated in Theorem ��� and we derived

the value of �t from there� The advantage of the Hoe�ding bound is that it

provides us an upper bound on the probability of having a bad estimate that

depends only on the values of �t and t� Thus	 it can be applied at any time

without any other knowledge�

For our application	 however	 we have one more bit of knowledge� the real

frequencies of most itemsets in the database are fairly small� it is very unlikely in

practice that we have itemsets with	 say �� or more frequency� As we will see

below	 it may be advantageous to use the multiplicative version of the Cherno�

bound stated in Theorem �� instead of the Hoe�ding bound	 the one normally

called the Cherno� bound� We �rst state this bound in the following theorem�

Theorem ���� �The Cherno� bound� � For any t � � and p	 � � p � �	

consider t independent random variables X�� � � � �Xt each of which takes values �

and � with probabilities �� p and p� Then for any � 	 �	 we have

Prf
tX

i��

Xi 	 pt��t g � exp����t��p�� Prf
tX

i��

Xi � pt��t g � exp����t��p��

�This bound is usually stated in the literature using a multiplicative error� We have refor�

mulated here for an additive error since it is what we need for our application�

��



The disadvantage of this bound is that it depends on the value of p and this

is precisely what we want to estimate� It is easy to verify from the statements

of Hoe�ding and Cherno� bounds that the second is better for any p � ����

However	 we can still use it in the following way� The main idea is again to use

fr�X�St� as an estimate of p	 and to keep a di�erent value of �t�X� for every

itemsetX� As soon as fr�X�St���t�X� becomes smaller than ���	 we start using

Cherno� instead of Hoe�ding to compute the values of �t��X� for later steps t��

Since this decision itself may be wrong with a small probability	 the value of 


must be slightly increased to keep the theoretical guarantees� In particular	 we

will calculate the value for �t using this formula

�t�X� �

vuutln

�
�jCj�
 � ��

�

�
��fr�X�St��� � �t���X��

t

in case fr�X�St��� � �t�� � ��� where the � factor that appears inside the log�

arithm comes from the fact that now we are using ��� to cover the probability

that we are not using the Cherno� bound �in case we use it� with an appropriate

estimate and the other ��� is to guarantee that the algorithm works well� The

choice of 
 also gets a�ected by this	 it will also have an extra � factor inside the

logarithm� The rest of the algorithm will be the same as algorithm ASAR shown

in Figure � except in line � where an if�the�else statement will control which value

of �t to use at every time� We call ImpASAR	 for Improved ASAR	 the algorithm

that incorporates this improvement�

The worst case bound of the algorithm that implements this improvement is	

asymptotically	 the same as algorithm ASAR� However	 for the range of values

of the problem of mining association rules	 the support is usually assumed to be

small	 something below �� Thus	 the cases where our algorithms consume a big

number of transactions are the itemsets with frequencies around the minimun

support threshold and the lowered support threshold� Those values are usually

quite far from ���� Thus	 we expect this improvement to be a signi�cant one�

In fact	 the experiments that we have performed in the following section con�rm

this intuition�

� Experimental Evaluation

��



This section is devoted to the experimental evaluation of the algorithms pre�

sented in the previous sections� The worst case number of transactions used by

the algorithms are summarized in Table � where we have ignored the dependency

on � and jCj� We have denoted by ImpASAR the algorithm that implements

the improvement described in the previous section� Notice that for the case

�� � fr�X�T � � � we do not have any theoretical guarantee that the algorithm

will correctly classify the input itemsets while for the other cases we proved that

the algorithms correctly classify all those itemsets with probability at least �� �

for any � � ��

fr�X�T � � p BSAR VSAR ASAR�ImpASAR

� � p O������ O�������� ln������ O�������� ln������

�� � p � � O������ O������� ln������ O������� ln������

p � �� O������ O�������� ln������ O�������� ln������

Table �� Summary of the number of transactions used by the algorithms where

� � � � �� and �� � jp� ��j�

The purpose of this section is two folded� On the one hand	 we want to

determine for which combinations of � and �� our algorithms outperform the

commonly used algorithm BSAR� We have just compared BSAR with ASAR and

ImpASAR since	 from our bounds	 we can already see that algorithm ASAR will

always perform better than algorithm VSAR� On the other hand	 we want to

determine experimentally how tight our theoretical analysis is�

��� Description of the Experiments

In order to investigate the behavior of the algorithms in a wide range of values	 so

