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1. INTRODUCTION 
 
1.1 Background 
 
Stainless steel has been introduced and increasingly utilized in architectural and structural 
applications due to their good corrosion resistance, ease of maintenance, aesthetic appearance 
and its mechanical properties which differs from carbon steel. 

 
Ferritic stainless steel represents one of the five stainless steel families and it is characterized by 
a low nickel content. Nickel is an element whose price is reaching unusual levels and suffers 
continuous fluctuations in market. So, this makes ferritic stainless steel an attractive material 
due to its lower and stable price against austenitic and duplex ones, preserving mechanical 
corrosion resistances. The chemical compositions of different stainless steel grades are listed in 
the European code EN 10088-1.  
 
The use of stainless steel for construction is contemplated by the design approach presented in 
EN 1993 1-4, though it is not well established and the design approach, most of times, is based 
on the indication given by EN 1993 1-1 for carbon steel. The study on buckling behavior of 
stainless steel and the interaction axial force and bending moment relation will be advantageous 
to develop the application rules on stainless steel. 
 
It is important to study the applicability of the expressions proposed in EN 1993 for carbon steel 
to stainless steel elements. This work pretends to study this applicability in stainless steel 
columns. Different research works are being developed in order to achieve a better knowledge 
of stainless steel behavior. 
 
This research belongs to a vaster study on ferritic stainless steel in which, experimental, 
numerical and theoretical approaches are performed not only in compact sections but also in 
slender sections. In this project research, groups from CTU in Prague and UPC have developed 
joint collaboration during 2016. 
 
 

1.2 Thesis objectives 

 
The main objective of the thesis is to increase the fundamental understanding of the behaviour 
of stainless steel, especially ferritic one, beam-columns subjected to combined axial load and 
bending moment and then to verify the European Standard design method. This study is done 
for compact sections Class 1 and Class 2.  
 
The development of the current thesis has also more objectives: 
 

 To perform a validation of the model and procedure that is going to be used in this thesis 

with some research tests which are just done or in process to be submitted. 

 To study the influence of the strain hardening parameter in ferritic stainless steel. 

 To develop various numerical models in order to reproduce their response adopting 

different cross-sections and lengths members. 
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 These models, realized with Abaqus code, shall be compared with the results given by 

the designed formulae of EN 1993-1-4 and some proposals of research done at UPC 

(Universitat Politècnica de Catalunya) and the Imperial College of London in order to 

investigate the efficiency of the interaction factors coefficients used in such method 

with the purpose to strengthen their reliability. 

 To carry out a parametric study for ferritic stainless steel and then to make a comparison 

with the European buckling curves. 

 

1.3 Thesis outline 
 
This chapter contains a brief introduction to the background of stainless steel and its engineering 
applications in the construction industry. This section summarizes the main aspects of these 
tasks and analyses and how they are included and organized in the contents of the thesis. This 
document is divided into seven chapters. 
 
Chapter 2 provides a broad review of previous studies that are relevant to this thesis, in general 
for stainless steel and in particular for ferritic stainless steel. It also provides a summary of the 
existing design standards and formulas used in this research work. 
 
Chapter 3 presents the description of the used numerical models. Firstly, it is decided to indicate 
some general information about the Finite Element Method (FEM). Then, the constitutive 
equation and the material modelling have been defined. 
 
In chapter 4, a validation of the model to use in this thesis is performed. This validation is done 
firstly with an experimental study on ferritic stainless steel RHS and SHS beam-columns 
previously done by Arrayago et al. (2015). Then, as a part of join collaboration with CTU in 
Prague, a cross-section validation for a Class 1 and a Class 4 is done. Finally, a validation of the 
strain hardening exponent is done for a ferritic stainless steel in order to observe how this 
parameter makes to change the final results of the analysis. 
 
Chapter 5 presents numerical studies of the buckling behaviour of ferritic, austenitic and duplex 
stainless steel SHS under combined compression and bending moment linear along the length 
member. The main objective of this chapter is to study how the interaction factor k of different 
previously research proposals works through different slendernesses. The obtained 
experimental data are employed to assess the accuracy of the current codified design codes. 
 
Chapter 6 focuses on a parametric study with ferritic stainless steel conducted to generate more 
beam-column data over a wide range of cross section sizes and slendernesses. Then, with the 
European curve for buckling it is compared the results obtained and validated if these results 
are safe enough or not. 
 
Chapter 7 ends with a summary of the important findings of this research, conclusions and 
suggestions for further works. 
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2. STATE OF ART 
 

 

In this section we will see a short description of stainless steel and its properties. Furthermore, 

it is going to be described in particular the ferritic stainless steel, the cross-sectional 

classification, the ultimate capacity predictions for all loading types taken into account in this 

Master Thesis and some previous research works regarding stainless steel members subjected 

to the combined loading in question. 

 

2.1 Stainless steel 
 

Stainless steel has been introduced and increasingly utilized in architectural and structural 

application due to their good corrosion resistance, ease of maintenance, aesthetic appearance, 

and its mechanical properties which differs from carbon steel. 

Unlike carbon steel which has an elastic response, with a clearly defined yield point, followed by 

a yield plateau and a moderate degree of strain hardening, stainless steel has predominantly 

non-linear stress-strain behaviour with significant strain hardening. The stainless steel design 

standards have been developed largely in-line and refer to carbon steel design guidelines, even 

though they were both different on its mechanical behaviour. The study on buckling behaviour 

of stainless steel and the interaction axial force and bending moment relation will then be 

advantageous to develop the application rules on stainless steel. 

First of all, it will be described what stainless steel consist of, which elements are part of it and 

which is the contribution they offer to the generic behaviour of the material. The purpose it to 

perceive where the ferritic category of stainless steel comes from and its properties. 

All stainless steel contains principally iron and a minimum of 10.5% chromium. This last reacts 

with oxygen and humidity in the environment to form a protective, adherent and coherent oxide 

film which envelops the whole surface of the material. This oxide film is very thin (2-3 

nanometres) and exhibits a truly remarkable property: when it is damaged, it self-repairs since 

chromium in the steel reacts rapidly with oxygen and humidity in the environment to reform the 

oxide layer. If the content of chromium enhances beyond the minimum (10.5%), a greater 

corrosion resistance will be achieved. Adding an 8% or more of nickel, this resistance may be 

further improved and a wide range of properties can be provided.  Therefore, the addition of 

molybdenum further increases corrosion resistance (in particular, resistance to pitting 

corrosion), while nitrogen increases mechanical strength and enhances pitting resistance. 

The selection of a particular type of stainless steels generally depends on the requirements 

which a particular application requires. In most cases, the primary requirement is corrosion 

resistance, followed by tarnish and oxidation resistance. The austenitic stainless steel, with its 

high content of chromium, is usually required in very high or very low temperatures, because of 

its significant corrosion resistance, higher than the lower chromium ferritic or martensitic 

stainless steel. 
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2.1.1 Types of stainless steel 

 
The stainless steel family has several branches, which may be differentiated in many different 

ways, such as: areas of application, alloying elements used in their production or the 

metallurgical phases they present in their microscopic structures. The main types of stainless 

steel are the ferritic, martensitic, austenitic and duplex stainless steel, where the last one consist 

of a mixture of ferritic and austenitic crystalline structures. 

Within each of these groups, there are several grades of stainless steel, defined according to 

their compositional ranges. These compositional ranges are defined mainly in European and USA 

standards.  

According to Design Manual for Structural Stainless Steel (April 2006) [CEN, 2006] each stainless 

steel has a unique corresponding steel number. For example, grade 304L has a steel number 

1.4307, where: 

• The number 1 denotes steels. 

• The number 43 denotes one group of stainless steel (in this case basic chromium-nickel 

austenitic steels). 

• 07 is individual grade identification. 

The steel name system provides some understanding of the steel composition. The name of the 

steels number 1.4307 is X2CrNi18-9, where: 

• X denotes high alloy steel. 

• 2 is % of carbon multiplied by 100. 

• CrNi are the chemical symbols of main alloying elements. 

• 18-19 is the % of main alloying elements. 

 

Within the specified range, the stainless steel grade exhibits a wide range of properties. 

a) Ferritic stainless steels (e.g. grades 1.4003) consist of chromium (typically 12.5% or 17%) 

and iron. Ferritic stainless steels are essentially nickel-free (important advantage from 

the rest of stainless steel grades for structural use). These materials contain very little 

carbon and are non-heat treatable, but exhibit superior corrosion resistance than 

martensitic stainless steels and possess good resistance to oxidation.  They are 

ferromagnetic and, although subjected to an impact transition at low temperatures, 

possess adequate formability. Their thermal expansion and other thermal properties 

are similar to conventional steels, but with higher fire resistance in general (in fact, all 

types of stainless steels are better than carbon steel when talking about fire). Ferritic 

stainless steels are readily welded in thin sections, but suffer grain growth with 

consequential loss of properties when welded in thicker sections.  

b) Martensitic stainless steels (e.g. grades 1.4006, 1.4028 and 1.4112) consist of carbon 

(0.2-1.0%) chromium (10.5-1%) and iron. These materials may be heat treated, in a 

similar manner to conventional steels, to provide a range of mechanical properties, but 
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offer higher harden-ability and have different heat treatment temperatures. Their 

corrosion resistance may be described as moderate (i.e. their corrosion performance is 

poorer than other stainless steels of the same chromium and alloy contents). They are 

ferromagnetic, subjected to an impact transition at low temperatures and possess poor 

formability. Their thermal expansion and other thermal properties are similar to 

conventional steels. They may be welded with caution, but cracking can be a feature 

when matching filler metals are used. 

c) Austenitic stainless steels (e.g. grades 1.4301 and 1.4833) consist of chromium (16-

26%), nickel (6-12%) and iron. Other alloying elements (e.g. molybdenum) may be added 

or modified according to the desired properties that are defined in the standards to 

produce derivative grades. The austenitic group contains more grades that are used in 

greater quantities, than any other type of stainless steel. Austenitic stainless steels 

exhibit superior corrosion resistance to both ferritic and martensitic stainless steel. 

Corrosion performance may be varied to suit a wide range of service environments by 

careful alloy adjustment e.g. by varying the carbon or molybdenum content. These 

materials cannot be hardened by heat treatment and are strengthened by work-

hardening. They offer excellent formability and their response to deformation can be 

controlled by chemical composition. They are not subjected to an impact transition at 

low temperatures and possess high toughness to cryogenic temperatures. They exhibit 

greater thermal expansion and heat capacity, with lower thermal conductivity than 

other stainless or conventional steels. They are generally readily welded, but care is 

required in the selection of consumables and practices for more highly alloyed grades. 

Austenitic stainless steels are often described as non-magnetic, but may become slightly 

magnetic when machined or worked. 

d) Duplex stainless steels (e.g. grade 1.4462) consist of chromium (18-26%), nickel (4-7%), 

molybdenum (0-4%), copper and iron. These stainless steels have a micro-structure 

consisting of austenite and ferrite, which provides a combination of the corrosion 

resistance of austenitic stainless steels with greater strength. Duplex stainless steels are 

weldable, but care must be exercised to maintain the correct balance of austenite and 

ferrite. They are ferromagnetic and subjected to an impact transition at low 

temperatures. Their thermal expansion lies between that of austenitic and ferritic 

stainless steels, while other thermal properties are similar to plain carbon steels. 

Formability is reasonable, but higher forces than those used for austenitic stainless 

steels are required. 

The austenitic stainless steels and the duplex stainless steels are generally the more useful 

groups for structural applications. 
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Figure 2.1. Classification of stainless steels according to alloying elements content 
 

2.1.2 Effect of each alloying element on structure and properties 

 
In this section it is explained how each of the alloying elements contribute to the global 

behaviour of the stainless steel and what would happen if its content is varied. 

 Chromium is by far the most important alloying element in stainless steel production. A 

minimum of 10.5% chromium is required for the formation of a protective layer of 

chromium oxide on the steel surface. Chromium is described as ferritic stabilizer. 

 Nickel improves general corrosion resistance and prompts the formation of austenite. 

Stainless steels with 8-9% nickel have a fully austenitic structure and exhibit superior 

welding and working characteristics to ferrite stainless steels. 

 Molybdenum increases resistance to both local and general corrosion. It is added to 

martensitic stainless steels to improve high temperature strength. 

 Nitrogen increases strength and enhances resistance to localized corrosion. It is austenite 

former. 

 Cooper increases general corrosion resistance to acids and reduces the rate of work-

hardening. It is austenitic stabilizer. 

 Carbon enhances strength, but may have an adverse effect on corrosion resistance by 

the formation of chromium carbides. It is an austenitic stabilizer. 

 Titanium may be used to stabilize stainless steel against inter-granular corrosion. 

Titanium carbides are formed in preference to chromium carbide and thus localized 

depletion of chromium is prevented. These elements are ferrite stabilizers. 
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 Sulphur is added to improve the machinability of stainless steels. As a consequence, 

sulphur-bearing stainless steels exhibit reduced corrosion resistance. 

 Cerium, a rare earth metal, improves the strength and adhesion of the oxide film at high 

temperatures. 

 Manganese is an austenitic former, which increases the solubility of nitrogen in the 

steels and may be used to replace nickel in nitrogen-bearing grades. 

 Silicon improves resistance to oxidation and is also used in special stainless steels 

exposed to highly concentrated sulphuric and nitric acids. Silicon is a ferrite stabiliser. 

 

2.1.3. Stress and strain behaviour 

 
The stress-strain behaviour of stainless steels differs from that of carbon steels in a number of 
respects. The most important difference is in the shape of the stress-strain curve. Whereas 
carbon steels typically exhibit linear elastic behaviour up to the yield stress and a plateau before 
strain hardening is encountered, stainless steel has a more rounded response with no well-
defined yield stress (see Figure 2.2). Therefore, stainless steel “yield” strengths are generally 
quoted in terms of a proof strength defined for a particular offset permanent strain 
(conventionally the 0.2% strain). 
 
Note that Figure 2.2 shows typical experimental stress-strain curves. The curves shown are 
representative of the range of material likely to be supplied and should not be used in design. 
 
Stainless steels can absorb considerable impact without fracturing due to their excellent ductility 
and their strain hardening characteristics. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2. Typical stress-strain curves for stainless steel and carbon steel in the annealed 

condition [CEN, 2006]. 
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There are factors can change the form of the basic stress-train curve for any given grade of 
stainless steel. These factors are: 
 
Cold working 
 
Strength levels of austenitic and duplex grades are enhanced by cold working. Associated with 
this enhancement is a reduction in ductility but his normally is of slight consequence due to the 
initial high values of ductility, especially for the austenitic stainless steels. 
 
As stainless steel is cold worked, it tends to exhibit non-symmetry of tensile and compressive 
behaviour and anisotropy (different stress-strain characteristics parallel and transverse to the 
rolling directions). The degree of asymmetry and anisotropy depends on the grade, level of cold 
working and manufacturing. 
 
The price of cold worked stainless steel is slightly higher than the equivalent annealed material, 
depending on the grade, product form and level of cold working. 
 
 
Strain-rate sensitivity 
 
Strain-rate sensitivity is more pronounced in stainless steels than in carbon steels. That is, a 
proportionally greater strength can be realized at fast strain rated for stainless steel than for 
carbon steel. 
 
 
Heat treatment 
 
Annealing, or softening, reduces the strength enhancement and the anisotropy. 
 
 

2.1.4. Stainless steels used profiles 

 
The applications for cold formed stainless steel profiles such as rectangular hollow sections 
(RHS) and square hollow sections (SHS) are plenty, particularly in industrial, commercial and 
residential construction. They are also commonly used in the mechanical and fabricating 
industries, the agricultural industry, and mining industry and simply for signage. Stainless steel 
RHS have such universal uses because they are durable and easy to prepare for welding or 
joining. Stainless steel RHS are practical and aesthetic elements, what makes them highly sought 
after and a functional solution to modern building needs and requirements. 
 
