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(SOFTWARE DEPARTMENT)

MASTER IN COMPUTING

MASTER THESIS

DEVELOPMENT AND EXPERIMENTAL TESTING

AND COMPARISON OF TOPOLOGY-CONTROL

ALGORITHMS IN SENSOR NETWORKS

STUDENT: JUAN ANTONIO FARRÉ BASURTE
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Chapter 1

Introduction

In this Master Thesis we perform an experimental evaluation of topology-control pro-
tocols real in wireless sensor networks.

Topology control, that will be described in detail later in this document, is con-
sidered a fundamental technique to reduce energy consumption and radio interference.
But, to the best of our knowledge, it has only been tested using simulators and there
are no evaluations of topology-control protocols in real environments. With this work
we intend to fill this gap.

1.1 Simulation vs. real experimentation
Simulation has some important advantages that many times make of it the method of
choice to test the results of theoretical research:

• It is fast. Both development and deployment are faster in simulators than in real
hardware platforms.

• It is cheap. A single cheap desktop PC is usually enough.

• Allows to test in arbitrary large networks. With a simulator, one can easily sim-
ulate networks with thousands of nodes.

• Allows to experiment with very different networks, both in size, topology, and
other characteristics.

• Development of algorithms is easier, as it is not necessary to deal with the impor-
tant constraints that real devices impose, both in the available API and in device
memory and speed.

For these reasons, simulation is a very important first step in experimentation. But
it is not enough, for the following reasons:

• It is not possible to simulate all the heterogeneous characteristics of real envi-
ronments that influence communications.

• It is not always possible to test the algorithm behaviour in presence of unreliable
communications.

1



2 CHAPTER 1. INTRODUCTION

• Simulated nodes do not have restrictions of memory capacity or processing power
that could make an algorithm useless in practice.

• There is information that cannot be retrieved from a simulated node because
it just does not contain it. For example, it is not possible to measure energy
consumption, as simulated nodes do not consume energy and have no battery.

• Even the most careful, complete and exact simulation of a node and a network is
never guaranteed to be perfect and, hence, a simulation can never be considered
as evidence of the behaviour in real environments.

1.2 Objectives of the thesis
The objectives of this master thesis are the following:

• Development of a selection of topology-control protocols for the Wiselib, and
testing them in UPC testbed.

• Development of a routing protocol that relies on the topology generated by a
topology-control protocol to select routes.

• Design of experiments to evaluate and compare the protocols in real environ-
ments.

• Development of the software needed to perform these experiments.

• Execution of the experiments.

• Analysis of the results.

1.3 Organization of the document
This document is organized in chapters as follows:

• In chapter 2, we give an overview of topology control and of the most important
topology-control protocols.

• In chapter 3, we introduce the Wiselib and give details of the implementation of
a selection of topology-control protocols in the Wiselib.

• In chapter 4, we perform a theoretical discussion of the different protocols, ex-
plain the design of the experiments and development of needed software, and
analyse the results of these experiments.

• Finally, in chapter 5, we elaborate the conclusions of this work and suggest ideas
for future work.



Chapter 2

Topology control

In this chapter we describe topology control and a selection of well-known topology-
control protocols.

2.1 An overview of topology control
One of the most important concerns regarding wireless sensor networks is energy con-
sumption. These devices are usually battery powered and energy capacity is very lim-
ited, determining network lifetime. Different techniques arise to deal with this problem,
with different approaches. One way to save energy is to reduce the duty cycle of the
nodes, letting them disconnect the radio and enter in a power-saving mode while inac-
tive. Another source of energy consumption is radio message transmission. Topology-
control protocols try to reduce overall consumption by decreasing the amount of energy
needed for wireless communications.

The communication topology of a wireless sensor network can be represented by
a graph G = (V,E), where each vertex v ∈ V represents a sensor node and each edge
(v1,v2) ∈ E indicates that nodes v1 and v2 can communicate (at maximum power). In
the general case, communication is not always bidirectional and, hence, the graph can
be directed.

We know that transmission power needed to communicate is proportional, in ideal
conditions, to the square of the distance between nodes. In real conditions, obstacles
between nodes and other characteristics of the environment further limit communica-
tion. In the general case, transmission power needed for two nodes to communicate
can be approximated to be proportional to the distance raised to a power α ≥ 2. This
implies that often a multihop transmission through one or more intermediate nodes can
be more power efficient than direct communication.

The general objective of a topology-control protocol is finding a subgraph G′ =
(V,E ′) of the basic topology graph G, where E ′ ⊂ E is such that needed transmis-
sion power is minimized while preserving connectivity. Reducing transmission power
decreases radio signal range. This has the additional effect of reducing the probabil-
ity of collision between different transmissions, thus decreasing radio interference and
increasing network capacity.

The main goals of a topology-control protocol are:

• Minimizing the power spent by the network in radio message transmission.

3



4 CHAPTER 2. TOPOLOGY CONTROL

• Generating a symmetric topology, that greatly simplifies routing protocols.

• Reducing node degree (number of other nodes that a given node directly com-
municates with).

The protocol should preferably be distributed and localized (every node has knowl-
edge of the information in its immediate neighbourhood).

For detailed information about topology control, please refere to [15] and [16].