far we have used synthetic data� The experiment setup is similar to the one used

in ���� The common set of parameters have been �xed to the following values� For

the remaining of the discussion and for all the experiments performed	 we have

�xed � to ����� That it is	 we expect a con�dence of 

�� In order to simulate the

frequency of an itemset we have generated a success pattern� A success pattern is

a ��� string of ����� bits that are used to determine whether an itemset appears

in a transaction or not� That is	 to simulate the behavior of an itemset we just

draw a random number i between � and �����	 and decide whether the itemset

��



is in the transaction or not if the ith bit of the success pattern is ���� Finally	

for every �xed setting of all the parameters	 we run these experiments �� times	

i�e�	 run each algorithm �� times	 and average the results�

Since the number of transactions used by the algorithms does not depend on

� itself	 but only on the distance of � to the lowered threshold and to the real

frequency	 we have �xed the minimumsupport to � � �� and we have performed

several experiments with di�erent values of ��� For every combination of � and ��

we have run all the algorithms with a single itemset as input where the frequency

of this itemset ranges from ���� up to ��� and with a ���� increment�

��� Comparison of the Algorithms

Figure � shows the number of transactions used by the three algorithms for

�� � �� and �� � ��� and thus	 � � ���	 and for di�erent frequencies of

the input itemset� For this combination of values	 algorithm BSAR uses always

������ transactions no matter what the frequency of the input itemset is� this

is represented by the horizontal line in the graph� Algorithms ASAR and Im�

pASAR use ����� and ���
�� transactions respectively in the worst case	

which is around ��� This number is much bigger than the bound for algorithm

BSAR� However	 as soon as the frequency of the itemset is a bit far from ��	

our algorithms outperform BSAR by several orders of magnitude� In particular	

algorithm ASAR performs better than BSAR for frequencies smaller than ��

or bigger than �� while algorithm ImpASAR outperforms BSAR and ASAR for

frequencies smaller than ���� and bigger than ����� In the bottom graph of

Figure � we have magni�ed the range of frequencies going from �� up to ��	

that is	 when the input itemset is frequent� For those values we can see that

algorithm ASAR is already better than algorithm BSAR� For instance	 for a fre�

quency of ��� ASAR uses ����� transactions an improvement on the ������

bound of BSAR� The results of algorithm ImpASAR are much more impressive�

For a frequency of �� it only uses ���� transactions while for a frequency of

��� requires just 
��� transactions to classify the itemset� We can also see in

that graph that ImpASAR	 although performing marginally worse than ASAR for

some values very close to ��	 it greatly outperforms ASAR everywhere else� The

�gures only show the performance of the algorithms up to a frequency of � since

after that the number of examples used by algorithms ASAR and ImpASAR is

extremely small� So our goal of showing the superiority of our algorithms against

�
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algorithm BSAR is already achieved in that range�

Figure  shows the results for the three algorithms using �� � ��
�� For this

value	 the number of transactions required by algorithm BSAR is huge	 more

than 
 millions of transactions� For most databases	 this number rules out any

advantage that we might gain by using sampling� On the other hand	 we can see

in Figure  that algorithm ImpASAR for any itemset with frequency more than

����� uses less than ������ transactions	 a number that is very reasonable�

��� The Tightness of the Theoretical Analysis

With respect to the number of transactions	 the bounds on the number of ex�

amples provided by the theory are overestimating compared to the experimental

results� This is not that surprising since our theorems provide worst case bounds

while the experiments are re�ecting an average case situation� One of source of

ine�ciency in our theoretical bounds might come from the following fact� Re�

call that in the proof of Theorem ��� and Theorem ��� concerning the number

of transactions used	 we showed that	 with high probability	 when �t becomes

smaller than ���� the itemset is removed from C and classi�ed� Figure � shows

the value of �t for the last iteration that we have obtained experimentally when

running the algorithm with a single itemset as input for �� � ��� and �� � ��
��

It can be seen that as soon as �t takes a value very close to �� the algorithm stops�

It never reaches ���� as assumed by the theory� This is one of the reasons why

our experiments re�ect a better bound than the one predicted by the theory�

Now we discuss the tightness of our analysis of the con�dence of the algo�

rithms� Recall that we do not have any theoretical guarantee of success for the

case where the frequency of the itemset is between �� and �� Thus	 for the ex�

periments shown in Figure � we might expect that some of the itemsets with

frequency between ��� and �� are wrongly classi�ed as frequent� The situ�

ation that we have found experimentally is the following �similar results have

been obtained for other values of � and ���� Algorithm BSAR only misclassi�es

some itemsets that have a frequency between ���� and �� and algorithm ASAR

misclassi�es itemsets between ���� and ��� On the other hand	 algorithm Im�

pASAR misclassi�es itemsets that are between ���� and ��	 much closer to

our theoretical analysis� We consider that the algorithm misclassi�es an itemset

of a certain frequency if at least one of the �� rounds misclassi�es the itemset�

For the other case shown in Figure  we have found that algorithms BSAR and
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ASAR only misclassify itemsets with frequencies between ��
�� and �� while

algorithm ImpASAR misclassi�es itemsets with frequencies between ��
�� and

���

These results might be indicating that the analysis of the con�dence of algo�

rithms BSAR and ASAR is not very tight while for algorithm ImpASAR is much

tighter� So we do not expect to �nd a much better analysis for that algorithm

since the theoretical worst case bound is pretty much the same as the one found

experimentally� Thus	 these experiments also indicate that algorithm ImpASAR

is not only better but it also re�ects better the theory� In other words	 if we

allow a sampling algorithm to make mistakes in a certain range of frequencies	

algorithm ImpASAR will make a more economic use of the transactions in order

to guarantee that it only makes mistakes on that range and not anywhere else�

On the other hand	 algorithms BSAR and ASAR are overestimating the number

of transactions needed to achieve the same goal�

��� A hybrid algorithm

We have just seen that our algorithms	 in particular algorithm ImpASAR	 greatly

outperform algorithm BSAR for most of the frequencies of the input itemsets�

However	 when the frequency of the itemset is around ��	 algorithm ImpASAR

becomes the worst requiring much more transactions than algorithm BSAR� An

obvious improvement is the following �� For a given X	 �	 �� and �	 let B the

number of examples required by algorithm BSAR with con�dence ���� We run

algorithm ImpASAR with inputs X	 �	 ��	 and ��� until either it �nishes and

classi�es itemset X or it uses B transactions� In the later case we use those B

transactions to feed algorithm BSAR and classify X� Clearly	 the probability

that this algorithm fails is at most �� We call this algorithm Hybrid� An example

of an execution of Hybrid for � � ��	 � � ���� and �� � ��� and ��
� for a

range of frequencies is shown in Figure �� Algorithm Hybrid is only marginally

worse than BARS in values very close to �� and immensely better everywhere

else� It is therefore the most appropriate algorithm to be implemented as part of

an automatic tool�

�For simplicity� we describe it for the case where we have as input a single itemset� To

extend the argument to a set of itemsets is routine�
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	 Conclusions

In this paper we have presented some algorithms for the problem of e�ciently

sampling for association rules� Our algorithms are designed for deciding whether

an itemset is frequent or not and have the advantage that	 for frequent item�

sets	 the sample size is proportional to the inverse of the real frequency not to

the minimum support threshold of the frequency� The main feature is that our

algorithms do not need any previous knowledge on the real frequency of the item�

set� We have argued that an immense improvement in the number of necessary

transactions can be achieved by using our algorithms instead of the usual batch

approach described in the literature and we have provided experimental evidence

to support this claim� The algorithms are not only e�cient	 they are also very

simple and thus it is very easy to incorporate them into existent software just by

substituting the frequency calculation step by them�

It remains to perform some more realistic experiments to see whether our

algorithms have a real advantage in practical situations� This involves two dif�

ferent problems� One is studying how to best combine sampling algorithms with

existing algorithms such as Apriori� Toivonen ��� reports some work in this di�

rection using the batch sampling approach� The other one	 particular to our

algorithms	 is the technological problem of picking random transactions on�line

with an acceptable cost� In view of our experimental results	 we believe that	 even

if the additional cost for on�line sampling is non�negligible	 we can still obtain a

signi�cant reduction on the overall running time by using our algorithms�
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