 

2.1.5. Standards 
 

American standards SEI/AISI “Specification for design of cold worked stainless structural 

members”, covers the three traditional ferritic steel grades, as well as South African standards 

and Australian standards. Eurocode corresponding to stainless steel, EN 1993-1-4 [CEN, 2006], 

is applicable for these three grades of ferritic stainless steels: 1.4003, 1.4016 and 1.4512. Even 

so, in some cases the specifications have been obtained and contrasted only for austenitic and 

duplex stainless steel grades, and therefore in some cases specific guideline is missing for ferritic 

stainless steel. Besides, in many aspects EN 1993-1-4 refers to part of Eurocode EN 1993-1-1 

which has not been validated for ferritic stainless steels. There is not enough information 
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regarding to structural aspects, neither fire resistance, atmospherical corrosion resistance, 

welded and screwed unions resistance for its use in construction. 

2.1.6. Life cycle cost 
 
Stainless steels are usually considered as an expensive material, but this is because only the 

initial cost is taken into account.  

Stainless steels are 100% recyclable without any loss in quality no matter how many times the 

process is repeated. When products reach the end of their useful lives, 90% of the stainless steel 

is collected and recycled. Stainless steels are durable and have low maintenance costs due to 

their corrosion resistance. There is no coating or painting requirement and normal maintenance 

would simply be occasional cleaning. 

The durability and ease of maintenance compensate for the sometimes higher initial purchasing 

costs and it is often the least expensive choice in a life cycle costing comparison. This ability to 

provide long-term performance with a minimum of downtime and cost associated with 

maintenance is determined by calculating the material’s life cycle cost (LCC). Life cycle costing 

(LCC) is a technique developed for identifying and quantifying all costs, initial and ongoing, 

associated with a project or installation over a given period. In general terms, the total LCC can 

be broken down into component: 

LCC = Acquisition Cost + Fabrication and Installation Cost + Maintenance Cost (periodic) + 

Replacement Cost (periodic) + Cost of Lost Production (periodic) – Residual (Scrap) Value. 

In the next Figure 2.4 it is possible to see the comparison between stainless steel and mild steel 

(a cheaper material if it talks about initial costs) in a water mixing tank. 

 

Figure 2.4. Comparison of the total costs between carbon and stainless steel [sassda, Southern 

Africa stainless steel development association] 
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2.2. Ferritic stainless steel 

 

It is important to remark that ferritic stainless steels differ from the other families in the absence 

of nickel. Depending on the content of chromium, molybdenum and other elements contained, 

it shows us different corrosion resistances and weldability. 

There are five groups of ferritic grades depending on the proportion range of its elements as 

shown in the following Figure 2.5: 

 

Figure 2.5. Groups of ferritic grades [Satyendra, 2014. http://www.ispatguru.com] 

 

 Group 1: This group of ferritic has the lowest chromium content and is the least 

expensive. It is perfect for non-corrosive conditions. In this context, it has a longer life 

than carbon style. 

 Group 2: It is the most widely used group, having higher content of chromium. It is 

appropriate to have an intermittent contact with the water but in non-corrosive 

conditions. 

 Group 3: The difference between this group and group 2 is that this one presents better 

weldability and formability thanks to the stabilizers. The quantity of chromium is similar 

to group 2. 

 Group 4: This group has added molybdenum for extra corrosion resistance. It is 

corrosion resistant and has a wide range of uses. 

 Group 5: These are grades with very high chromium content besides molybdenum, 

which makes them as corrosion resistant in highly corrosive environments as titanium 

metal. 

Nickel is an element which price is reaching unprecedented levels and suffers continuous 
fluctuations in market.  

 

http://www.ispatguru.com/
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Figure 2.6. Nickel price evolution in $ [http://www.infomine.com] 

 

This makes ferritic stainless steel an attractive material due to its lower and stable price against 

the austenitic ones. Thereby, it is interesting to extend ferritic stainless steel application to 

structural purposes because in addition to economic reasons, it presents some suitable 

properties. Ferritic stainless steel also presents all the aforementioned advantages over carbon 

steel in terms of corrosion resistance and lower lifecycle cost but the absence of nickel provides 

some extra advantages over the austenitic grades as it has been pointed out before.  

Ferritic grades have good mechanical properties (250-330 MPa), with higher yielding stress than 

austenitic stainless steels and similar elongation properties to carbon steel. They are easier to 

cut and work than austenitic than the main differences over austenitic grades are their thermal 

expansion, thermal conductivity and magnetism. 

The thermal expansion coefficient of ferritic stainless steels is much lower than in austenitic, 

similar to carbon steel, so they distort less when heated. This presents some useful advantages 

in welding and this property is being analysed as part of an energy saving strategy in which the 

thermal capacity of the ferritic stainless steel is mobilized in floor slabs for example. The 

magnetic nature of ferritic stainless steels was initially considered as a disadvantage for the 

working and welding processes but the magnetism of theses grades is now considered one of 

its major assets, having many potential uses. In addition, it does not need any protection layers 

as painting and it is easier to recycle than galvanized steels. 

Ferritic stainless steels are not widely covered by the stainless steel Standards but some research 

is being done in order to include them in the most important specifications. American standards 

SEI/AISI covers three traditional ferritic steel grades 1.4003, 1.4016 and 1.4512, as well as South 

African and Australian standards. 

The European Standard EN 1993-1-4 [CEN, 2006] corresponding to stainless steels also covers 

the same three ferritic grades. Anyway, theses specifications have been obtained for different 

austenitic and duplex stainless steel grades and some research needs to be conducted in order 

to study their applicability to the ferritic stainless steels.  

 
As it was commented in 2.1.3 Stress and Strain Behaviour, the stainless steel is a material with 

suitable mechanical properties for structural applications but its nonlinear stress-strain 

behaviour makes it different from carbon steel. Actual modelling techniques require defining an 
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analytical expression to describe this nonlinear stress-strain relationship through a material 

model. 

In last decades various material models have been developed in order to reproduce stainless 

steel behaviour and some of them are in included in European Standards. All these models have 

derived from the general expression proposed by Ramberg-Osgood [Ramberg and Osgood, 

1943] with Hill’s modification. The basic equation is presented in Equation (2.1): 

 

                     𝜀 =
𝜎
𝐸

+ 0.002 ( 
𝜎

𝜎0.2
)

𝑛

                                                  (2.1) 

where: 

E is the initial elastic modulus (Young’s modulus) 

𝜎0.2 is the proof stress corresponding to a 0.2% plastic strain. 

The non-linear parameter n is usually considered by the following Equation (2.2): 

 

  𝑛 =
ln(20)

ln(
𝜎0.2

𝜎0.01
)

     (2.2) 

 

where 𝜎0.01 is the 0.01% proof stress. 

The basic Ramberg-Osgood [Ramberg and Osgood, 1943] formulation has been shown to be 

capable of accurately representing different regions of the stress-strain curve, depending on the 

choice of the n parameter, but to be generally incapable of accurately representing the full 

stress-strain curve with a single value of n. This observation led to the development of various 

two-stages Ramber-Osgood models that were capable of providing a single continuous 

representation of the strain curve of stainless steel from the onset of loading to the ultimate 

tensile stress. Mirambell-Real [Mirambell and Real, 2000] proposed a two-stage model based 

on the Ramberg-Osgood expression, but defining a second curve for stresses above the 0.2% 

proof stress, with a new reference system, denoted (𝜎∗ − 𝜀∗ ) and presented in Figure 2.7, 

where the transformation of the variables to the new reference system from the original one is 

defined in Equations (2.3) and (2.4), where 𝜎0.2 is the total strain at the 0.2% proof stress. 

 

  𝜎∗ = 𝜎 − 𝜎0.2     (2.3) 

  

 𝜀∗ = 𝜀 − 𝜀0.2     (2.4) 
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Figure 2.7. Typical stress-strain curve with definitions of key material parameters [Arrayago et 
al., 2015] 

 
Figure 2.7 shows a typical stainless steel stress-strain curve where both the general (𝜎 − 𝜀) and 

the new (𝜎∗ − 𝜀∗ ) reference system are plated, together with the key symbols used in the 

material modeling expressions. The parameter 𝜀up is the ultimate plastic strain and 𝜀f is the strain 

at fracture, both expressed in the general reference system. The remaining symbols are as 

previously defined. 

The second curve can be defined as established in Equation (2.5) in terms of 𝜎∗ − 𝜀∗ reference 

system and according to Equation (2.6) if the general (𝜎 − 𝜀) system is considered, with an 

additional strain hardening exponent, m, for the second stage. Equation (2.1) continued to apply 

for stresses less than or equal to the 0.2% proof stress 

𝜀∗ =
𝜎∗

𝐸0.2
+ 𝜀𝑢𝑝

∗ (
𝜎∗

𝜎𝑢
∗ )

𝑚

     for     𝜎 > 𝜎0.2                                      (2.5) 

 

𝜀∗ =
𝜎−𝜎0.2

𝐸0.2
+ (𝜀𝑢 − 𝜀0.2 −  

𝜎𝑢−𝜎0.2

𝐸0.2
) (

𝜎−𝜎0.2

𝜎𝑢−𝜎0.2
)

𝑚

+ 𝜀0.2   for   𝜎 > 𝜎0.2      (2.6) 

     

where E0.2 is the tangent modulus at the 0.2% proof stress, given by Equation (2.7), σ*u and 𝜀𝑢𝑝
∗  

are the ultimate strength and ultimate plastic strain according to the new reference system, 

𝜎𝑢 and 𝜀𝑢𝑝 are the ultimate strength and total strain in terms of the general system and 𝜎0.2 is 

the total strain at the 0.2% proof stress. 

 

𝐸0.2 =
𝐸

1+0.002𝑛 𝐸
𝜎0.2

                               (2.7) 

In order to reduce the number of required input parameters, the two-stage Ramberg-Osgood 

[Ramberg and Osgood, 1943] model was simplified by Rasmussen [Rasmussen, 2003], leading 
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to the revised expression for σ>σ0.2, given by Equation (2.8). This equation assumes that the 

ultimate plastic strain 𝜀𝑢𝑝
∗  in terms of the second reference system is equal to the general 

ultimate total strain 𝜀𝑢, as expressed in termination of the second strain hardening parameter 

m, the ultimate strain and the ultimate strength, as given in Equations (2.10) and (2.12a-2.12b) 

respectively, effectively reducing the number of required input parameters to the three basic 

Ramberg-Osgood parameters (E, σ0.2 and n). This proposal was included in EN 1993-1-4 Annex C 

[CEN, 2006] for the modelling of stainless steel material behaviour. 

𝜀 =
𝜎−𝜎0.2

𝐸0.2
+ 𝜀𝑢 (

𝜎−𝜎0.2

𝜎𝑢−𝜎0.2
)

𝑚
+ 𝜀0.2    for   𝜎 > 𝜎0.2                          (2.8) 

 

𝜀𝑢𝑝
∗ = 𝜀𝑢 − 𝜀0.2 −

𝜎𝑢−𝜎0.2

𝐸0.2
≅ 𝜀𝑢                                          (2.9) 

 

𝑚 = 1 + 3.5
𝜎0.2
𝜎𝑢

                                                      (2.10) 

 

𝜀𝑢 = 1 −
𝜎0.2
𝜎𝑢

                                                         (2.11) 

 

𝜎0.2

𝜎𝑢
= 0.20 + 185

𝜎0.2

𝐸
                                               (2.12a) 

 

2.12a for austenitic and duplex stainless steels. 

 

𝜎0.2

𝜎𝑢
=

0.20+185
𝜎0.2

𝐸
 

1−0.0375(𝑛−5)
                                              (2.12b) 

 

2.12b for all stainless steel alloys. 

Then, the material model proposed by Mirambell and Real [Mirambell and Real, 2000] was also 

modified by Gardner and Ashraf [Gardner and Ashraf, 2006], Equation (2.9), in order to improve 

the accuracy of the model at low strains (less than approximately 10%) and to allow the model 

to be applied also to the description of compressive stress-strain behaviour. The modifications 

involved used of the 1% proof stress instead of the ultimate stress in the second stage of the 

model, leading to Equation (2.13). Hence, the revised curve passes through the 1% proof stress 

σ1.0 and corresponding total strain  𝜀1.0 , but strains are not limited to 𝜀1.0 , and the model 

provides excellent agreement with experimental stress-strain data for strains up to 10% both in 

tension and compression. The second strain hardening exponent was denoted n0.2,1.0. This model 

provides excellent agreement with measured stress-strain curves in both tension and 

compression and is accurate for the prediction of stress-strain behaviour in structural purposes 

where strains are not very high. 
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𝜀 =
𝜎−𝜎0.2

𝐸0.2
+ (𝜀1.0 − 𝜀0.2 −  

𝜎1.0−𝜎0.2

𝐸0.2
) (

𝜎−𝜎0.2

𝜎1.0−𝜎0.2
)

𝑛0.2,1.0

+ 𝜀0.2   for   𝜎0.2 < 𝜎 < 𝜎𝑢     (2.13) 

      

However, advanced numerical modelling requires a great knowledge of stainless steel behaviour 

with a better fit of the stress-strain curves over a wide strain range, especially for cold-forming 

processes. Quach [Quach et al., 2008] proposed a three-stage material model, based in the true 

stress and strain values and using the three basic Ramberg-Osgood parameters, adequate for 

cold-formed materials. This model uses the Ramberg-Osgood [Ramberg and Osgood, 1943] 

Equation 2.1, for the first stage up to the yielding stress, assumes the Gardner and Ashraf 

[Gardner and Ashraf, 2006] proposal, Equation (2.13), for the second stage and proposed a new 

expression for the third stage up to the 2% true proof stress. 

Then, a new three-stage model, based on the Ramberg-Osgood [Ramberg and Osgood, 1943] 

equation for each stage but with a new reference system, has been developed by VTT (Finland), 

UPC (Catalonia) and Université de Liege (Belgium) [Hradil et al., 2003]. This model has been 

developed to fit experimental curves up to the ultimate strain.  

The study presented in [Real et al., 2014] compares the three-stages models with the two-stages 

models. The conclusions of this study are that the three-stage models provide most accurate fit 

to experimental stress-strain curves at high strain but it is necessary to entry a high number of 

parameters and taking into account that two-stages models are also shown excellent agreement 

with experimental results. So it is better to use two-stage models with as so it is the best balance 

between accuracy and practicality. 

 

2.3. Cross-sectional classification 
 

In principle, stainless steel cross-sections classify the same as carbon steel. Sections are 

classified as Class 1, 2 or 3 depending on the limits set out in EN 1993-1-4 [CEN, 2006], and the 

sections which do not meet the criteria for Class 3 sections are classified as Class 4. Four classes 

of cross-section are defined as follows: 

Class 1  cross-sections are those which can form a plastic hinge with the   

 rotation capacity required from plastic analysis. 

Class 2 cross-sections are those which can develop their plastic moment   

 resistance, but have limited rotation capacity. 

Class 3 cross-sections are those in which the calculated stress in the extreme   

 compression fibre of the steel member can reach its yield strength,   

 but local buckling is liable to prevent development of the plastic   

 moment resistance. 

Class 4 cross-sections are this in which local buckling will occur before the   

 attainment of yield stress in one or more parts of the cross-section. 
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The classification of a cross-section depends on the highest (least favourable) class of its 

constituent parts that are partially or wholly in compression. It should be noted that the cross-

section classification can vary according to the proportion of moment or axial load present and 

thus can vary along of a member. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Maximum width-to-thickness ratios for compression parts [CEN, 2006] 
 

Nevertheless, some recent experimental research works in ferritic stainless steel rectangular 

and square hollow section elements reported by Afshan and Gardner [Afshan and Gardner, 

2013], concluded that some of the class limits proposed by Gardner and Theofanous [Gardner 

and Theofanous, 2008] overestimate the capacity of some of the cross-sections when 

concerning to Class 1 cross-sections. This might be caused due to the lower ultimate strain or 

ductility shown by ferritic grades, which make them not that deformable as austenitic and 

duplex stainless steels. 

The calibration of the class limits for internal elements subjected to compression can be 

experimentally assessed by conducting stub column (pure compression without any global 

instability) and bending tests. The limit between Class 3 and Class 4 can be easily determined by 
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comparing the experimental ultimate capacities Nu with the plastic axial resistance Npl of the 

cross section, as defined in Equation (2.14), where A is the cross-sectional area and σ0.2 is the 

average proof stress corresponding to a 0.2% plastic strain. 