2.2 Topology-control protocols
In this section we provide a brief description of some well-known topology-control
protocols. In chapter 4, we will compare these algorithms both at a theoretical and at a
practical level.

2.2.1 R&M protocol
The R&M algorithm [13] builds a topology that is optimized for the all-to-one commu-
nication pattern, where one of the network nodes is designated as the master node, and
all the other nodes send messages to the master. This is achieved by means of finding
the optimal solution to the problem of finding the reverse spanning tree of minimum
energy cost rooted at the chosen master node.

2.2.2 LMST protocol
The Local Minumim Spanning Tree algorithm (LMST) proposed in [11] builds an
approximation of a minimum spanning tree based on positional estimates, which is a
good approach for getting minimal energy consumption. To do so, every node in the
network locally generates a minimum spanning tree of its visible neighbourhood and
then chooses its closest nodes as its own neighbours in the topology.

2.2.3 FLSS protocol
The Fault-tolerant Local Spanning Subgraph (FLSS) protocol [8] is a variation of the
LMST protocol aimed at improving the fault tolerance of the constructed topology.
In particular, the design goal is to build an energy-efficient topology that preserves
k-connectivity, where k is a small constant (typically, 2-3).

2.2.4 KNeigh protocol
Given a network G, the k-neighbors graph Gk is the directed graph obtained connect-
ing each node to its k closest neighbors. The symmetric k-neighbors subgraph G−k is
obtained by removing all the unidirectional links in Gk. The KNeigh protocol [3] is a
distributed implementation of the computation of G−k based on distance estimates.

2.2.5 XTC protocol
In the XTC algorithm [19], every node generates an order on the nodes in its immediate
neighbourhood, based on decreasing link quality, and broadcasts it. Then it sequen-
tially considers nodes in its generated order. Informally speaking, a node u selects a
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neighbour node v to be included in its generated topology if u does not have another
neighbour w with better link quality that can be reached more easily from v that u itself.

2.2.6 CBTC protocol
The CBTC algorithm [7, 12] is based on the following idea: set the transmit power
level of node u to the minimum value Pu,ρ such that u can reach at least one node in
every cone of angle ρ centered at u. In other words, a node must retain connections to at
least one neighbor in “every direction”, where parameter ρ determines the granularity
of what is meant by “every direction”.
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Chapter 3

Wiselib

In this chapter, we descibe the Wiselib, the topology-control concept created for the
implementation of different topology-control protocols, and the implementation details
of the corresponding models.

3.1 An overview of the Wiselib
Wiselib [2, 20] is a generic algorithm library for heterogeneous wireless sensor nodes.
This library is under current development within the WISEBED project [4].

Wiselib will eventually cover a large number of algorithmic topics, including rout-
ing, clustering, time synchronization, localization, data dissemination, target tracking
and topology control. The library already contains some algorithms in some of these
categories, and is currently being enriched by WISEBED partners. The goal is to
develop a library of algorithms for heterogeneous WSN’s that is on par with some
well-known centralized algorithm libraries existing nowadays (such as LEDA, CGAL
or BOOST). This aim has strong requirements:

• Wiselib must run on all sensor nodes by WISEBED partners and should easily
be ported to additional devices.

• Its algorithms should utilize the capabilities of the device they are compiled for.
• Its memory overhead should be as low as possible compared to a native imple-

mentation for a specific device.
• Its algorithms should be highly efficient considering the capabilities of the de-

vices.
• Its algorithm implementations should not explicitly deal with platform-specific

dependencies.

Fig. 3.1 depicts how Wiselib library is connected with other components of a WSN
system. The library can be used by any user application that needs any of the algorithms
implemented in it or, alternatively, that needs to implement a new algorithm using the
components that the library offers.

The algorithms included in Wiselib itself are organized in topics according to their
functionality. In order to abstract the algorithms from the particularities of the phys-
ical platform of sensors and the operating system administrating that platform, a set
of connectors exists that defines and fixes an interface for interacting with them. A
connector is also defined to interact with wireless-sensor-network simulators as, for

7



8 CHAPTER 3. WISELIB

Figure 3.1: Wiselib architecture and external interface [20]

example, Shawn [14]. Those connectors are defined in a way that the same algorithm
can be run on a physical platform or on the simulator. Details on how this is achieved
are provided in the following.

C++ templates The programming language chosen to implement and use Wiselib
is C++ [17]. This decision allows the use of modern programming techniques via
object-oriented (OO) design, and provides mostly type-safe development. Moreover,
the language offers interesting features such as const-correctness and templates [18, 1].
Wiselib massively uses templates, especially to develop very efficient and flexible ap-
plications. The basic functionality of templates is to allow the use of generic code that
is resolved by the compiler when specific types are given. Thereby, only the code that
is really needed is generated, and methods and parameters as template parameter can be
directly accessed. No virtual inheritance is used at all, to avoid the vtables that are nec-
essary to implement virtual function calls. Instead, OO concepts are implemented using
template specializations. Using templates and member templates provides the Wiselib
with several advantages, such as early binding, inline optimizations, code pruning, ex-
tensibility, and a layered structure.