 

𝑁𝑝𝑙 = 𝐴 · 𝜎0.2                                                          (2.14) 

 

When the experimental ultimate capacity is higher than the plastic axial resistance (Nu>Npl), the 

cross-section is fully effective in compression, so it can be classified as Class 3 or better. If Nu<Npl, 

the cross-section will be classified as Class 4. Bending moment tests also allow for an 

experimental cross-sectional classification. In fact, Class 1, 2 and 3 limits are analysed from the 

bending experimental results. Cross-sections are defined as Class 3 or better if the ultimate 

bending capacity is higher than the Mel elastic moment capacity, defined in Equation (2.15). 

When the cross-section is able to resist a bending moment higher than Mel but fails before 

reaching the Mpl plastic moment capacity, given by Equation (2.16), the cross-section is classified 

as Class 3. 

 

𝑀𝑒𝑙 = 𝑊𝑒𝑙 · 𝜎0.2                                                      (2.15) 

 

𝑀𝑝𝑙 = 𝑊𝑝𝑙 · 𝜎0.2                                                      (2.16) 

 

 

2.4. Flexural Buckling 
 
The expressions for the prediction of the ultimate capacity of stainless steel columns currently 

codified in EN 1993-1-4 [CEN, 2006] and the new proposals are presented herein. Additionally, 

the expressions for the consideration of beams-columns (axial compression and bending 

moment interaction) through interaction facts are also considered, both in Standards and recent 

research works. 

 

2.4.1. Stainless steel members subjected to axial load 

 
For design of columns according to EN 1993-1-4 [CEN, 2006], the specific behaviour of stainless 

steel has been accounted for just by specifying different buckling curves and the ultimate 

capacity Nb,Rd is calculated from: 

 

𝑁𝑏,𝑅𝑑 =
𝜒𝐴𝜎0.2

𝛾𝑀1
                                                          (2.17) 
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in which the flexural buckling reduction factor is: 

 

𝜒 =
1

𝜙+√𝜙
2

−�̅�
2

≤ 1.0                                              (2.18) 

and: 

𝜙 = 0.5[1 + 𝛼(�̅� −  �̅�0) + �̅�2]                                           (2.19) 

 

�̅� = √
𝐴𝜎0.2
𝑁𝑐𝑟

                                                          (2.20) 

 

where A is the cross-sectional area (for Class 4 slender sections, the effective are is used), σ0.2 is 

the 0.2% proof stress, Ncr is the elastic critical buckling load, 𝛼 is the imperfection factor, �̅�0 is 

the limiting slenderness factor and �̅� is the relative slenderness. For all members, EN 1993-1-4 

[CEN, 2006] establishes that 𝛼 =0.34 and 𝛼 =0.20. 

 

2.4.2. Stainless steel members subjected to combined load 

 
In addition to satisfying the requirements of cross-sectional resistance at every point along the 

length of the member and the general requirements for beam members, interaction effects 

should be considered between compressive loads and bending moments. 

• Axial compression and uniaxial major axis moment: 

To prevent premature buckling about the major axis: 

 

𝑁𝐸𝑑

(𝑁𝑏,𝑅𝑑 )𝑚𝑖𝑛
+ 𝑘𝑦 (

𝑀𝑦,𝐸𝑑+𝑁𝐸𝑑𝑒𝑁𝑦

𝛽𝑊,𝑦 𝑊𝑝𝑙,𝑦𝜎𝑦

𝛾𝑀1

) ≤ 1                                      (2.21) 

To prevent premature buckling about the minor axis (for members subject to lateral-torsional 

buckling): 

 

𝑁𝐸𝑑

(𝑁𝑏,𝑅𝑑 )𝑚𝑖𝑛1
+ 𝑘𝐿𝑇 (

𝑀𝑦,𝐸𝑑+𝑁𝐸𝑑𝑒𝑁𝑦

𝑀𝑏,𝑅𝑑
) ≤ 1                                      (2.22) 

 

 

 



 

22 

 

• Axial compression and uniaxial minor axis moment: 

To prevent premature buckling about the minor axis: 

 

𝑁𝐸𝑑

(𝑁𝑏,𝑅𝑑 )𝑚𝑖𝑛
+ 𝑘𝑧 (

𝑀𝑧,𝐸𝑑+𝑁𝐸𝑑𝑒𝑁𝑧
𝛽𝑊,𝑧 𝑊𝑝𝑙,𝑧𝜎𝑧

𝛾𝑀1

) ≤ 1                                      (2.23) 

 

• Axial compression and biaxial moments: 

All members should satisfy: 

 

𝑁𝐸𝑑

(𝑁𝑏,𝑅𝑑 )𝑚𝑖𝑛
+ 𝑘𝑦 (

𝑀𝑦,𝐸𝑑+𝑁𝐸𝑑𝑒𝑁𝑦

𝛽𝑊,𝑦 𝑊𝑝𝑙,𝑦𝜎𝑦

𝛾𝑀1

) + 𝑘𝑧 (
𝑀𝑧,𝐸𝑑+𝑁𝐸𝑑𝑒𝑁𝑧

𝛽𝑊,𝑧 𝑊𝑝𝑙,𝑧𝜎𝑧

𝛾𝑀1

) ≤ 1        (2.24) 

 

Members potentially subject to lateral-torsional buckling should also satisfy: 

 

𝑁𝐸𝑑

(𝑁𝑏,𝑅𝑑 )𝑚𝑖𝑛1
+ 𝑘𝐿𝑇 (

𝑀𝑦,𝐸𝑑+𝑁𝐸𝑑𝑒𝑁𝑦

𝑀𝑏,𝑅𝑑
) + 𝑘𝑧 (

𝑀𝑧,𝐸𝑑+𝑁𝐸𝑑𝑒𝑁𝑧
𝛽𝑊,𝑧 𝑊𝑝𝑙,𝑧𝜎𝑧

𝛾𝑀1

) ≤ 1        (2.25) 

 

In the above expressions: 

 eNy and eNz are the shifts in the neutral axes when the cross-section is               

       subject to uniform compression 

 NEd, My,Ed and Mz,Ed are the design values of the compression force and the         

        maximum moments about the y-y and z-z axis along the member,  

        respectively 

 (Nb,Rd)min is the smallest value of Nb,Rd for the following three buckling          

                 modes: flexural buckling about the z axis, torsional buckling and   

                 torsional-flexural buckling 

 𝛽𝑊,𝑧 and  𝛽𝑊,𝑧  are the values of  𝛽𝑊  determined for the y and z axes respectively in  

   which: 

              𝛽𝑊   =   1             for Class 1 or 2 cross-sections 

 𝛽𝑊  =   Wel/Wpl   for Class 3 cross-sections 
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 𝛽𝑊  =  Weff/Wpl   for Class 4 cross-sections 

 Wpl,y and Wpl,z are the plastic module for the y and z axes respectively 

 Mb,Rd is the lateral-torsional buckling resistance 

 ky, kz, kLT are the interaction factors, where 𝑘𝐿𝑇   is equal to 1.0. 

  

 

𝑘𝑦 = 1.0 + 2(�̅� − 0.5)
𝑁𝐸𝑑

𝑁𝑏,𝑅𝑑,𝑦
        but        1.2 ≤  𝑘𝑦 ≤ 1.2 + 2

𝑁𝐸𝑑
𝑁𝑏,𝑅𝑑,𝑦

            (2.26) 

 

𝑘𝑧 = 1.0 + 2(�̅� − 0.5)
𝑁𝐸𝑑

(𝑁𝑏,𝑅𝑑 )𝑚𝑖𝑛1

         but        1.2 ≤  𝑘𝑦 ≤ 1.2 + 2
𝑁𝐸𝑑

(𝑁𝑏,𝑅𝑑 )𝑚𝑖𝑛1

    (2.27) 

 

 

2.5. Design formulae 
 
In this chapter it is explained the different formulae that we used in the thesis in order to carry 

out the procedure validation and the behaviour of stainless steel columns combined bending 

and axial load.  

 

2.5.1. EN 1993 1-4 (2006) 

 
The European code EN 1993-1-4 [CEN, 2006] for stainless steel gives the following indications 

for members which are subjected to combined bending and axial compression. They should 

satisfy the following conditions to prevent premature buckling about the major axis (case that 

we studied), Equation (2.28): 

 

                   
𝑁𝐸𝑑

𝑁𝑏,𝑟𝑑
+ 𝑘

𝑀𝐸𝑑+𝑁𝐸𝑑·𝑒𝑁𝑦

𝑀𝑏,𝑟𝑑
≤ 1                 (2.28) 

where: 

 𝑒𝑁𝑦  is the shift in the neutral axes when cross-section is subjected to uniform 

compression; 

 𝑁𝐸𝑑  and 𝑀𝐸𝑑  are the design values of the compression force and the maximum 

moments along the member, respectively; 

 𝑘 is the interaction factor: 

𝑘 = 1 + 2(�̅� − 0.5)
𝑁𝐸𝑑

𝑁𝑏,𝑟𝑑
           but           1.2 ≤ 𝑘 ≤ 1.2 + 2

𝑁𝐸𝑑
𝑁𝑏,𝑟𝑑

              (2.29) 
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where the minimum value 1.2 is worth mentioning, which usually derives into overconservative 

capacity predictions since the full, bending capacity of the cross-section cannot be reached for 

low axial compression values. 

The calculations have been developed through Microsoft Office Excel and Abaqus, and, as for 

the previous chapter, it was settled to consider as steel yielding stress fy and Young’s modulus E 

equal to 200 GPa. This scheme has been followed for a value of partial safety factor 𝛾𝑀1 equal 

to 1.0. 

The Equation (2.28) has to be satisfied during the design of stainless steel members subjected 

to combined axial and bending loads. On the other hand, our aim was to make a comparison of 

the different interaction factors depending on the material analysed. 

The term 𝑁𝐸𝑑𝑒𝑁𝑦  is always taken as null because the elements which have been managed 

present double-symmetrical sections and the shifts of the neutral axes when cross-section is 

subjected to uniform compression are null. 

 

2.5.2 Research performed at Imperial College (Zhao, 2015) 

 
EN 1993 1-4 gives the following indications for members which are subjected to combined 

bending and axial compression. They should satisfy the following conditions to prevent 

premature buckling about the major axis (case studied), Equation (2.28). Ou Zhao [Zhao, 2015] 

propose an interaction factor 𝑘 different from the one proposed by EN 1993-1-4 [CEN, 2006]: 

 

                   𝑘 = 1 + 𝐷1(�̅� − 𝐷2)𝑛𝑏 ≤ 1 + 𝐷1(𝐷3 − 𝐷2)𝑛𝑏                (2.30) 

 

where D1 and D2 are the coefficients which define the linear relationship between the 

interaction factor k and the slenderness �̅� in the low member slenderness range, while D3 is a 

limit value, beyond which the interaction factor k remains constant. 

The values of D1 and D2 for each axial compressive load level (nb) were determined following a 

regression fit of Equation (2.29) to the corresponding numerically derived results over the 

member slenderness range from 0.2 and 1.2, while the final D1 and D2 coefficients were taken 

as the average calculated values for all the considered load levels. Then, the limit value of D3 

was determined based on the fit of Equation (2.29) to the FE derived results corresponding to 

low axial compressive load levels (𝑛𝑏 ≤ 0.4). Table 2.1 reports the values of D1, D2 and D3 for 

each stainless steel grade. 

 

Grade D1 D2 D3 

Austenitic 2.0 0.3 1.3 
Duplex 1.5 0.4 1.4 
Ferritic 1.3 0.45 1.6 

 
Table 2.1. Proposed coefficients for interaction curves for different material grades [Zhao, 

2015] 
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2.5.3 Research performed at UPC (Arrayago et al., 2015) 

 
Regarding design expressions for the evaluation of stainless steel beam-columns, different 

approaches can be found in Standards. Nevertheless, compression and bending moment 

interaction verifications are usually presented as interaction expressions with the same general 

expression, given by Equation (2.28), and a certain interaction factor k. The differences among 

these expressions basically lay on the definition of this interaction factor k. 

Several interaction expressions available in the literature consider the shape of the bending 

moment diagram through the 𝜇 parameter, and were based in the proposal published by Lopes 

et al. (2009), which is given by Equation (2.31) when A=B=1. 

 

                                 𝑘 = 𝐴 − 𝐵 ·
𝜇𝑁𝐸𝑑
𝑁𝑏,𝑟𝑑

                                               (2.31) 

 

This expression was calibrated for I beams-columns considering different stainless steel grades 

and bending moment diagrams and was the recalibrated for stainless steel SHS and RHS 

elements by Jandera and Syamsuddin (2014) with A=B=1.2 and by Arrayago et al. (2015) with 

A=1 and B=0.92. So, in this chapter, it is used this last Arrayago et al.’s expression in order to 

evaluate the interaction of axial compression and bending moment. 

To determine the values of the 𝜇 parameter the following Equation (2.32) should be used. 

 

                                              𝜇 = (0.97𝛽𝑀 − 2.11)�̅� + 0.44𝛽𝑀 + 0.09                                 (2.32) 

 

Finally, the equivalent uniform moment factor 𝛽𝑀 can be determined in function of the bending 

diagram shape, according to the Equation (2.33): 

 

                                                                        𝛽𝑀 = 1.8 − 0.7𝜓                                               (2.33) 

where, 𝜓 is the distribution of bending moment and is equal to 1.0 in this thesis.  

It is important to remark that when Arrayago et al. (2015) performed the research, they 

supposed the imperfection amplitudes due to they do not have them. Instead of adopting the 

traditional L/1500, it was applied expressions from EN 1993-1-1 which gave some imperfections 

higher than L/1500, so the Equation was calibrated. Hence, this fact can give results which are 

unsafe (below the ideal value 1.0). In this thesis it has proceed to observe how this calibration 

of the equation really affects to the final result. 
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2.5.4 Simplified Method from Structural Steel Code EAE (2012) 
 
The stability of flexural and compression double symmetrical uniform cross-section, not 

susceptible to distortion, must be checked as it is presented below. 

The verification of the elements in a structural system can be carried out on the analysis of 

individual elements of a single span extracted from the system The second order effects of 

translational systems should be taken into account. For axial compression and bending 

moments, the Equation (2.34) must be verified.  

 

                                                               
𝑁𝐸𝑑

𝑁𝑏,𝑟𝑑
+

1

1−
𝑁𝐸𝑑
𝑁𝑐𝑟

·
𝐶𝑚·𝑀𝐸𝑑

𝑀𝑏,𝑟𝑑
≤ 1.0                                 (2.34) 

 

In this case, the interaction factor k is expressed in Equation (2.35) 

 

                                                                                𝑘 =
𝐶𝑚

1−
𝑁𝐸𝑑
𝑁𝑐𝑟

                                               (2.35) 

 

where 𝐶𝑚is the equivalent uniform bending factor, referred to the bending axis, which takes 

into account the bending moment distribution.  

 

𝐶𝑚 = 0.6 + 0.4𝜓                                                  (2.36) 

 

where, as it is explained in before, 𝜓 is equal to 1.0. 

In order to obtain the critical load of Euler, Ncr, it is used FE in Abaqus instead of the Euler’s 

equation. 

 

2.6 Previous experimental programs 
 
The literature review conducted for this thesis also included a wide collection experimental 

programs reported by international research groups. The collected data included flexural 

buckling tests not only in ferritic, but in other stainless steel families and grades. The 

experimental results will be included in future studies regarding cross-sectional classification, 

bending design methods and flexural buckling predicting expressions. 

Table X presents the different flexural buckling tests gathered from the literature, specifying the 

cross-section type (SHS, RHS, CHS and Channel), the number of conducted tests, the material 

grade and the corresponding stainless steel family. A total of 140 flexural buckling test results 

have been collected, which will be included in future studies. 
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Reference 
Cross-section 

type 
Number 
of Tests 

Grade Family 

Afshan and 
Gardner (2013) 

RHS 8 1.4003 

Ferritic 

SHS 3 1.4003 

SHS 4 1.4509 

Becque and 
Rasmussen (2006) 

Channel 10 1.4003 

Channel 9 1.4016 

Arrayago, Real and 
Mirambell (2016) 

SHS 5 1.4003 

RHS 7 1.4003 

Gardner and 
Nethercot (2004b) 

SHS 8 1.4301 

Austenitic 

RHS 14 1.4301 

Gardner, Tajla and 
Baddoo (2006) 

RHS 12 1.4318 

Liu and Young 
(2003) 

SHS 12 1.4301 

Rasmussen and 
Hancock (1993a) 

SHS 8 1.4301 

CHS 10 1.4301 

Becque and 
Rasmussen (2006) 

Channel 10 1.4301 

Liu and Young 
(2006) 

SHS 12 1.4462 
Duplex 

RHS 8 1.4462 

Theofanus and 
Gardner (2009) 

SHS 6 1.4162 
Lean Duplex 

SHS 6 1.4162 

Total  152   

 

Table 2.2. Collected flexural buckling tests [Pizzi, 2014] 
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3. NUMERICAL MODEL 
 

 

 
The model used during this present thesis is based on the finite element method (FEM) since is 

extensively demonstrated that could be considered a method able to give the efficiency, 

accuracy and versatility necessary to solve non-linear problems in engineering. 

This chapter includes the presentation of the general basis of numerical model made to simulate 

the structural behaviour of stainless steel column, which has been created in Abaqus finite 

element program. It takes into account both geometrical and material non-linearity.  

 

3.1. General principles of the finite element method 
 

This widely settled method, that got many applications in different fields, consists in the 

approximation of continuum problems through their discretization into a finite number of 

elements which are connected by a finite number of points, that are defined nodes. It is 

important to remark that the principal unknown parameter of the general problem is the 

displacements of the defined nodes. Then, once the displacement of any point of the finite 

element is known, it is possible to obtain the values of stress and strain settling the equilibrium 

and compatibility equations and, in addition, the material constitutive stress-strain 

relationships. 

The main steps to follow in a finite element modelization are: 

 Discretization of the element object of the structural analysis 

The first step consists in to discretize the continuum unto a finite number of elements that can 

be of different shape, for example one-dimensional, two-dimensional or three-dimensional. As 

already said on the elements generated are interconnected through a discrete number of nodal 

points, whose displacement represents the basic unknown parameter of the problem. 

 Definition of the displacement function 

A set of functions are chosen to define the state of displacement within each finite element and 

on its boundaries in terms of its nodal displacements. These are known as shape functions 𝑁𝑒, 

whose aim is to link the vector that represents the nodal displacement of the element 𝑢𝑒, with 

the vector 𝑎𝑒  which represents the nodal displacements for the particular element, where e 

represents a generic finite element. 

                       𝑢𝑒 = 𝑁𝑒 · 𝑎𝑒                  (3.1) 

 Strain distribution 

The second step lets to determine the value of the strains at any point, once the displacements 

are known at all points. In this case the displacement function 𝑆𝑒  define the connection 

between the strain distribution 𝜀𝑒 and the nodal displacement 𝑎𝑒: 

                    𝜀𝑒 =  𝑆𝑒 · 𝑁𝑒 · 𝑎𝑒                    (3.2) 
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 Stress distribution 

The constitutive matrix, 𝐷𝑒, give us the relationship between stresses and strains. 

                                                                              𝜎𝑒 = 𝐷𝑒 · 𝜀𝑒                    (3.3) 

 Equivalent nodal force determination 

This step consists in to apply the principle of Virtual Works, that lets to make body forces 

statically equivalent to the actual boundary stresses and distributed body forces. Then, the 

procedure consists in to impose a virtual nodal, displacement, which has to be compatible with 

the boundary conditions, and then, to equate the internal and external work done by the forces 

and stresses during the imposed displacement. 

 General equilibrium 

In this last step it is necessary to impose that the external nodal force is equal to the total of the 

nodal forces. So, after assembling the different parts, the global equation of the structure is: 

                                                                             𝑓 = 𝐾 · 𝑎                                  (3.4) 

where 𝐾  is the assembled matrix rigidity of the structure, and 𝑎  and 𝑓  are the nodal 

displacements vector and the nodal forces vector, respectively. 

Having solved this system of equations and consequently obtained the nodal displacements, the 

strain and stress distributions can be determined by the application of the mathematical 

expressions presented previously in this chapter. 

 

3.2. Structural elements analyzed and type of elements used 
 

A Finite Element model was made in software Abaqus. Nine nodes reduced integration shell 

elements S9R5 for the models square hollow sections (SHS) The quadratic definition of the S9R5 

element allowed more accurate corner geometry. The nodes of the end-sections were 

connected by rigid elements to their centroid. At that point, the axial load was applied on the 

end and the bending moment on both ends. Then, at both ends, the displacement was 

restrained but the rotation was free. The member was also prevented from the weak axis 

buckling along the middle of both flanges. This allowed no torsion of the column. 

The fully non-linear (GMNIA, geometrically and materially nonlinear analysis with initial 

imperfections) analysis was performed. The amplitude for global imperfection was L/1000, 

where L is the pinned column length. For the local buckling, we used a formula explained in 

chapter 5.2. 
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3.3. Constitutive equation and material modelling 
 

3.3.1 Elastic-Plastic behaviour 
 
The Abaqus library provides us a wide range of linear and non-linear material models, the most 

of which are usually required for common and practical applications. Since the constitutive 

models are mathematical equations that, together with equilibrium and compatibility 

equations, are absolutely essential to determine the relations between stresses, strains and 

displacements in a structure, it is necessary to evaluate them accurately. Thus, it is important to 

analyse the features of the materials and the geometry of structures in order to choose the 

constitutive model which better reproduces the real behaviour of the material that is purpose 

of the analysis. The behaviour of the material is defined elastic plastic when it shows an elastic 

behaviour for low range of stresses that let it to recover completely the strains originated during 

the loading process. Otherwise, when the stress exceeds a particular level of stress, the strains 

produced during the process of loading are not completely recovered. Therefore, the stress 

which separates the elastic behaviour to the plastic one is known as yielding stress and the total 

strain can be summarized in the following formula: 

     𝜀 = 𝜀𝑒𝑙 + 𝜀𝑝𝑙                                                                  (3.5) 

where 𝜀𝑒𝑙  is the recoverable elastic strain and 𝜀𝑝𝑙  represents the unrecoverable plastic strain 

which remains after the unloading. 

 

3.3.2 Stainless steel 
 
As it is commented in chapter 2.2.1. Material models, the main difference between carbon and 

stainless steel is in their stress-strain relationship. Whereas the carbon steel has linear elastic 

behaviour with a clearly defined yielding stress, stainless steel shows a rounded and anisotropic 

strain-stress response without a well-defined yield point. In order to work properly with stainless 

steel, it is useful to have and analytical expression to study and design structural elements. EN 

1993-1-4 recommends to use the Ramberg-Osgood expression [Ramberg and Osgood, 1943] to 

model the non-linear stress-strain relationship: 

                     𝜀 =
𝜎

𝐸0
+ 0.002 ( 

𝜎

𝜎0.2
)

𝑛

                                                  (3.6) 

 

where 𝜎0.2  is the yielding stress, taken as the 0.2% proof stress, 𝐸0  is the material Young’s 

modulus and n is a strain hardening exponent related with the material non-linearity degree. 

Although Equation (3.6) represents a good approximation of the actual stress-strain curves in 

stainless steel, is useful to remark that at higher strains this model tends to overestimate the 

material strength. For this reason, it is advisable to use a two adjoining curves used by Mirambell 

and Real [Mirambell and Real, 2000], which take the basic Ramberg-Osgood [Ramberg and 

Osgood, 1943] curve until the 0.2% proof stress and add a new expression over this point. This 

new Equation (3.8) is the same that Equation (2.6). 
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𝜀 =
𝜎

𝐸
+ 0.002 ( 

𝜎

𝜎0.2
)

𝑛

                      𝜎 < 𝜎0.2                      (3.7) 

          𝜀 =
(𝜎−𝜎0.2)

𝐸0.2
+ (𝜀𝑢 − 𝜀0.2 −

𝜎𝑢−𝜎0.2

𝐸0.2
) · (

𝜎−𝜎0.2

𝜎𝑢−𝜎0.2
)

𝑚

+ 𝜀0.2       𝜎0.2 < 𝜎 < 𝜎𝑢                 (3.8) 

 

where 𝜎𝑢 is the ultimate material strength, 𝜀𝑢 is the plastic ultimate strength, and 𝜀0.2 and 𝐸0.2 

are the total strain and the tangent modulus at the 0.2% proof stress respectively; m is a strain 

hardening exponent that can be defined by the ultimate strength and another intermediate 

point. 

Talking about the strain hardening exponent, there are recent studies involving the examination 

of austenitic and ferritic stainless steel stress-strain curves (Real et al.,2014; Arrayago et 

al.,2013) and it is found that this parameter, Equation (2.10) provides higher values for the 

second strain hardening exponent than those obtained from curve fitting. A revised expression, 

given by Equation (3.9), was therefore proposed for all stainless steel grades, based on least 

squares regression: 

                                                                   𝑚 = 1 + 2.8
𝜎0.2
𝜎𝑢

                                                    (3.9) 

 

Overall, the new proposal provides more accurate predictions for the second strain hardening 

parameter m than existing formula Equation (2.10) and is therefore recommended for code 

inclusion. 

For the plastic ultimate strength, we have different formulas depending on the material that we 

are using: 

 Ferritic 

                   𝜀𝑢 = 0.6 · (1 −
𝜎0.2
𝜎𝑢

)                                                      (3.10) 

 

 Austenitic and Duplex 

                   𝜀𝑢 = (1 −
𝜎0.2
𝜎𝑢

)                                                      (3.11) 

 

Then, the elastic tangent modulus at 0.2% proof stress is: 

                   𝐸0.2 =
𝐸

1+0.002·𝑛·
𝐸

𝜎0.2

                                                      (3.12) 

where E is the Young’s modulus, 200 GPa for this thesis. 
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3.3.3 Corners: Constitutive law 
 
The Abaqus model was conceived to take into account the strength enhancements induced 

during cold forming. The variation of the mechanic characteristics along the sections is due to 

the hardening of the material during the deformation. The operation of cold forming induces an 

increase of the yielding stress of the material. The smaller the interior radius is, the greater is 

the increase of resistance. At the increase of the resistance follows a decrease of resilience 

which makes the material brittle. The Abaqus model was performed in order to contemplate the 

strength enhancements in the corner regions of cold formed components.  

For the model validation we took into consideration that the properties of the flat and corner 

sections are different, so each part had his own characteristics, but in the parametric study we 

considered that both flat and corner sections had the same properties. 
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4. VALIDATION 
 

4.1. Introduction 
 
In this section it is explained that the model used in order to carry out this thesis must be 

validated before used it, so with this purpose, the results from the documents of Arrayago, Real, 

Mirambell- Experimental study on ferritic stainless steel RHS and SHS beams-columns [Arrayago 

et al., 2016] are used in order to verify our model. After that, with Rodríguez (2016), a procedure 

validation about the model has been done. A Class 1 (SHS 60x60x3) and a Class 4 (SHS 80x80x2) 

has been analysed with different materials (ferritic, duplex and austenitic stainless steel) and 

then the results were shared and compared in order to verify that the procedure used was 

correct and the model is ready to start with the structural behaviour of the beams-columns. 

 

4.2. Model Validation 
 

 
This experimental programme was conducted in the Laboratori de Tecnologia d’Estructures Luis 

Agulló, in the Department of Construction Engineering at Universitat Politècnica de Catalunya 

by the framework project of ferritic stainless steel, where the flexural buckling and beam-

column response of ferritic stainless steel RHS and SHS members was analysed. The studied 

ferritic grade was EN 1.4003. 

In this experiment, it is tested two SHS (S1 and S2) and three RHS (S3, S4 and S5). The different 

cross-sections (in mm) were: 

 

S1 S2 S3 S4 S5 

80x80x4 60x60x3 80x40x4 120x80x3 70x50x2 

 

Table 4.1. Model validation cross-sections [Arrayago et al., 2016] 

 

The information about the specimens to be tested was accurately measured before testing in 

order to analyse correctly the experimental results. Thus, the material behaviour, geometrical 

definition and initial imperfections were carefully defined and are showed in the following Table 

4.2, where F is the flat section and C is the corner section. It is considered flat and corner sections 

with different properties.  
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Table 4.2. Average material properties from coupon tensile test [Arrayago et al., 2016] 

 

All coupons were tested in accordance with the specifications in ISO6892-1 and the 

mechanization of the coupons and the execution of the tensile tests were performed in acerinox 

(Figure 4.1). 

 

Figure 4.1. Tensile coupon test on flat and corner coupons respectively [Arrayago et al., 2016] 
 

Each section was tested with only axial compression and axial compression and bending 

moment. The following table 4.3 shows us the tests that were conducted per each section: 

Tests E (MPa) 
𝝈𝟎.𝟎𝟓 

[MPa] 

𝝈𝟎.𝟐 

[MPa] 

𝝈𝒖 

[MPa] 

𝜺𝒖[%] 

 

𝜺𝒇[%] 
n m 

S1-F 173992 467 521 559 8.2 21.7 12.4 2.3 

S1-C 170049 441 577 645 1.1 7.9 5.0 5.4 

S2-F 186896 433 485 505 6.8 30.9 12.2 2.6 

S2-C 178049 459 555 587 1.0 10.1 7.9 5.2 

S3-F 181632 467 507 520 3.6 21.0 16.4 2.5 

S3-C 183684 434 558 601 1.0 7.0 5.9 4.5 

S4-F 176704 391 430 490 12.6 27.1 14.6 2.3 

S4-C 194611 457 540 583 1.0 10.1 7.6 4.8 

S5-F 179568 381 418 480 13.8 26.8 15.3 2.4 

S5-C 186026 466 552 575 1.1 6.5 8.0 4.6 



 

35 

 

SECTION TEST 

S1 

CC 

EC-1 

EC-2 

S2 
CC 

EC-1 

S3 
CC 

EC-1 

S4 
CC 

EC-1 

S5 

CC 

EC-1 

EC-2 

 

Table 4.3. Tests conducted for each section [Arrayago et al., 2016] 

As it is explained before, these tests have been developed by the framework project of ferritic 

stainless steel at UPC (Catalonia). Initial global imperfections are an important aspect to be 

considered in order to define the adequate position of each specimen during the tests. Thus, 

the magnitude and distribution of the initial bow of each specimen was carefully measured by a 

laser device. This laser recorded measurements every 100 mm and at mid-height section. The 

maximum global imperfection amplitude wo of each specimen is presented in Table 4.4. 

 

Specimen L [mm] H [mm] B [mm] t [mm] Rext [mm] wo [mm] 

S1-CC 1495 79.6 80.2 3.9 7.0 0.81 

S1-EC1 1495 80.1 80.3 3.9 7.3 1.25 

S1-EC2 1498 79.9 80.3 4.0 7.5 1.38 

S2-CC 1500 60.3 60.2 2.9 5.9 0.66 

S2-EC1 1500 60.0 60.2 3.0 5.9 0.69 

S3-CC 1500 80.0 40.0 3.8 6.8 0.85 

S3-EC1 1500 80.0 40.0 3.8 6.5 0.89 

S4-CC 1500 119.8 79.8 2.9 7.2 1.21 

S4-EC1 1500 119.8 79.6 3.0 7.2 1.58 

S5-CC 1500 70.0 49.6 2.0 4.4 1.09 

S5-EC1 1500 70.0 49.9 2.0 4.2 1.32 

S5-EC2 1500 70.1 49.9 2.0 4.3 1.35 

 

Table 4.4. Measured dimensions for the tests specimens [Arrayago et al., 2016] 
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Consequently, all these parameters are introduced into our model and run it using the Abaqus 

software, based on FEM (Finite Element Method). The results of the tests are summarised in the 

Table 4.5: 

 

SPECIMEN ARRAYAGO (kN) ABAQUS (kN) DIFFERENCE (%) 

S1-CC 447.50 458,75 2.51 

S1-EC1 256.00 265,19 3.59 

S1-EC2 193.50 205,15 6.02 

S2-CC 173.10 208,83 20.64 

S2-EC1 79.90 93,62 17.17 

S3-CC 130.20 155,96 19.78 

S3-EC1 76.40 87,15 14.07 

S4-CC 364.50 371 1.78 

S4-EC1 222.80 199,27 -10.56 

S5-CC 97.40 111,48 14.45 

S5-EC1 62.40 66,13 5.98 

S5-EC2 44.30 51,2 15.57 

 

Table 4.5. Tests results  

 

From this analyse, it is possible to extract the mean value of the difference, 9.25%, and the 

standard deviation, 9.25.  