Concepts and models The Wiselib library is not an ordinary object-oriented design
with some interfaces and abstract classes. Instead, it uses an efficient generic program-
ming approach that makes extensive use of templates. Thus, an appropriate structure
for the description of the several algorithms and components is needed. We heavily
employ two generic programming principles (see Fig. 3.2):

Concepts. A concept is a detailed description of the requirements for the basic com-
mon functionalities of a class of algorithms, that is, an informal prototype for
it. For example, later we present the topology-control concept. Concepts do not
contain any source code but, instead, are part of the Wiselib documentation. The
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Figure 3.2: Wiselib software architecture [2]

idea is to provide a complete documentation, in which the concepts and their
interrelationships are described, and from which one is able to produce a valid
implementation. Interestingly enough, concept inheritance is allowed in Wiselib.

Models. A model is a specific implementation of a concept. Any algorithm model
implements one or multiple concepts. For example, later we present in detail the
concept of a topology control algorithm. With this, one may implement LMST,
KNEIGH or any other topology-control algorithm: all would be models of the
TC concept.

For a more detailed description and examples on the definition of concepts and
models, we address to reader to [2].

In programming terms, an algorithm model implementing a concept is basically a
template expecting various parameters. These parameters can be both Operating Sys-
tem (OS) facets and data structures. OS facets represent the connection to the under-
lying operating system or firmware (e.g., the sensor radio or the timers), thus being an
abstraction layer to the OS, and thus also to the hardware platform. The concepts and
models of this abstraction layer form the so-called external interface (see Fig. 3.2). OS
facets are passed to an algorithm as template arguments and the compiler later resolves
such calls to the OS. An OS facet can be implemented by different models, that may
have different advantages or purposes. The user can pass any of those models to an
algorithm at compile time, and no extra overhead is payed for that. Additionally, the
so-named internal interface is formed by data structure models and concepts, which
make the algorithms independent from specific implementations for their required data
structures. As part of this internal interface, Wiselib provides the pMP and the pSTL.
The pMP is a C-based implementation of big-number operations. The pSTL is an im-
plementation of parts of the STL that does neither use dynamic memory nor exceptions
nor RTTI. The pSTL includes nowadays implementations for the data structures map,
vector and list, and we recently also included graph, queue and priority queue
and an almost-complete implementation of STL algorithms following the same restric-
tions as the rest of the pSTL. As for the models of the internal interface, the user can
pass any of the models for data structures to an algorithm at compile time.

In general, this separation of concepts and their implementation through a template-
based approach leads to a highly flexible and powerful design, because the necessities,
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strength and weaknesses of different hardware platforms or different data structures
can easily be utilized just by changing the parameters, or even simply by changing
makefile targets.

Hardware Firmware/OS CPU Language Dynamic Memory ROM Size RAM Size Bits
iSense iSense-FW Jennic C++ Physical 128kB 92kB 32
SCW MSB SCW-FW MSP430 C None 48kB 10kB 16
SCW ESB SCW-FW MSP430 C None 60kB 2kB 16
Tmote Sky Contiki MSP430 C Physical 48kB 10kB 16
MicaZ Contiki ATMega128L C Physical 128kB 4kB 8
TNOde TinyOS ATMega128L nesC Physical 128kB 4kB 8
iMote2 TinyOS Intel XScale nesC Physical 32MB 32MB 32
GumStix Emb. Linux Intel XScale C Virtual 16MB 64MB 32
Desktop PC Shawn various C++ Virtual unlimited unlimited 32/64
Desktop PC TOSSIM (ATMega128L) nesC (Physical) unlimited unlimited (8)

Table 3.1: Wiselib target platforms [2]

The abstraction of the OS and hardware platform provided by the external inter-
face is used by Wiselib to provide single implementations of its algorithms that can be
run on heterogeneous test beds. In its current version, Wiselib supports nine different
sensor types, namely, iSense nodes, SCW MSB, SCW ESB, Timote Sky, MicaZ, TN-
Ode, iMote2, GumStix, and desktop PCs. Each of these sensor nodes have a different
micro-controller type, its own operating system, its more prominent programming lan-
guage, its kind of dynamic memory, its amount of ROM and RAM, and its bit width
(see Table 3.1). Observe that two simulator platforms are also considered (Shawn and
TOSSIM).

3.2 The topology-control concept
As said, concepts and models are the fundamental design principle in Wiselib. In this
document we are concerned with topology control algorithms, so that our main concept
is TopologyControl. This concept will have multiple models, one per algorithm: LMST,
KNEIGH, etc. The TopologyControl concept will not only use other concepts from the
external and internal interface, but also from other categories of algorithms it works in
conjunction with, when necessary (e.g., localization algorithms).

Specifically, the interface of the TopologyControl concept is summarized in the
following “class”:

concept TopologyControl {
typedef ... Neighbors;
int enable(void );
int disable (void );
const Neighbors& topology() const ;
template<class T, void (T ::*TMethod)()>

int reg listener callback (T* obj pnt );
template<void (*TMethod)()>

int reg listener callback ();
void unreg listener callback ( int );
};
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In order to start a TC algorithm, all nodes call their enable() method to run the
distributed algorithm in the background. Nodes can register listeners in order to be no-
tified about changes in the topology. This implementation of the Observer pattern [5]
is achieved by appropriately calling the template-shaped reg listener callback() meth-
ods, which can register both static functions and member methods as callbacks. In
these callbacks, nodes can query the current topology using the topology() method,
which returns a container that stores the identities of the neighbours of the node. A
node can quit a TC algorithm by calling the disable() method, and previously regis-
tered callbacks can be removed using the method unreg listener callback().

Let us remark that the full topology information is not known by the nodes. It is
only local, as all the nodes only have knowledge of their own neighbors, not of the
whole graph. Also, the task of lowering the transmission range in order to strictly
communicate with the reported neighbors has been factored out of this concept. The
user is expected to set the transmission power before sending messages. Indeed, there
exist many different ways to do so, and these are not tied to the TC algorithm.

As a sample implementation of the previous TC concept, consider the following
specific code for the XTC protocol:

template<class OsModel P,
typename OsModel P::size t MAX NODES=32,
class Radio P = typename OsModel P::Radio,
class Timer P = typename OsModel P::Timer>

class XTCProtocol: public TopologyBase<OsModel P> {
public : ...

typedef vector static <node id t , MAX NODES>
Neighbors;

...
}

The XTCProtocol is parameterized using the following template parameters: OS-
Model P is the model that implements the operating system concept. MAX NODES
is a constant value that bounds the number of neighbors of a single node. Radio P
and Timer P are, respectively, the models implementing radio and timer concepts. For
instance, the radio defaults to the default radio model provided by the operating sys-
tem model, which gives raw access to the radio facilities in the node firmware. An
alternative would be to use the VirtualLinkRadio model, which support transparent
communication across different test beds using Internet links.

To avoid code redundancies, ease maintenance and simplify the implementation,
all our TC models also inherit from the TopologyBase template-shaped base class. We
have used this base class to implement all functionality related to callback management,
which is common to all implementations.

As the MAX NODES parameter and the Neighbors type reflect, this particular model
only uses static memory. The rationale behind this decision is that some platforms
where Wiselib is intended to be deployed (see Table 3.1) do not support dynamic mem-
ory or, when they do, incur into fragmentation issues. Therefore, we have preferred not
to use dynamic memory as long as possible and stick with the pSTL data structures,
whose size must be given at compilation time.

TC algorithms that need knowledge about the coordinates of the nodes are param-
eterized with an extra parameter that describes the localization algorithm to use. For
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instance, the declaration of the LMST model is as follows:

template<typename OsModel P,
typename Localization P ,
typename OsModel P::size t MAX NODES = 32,
typename Radio P=typename OsModel P::Radio,
typename Timer P=typename OsModel P::Timer>

class LMSTProtocol: public TopologyBase<OsModel P> {
...

}

Observe that the LMST model is parameterized with Localization P, which refer-
ences a concept for a localization algorithm. That algorithm is used by LMST to com-
pute the position of the sensor nodes. Localization algorithms are another category of
algorithms included in Wiselib. This category of algorithms is still not implemented,
but scheduled for this year. Thus, we just implemented a fake localization algorithm
where the coordinates of the nodes are hard-coded with their positions in our test bed.

The TC algorithms FLSS, KNEIGH, XTC and CBTC have been implemented fol-
lowing the same principles as described for LMST. Their particularities, as the reader
knows by now, are supported by the models of concepts from the external and internal
interface.

3.3 Topology-control models

In this section we discuss the implementation decissions taken when designing the
different models of the TC concept.

3.3.1 LMST

template<typename OsModel P,
typename Localization P ,
typename OsModel P::size t MAX NODES = 32,
typename Radio P=typename OsModel P::Radio,
typename Timer P=typename OsModel P::Timer>

class LMSTProtocol: public TopologyBase<OsModel P> {
...

void set startup time ( millis t );
void set work period ( millis t );
}

LMST protocol requires knowledge of the position of the different nodes. As said
in the previous section, we added a template parameter that allows to specify a local-
ization algorithm to use for this purpose.

The optional phase of constructing a graph with only bidirectional links has been
implemented.

MAX NODES template parameter is used to specify the size of the static data struc-
tures.

set startup time allows specifying a delay before starting the protocol after en-
abling it, waiting for all nodes to start up.
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set work period allows specifying how often the topology-generation protocols
is executed to update the topology with possible changes, such as node mobility or
nodes going off-line.
3.3.2 KNeigh

template<class OsModel P,
typename OsModel P::size t K = 9,
class Distance P= uint16 t ,
class Radio P = typename OsModel P::Radio,
class Timer P = typename OsModel P::Timer,
class Rand P = typename OsModel P::Rand>
class KneighProtocol: public TopologyBase<OsModel P> {
...

void set delta ( millis t );
millis t delta () const ;

void set d ( millis t );
millis t d() const ;

void set tau ( millis t );
millis t tau () const ;

static void set default delta ( millis t );
static millis t default delta ();
static void set default d ( millis t );
static millis t default d ();
static void set default tau ( millis t );
static millis t default tau ();

}

The Kneigh protocol requires knowledge of the distance between nodes. In this
implementation, we estimate the distance based on signal strength measures.

K is the upper bound to the node degree this protocol is based on. It is also used to
set the size of static data structures.