As it is observed in the previous table, the difference between the load calculated by Arrayago 

and the one obtained by Abaqus are relatively high. So, it was proceeded to revise the model 

and change some of the initial parameters. 

As it is said in Arrayago et al. (2016), although the nominal length of each specimen was 1500 

mm, the effective length of the system Le equal to the distance between knife-edges will be 

considered in the following analysis. Hence, the thickness of both end plates and the bearing 

plates need to be added to the length of the specimens, which will be Le=1600 mm. 

So the tests are recalculated again and this time the results obtained are better than with L=1500 

mm.  In the following table 4.6 it is possible to see this main differences: 
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Table 4.6. Tests results with effective length 

 

In this case, the mean value obtained is of 6.05% and the standard deviation 5.02. In the 

following Table 4.7 we are capable to observe the difference between the first length of 1500 

mm and the effective length of the system, 1600 mm. 

 

 L=1500 mm L=1600 mm 

Average (%) 9.25 6.05 
Standard deviation 9.25 5.02 

 

Table 4.7. Comparison of average and standard deviation of both tests 

 

4.2.1 Concluding remarks 
 
If the effective length is taken into account, the results for each specimen improve considerably. 

The difference between Arrayago and Abaqus is reduced a 3.2% and the standard deviation 4.23, 

assuring then a better model for the future study of the ferritic stainless steel. Therefore, the 

effective length needs to be taken into account in the future analysis. As we have the standard 

deviation under a 10%, the model is accepted as good enough in order to perform the analysis.  

The numerical model exploited has been demonstrated to be an adequate tool to reproduce the 

behaviour of plate elements loaded in compression. So, it has been showed that it is possible to 

adopt it in the different analyses that it is going to carry out in the following chapters. 

 

 

 

  L=1500 mm L=1600 mm 

SPECIMEN ARRAYAGO 
(kN) 

ABAQUS 
(kN) 

DIFFERENCE 
(%) 

ABAQUS 
(kN) 

DIFFERENCE 
(%) 

S1-CC 447,5 458,75 2,51 442,41 1,14 

S1-EC1 256,0 265,19 3,59 253,47 0,99 

S1-EC2 193,5 205,15 6,02 197,16 1,89 

S2-CC 173,1 208,83 20,64 197 13,81 

S2-EC1 79,9 93,62 17,17 88,65 10,95 

S3-CC 130,2 155,96 19,78 139,18 6,90 

S3-EC1 76,4 87,15 14,07 80,98 5,99 

S4-CC 364,5 371 1,78 369,31 1,32 

S4-EC1 222,8 199,27 -10,56 192,31 13,68 

S5-CC 97,4 111,48 14,46 103,44 6,20 

S5-EC1 62,4 66,13 5,98 62,22 0,29 

S5-EC2 44,3 51,2 15,58 48,46 9,39 
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4.3 Procedure Validation 
 
 
As it is explained in the introduction of this chapter, a verification of the procedure to use in this 

thesis is carried out together with Rodríguez (2016). Two square hollow section are analysed, 

one in Class 1 (60x60x3) and the other in Class 4 (80x80x2). Only one material for Class 1 is used 

(ferritic stainless steel) and three different materials for Class 4 in order to carry out this 

validation, which are ferritic, duplex and austenitic stainless steel. The characteristics of these 

materials are proposed in the following Table 4.8: 

 

Material 𝝈𝟎.𝟐 (MPa) 𝝈𝒖 (MPa) n 

Austenitic 220 520 7.0 
Duplex 480 660 8.0 
Ferritic 210 380 14.0 

 

Table 4.8. Main characteristics of materials [Zhao, 2015] 

 

It is important to remark that we used a value of Young’s modulus of 200 GPa and Poisson’s ratio 

of 0.3. 

From results displayed in plots and figures, the results obtained in Rodriguez (2016) and the 

present work are compared. Some conclusions related to this validation are pointed out. 

 

4.3.1 Procedure Validation by EN 1993-1-4  
 
In chapter 2.5.1. it is explained the formulation to use for EN 1993-1-4 [CEN, 2006]. So, the 

calculation of the interaction Equation (2.28) is worked out and then the results are compared.  

 

 Compact section Class 1 

The Figure 4.2 represents how the Equation (2.28) works with ferritic stainless steel with a 

varying slenderness in Class 1 (SHS 60x60x3). 
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Figure 4.2. Durán and Rodríguez results. Ferritic stainless steel. Class 1. EN 1993-1-4 
 

 

In Table 4.9 it is represented the mean average and standard deviation for the ferritic stainless 

steel material for both Durán and Rodríguez results. 

 

  FERRITIC  

Durán results 
Mean Average 1.0638 

Standard deviation 0.0315 

Rodríguez results 
Mean Average 1.0933 

Standard deviation 0.0389 
 

Table 4.9. Durán and Rodríguez’s results. Ferritic stainless steel. Class 1. EN 1993-1-4 
 

 
 Slender section Class 4 

Figures 4.3-4.5 represent how the interaction Equation (2.28) works with different materials 

(ferritic, duplex and austenitic stainless steel) with a varying slenderness in Class 4 (SHS 

80x80x2), using the interaction factor k of EN 1993-1-4. 
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Figure 4.3. Durán and Rodríguez results. Ferritic stainless steel. Class 4. EN 1993-1-4 
 

 

 

Figure 4.4. Durán and Rodríguez results. Duplex stainless steel. Class 4. EN 1993-1-4 

 

 

 

Figure 4.5. Durán and Rodríguez results. Austenitic stainless steel. Class 4. EN 1993-1-4 
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In Table 4.10 it is represented the mean average and standard deviation for this three materials 

for both Durán and Rodriguez results. 

 

  FERRITIC  DUPLEX AUSTENITIC 

Durán results 
Mean Average 1.0624 1.0656 1.0259 

Standard deviation 0.0511 0.0687 0.0399 

Rodríguez results 
Mean Average 1.0776 1.0879 1.0583 

Standard deviation 0.0588 0.0714 0.0529 
 

Table 4.10. Durán and Rodríguez results. Ferritic, duplex and austenitic stainless steel. Class 4.      

EN 1993 1-4 

 

4.3.2 Procedure Validation by Zhao (2015) 
 

In chapter 2.5.2. it is explained the designed formulae to use the interaction factor k for Zhao 

(2015), a research performed at Imperial College in London. So, the calculation of the interaction 

Equation (2.28) is worked out and then the results are compared. 

 

 Compact section Class 1 

The Figure 4.6 represents how the Equation (2.28) works with ferritic stainless steel with a 

varying slenderness in Class 1 (SHS 60x60x3). 

 

 

Figure 4.6. Durán and Rodríguez results. Ferritic stainless steel. Class 1. Zhao, 2015 
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In Table 4.11 it is represented the mean average and standard deviation for ferritic stainless 

steel material for both Durán and Rodríguez results. 

  FERRITIC  

Durán results 
Mean Average 0.9985 

Standard deviation 0.0065 

Rodríguez results 
Mean Average 1.0243 

Standard deviation 0.0208 
 

Table 4.11. Durán and Rodríguez results. Ferritic stainless steel. Class 1. Zhao, 2015 
 

 Slender section Class 4 

The Figures 4.7-4.9 represent how the interaction Equation (2.28) works with different materials 

(ferritic, duplex and austenitic stainless steel) with a varying slenderness in Class 4 (SHS 

80x80x2), using the interaction factor k of Zhao (2015). 

 

 

Figure 4.7. Durán and Rodríguez results. Ferritic stainless steel. Class 4. Zhao, 2015 
 

 

 

Figure 4.8. Durán and Rodríguez results. Duplex stainless steel. Class 4. Zhao, 2015 
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Figure 4.9. Durán and Rodríguez results. Austenitic stainless steel. Class 4. Zhao, 2015 
 

In Table 4.12 it is represented the mean average and standard deviation for this three materials 

for both Durán and Rodriguez’s results. 

 

  FERRITIC  DUPLEX AUSTENITIC 

Durán results 
Mean Average 0.9966 1.0277 1.0661 

Standard deviation 0.0023 0.0427 0.0136 

Rodríguez results 
Mean Average 1.0107 1.0481 1.100 

Standard deviation 0.0310 0.0166 0.0166 

 

Table 4.12. Durán and Rodríguez results. Ferritic, duplex and austenitic stainless steel. Class 4.       

Zhao, 2015 

 

4.3.3 Procedure Validation by Arrayago et al. (2015) 
 

In chapter 2.5.3. it is explained the designed formulae to use the interaction factor k for the 

research performed at UPC (Arrayago et al., 2015). So, the calculation of the interaction 

Equation (2.28) is worked out and then the results are compared. 

 

 Compact section Class 1 

The Figure 4.10 represents how the Equation (2.28) works with ferritic stainless steel and with 

a varying slenderness in Class 1 (SHS 60x60x3). 
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Figure 4.10. Durán and Rodríguez results. Ferritic stainless steel. Class 1. Arrayago et al., 2015 
 

In Table 4.13 it is represented the mean average and standard deviation for ferritic stainless 

steel material for both Durán and Rodríguez results. 

  FERRITIC  

Durán results 
Mean Average 0.9488 

Standard deviation 0.0174 

Rodríguez results 
Mean Average 0.9724 

Standard deviation 0.0318 
 

Table 4.13. Durán and Rodríguez results. Ferritic stainless steel. Class 1. Arrayago et al., 2015 
 

 

 Slender section Class 4 

The Figures 4.11-4.13 represent how the interaction Equation (2.28) works with different 

materials (ferritic, duplex and austenitic stainless steel) with a varying slenderness in Class 4 

(SHS 80x80x2), using the interaction factor k for the research performed at UPC (Arrayago, 

2015). 
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Figure 4.11. Durán and Rodríguez results. Ferritic stainless steel. Class 4. Arrayago et al., 2015 
 

 

 

Figure 4.12. Durán and Rodríguez results. Duplex stainless steel. Class 4. Arrayago et al., 2015 
 

 

 

Figure 4.13. Durán and Rodríguez results. Austenitic stainless steel. Class 4. Arrayago et al., 
2015 
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In Table 4.14 it is represented the mean average and standard deviation for this three materials 

for both Durán and Rodriguez results. 

 

  FERRITIC  DUPLEX AUSTENITIC 

Durán results 
Mean Average 0.9472 0.9491 0.9187 

Standard deviation 0.0248 0.0227 0.0267 

Rodríguez results 
Mean Average 0.9601 0.9667 0.9439 

Standard deviation 0.0345 0.0269 0.0318 
 

Table 4.14. Durán and Rodríguez results. Ferritic, duplex and austenitic stainless steel. Class 4.      

Arrayago et al., 2015 

 

4.3.4 Concluding remarks 
 
Below there is a Table 4.15 where there are all the mean averages and standard deviations for 
the different classes and materials for Durán and Rodríguez results. 
 
 

   Durán results Rodríguez results 

Formulation Cross-section Material Mean A. Standard D. Mean A. Standard D. 
 

EN 1993 1-4 
Class 1 Ferritic 1.064 0.032 1.093 0.039 

 
Class 4 

Ferritic 1.062 0.051 1.078 0.059 
Duplex 1.065 0.069 1.087 0.071 

Austenitic 1.026 0.040 1.058 0.053 
 

Zhao, 2015 
Class 1 Ferritic 0.998 0.006 1.024 0.021 

 
Class 4 

Ferritic 0.997 0.023 1.011 0.031 
Duplex 1.028 0.043 1.048 0.041 

Austenitic 1.066 0.014 1.100 0.017 
 

Arrayago et 
al. 2015 

Class 1 Ferritic 0.945 0.017 0.972 0.032 
 

Class 4 
Ferritic 0.947 0.025 0.960 0.034 
Duplex 0.949 0.023 0.966 0.027 

Austenitic 0.919 0.027 0.944 0.032 
 

Table 4.15. Comparison Durán and Rodríguez results for procedure validation 
 
As it could be observed in Table 4.15, for EN 1993-1-4 and Zhao (2015) the results are really 
similar, whether through Class 1 or Class 4 and for the different stainless steel materials. Values 
obtained are very near to 1.0, so this are results good enough in order to carry out the behavior 
of stainless steel beam-columns. But for Arrayago et al. (2015), the results vary 0.2-0.3 in the 
mean average. These are not bad results but, just to remark, it is obtained better outcomes with 
Eurocode and Zhao (2015) formulation than with Arrayago formulation (2015). This difference 
could exist because when Arrayago et al. (2015) performed the research, they supposed the 
imperfection amplitudes due to they do not have them. In order to adopt the traditional L/1500, 
it was applied expressions from EN 1993-1-1 which gave some imperfections higher than L/1500, 
so the Equation was calibrated.   
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4.4 Strain hardening exponent validation 
 
 
In this chapter, a validation of the strain hardening exponent n is done. This parameter is 
described in Equation (2.2) and it is used in material equations. This validation is done using a 
cross-section Class 1 (60x60x3 mm) and another one for Class 2 (100x100x3 mm). I wanted to 
observe how this change of parameter affected at the final results of the interaction formulas. 
For this validation procedure, a ferritic stainless steel for both sections with the characteristics 
parameter of strain hardening exponent for ferritic, n=14, and then n=7, which is the typical 
strain hardening exponent parameter in austenitic stainless steels, is used, but with all the other 
characteristics of the ferritic stainless steel. 
 
In the following figures 4.13.a and 4.13.b it is possible to observe how this change affects to the 
𝜎𝑛𝑜𝑚 − 𝜀𝑡𝑟𝑢𝑒,𝑝𝑙. curve. 

 
 

     
Figure 4.13a Strain hardening exponent n=14          Figure 4.13b Strain hardening exponent n=7 

Figure 4.13. Strain hardening exponent 

 

It is possible to observe that with the strain hardening exponent equals to 14 in ferritic stainless 

steel, for less strain we will have a nominal stress higher. But when we have higher strains 

(between 1.25% and 5.00%) we will have the same nominal stress for both n=14 and n=7 cases. 

In order to obtain the results, an analysis is carried out with the interaction Equation (2.28) with 

the interaction factor k for EN 1993-1-4, Zhao (2015), Arrayago et al. (2015) and Simplified 

Method from Structural Steel Code EAE formulae explained in the previous chapter.  

 

4.4.1. Strain hardening exponent by EN 1993-1-4 
 
In chapter 2.5.1. it is explained the formulation to use for EN 1993-1-4. So, the calculation of the 

interaction Equation (2.28) is worked out and then the results are compared.  
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 Compact section Class 1 

The Figure 4.14 represents how the Equation (2.28) works with ferritic stainless steel with a 

varying slenderness in Class 1 (SHS 60x60x3). 

 

Figure 4.14. Comparison strain hardening exponent by EN 1993 1-4. Class 1 

 

The next Table 4.16 shows the mean average and the standard deviation for both strain 

hardening exponent. 

n Mean Av. Standard D. 

14.0 1.0638 0.0316 
7.0 1.0642 0.0393 

 

Table 4.16. Comparison strain hardening exponent by EN 1993 1-4. Class 1 

 

 Compact section Class 2 

The Figure 4.15 represents how the Equation (2.28) works with ferritic stainless steel with a 

varying slenderness in Class 2 (SHS 100x100x3). 

 

 

Figure 4.15. Comparison strain hardening exponent by EN 1993 1-4. Class 2 
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The next Table 4.17 shows the mean average and the standard deviation for both strain 

hardening exponent. 

 

n Mean Av. Standard D. 

14.0 1.0175 0.0436 
7.0 1.010 0.0231 

  

Table 4.17. Comparison strain hardening exponent by EN 1993 1-4. Class 2 

 

4.4.2. Strain hardening exponent by Zhao (2015) 
 
In chapter 2.5.2. it is explained the designed formulae to use the interaction factor k for Zhao 

(2015). So, the calculation of the interaction Equation (2.28) is worked out and then the results 

are compared. 

 

 Compact section Class 1 

The Figure 4.16 represents how the Equation (2.28) works with ferritic stainless steel with a 

varying slenderness in Class 1 (SHS 60x60x3). 

 

 

Figure 4.16. Comparison strain hardening exponent by Zhao, 2015. Class 1 

 

The next Table 4.18 shows the mean average and the standard deviation for both strain 

hardening exponent. 

 

n Mean Av. Standard D. 

14.0 0.998 0.0065 
7.0 0.999 0.027 

 

Table 4.18. Comparison strain hardening exponent by Zhao, 2015. Class 1 
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 Compact section Class 2 

The Figure 4.17 represents how the Equation (2.28) works with ferritic stainless steel with a 

varying slenderness in Class 2 (SHS 100x100x3). 

 

 

Figure 4.17. Comparison strain hardening exponent by Zhao, 2015. Class 2 

 

The next Table 4.19 shows the mean average and the standard deviation for both strain 

hardening exponent. 

n Mean Av. Standard D. 

14.0 0.9578 0.0263 
7.0 0.9517 0.0286 

  

Table 4.19. Comparison strain hardening exponent by Zhao, 2015. Class 2 

 

4.4.3. Strain hardening exponent by Arrayago et al. (2015) 
 
In chapter 2.5.3. it is explained the designed formulae to use the interaction factor k for Arrayago 

et al., (2015). So, the calculation of the interaction Equation (2.28) is worked out and then the 

results are compared. 

 

 Compact section Class 1 

The Figure 4.18 represents how the Equation (2.28) works with ferritic stainless steel and with 

a varying slenderness in Class 1 (SHS 60x60x3). 
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Figure 4.18. Comparison strain hardening exponent by Arrayago et al., 2015. Class 1 

 

The next Table 4.20 shows the mean average and the standard deviation for both strain 

hardening exponent. 

n Mean Av. Standard D. 

14.0 0.9489 0.017 
7.0 0.9501 0.040 

 

Table 4.20. Comparison strain hardening exponent by Arrayago et al., 2015. Class 1 

 

 Compact section Class 2 

The Figure 4.19 represents how the Equation (2.28) works with ferritic stainless steel with a 

varying slenderness in Class 2 (SHS 100x100x3). 

 

 

Figure 4.19. Comparison strain hardening exponent by Arrayago et al., 2015. Class 2 
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The next Table 4.21 shows the mean average and the standard deviation for both strain 

hardening exponent. 

 

n Mean Av. Standard D. 

14.0 0.9118 0.0146 
7.0 0.9066 0.0275 

  

Table 4.21. Comparison strain hardening exponent by Arrayago et al., 2015. Class 2 

 

4.4.4. Strain hardening exponent by Simplified Method. 
 
In chapter 2.5.4. it is explained the formulation to use for Simplified Method from Structural 

Steel Code EAE. So, the calculation of the interaction Equation (2.28) is worked out and then the 

results are compared. 

 Compact section Class 1 

The Figure 4.20 represents how the Equation (2.34) works with ferritic stainless steel with a 

varying slenderness in Class 1 (SHS 60x60x3). 

 

 

Figure 4.20. Comparison strain hardening exponent by Simplified Method. Class 1 

 

The next Table 4.22 shows the mean average and the standard deviation for both strain 

hardening exponent. 

 

n Mean Av. Standard D. 

14.0 1.259 0.151 
7.0 1.263 0.191 

 

Table 4.22. Comparison strain hardening exponent by Simplified Method. Class 1 
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 Compact section Class 2 
 
The Figure 4.21 represents how the Equation (2.34) works with ferritic stainless steel with a 

varying slenderness in Class 2 (SHS 100x100x3). 

 

 

Figure 4.21. Comparison strain hardening exponent by Simplified Method. Class 2 

 

The next Table 4.23 shows the mean average and the standard deviation for both strain 

hardening exponent. 

n Mean Av. Standard D. 

14.0 1.191 0.103 
7.0 1.185 0.129 

  

Table 4.23. Comparison strain hardening exponent by Simplified Method. Class 2 

 

4.4.5. Concluding remarks 
 
In the following Table 4.24, there is a summary where we can find the different mean averages 
and standard deviations for all different cases.  
 

   n=14 n=7 

Formulation Cross-section Material Mean A. Standard D. Mean A. Standard D. 

EN 1993 1-4 
Class 1 Ferritic 1.064 0.032 1.064 0.039 
Class 2 Ferritic 1.018 0.043 1.009 0.023 

 Zhao, 2015 
Class 1 Ferritic 0.998 0.007 0.999 0.027 
Class2 Ferritic 0.958 0.026 0.952 0.029 

 Arrayago et 
al., 2015 

Class 1 Ferritic 0.949 0.017 0.95 0.04 
Class2 Ferritic 0.912 0.015 0.907 0.028 

Simplified 
Method 

Class 1 Ferritic 1.259 0.151 1.264 0.191 
Class2 Ferritic 1.191 0.103 1.185 0.129 

 

Table 4.24. Summary of strain hardening exponent validation 
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The best results are those that have the mean average really close to the ideal value 1.0. So, 

using Zhao (2015) equations the Interaction Equation reaches values near to 1. For EN 1993-1-4 

the values obtained are a little bit above from the ideal value but not too far. Then, for Arrayago 

et al. (2015) the outcomes are below 1.0 In both cross sections Class 1 and Class 2. This, as same 

that in the previous chapter, may be due to the calibration of the interaction factor k equation. 

Finally, for the Simplified Method, as it is not a formulation used for stainless steel, it is obtained 

values distant to the ideal value. 

As it is possible to observe in the previous Table 4.24, all the standards deviations are lower 

when the strain hardening exponent equal to 14 is used. This means that the results are better 

than with the other parameter, n=7.0. Only in one case the standard deviation is higher with 

n=14, this is with the EN 1993-1-4 standards formulae in Class 2. This difference is of 0.02, so as 

it is not too high it can be assured that using the strain hardening exponent equal to 14 will give 

better results in ferritic stainless steel than using n=7.0 form the austenitic stainless steel. 
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5. BEHAVIOUR OF STAINLESS STEEL COLUMNS UNDER 
COMBINED BENDING AND AXIAL LOAD 

 

5.1 Introduction 
 
In this chapter a study of the behaviour of different stainless steel (Ferritic, Austenitic and 

Duplex) columns under combined bending and axial load is carried out. For elements subjected 

to combined compressive and bending load, the absence of buckling phenomena is really 

infrequent and so, the most significant verifications concern the bucking itself. The members 

subjected to combined compression and bending moment can buckle in different ways, 

depending on the cross-section geometry and on the boundary conditions. The study of 

members subjected to combined loading is done through interaction domains M-N. This study 

of the behaviour is done for square hollow section (SHS) of Class 1 and Class 2 (compact 

sections). For the first class we used the section 60x60x3 mm and for the second one 100x100x3 

mm. 

Numerical simulations were carried out on single span pin-ended stainless steel SHS beam-

columns, accounting for initial geometric imperfections, with the member slenderness ranging 

between 0.5 and 1.5. 

The following Figure 5.1 shows the different cross-section used in this analysis. 

                  

     Figure 5.1a. SHS 100x100x3 mm     Figure 5.1b SHS 60x60x3 mm 

Figure 5.1. Cross-sections 
 

The main objective of this chapter is to make a comparison of four different methods, calculating 

in each case the interaction factor k. These methods will be explained later and they are: 

 EN 1993-1-4 

 Zhao, 2015 

 Arrayago et al., 2015 
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 Simplified Method from Structural Steel Code EAE. 

 

As it is explained before, it is taking into consideration the austenitic, duplex and ferritic stainless 

steel for this study. The main characteristics of this materials are proposed in Table 2.8. 

In all the different cases and methods, we used the distribution of the bending moment taking 

into account 𝜓=1.0, so, a constant distribution of bending moment along the length member as 

could be seen from Figure 5.2. 

 

Figure 5.2: Bending moment diagram [Zhao, 2015] 
 

5.2 Imperfections 
 
 
Initial local geometric imperfections exist in all thin-walled structural members and can 

influence the development of local buckling, the load level at which plasticity initiates, the 

ultimate load-carrying capacity and the post-ultimate response. Hence, it is necessary to include 

suitable geometric imperfections into the FE models in order to accurately replicate the 

imperfections of the columns. The local imperfection that we used in this thesis is the 

imperfection amplitude 𝜔𝐷&𝑊 derived from the modified Dawson and Walker (D&W) predictive 

model, as given by Equation (5.1): 

𝜔𝐷&𝑊 = 0.023 (
𝜎0.2

𝜎𝑐𝑟,𝑚𝑖𝑛
) 𝑡                 (5.1) 

 

where t is the thickness of our section and 𝜎𝑐𝑟,𝑚𝑖𝑛 is the lowest critical stress for local buckling. 

The way to know this stress is using the following Equation (5.2): 
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𝜎𝑐𝑟,𝑚𝑖𝑛 = 𝑘 ·
𝜋2·𝐸

12(1−𝜈2)(
𝑏
𝑡

)
2    (5.2) 

 

in this case k=4.0 and the Poisson’s ratio is 0.3. 

Therefore, we have different local imperfections depending on the section that we are studying. 

In the following Table 5.1 we could see the different values of local imperfections. 

 

 SHS 60x60x3 - Class 1 SHS 100x100x3 – Class 2 

Local imperfection 𝝎𝑫&𝑾(mm) 0.0053 0.103 

 

Table 5.1. Local imperfections in different cross-sections 

For global imperfection, we are taking in consideration only one kind of imperfection, L/1000, 

for all the different analysis to study. 

 

5.3 Previous Calculations 
 

 
In this chapter, it is going to calculate the different lengths of the tests columns depending on 

its slenderness, �̅�. It is possible to see by Equation (5.3) how to obtain this slenderness.  

 

�̅� = √
𝐴·𝜎0.2

𝑁𝑐𝑟
                  (5.3) 

 

where 𝜎0.2 depends on the material used in the analyse. 

There are two ways to find out the value of the critical load; by the Equation (44) of critical load 

of Euler or by finite elements in Abaqus. 

𝑁𝑐𝑟 =
𝜋2·𝐸·𝐼

𝐿2                   (5.4) 

 

As with FE Abaqus it is possible to obtain more accurate results, the critical load Ncr is going to 

obtained by it, and then the slenderness is going to be calculated. 

It is important to remark that in order to calculate 𝐴𝜎0.2 by Abaqus and not by hand, it needs to 

introduce in the code many restrictions along all the length of column in order to not have global 

buckling. The length of the column introduced is 4500 mm. In the following Figures 5.3 and 5.4 

it is possible to see this effect: 
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Figure 5.3. Local buckling 𝐴𝜎0.2 
 

 

In order to obtain 𝑁𝑐𝑟, it is calculated the eigenvalue of our column introducing a load with a 

magnitude of 500 kN. Then, this eigenvalue given by Abaqus is multiplied by the load introduced 

and finally, the critical load for each material is obtained. 

Once the results are obtained, it is possible to calculate the slenderness, �̅�, for each particular 

case.  Hence, this slenderness is interpolated in order to obtain different slenderness (from 0.5 

to 1.5) and finally the different lengths for each slenderness are calculated 

In the following Tables 5.2-5.3 there is a summarise of all the lengths (mm) for each material 

and cross-section. 

 

SLENDERNESS FERRITIC DUPLEX AUSTENITIC 

0.5 1010 700 970 
0.75 1520 1050 1450 

1 2020 1500 1940 
1.25 2540 1750 2430 
1.5 3050 2100 2900 

 

Table 5.2. Class 1 lengths 
 

SLENDERNESS FERRITIC DUPLEX AUSTENITIC 

0.5 1840 1270 1780 
0.75 2760 1910 2680 

1 3570 2540 3570 
1.25 4600 3180 4460 
1.5 5520 3800 5350 

 

Table 5.3. SHS Class 2 lengths 
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Therefore, Figures 5.4a-5.4c and 5.5a-5.5c represent the proposed beam-column design 

interaction curves for class 1 and class 2 corresponding to a range of member slenderness for 

ferritic, duplex and austenitic stainless steels, respectively, indicating and increasingly concave 

trend as the member slenderness increases. 

 

 

(a) Ferritic stainless steel. Class 1                                          (b) Duplex stainless steel. Class 1 

 

 

 (c) Austenitic stainless steel. Class 1 

Figure 5.4: Proposed beam-column design interaction curves for varying member 

slendernesses. Class 1 
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(a) Ferritic stainless steel. Class 2                                           (b) Duplex stainless steel. Class 2 

 

 

 

(c) Austenitic stainless steel. Class 1 

Figure 5.5: Proposed beam-column design interaction curves for varying member 

slendernesses. Class 2 

 

 

5.4 Interaction of axial compression and bending moment by EN 1993 1-4 
 
In chapter 2.5.1. it is explained the formulation to use for EN 1993-1-4 [CEN, 2006]. So, the 

calculation of the interaction Equation (2.28) is worked out and then the results are compared.  
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 Compact section Class 1 

The Figure 5.6 represents how the Equation (2.28) works with ferritic, duplex and austenitic 

stainless steel with a varying slenderness in Class 1 (SHS 60x60x3). 

 

 

Figure 5.6. Interaction equation by EN 1993-1-4. Class 1 
 

In Table 5.4 it is represented the mean average and standard deviation for these three different 
materials. 
 

 FERRITIC DUPLEX AUSTENITIC 

Mean Average 1.0638 1.0442 1.0542 
Standard Deviation 0.0316 0.0276 0.0361 

Coefficient of Variation (%) 2.97 2.64 3.42 
 

Table 5.4. Mean average and standard deviation by EN 1993-1-4. Class 1 
 

It is possible to observed that with EN 1993-1-4 in class 1 we have better results with duplex 

steel than with ferritic or austenitic steels 

It is possible too to make a comparison of the three materials with the interaction factor k and 

the slenderness, in order to see if the Equation (2.29) is accurate enough. In Figure 5.7 it is 

represented this comparison. 
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Figure 5.7. Interaction factor and slenderness. EN 1993-1-4. Class 
 

In this case, the interaction factor k does not vary when the material is changed. This is 

something positive because it means that the method that it is used to calculate this interaction 

factor is robust. This means that no matter if the material is changed as so the interaction factor 

will be the same for each slenderness. 

The following Figures are a comparison between the interaction factor k and the slenderness, 

but changing the ratio of applied axial force to column buckling strength, nb. This ratio is 

expressed in Equation (5.5).                                              

𝑛𝑏 =
𝑁𝑒𝑑

𝑁𝑏,𝑟𝑑
                  (5.5) 

 

As observed in the following figures, the interaction factor will increase for the same slenderness 

at the same time that the ratio of applied axial force increases too. 
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(b) Duplex stainless steel 

 

 

(c) Austenitic stainless steel 

Figure 5.8. FE derived curves for interaction factors k by EN 1993-1-4. Class 1 

 

 Compact section Class 2 

The Figure 5.9 represents how the Equation (2.28) works with different materials (Ferritic, 

Duplex and Austenitic stainless steel) with a varying slenderness in Class 2 (SHS 100x100x3). 
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Figure 5.9. Interaction equation by EN 1993-1-4. Class 2 
 

In Table 5.5 it is represented the mean average and standard deviation for this three materials. 
 

 FERRITIC DUPLEX AUSTENITIC 

Mean Average 1.0175 1.0151 1.0183 
Standard Deviation 0.0436 0.0636 0.0299 

Coefficient of Variation (%) 4.28 6.27 2.94 
 

Table 5.5. Mean average and standard deviation by EN 1993-1-4. Class 1 
 

As observed that with EN 1993-1-4 in Class 2 there are better results with austenitic stainless 

steel than with ferritic or duplex ones. 

It is likely too to make a comparison of the three materials with the interaction factor k and the 

slenderness, in order to see if the Equation (2.29) is accurate enough. 

 

 

Figure 5.10. Interaction factor and slenderness. EN 1993 1-4. Class 2 
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For Class 2 the interaction factor k does not vary when the material is changed. This is something 

beneficial, as in Class 1, because it means that no matter if the material is changed as so the 

interaction factor will be the same for each slenderness. 