Distance P allows specifying the data type to represent distances.
A set of methods allows specifying the values of the timing parameters ∆, d and τ

of the algorithm, and their default values for new instances of the algorithm.
The optional prune stage of the protocol was chosen not to be implemented, as

it requires estimating transmission power based on distance estimation. This is not
expected to be accurate enough in a real situation for the prune stage to be reliable.
3.3.3 XTC

template<class OsModel P,
typename OsModel P::size t MAX NODES=32,
class Radio P = typename OsModel P::Radio,
class Timer P = typename OsModel P::Timer>
class XTCProtocol: public TopologyBase<OsModel P> {
...

void set delta ( millis t );
millis t delta () const ;

static void set default delta ( millis t );
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static millis t default delta ();
}

In order to generate the neighbour order of the algorithm, the first step is to send
a broadcast message that allow nodes to detect the set of immediate neighbours. Each
node, then, establishes the order based on signal strength measures.

MAX NODES template parameter is used to specify the size of the static data struc-
tures.

A set of methods allows specifying the value of a parameter ∆ which is an up-
per bound to the time that all nodes in the network take to start (equivalente to the ∆

parameter of the KNeigh protocol).
3.3.4 CBTC

template<class OsModel P,
typename Localization P ,
class Radio P = typename OsModel P::Radio,
typename OsModel P::size t MAX NODES=32>
class CbtcTopology: public TopologyBase<OsModel P> {
...

void set startup time ( millis t );
void set work period 1 ( millis t );
void set work period 2 ( millis t );
void set alpha ( double );
}

CBTC protocol requires directional information. This support is not implemented
in the wiselib, as no supported platforms have directional antennas. The direction in-
formation is, then, calculated based on position information. Position information is
gathered using a localization algorithm specified by (Localization P) template param-
eter.

MAX NODES template parameter is used to specify the size of the static data struc-
tures.

set startup time allows specifying a delay before starting the protocol after en-
abling it, waiting for all nodes to start up.

set work period 1 allows specifying the delay used in the first phase of the algo-
rithm to wait between transmissions at different power levels.

set work period 2 allows specifying time period of the second phase of the algo-
rithm.

set alpha allows specifying the angle of the cone to be used by the protocol.
Optimizations are automatically set accordingly to this parameter.
3.3.5 FLSS

template<typename OsModel P,
uint16 t K,
typename Localization P ,
uint16 t MAX NODES,
typename Radio P=typename OsModel P::Radio,
typename Timer P=typename OsModel P::Timer>

class FlssTopology : public TopologyBase<OsModel P> {
...



3.4. TOPOLOGY-CONSTRAINED ROUTING 15

void set startup time ( millis t );
void set work period ( millis t );
}

FLSS protocol generates a k-connected topology. This configurable k is specified
via the template parameter K.

Edge weight of the graph is implemented to be node distance. The distance is calcu-
lated from node position information, estimated by the template-specified localization
algorithm.

MAX NODES template parameter is used to specify the size of the static data struc-
tures.

set startup time allows specifying a delay before starting the protocol after en-
abling it, waiting for all nodes to start up.

set work period allows specifying how often the topology-generation protocols
is executed to update the topology with possible changes, such as node mobility or
nodes going off-line.

3.4 Topology-constrained routing
As a proof of concept and for testing purposes, a routing protocol has been imple-
mented that takes as input the topology generated by a topology-control protocol and
restricts routing to the given topology.

3.4.1 Controlled-topology tree routing

template<typename OsModel P,
typename Timer P = typename OsModel P::Timer,
typename Radio P = typename OsModel P::Radio,
typename Debug P = typename OsModel P::Debug,
typename OsModel P::size t MAX NEIGHBORS=32>

class ControlledTopologyTreeRouting
: public RoutingBase<OsModel P, Radio P> {

...
typedef vector static <OsModel,node id t,MAX NEIGHBORS> Neighbors;

...
void enable ();
void disable ();
void set sink ( bool );
void send( node id t , size t , block data t *);
void set topology (Neighbors *)
Neighbors *topology ();

...
}

This is a tree-routing protocol. It routes messages from any node in the network to
a given root node called sink.

set sink is used to specify which concrete node is the sink.
The sink broadcasts a message periodically including the hop count to the sink

(obviously zero). Nodes that receive this message set the sink as their parent in the tree
and start sending the broadcast message themselves (with updated hop count). When
a node that is already connected to a parent receives a new broadcast messages with a



16 CHAPTER 3. WISELIB

Figure 3.3: Representation of the UPC test bed. The width of the links is proportional
to their measured capacity at full power. Failing links are not shown.

lower hop count as the parent, it updates its parent to the new one. This process goes
on while the protocol is enabled, adapting to changes in the network.

send is used in a connected node to send messages to the sink.
This is the standard tree routing behaviour that this protocol follows when no topol-

ogy has been specified (or a null pointer has been specified).
set topology can be used to specify a concrete topology to use for routing, prob-

ably the result of a topology-control protocol. The only difference in behaviour when a
topology has been specify is that, when receiving a broadcast message, if the source of
the message is not in the topology, the message is just ignored. It is, hence, not possible
to establish a link that does not belong to the topology.

3.5 Topology control in UPC testbed
Wisebed infrastructure consists of several federated test beds of various sizes (dozens
to hundreds of nodes), currently including nine test beds that amount to 600 nodes. This
infrastructure is inherently heterogeneous, using hardware with different computational
resources and sensing capacities (see Table 3.1). The Wisebed federated test beds are
interconnected together using the TARWIS system [6], which provides a web-based
GUI for test bed management, experiment configuration, and experiment monitoring.

Currently, the UPC test bed consists of 17 iSense nodes from Coalesenses GmbH.
The iSense nodes use a Jennic JN5139, a solution that combines the controller and
the wireless communication transceiver in one chip. The controller has a 32-bit RISC
architecture and runs at 16MHz. It offers 96kB of RAM and 128kB of Serial Flash. It
has a transmit power from -30dBm to +0dBm, which reaches ranges of up to 500m in
free air.

The 17 nodes are located in our departmental building. All our nodes are currently
in the same level, except two nodes that are on another level. In this test bed, sensor
nodes in the entire network are not reachable by each other. Because of the contrived
architecture of our building, their range is strongly shortened and some sensors must
communicate with others using multiple hops. Fig. 3.3 depicts the structure of our
building, the location of the nodes and their topology at full power.

We have tested in UPC test bed TC algorithms developed for the Wiselib. To do so,
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Figure 3.4: Topology computed by the LMST algorithm (emphasized with red links).

Figure 3.5: Topology computed by the XTC algorithm (emphasized with red links).

we have written a testing application that started the computation of each TC algorithm
and used a tree routing algorithm to gather the neighbors of each node to a server,
where the result was stored and post-processed.

For instance, Fig. 3.4 and Fig. 3.5 show the resulting topologies computed by the
LMST and XTC algorithms, respectively. In both figures, red links mark the links
selected by the topology algorithm.
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Chapter 4

Comparison of topology-control
protocols

In this chapter we perform both theoretical and experimental comparison of a selection
of the topology-control protocols implemented in the Wiselib: LMST, KNeigh, XTC
and CBTC. These were the first ones to be implemented, are the most stable ones and
also the most important and representative.

4.1 Theoretical comparison
In this section we discuss the advantages and drawbacks of each algorithm.

4.1.1 LMST
Advantages

• Connectivity is preserved.

• Node degree is bounded by 6.

• The resulting topology has few cycles, it is almost a tree.

Disadvantages

• Position information of each node is needed.

• It does not take into account the obstacles and characteristics of the environment
that can limit communications.

• Two relatively close nodes can have very long communication paths.

• It needs a special phase to select only bidirectional links.

4.1.2 KNeigh
Advantages

• Node degree is bounded by selectable constant K.

19
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Disadvantages

• It requires that nodes are stationary.

• It requires same maximum transmission power for all nodes.

• An estimation of distance between nodes is needed. This is a weaker requirement
than having position information, as positions allow to calculate distances.

• An unreliable estimation of distances requires a greater value of K.

• Difference between node wakeup times must be bounded by a known constant.

• It needs a special phase to select only bidirectional links.

• Connectivity preservation is not warranted, just with high probability.

4.1.3 XTC

Advantages

• Connectivity is preserved.

• Generated links are bidirectional.

• It does not require position, distance nor direction information. Any measure of
link quality is good enough.

• Depending on the link quality measure, it can handle obstacles and characteris-
tics of the environment that limit communications.

• If nodes are located in an Euclidean plane, node degree is bounded by 6 and the
resulting graph is planar.

• Cycles are of minimum length 4.

Disadvantages

• If nodes are not located in an Euclidean plane, node degree is not bounded.

4.1.4 CBTC

Advantages

• If α≤ 5π/6, connectivity is preserved.

• It tests for needed transmission power to arrive to each node. This is more precise
and realistic than other approaches.
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Disadvantages

• If α > 5π/6, connectivity is not necessarily preserved.

• Requires direction information. This is a weaker requirement than position in-
formation, as direction can be calculated from positions.

• It requires a special phase to generate only bidirectional links.

• If unidirectional links are removed, α≤ 2π/3 is required to preserve connectiv-
ity.

• It requires sending more messages than other protocols.

4.2 Experimental comparison
An experiment with real devices in real conditions has been designed and performed
in order to have experimental data and comparison of the protocols. To the best of our
knowledge, until now, they had only been tested and compared in simulations.

4.2.1 Experiment design
The idea of the experiment is to execute topology-control algorithms in real nodes, ad-
just transmission power to the minimum needed to arrive to the selected neighbours and
then measure battery consumption while sending messages at the adjusted transmission
power.

Two variations have been tested. The first proceeds as follows:

• Execute the topology-control protocol till the first topology is generated.

• Test for needed power to arrive to all neighbours.

• Adjust transmission power to the value of the previous step.

• Continuously broadcast a selectable number of maximum-length messages.

• Measure battery consumption.

This variation is a laboratory scenario, not realistic, designed to be as sensible as
possible to differences in transmission power.

The second variation proceeds as follows:

• Execute the topology-control protocol till the first topology is generated.

• Test for needed power to arrive to all neighbours.

• Adjust transmission power to the value of the previous step.

• Enable ControlledTopologyTreeRouting specifying the generated topology. The
sink will change in every execution of the experiment.

• Send a selectable number of minimum-length messages to the sink, with a small
random delay between one message and the next.