The following Figures 5.11a-5.11c are a comparison between the interaction factor k and the 

slenderness, but changing the ratio of applied axial force to column buckling strength, nb. This 

ratio is expressed in Equation (5.5). As it will be observed, the interaction factor will increase for 

the same slenderness at the same time that the ratio of applied axial force increases too. 

 

 

(a) Ferritic stainless steel 

 

 

 

(b) Duplex stainless steel 
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(c) Austenitic stainless steel 

Figure 5.11. FE derived curves for interaction factors k by EN 1993-1-4. Class 2 

 

5.5 Interaction of axial compression and bending moment by Zhao, 2015 
 

In chapter 2.5.2. it is explained the designed formulae to use the interaction factor k for Ou Zhao 

[Zhao, 2015]. So, the calculation of the interaction Equation (2.28) is worked out and then the 

results are compared. 

 Compact section Class 1 

The Figure 5.12 represents how the Equation (2.28) works with different materials (Ferritic, 

Duplex and Austenitic stainless steel) with a varying slenderness in Class 1 (SHS 60x60x3). 

 

 

Figure 5.12. Interaction formula by Zhao, 2015. Class 1 
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In Table 5.6 it is represented the mean average and standard deviation for this three materials. 

 
 FERRITIC DUPLEX AUSTENITIC 

Mean Average 0.9985 1.0089 1.0977 
Standard Deviation 0.0065 0.01185 0.0315 

Coefficient of Variation (%) 0.65 1.17 2.87 
 

Table 5.6. Mean average and standard deviation by Zhao, 2015. Class 1 
 

The coefficient of variation in ferritic stainless steel shows that Zhao, 2015 is one of the best 

approaches in order to achieve the ideal value of the Interaction Equation 1.0. 

It is possible too to make a comparison of the three materials with the interaction factor k and 

the slenderness, in order to see if the Equation (2.30) is accurate enough. 

 

 

Figure 5.13. Interaction factor and slenderness. Zhao, 2015. Class 1 
 

The interaction factor, k, does not vary when it is used ferritic and duplex stainless steel, but for 

austenitic there is a little variation from the other two. This is due to the change of the values of 

D1, D2 and D3 for each material. 

The following Figures 5.14a-5.14c are a comparison between the interaction factor k and the 

slenderness, but changing the ratio of applied axial force to column buckling strength, nb.  This 

ratio is expressed in Equation (5.5). As it is possible to observe, the interaction factor will 

increase for the same slenderness at the same time that the ratio of applied axial force increases 

too. For lower slenderness, the ratio of axial load will be more similar in three materials, but 

when the slenderness increases, the difference will be higher. 
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(a) Ferritic stainless steel 

 

 

(b) Duplex stainless steel 

 

 

 

(c) Austenitic stainless steel 

Figure 5.14. FE derived curves for interaction factors k by Zhao, 2015. Class 1 
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 Compact section Class 2 

The Figure 5.15 represents how the Equation (2.28) works with different materials (Ferritic, 

Duplex and Austenitic stainless steel) with a varying slenderness in Class 2 (SHS 100x100x3). 

 

Figure 5.15. Interaction formula by Zhao, 2015. Class 2 
 

In Table 5.7 it is represented the mean average and standard deviation for this three materials. 
 

 FERRITIC DUPLEX AUSTENITIC 

Mean Average 0.9578 0.9804 1.0596 
Standard Deviation 0.0263 0.0418 0.0334 

Coefficient of Variation (%) 2.75 4.26 3.15 
 

Table 5.7. Mean average and standard deviation by Zhao, 2015. Class 2 
 
 

As observed in the previous table, the interaction factor k of Zhao (2015) in Class 2 has the best 

result, as it happened in Class 1, in ferritic stainless steel. Hence, it is likely to affirm that ferritic 

stainless steel is the best material and the one that fits best when Zhao (2015) formulae is used. 

It is possible too to make a comparison of the three materials with the interaction factor k and 

the slenderness, in order to see if the Equation (2.30) is accurate enough. 
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Figure 5.16. Interaction factor and slenderness. Zhao, 2015. Class 2 
 

The interaction factor k, as it happens in Class 1, does not vary when it is used ferritic and duplex 

stainless steel, but for austenitic there is a little variation from the other two materials. This is 

due to the change of the values of D1, D2 and D3 for each material. For lower slenderness, the 

interaction factor will be more similar in three materials, but when the slenderness increases, 

the difference will be higher. 

 The following Figures 5.17a-5.17c are a comparison between the interaction factor k and the 

slenderness, but changing the ratio of applied axial force to column buckling strength, nb.  This 

ratio is expressed in Equation (5.5). As it is possible to observe, the interaction factor will 

increase for the same slenderness at the same time that the ratio of applied axial force increases 

too. 
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(b) Duplex stainless steel 

 

  

(c) Austenitic stainless steel 

Figure 5.17. FE derived curves for interaction factors k by Zhao, 2015. Class 2 

 

5.6 Interaction of axial compression and bending moment by Arrayago et al., 2015 
 

In chapter 2.5.3. it is explained the designed formulae to use the interaction factor k for Arrayago 

et al. (2015). So, the calculation of the interaction Equation (2.28) is worked out and then the 

results are compared. 

 Compact section Class 1 

The Figure 5.18 represents how the Equation (45) works with different materials (Ferritic, Duplex 

and Austenitic) with a varying slenderness in class 1 (SHS 60x60x3). 
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Figure 5.18. Interaction equation by Arrayago et al., 2015. Class 1 
 

In Table 5.8 it is represented the mean average and standard deviation for this three materials. 
 

 FERRITIC DUPLEX AUSTENITIC 

Mean Average 0.9488 0.9338 0.9409 
Standard Deviation 0.0174 0.0157 0.0089 

Coefficient of Variation (%) 1.83 1.68 0.95 
 

Table 5.8. Mean average and standard deviation by Arrayago et al., 2015. Class 1 
 

As observed in the previous table the interaction factor k of Arrayago et al. have better results 

in austenitic stainless steel than in ferritic and duplex stainless steel. The coefficient of variation 

shows that the variation in austenitic stainless steel is minimum. So, as it is said before, this 

approach works really well for this kind of material. 

It is possible too to make a comparison of the three materials with the interaction factor k and 

the slenderness, in order to see if the Equation (2.31) is accurate enough. 

 

Figure 5.19.  Interaction factor and slenderness. Arrayago et al., 2015. Class 1 
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The interaction factor, k, does not vary when the material is changed. As it happened with EN 

1993-1-4, this non variation is really positive because it means that the interaction factor k will 

be always the same, no matter the material used, for each slenderness. 

The following Figures 5.20a-5.20c are a comparison between the interaction factor k and the 

slenderness, but changing the ratio of applied axial force to column buckling strength, nb.  This 

ratio is expressed in Equation (5.5). As it is possible to observe, the interaction factor will 

increase for the same slenderness at the same time that the ratio of applied axial force increases 

too. 

 

 

(a) Ferritic stainless steel 

 

 

 

(b) Duplex stainless steel 

 

 

 

0.5

1

1.5

2

0.5 0.75 1 1.25 1.5In
te

ra
c
ti
o
n
 f

a
c
to

r,
 k

Slenderness, λ

Ferritic stainless steel. Class 1. Arrayago et al., 
2015

nb=0.9

nb=0.5

nb=0.25

0.5

1

1.5

2

0.5 0.75 1 1.25 1.5

In
te

ra
c
ti
o
n
 f

a
c
to

r,
 k

Slenderness, λ

Duplex stainless steel. Class 1. Arrayago et al., 
2015

nb=0.9

nb=0.5

nb=0.25



 

74 

 

 

(c) Austenitic stainless steel 

Figure 5.20. FE derived curves for interaction factors k by Arrayago et al., 2015. Class 1 

 

 Compact section Class 2 

The Figure 5.21 represents how the Equation (45) works with different materials (Ferritic, Duplex 

and Austenitic) with a varying slenderness in class 2 (SHS 100x100x3). 

 

 

Figure 5.21. Interaction formula by Arrayago et al., 2015. Class 2 
 

In Table 5.9 it is represented the mean average and standard deviation for this three materials. 
 

 FERRITIC DUPLEX AUSTENITIC 

Mean Average 0.9118 0.9085 0.91294 
Standard Deviation 0.0146 0.023 0.005 

Coefficient of Variation (%) 1.60 2.53 0.55 
 

Table 5.9. Mean average and standard deviation by Arrayago et al., 2015. Class 2 
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As observed in the table, the interaction factor k in Class 2 has the best result, as it happened in 

Class 1, in austenitic stainless steel. Hence, it is likely to affirm that austenitic stainless steel is 

the best material and the one that fits best when Arrayago et al. formulae is used. 

A comparison of the three materials is performed with the interaction factor k and the 

slenderness, in order to see if the Equation (2.31) is accurate enough. 

 

 

Figure 5.22. Interaction factor and slenderness. Arrayago et al., 2015. Class 2 
 

The interaction factor, k, does not vary when the different stainless steel is used. As it happened 

with EN 1993-1-4, this non variation is really good for the analyse because it means that the 

interaction factor k will be always the same, no matter which material is used, for each 

slenderness. 

The following Figures 5.23a-5.23c are a comparison between the interaction factor k and the 

slenderness, but changing the ratio of applied axial force to column buckling strength, nb.  This 

ratio is expressed in Equation (5.5). As we will observe, the interaction factor will increase for 

the same slenderness at the same time that the ratio of applied axial force increases too. 
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(b) Duplex stainless steel 

 

 

(c) Austenitic stainless steel 

Figure 5.23. FE derived curves for interaction factors k by Arrayago et al., 2015. Class 2 

 

 

5.7 Interaction of axial compression and bending moment by Simplified Method  
 

 
In chapter 2.5.4. it is explained the designed formulae to use the interaction factor k for the 

Simplified Method. So, the calculation of the interaction Equation (2.28) is worked out and then 

the results are compared. 

 

 Compact section Class 1 

The Figure 5.24 represents how the Equation (2.34) works with different materials (Ferritic, 

Duplex and Austenitic) with a varying slenderness in class 1 (SHS 60x60x3). 
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Figure 5.24. Interaction formula by Simplified Method. Class 1 
 

In Table 5.10 it is represented the mean average and standard deviation for this three materials. 
 

 FERRITIC DUPLEX AUSTENITIC 

Mean Average 1.2591 1.2340 1.2414 
Standard Deviation 0.1507 0.1404 0.1229 

Coefficient of Variation (%) 11.97 11.38 9.90 
 

Table 5.10. Mean average and standard deviation by Simplified Method. Class 1 
 
 

As observed in the previous table the best result for interaction factor k of the Simplified Method 

is in austenitic stainless steel and not for ferritic and duplex stainless steel. Another point to take 

into account is that the results which are near to 1.0 are those that have the slenderness bigger, 

so when the length of the column is higher. For the three different materials the Interaction 

Equation results are similar. 

It is possible too to make a comparison of the three materials with the interaction factor k and 

the slenderness, in order to see if the Equation (2.35) is accurate enough. 

 

Figure 5.25. Interaction factor and slenderness. Simplified Method 
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It is observed that the interaction factor, k, does not vary when we change the material. Along 

all the different slenderness, this factor is always near to 2.0. 

The following Figures 5.26a-5.26c are a comparison between the interaction factor k and the 

slenderness, but changing the ratio of applied axial force to column buckling strength, nb.  This 

ratio is expressed in Equation (5.5). As it will be observed in this case, the interaction factor k 

remains constant along all its slenderness for a ratio of 0.25 (approximately 1.3), for a ratio of 

0.5 (approximately 2.0). and finally, for a ratio of 0.9 (approximately 9.5). This happens for all 

three materials, ferritic, duplex and austenitic stainless steel. 

 

 

(a) Ferritic stainless steel 

 

 

 

(b) Duplex stainless steel 
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(c) Austenitic stainless steel 

Figure 5.26. FE derived curves for interaction factors k by Simplified Method. Class 1 

 

 Compact section Class 2 

The Figure 5.27 represents how the Equation (2.34) works with different materials (Ferritic, 

Duplex and Austenitic stainless steel) with a varying slenderness in class 2 (SHS 100x100x3). 

 

 

Figure 5.27. Interaction formula by Simplified Method. Class 2 
 

In Table 5.11 it is represented the mean average and standard deviation for this three materials. 
 

 FERRITIC DUPLEX AUSTENITIC 

Mean Average 1.1915 1.1829 1.1959 
Standard Deviation 0.1029 0.0925 0.1164 

Coefficient of Variation (%) 8.64 7.82 9.73 
 

Table 5.11. Mean average and standard deviation by Simplified Method. Class 2 
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As it is noticed in the previous table the best result interaction factor k in Class 2 is in the duplex 

stainless steel, followed by ferritic ant then austenitic stainless steel. 

It is suitable too to make a comparison of the three materials with the interaction factor k and 

the slenderness, in order to see if the Equation (2.35) is accurate enough. 

 

 

Figure 5.28. Interaction factor and slenderness. Simplified Method. Class 2 
 

We observe that the interaction factor, k, does not vary when we change the material. Along all 

the different slenderness, this factor is near to 2.0. That means that no matter how high is the 

slenderness of the element that the interaction factor will be always around to 2.0. 

The following Figures 5.29a-5.29c are a comparison between the interaction factor k and the 

slenderness, but changing the ratio of applied axial force to column buckling strength, nb.  This 

ratio is expressed in Equation (5.5). As it will be observed in this case, the interaction factor k 

remains constant along all its slenderness for a ratio of 0.25 (approximately 1.3), for a ratio of 

0.5 (approximately 2.0). and finally, for a ratio of 0.9 (approximately 9.5). This happens for all 

three materials, ferritic, duplex and austenitic stainless steel. 
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(b) Duplex stainless steel 

 

 

(c) Austenitic stainless steel 

 

Figure 5.29. FE derived curves for interaction factors k by Simplified Method. Class 2 

 

5.8 Concluding remarks 
 

In the following Table 5.12a-5.12d there is a summary of all the different cases and materials 

where it is possible to find the standard deviation, the mean average and the coefficient of 

variation for each method used in this chapter. Therefore, there ratio of Mean Average can be 

compared and observed for distribution data with the ratio of axial force (NEd/Nb,Rd). 
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Formulation Cross-section Material nb 
Mean 

Average, �̅� 
Standard 

Deviation, σx 

Coefficient 
of variation, 

Vx (%) 

EN 1993 1-4 

 
Class 1  

 60x60x3 
 

Ferritic 
0.9 1.0061 0.0119 1.18 
0.5 1.0638 0.0316 2.97 

0.25 1.0677 0.0392 3.67 

Duplex 
0.9 0.9828 0.0055 0.56 
0.5 1.0442 0.0276 2.64 

0.25 1.0580 0.0320 3.03 

Austenitic 
0.9 0.9827 0.0112 1.14 
0.5 1.0542 0.0361 3.42 

0.25 1.0349 0.0326 3.15 

 
Class 2  

 100x100x3 
 

Ferritic 
0.9 1.0043 0.0147 1.46 
0.5 1.0175 0.044 4.32 

0.25 1.0168 0.0261 2.57 

Duplex 
0.9 0.9945 0.0089 0.89 
0.5 1.0151 0.0636 6.27 

0.25 1.0336 0.0612 5.92 

Austenitic 
0.9 0.9942 0.0110 1.11 
0.5 1.0183 0.0299 2.94 

0.25 1.0125 0.0411 4.06 
Table 5.12a. Summary results using EN 1993-1-4, 2006. 