• Measure battery consumption.
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This variation is designed to be more similar to real conditions in WSN’s. Mes-
sages must be short and random delays must be inserted to minimize collisions. As a
consequence, this variation is much less sensible to differences in transmission power,
depending much on the characteristics of the hardware platform.

In both cases, the experiment is executed, for each condition, eight times. In the
second variation, a different sink node will be used for tree routing in every execution.

4.2.2 Phases of the experiment
The experiment is designed to be executed in two phases.

The first phase does not use a real topology-control protocol. Instead, a basic topol-
ogy algorithm detects all accessible nodes in the immediate neighbourhood at a given
preset transmission power. The transmission-power adjustment step is omitted.

The control condition is performing the test at maximum power.
The experimental condition is performing the test at minimum power.
If (and only if) there are statistically-significant differences in battery consumption

in this first phase, the second phase is performed.
In the second phase, there are two control conditions (the same conditions as in the

first phase, that will act as lower and upper bounds to battery consumption), and four
experimental conditions, one for each tested protocol.

This second phase allows to compare protocols between each other and with the
control conditions.

4.2.3 Hardware
We used 8 iSense sensor nodes, identical to the ones in UPC testbed, described in a
previous chapter, with energy modules and identical 3.6V , 2250mAh batteries.

Sensors were deployed in different rooms, with realistic conditions, on a total sur-
face of about 60m2.

4.2.4 Software
Basic-topology protocol

template<class OsModel P,
class Neigh P,
class Radio P = typename OsModel P::Radio,
class Timer P = typename OsModel P::Timer>
class BasicTopology: public TopologyBase<OsModel P> {
...

void set ping period ( millis t );
millis t ping period () const ;
static void set default ping period ( millis t );
static millis t default ping period ();

}

This protocol implements the topology-control concept. A ping message is period-
ically broadcasted. Received messages identify neighbour nodes.

Template parameter Neigh P specifies the data structure that stores the resulting
topology.
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A set of methods allow specifying ping period and its default value.

Adjusting transmission power

template<class OsModel P,
class Radio P = typename OsModel P::TxRadio,
class Neigh P = vector static <OsModel P, typename Radio P::node id t,MAX NEIGH DEF>,
class Timer P = typename OsModel P::Timer>

class SequentialTry {
...

void enable ();
void disable ();

TxPower power() const ;

void set neighbors (Neighbors &);
Neighbors &neighbors();

void set delta ( millis t );
millis t delta ();

template<class T, void(T ::*TMethod)()>
void reg listener callback (T *);

template<void(*TMethod)()>
void reg listener callback ();

void unreg listener callback ();

static void set default delta ( millis t );
static millis t default delta ();

}

There is no defined concept, yet, for this kind of algorithm. SequentialTry se-
quentially sets different allowed transmission-power values, from minimum to maxi-
mum, and sends ping messages. It also periodically sends pong messages with a list
of node id’s from which it has received ping messages. These pong messages are al-
ways sent at maximum power. The protocol proceeds until it gets pong messages from
all neighbour nodes in the given topology. The last transmission power tested is the
minimum power to reach all neighbour nodes in the topology and is the result of the
algorithm.

power provides the power value found by the protocol.
set neighbors is used to set the topology to test.
A set of methods allow specifying the ∆ value, which is the upper bound of the

differences between the starting times of the different nodes in the network. It is equiv-
alent to the same parameter in the KNeigh protocol.
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Main applications

There are two main application for this experiment. One executes the experiment itself
and sends the results to a given node. The second is the application that receives the
results from the different nodes in the network and logs them to the computer. An ad-
ditional sensor node was used for this purpose, attached to the computer via a gateway
module and USB port.

Both applications are native iSense applications using the platform-independent
facilities provided by the Wiselib.

Measuring battery consumption

The main application of the experiment need to measure battery-charge consumption.
To methods have been developed for this purpose, corresponding to two measures that
iSense firmware makes available.

The first uses a firmware function that gets the current battery charge estimated by
the energy module, in an integer number of µAh. The resolution of this measure is
30µAh. The application stores the battery capacity at the beginning of sending mes-
sages and subtracts this value from the battery capacity at the end of the process.

The second method uses a firmware function that gets the mean battery current
over periods of 3.5s, in µA. The application initializes a counter at zero before starting
sending messages and then every exactly 3.5s it reads the battery current and adds it to
the counter. When the process finishes, the total value in the counter is multiplied by
3.5 resulting in the total battery charge consumed in µAs.

Both methods of measuring consumption are expected to give similar results.

4.2.5 Results
In this subsection we give the statistical analysis of the resulting data from the execution
of the experiment.

Resulting values for each node were added to give the values of the dependent
variables.

We have analysed two dependent variables, named Capacity and Current. Capacity
is the consumption measured by the first method, based in measuring battery capacity
at the beginning and the end of the experiment. Its units are µAh. Current has been
generated based on the values obtained from mean battery current measures. It is the
result of dividing the obtained values in µAs by 3600 to give µAh. Three decimals have
been used to preserve the same number of significant digits.

The independent variable, named Algorithm, is a numeric categorical variable whose
values mean:

• 1: Basic topology at maximum power.

• 2: Basic topology at minimum power.

• 3: LMST.

• 4: KNeigh.

• 5: XTC.

• 6: CBTC.
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The data was analysed using One-way analysis of variance. Test were performed to
check that the data accomplishes the assumptions of the model. The assumptions are:

• Cases are independent.

• Measures are normally distributed.

• Variances of each group are equal.

First variation

Here we give the results for the first variation of the experiment, the unrealistic one that
constantly broadcasts messages. We first test the assumptions of the ANOVA model.
The results are given in figure 4.1.

The significances of all test of normality, for both variables and both conditions
lead to accept that measures follow a normal distribution.

The significances of the test of homogeneity of variances, for both variables, lead
to accept that variances are equal.

Last to test for independence of observations. We apply the runs test in [9] using
the median of the observations. The results for both variables are as follows:

- + + - - - + + - - + - - + + +

n1 = n2 = 8

r = 8

In table A.12 in [10] we can check that for those values of n1 and n2 and an error
level of 0.05, r values can be between 4 and 13. Hence, we accept that the observations
are independent.

We now can proceed with the analysis of variance. The results are in figure 4.2.
There were clearly no significant differences between both experimental condi-

tions, for both variables. There is no reason to proceed with phase 2 of the experiment.
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Figure 4.1: Tests of the assumptions of the ANOVA model for the first variation of the
experiment, phase 1



4.2. EXPERIMENTAL COMPARISON 27

Std. Error
Std. 

DeviationMeanN

1

2

Total

1

2

Total

Capacity

Current

320,2644091281,05763150183,0851 6

518,6491861466,96142150390,0048

397,9354471125,53141149976,1658

328,3231313,293149921,881 6

522,3451477,416150078,138

426,8061207,191149765,638

Descriptives

Upper BoundLower Bound MaximumMinimum

95% Confidence Interval for 
Mean

1

2

Total

1

2

Total

Capacity

Current

152541,419147773,013150865,712149500,457

152541,419147773,013151616,415149163,594

151452,388148745,725150917,133149035,197

152500147750150621,68149222,07

152500147750151313,28148842,97

151250148500150774,86148756,39

Descriptives

Sig.FMean Squared f
Sum of 
Squares

Between Groups

Within Groups

Total

Between Groups

Within Groups

Total

Capacity

Current

1 524616629,9

1709398,391 423931577,4

,537,401685052,4581685052,458

1 525871093,7

1820033,481 425480468,7

,650,215390625,0001390625,000

ANOVA

Page 1

Figure 4.2: Results of ANOVA for the first variation of the experiment, phase 1
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Second variation

Here we give the results for the second variation of the experiment, the realistic one
that sends messages through tree routing. We first test the assumptions of the ANOVA
model. The results are given in figure 4.3.

The significances of all test of normality, for both variables and both conditions
lead to accept that measures follow a normal distribution.

The significances of the test of homogeneity of variances, for both variables, lead
to accept that variances are equal.

Last to test for independence of observations. We apply the runs test in [9] using
the median of the observations. The results for both variables are as follows:

+ + - - - + + - + + - - + + - -

n1 = n2 = 8

r = 8

In table A.12 in [10] we can check that for those values of n1 and n2 and an error
level of 0.05, r values can be between 4 and 13. Hence, we accept that the observations
are independent.

We now can proceed with the analysis of variance. The results are in figure 4.4.
There were clearly no significant differences between both experimental condi-

tions, for both variables. There is no reason to proceed with phase 2 of the experiment.
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Figure 4.3: Tests of the assumptions of the ANOVA model for the second variation of
the experiment, phase 1
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Figure 4.4: Results of ANOVA for the second variation of the experiment, phase 1



Chapter 5

Conclusions and future work

The results of the experiments are somehow surprising, but indeed confirm the need
for experimentation in real platforms.

We have to conclude that, in the described hardware platform, there are no signifi-
cant differences in energy consumption due to message transmission power. Probably,
energy consumption by the power amplifier is not significant when compared with
overall consumption of the rest of the components of the radio.

This looks to be related to radio frequency. As a rule of thumb, the higher the
frequency, the less important is consumption of the power amplifier. We can predict
that this might happen in most devices using a standard 2.4GHz Wi-Fi radio.

Until now, topology-control protocols were consider crucial to reduce energy con-
sumption and extend network lifetime. Now we have to consider that its significance
is relative and depends on concrete hardware platforms. Of course, topology control
can still be useful in all hardware platforms to reduce radio interference and increase
network capacity and reliability.

More exhaustive research should be performed in future using different hardware
platforms to first distinguish between the three following cases:

• Differences in transmission power are not significant when compared to overall
device consumption.

• Differences in transmission power are significant in laboratory conditions when
constantly transmitting data, but are not significant in more realistic scenarios
when most of the time devices are idle or receiving messages. This could happen,
for example, if consumption is not significantly higher when transmitting than
when idle or receiving.

• Differences in transmission power are significant in realistic scenarios.

Once determined what devices are in the third case, these could be used to perform
a relative comparison between the different topology-control protocols.

Other objectives for the future are to stabilize and finish implementing all available
topology-control protocols in the Wiselib and to perform research on other ways to
save energy, for example, by reducing the duty cycle, and implementing in the Wiselib
the already-available alternatives to topology-control.

31
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