 

    

Formulation Cross-section Material nb 
Mean 

Average, �̅� 
Standard 

Deviation, σx 

Coefficient 
of variation, 

Vx (%) 

 Zhao, 2015 

 
Class 1   

60x60x3 
 

Ferritic 
0.9 0.9917 0.0118 1.19 
0.5 0.9985 0.0065 0.65 

0.25 0.9874 0.0143 1.45 

Duplex 
0.9 0.9773 0.0093 0.95 
0.5 1.0089 0.0118 1.17 

0.25 1.0032 0.0133 1.33 

Austenitic 
0.9 1.0977 0.0315 2.87 
0.5 0.9772 0.0102 1.04 

0.25 0.9813 0.0126 1.28 

 
Class 2 

  100x100x3 
 

Ferritic 
0.9 0.9889 0.0084 0.85 
0.5 0.9578 0.0263 2.76 

0.25 0.9423 0.0236 2.50 

Duplex 
0.9 0.9880 0.0056 0.57 
0.5 0.9804 0.0418 4.26 

0.25 0.9785 0.0389 3.97 

Austenitic 
0.9 0.9874 0.0066 0.67 
0.5 1.0597 0.0334 3.15 

0.25 0.9604 0.0068 0.70 
Table 5.12b. Summary results using Zhao, 2015. 
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Formulation Cross-section Material nb 
Mean 

Average, �̅� 
Standard 

Deviation, σx 

Coefficient 
of variation, 

Vx (%) 

Arrayago et 
al., 2015 

 
Class 1   

60x60x3 
 

Ferritic 
0.9 0.9786 0.0104 1.06 
0.5 0.9489 0.0174 1.83 

0.25 0.9440 0.0170 1.80 

Duplex 
0.9 0.9609 0.0090 0.94 
0.5 0.9338 0.0157 1.68 

0.25 0.9366 0.0216 2.30 

Austenitic 
0.9 0.9609 0.0059 0.61 
0.5 0.9409 0.0089 0.95 

0.25 0.9168 0.0107 1.17 

 
Class 2  

 100x100x3 
 

Ferritic 
0.9 0.9757 0.0078 0.79 
0.5 0.9118 0.0146 1.60 

0.25 0.9014 0.0196 2.17 

Duplex 
0.9 0.9696 0.0068 0.70 
0.5 0.9085 0.0230 2.53 

0.25 0.9142 0.0293 3.20 

Austenitic 
0.9 0.9684 0.0076 0.78 
0.5 0.9129 0.0050 0.55 

0.25 0.8978 0.0212 2.36 
Table 5.12c. Summary results using Arrayago et al., 2015. 

    

Formulation Cross-section Material nb 
Mean 

Average, �̅� 
Standard 

Deviation, σx 

Coefficient 
of variation, 

Vx (%) 

Simplified 
Method 

 
Class 1  

 60x60x3 
 

Ferritic 
0.9 1.501 0.2009 13.38 
0.5 1.2591 0.1507 11.97 

0.25 1.0935 0.2009 18.37 

Duplex 
0.9 1.3677 0.1553 11.35 
0.5 1.2340 0.1404 11.38 

0.25 1.0857 0.0967 8.91 

Austenitic 
0.9 1.3585 0.1331 9.80 
0.5 1.2414 0.1229 9.90 

0.25 1.0586 0.0799 7.55 

 
Class 2  

 100x100x3 
 

Ferritic 
0.9 1.4776 0.1954 13.22 
0.5 1.1915 0.1029 8.64 

0.25 1.0413 0.0770 7.39 

Duplex 
0.9 1.4334 0.1915 13.36 
0.5 1.1829 0.0925 7.82 

0.25 1.0521 0.0672 6.39 

Austenitic 
0.9 1.4299 0.1935 13.53 
0.5 1.1959 0.1164 9.73 

0.25 1.0379 0.0944 9.09 
Table 5.12d. Summary results using Simplified Method 
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(a) Ferritic Stainless Steel. Class 1 

 

 

(b) Ferritic Stainless Steel. Class 2 

Figure 5.30. Distribution data result for ratio Mean Average with NEd/Nb,Rd Ferritic Stainless 

Steel 

 

 

(a) Duplex Stainless Steel. Class 1 
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(b) Duplex Stainless Steel. Class 2 

Figure 5.31. Distribution data result for ratio Mean Average with NEd/Nb,Rd Duplex 

Stainless Steel 

 

 

(a) Austenitic Stainless Steel. Class 1 

 

 

(b) Austenitic Stainless Steel. Class 2 

(c) Figure 5.32. Distribution data result for ratio Mean Average with NEd/Nb,Rd Austenitic 

Stainless Steel 
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First of all, it is important to remark that the designed formulae of the Simplified Method are 

used for non-stainless steel. This is why the results are a little bit different from the others 

approaches, but the aim of this study for Simplified Method was to observe how this interaction 

equation for non-stainless steel works for different stainless steel. 

As it is possible to observe in tables and then in figures, the best approach for this material is 

when Zhao (2015) formulae it is used. The mean average gets closer to the ideal value 1.0 and 

the standard deviation and coefficient of variation are smaller than the other approaches.  Then, 

with Arrayago et al. (2015) formulae, these statistics values are a little bit below the ideal value 

1.0 for both Class 1 and Class 2. This difference could exist because when Arrayago et al. (2015) 

performed the research, they supposed the imperfection amplitudes due to they do not have 

them. In order to adopt the traditional L/1500, it was applied expressions from EN 1993-1-1 

which gave some imperfections higher than L/1500, so the Equation was calibrated. This fact 

gives then, in some cases, unsafe results (values which are below 1.0). The contrary happens 

when EN 1993-1-4 is used, the results are just above the ideal value 1.0, this means that the 

formulae are conservatives and the results are safe. For the Simplified Method, as it is 

commented in the previously paragraph, for a low ratio of NEd/Nb,Rd the value is near to 1.0 but 

when this ratio is increased, the mean average, standard and coefficient of variation increases. 
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6. PARAMETRIC STUDIES 
 

 

6.1. Introduction 
 

Once the finite elements model is validated, a parametric study was conducted to generate 

more beam-column data over a wide range of cross section sizes and slendernesses. This 

variation of slenderness is global but it is taken the compact sections Class 1 and Class 2. In this 

parametric study, the flat and corner section were considered to be equals for all different cross-

sections and the material used is ferritic stainless steel, with a Young’s modulus coefficient of 

200 GPa and a Poisson’s ratio of 0.3. The initial local amplitudes were predicted using the 

modified Dawson and Walker model (D&W), explained in chapter 5.2, while the global 

imperfection amplitudes were taken as 1/1000 of the effective member length. The modelled 

specimens covered the sections Class 1 and Class 2 (compact sections). The ratio 𝑐/𝑡 ranges 

from 8.0 to 30.0, where c is the flat element width and t the thickness width. The buckling 

lengths of the beam-column FE models were varied to cover a wide spectrum of member 

slendernesses �̅� between 0.34 and 2.75. It is introduced a bending moment which value is 1000 

kNm, constant in all the length member, so 𝜓=1.0. The length member varies from 450 mm to 

3500 mm. In total, 480 parametric results were generated for specimens with Class 1 or 2 cross-

sections.  

The specimens are all of them square hollow sections (SHS) with a variation in the flat element 

width c and in the the thickness width t. These variations are: 

 

Figure 6.1. Different values for the parametric study 

 

 

Parametric study

Flat element 
width (mm)

40   45   50    55                    
60   65   70    75

Thickness (mm) 2.5  3  3.5  4  4.5  5

Length element 
(mm)

450  600  750  1000  
1500  1900  2300  
2700  3100  3500
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The main objective of this parametric study is to create a buckling curve and then compare it to 

the buckling curve for flexural buckling using the designed formulae for EN 1993-1-4 explained 

in chapter 2.5.1 and see if the wide range of points generated with the parametric study are 

above the curve of the European norm, so we would affirm that our parametric study is safe. 

The calculus resistance for buckling in an element subjected to axial load is the following 

Equation (6.1): 

𝑁𝑏,𝑟𝑑 =
𝜒·𝐴·𝜎0.2

𝛾𝑀1
                                                                    (6.1) 

where 𝛾𝑀1is equal to 1.0 for the Abaqus results and A is the cross-section area. 

 

If the reduction coefficient is isolated, we have the following Equation (6.2) 

 

𝜒 =
𝑁𝑏,𝑟𝑑
𝐴·𝜎0.2

                                                                    (6.2) 

 

where 𝑁𝑏,𝑟𝑑  is the calculus resistance for buckling calculated by FE Abaqus. 

This parametric study is done by a mesh combination, which means that it is analysed all 

different possibilities of flat elements and thickness. The other type of combination possible to 

do a is tuple mesh, but it was thought that with this kind of mesh would give much lower points 

to analyse and the main goal was to obtain a wide range of cross-section sizes, so this option 

was discarded it. 

 

6.2. Results 
 

The following Figure 6.1 shows, on the one hand, the European curve for buckling calculated 

following the equations from chapter 2.4.1. and, on the other hand, the buckling curve obtained 

by the parametric study done. This curve has the imperfection ratio α equals to 0.34 because 

the torsional and torsional-buckling for all members is taking into account. This means that it is 

used the buckling curve b in order to compare with the parametric study. Then, it is also 

compared with the different curves a, c and d for different imperfection ratio 0.21, 0.49 and 

0.76, respectively. 
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Figure 6.1. Curves for flexural buckling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

R
e
d
u
c
ti
o
n
 c

o
e
ff

ic
ie

n
t 
χ

Slenderness  λ

PARAMETRIC STUDY

Parametric results

EN 1993 buckling curve a

EN 1993 buckling curve b

EN 1993 buckling curve c

EN 1993 buckling curve d



 

90 

 

6.3 Concluding remarks 
 
The structural performance of ferritic stainless steel SHS beam-columns under axial compressive 
load and uniform bending moment has been investigated through numerical studies. The 480 
finite elements results were employed to evaluate the accuracy of the European code EN 1993-
1-4. It is proved with this parametric study that the European code leads to one of the most 
conservative strength predictions.  
 
First of all, the EN 1993-1-4 curve buckling b is analysed. As is it possible to see in the previous 
chapter, for lowest slendernesses, the reduction coefficient is much higher than the European 
curve for buckling, so that means that it is safe, but for higher slendernesses the parametric 
results are closer to the actual curve for buckling, so for this values of slendernesses the 
parametric results are not as safe as for lower values of slendernesses. The parametric results 
that are below the European curve for buckling b are those which the cross-section has no sense. 
Due to the mesh that it has done in order to carry out this parametric study, it exists cross-
section that in real life have no utility, for example the lowest value of flat element width (40 
mm) and the highest value of thickness (5 mm). Those points exist in the parametric study but 
they have to be discarded. 
 
Secondly, taking into account the comparison of the parametric results and the curve buckling 
a, there are between a range of slenderness from 0.4 to 0.8 some points which are below this 
curve. This buckling curve takes the lowest imperfection ratio of all the four curves, so the curve 
generated is the one which adjust best to the parametric results. For higher values of 
slenderness, the results points are all above the curve buckling a, and the same happens for 
slowest slendernesses.  
 
Finally, for the other two curve buckling c and d all the parametric results are above them. This 
two curves have a high value for the imperfection ratio so the curves generated are more 
conservative than in the case a and b. 
 
Also, there are points of the parametric study whose reduction factor are higher than 1.0. This 
is due to the length element low value of the beam-column. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

91 

 

7. CONCLUSIONS 
 

This thesis has provided the summary of stainless steel nonlinearity behaviour with the wide 

range variety of wide range of mechanical properties for each stainless steel material (austenitic, 

duplex and ferritic) of various cross-section types observed (Class 1 and Class 2). Hence, the 

comparison observation and parametric study took the material properties values based on 

particular experimental test values which associates to particular investigations. 

Finite element models were initially developed and validated against the experimental results 

and the used to conduct a parametric study to generate further structural performance data 

over a range of cross-section slendernesses. Analysis of the experimental and numerical results 

allowed the accuracy o0f the European code EN 1993-1-3. 

Considering the higher comparative material cost of stainless steel relative to carbon steel and 

its excellent aesthetic and mechanical properties, it is important to remark the importance to 

verify and then improve the designed expressions contained in EN 1993-1-4 in order to obtain a 

more efficient use of this material in structural application and in constructions.  

 

7.1 Specific conclusions 
 
In this section the main specific conclusions obtained are explained just to prove that the 
proposed objectives have been achieved. 

 

 A model validation has been made in order to carry out this thesis, so with this purpose, 

the results from the documents of Arrayago, Real, Mirambell [Arrayago et al.,2016] are 

used in order to verify the model. The comparison results show that there are no 

significant differences and the standard deviation is under 10, specifically 4.23. It is 

important to take into account that for this validation it has been taken the effective 

length (including the distance between knife-edges). The numerical model exploited has 

been demonstrated to be an adequate tool to reproduce the behaviour of plate 

elements loaded in compression. After that, with Rodríguez, who is doing the thesis in 

CTU in Prague, a procedure validation about the model has been done. A Class 1 (SHS 

60x60x3) and a Class 4 (SHS 80x80x2) has been analysed with different materials 

(ferritic, duplex and austenitic stainless steel). The results obtained by Durán and 

Rodríguez are really similar, whether through Class 1 or Class 4 and for the different 

stainless steel materials. But for Arrayago et al. (2015), the results vary 0.2-0.3 in the 

mean average. These are not bad results but, just to remark, it has been obtained better 

outcomes with Eurocode and Zhao (2015) formulae than with Arrayago et al. (2015). 

This difference could exist because when Arrayago et al. (2015) performed the research, 

they supposed the imperfection amplitudes due to they do not have them. Instead of 

adopting the traditional L/1500, it was applied expressions from EN 1993-1-1 which gave 

some imperfections higher than L/1500, so the interaction factor k equation was 

calibrated.   
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 A validation of the strain hardening exponent n is done in this thesis. This validation is 

done using a cross-section Class 1 and another one for Class 2. It is wanted to observe 

how this change of parameter affected at the final results of the interaction formulas, 

using a n=14.0 (typical ferritic) and another n=7.0 (typical austenitic). The results 

confirm that all the standards deviations are lower when the strain hardening exponent 

equal to 14 is used. From the curve 𝜎𝑛𝑜𝑚 − 𝜀𝑡𝑟𝑢𝑒.𝑝𝑙 it was possible to affirm that with 

n=14.0, for a less strain the material will have a nominal stress higher. Hence, in this 

validation it has been studied how important is the strain hardening exponent in 

material equations.  

 A study of the behaviour of different stainless steel (Ferritic, Austenitic and Duplex) 

beam-columns under combined bending and axial load is carried out. The members 

subjected to combined compression and bending moment can buckle in different ways, 

depending on the cross-section geometry and on the boundary conditions. This study of 

the behaviour is done for square hollow section (SHS) of Class 1 and Class 2 (compact 

sections). Numerical simulations were carried out on single span pin-ended stainless 

steel SHS beam-columns, accounting for initial geometric imperfections, with the 

member slenderness ranging between 0.5 and 1.5. The global imperfection was L/1000 

and the local initial imperfection was taking into account using the Dawson and Walter 

formulation. The comparisons revealed that the proposals of Zhao (2015) and Arrayago 

(2015) provide more accurate and consistent beam column strength predictions than 

the current codified design approaches. In case of EN 1993-1-4 formulae, the mean 

average is above the ideal value 1.0 due to the European code use some conservative 

formulae. Finally, the formulae of the Simplified Method are used for non-stainless 

steel. This is why the results are a little bit different from the others approaches, but the 

aim of this study for Simplified Method was to observe how this interaction equation 

for non-stainless steel works for different stainless steel. 

 A parametric study was conducted to generate more beam-columns data over a wide 

range of cross section sizes and slendernesses. The 480 finite elements results were 

employed to evaluate the accuracy of the European code EN 1993-1-4. It is proved with 

this parametric study that the European code leads to one of the most conservative 

strength predictions, for lowest slendernesses the reduction coefficient is much higher 

than the European curve for buckling, so that means that it is safe, but for higher 

slendernesses the parametric results are closer to the actual curve for buckling, so for 

this values of slendernesses the results are not as safe as for lower values of 

slendernesses.  

 

7.2 Future research work 
 
The main purpose of the master thesis has been to strengthen the knowledge of ferritic stainless 
steel structures behavior. Throughout the studies realized, the principal aim has been to analyze 
the response of ferritic stainless steel beam-columns subjected to combined loading and to 
compare the numerical results with the design formulae of EN 1993-1-4 literature and some 
others proposal researches (research performed at Imperial College of London by Zhao, 2015 
and another research performed at UPC by Arrayago et al., 2015). Not every topic has been 
analyzed in this thesis so this has to encourage new future investigation.  
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 To study other SHS cross-sections in order to validate and prove the advanced 

proposals. 

 In the parametric study, to consider a wide range of slenderness with more finite 

elements results. 

 To realize some experimental tests in order to support the numerical results already 

obtained. 
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