
Control-Flow Independence Reuse
via Dynamic Vectorization

Alex Pajuelo, Antonio González and Mateo Valero
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Barcelona – Spain

{mpajuelo, antonio, mateo}@ac.upc.es

Abstract
Current processors exploit out-of-order execution and branch
prediction to improve instruction level parallelism. When a
branch prediction is wrong, processors flush the pipeline and
squash all the speculative work. However, control-flow
independent instructions compute the same results when they
re-enter the pipeline down the correct path. If these
instructions are not squashed, branch misprediction penalty
can significantly be reduced.

In this paper we present a novel mechanism that detects
control-flow independent instructions, executes them before
the branch is resolved, and avoids their re-execution in the
case of a branch misprediction. The mechanism can detect
and exploit control-flow independence even for instructions
that are far away from the corresponding branch and even out
of the instruction window.
 Performance figures show that the proposed mechanism
can exploit control-flow independence for nearly 50% of the
mispredicted branches, which results in a performance
improvement that ranges from 14% to 17,8% for realistic
configurations of forthcoming microprocessors.

1. Introduction
Current processors’ potential [13] to exploit instruction level
parallelism depends on their ability to build a large instruction
window. Branch instructions are the main problem [10] to
build such large instruction windows for non-numeric
applications. Every time a branch prediction is wrong, the
pipeline is flushed, and the instruction window is built again
through the correct path. However, control independent
instructions, i.e., instructions that are encountered in every
branch path computing the same values, could theoretically
remain in the instruction window and their re-execution could
be avoided.

In this paper, we present a hardware mechanism that tries to
identify control-flow independent instructions to speculatively
execute them ahead of time and avoid their re-execution in
case of branch mispredictions. The effect of this technique is a
net increase in the effective instruction window size and thus,
in performance. Moreover, the mechanism can pre-execute
control-flow independent instructions before they enter the
pipeline, increasing, virtually, the instruction window.

We show that the proposed technique can exploit control-
flow independence for about 50% of the dynamic
mispredicted branches in SpecInt 2000 benchmarks, which
results in an average performance improvement of 17,8%. Due
to the way the mechanism precomputes values, it is not
necessary to store them in the register file, so we propose a

possible implementation that consists in the addition of a
simple and cheap slow memory to hold those speculative
values. Numbers showing that this small memory achieves the
same performance as an unbounded monolithic register file
are provided.

The rest of this paper is organized as follows. Section 2
describes the proposed approach. Section 3 analyzes the
performance of the proposed scheme. Related work is outlined
in section 4. Finally, section 5 summarizes the main
conclusions of this work.

2. The Approach
2.1. Control-Flow Independent Instructions
An instruction is control-flow independent with respect to a
given branch instruction if its result is the same regardless of
the branch outcome. Control-flow independent instructions are
common in hammock control flow structures resulting from if-
then-else constructs. An example is shown in Figure 1.

I1: MOV R1, 0
I2: MOV R2, 0
I3: MOV R3, 0
I4: MOV R4, 0
I5: loop: LD R0, a[R1]
I6: CMP R0, 0
I7: BE else
I8: then: INC R2
I9: BR IP
I10:else: INC R3
I11:IP: ADD R4, R4, R0
I12: ADD R1, 4
I13: CMP R1, 400
I14: BLE loop

Figure 1: Sample code with a hammock.

The code in Figure 1 counts how many elements of vector a
are equal to zero (stored in register R3) and how many are not
(stored in register R2). Furthermore, the code accumulates the
sum of all elements of vector a in register R4.

The branch at instruction I7 may be hard to predict (e.g., the
data of vector a does not follow any regular pattern).
However, instructions I11-I14 are executed and produce the
same results regardless of the branch outcome.

The first sequential instruction that is common to both taken
and not taken paths of a branch will be referred to as the re-
convergent point. In Figure 1, instruction I11 is the re-
convergent point of branch I7. Control-flow independent
instructions can be located starting from the re-convergent
point onwards.

Control-flow
independent

region

I1: MOV R1, 0

I2: MOV R2, 0

I3: MOV R3, 0

I4: MOV R4, 0

I5: LD RO,a[R1]

I6: CMP R0, 0

I7: BE else

I10: INC R3I8: INC R2

I9: BR IP

I11: ADD R4,R4,R0

I12: ADD R1,4

I13: CMP R1,400

I14: BLE loop

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

2.2. Overview of the Mechanism
The proposed mechanism works in four steps. The first two
steps select the control-independent instructions when a
branch misprediction is detected. The last two steps,
effectively vectorize the selected instructions. The selection
part and the vectorization part work separately and are
communicated through just one bit in the stride predictor (as
explained later in section 2.3.2 and 2.3.3). These steps are
explained now following the example in Figure 1.
• First step: when a hard-to-predict conditional branch is

detected (see details later in Section 2.3.1) and
mispredicted, the mechanism tries to find the re-convergent
point of that branch. Supposing that I7 in Figure 1 is the
mispredicted branch, the first step has to find I11 as the re-
convergent point.

• Second step: identification of the instructions (I11, I12 and
I13) after the re-convergent point (included) that are likely
to produce the same outcome after the branch misprediction
recovery and can be effectively vectorized (only I11 can be
vectorized). For this purpose, every instruction after the re-
convergent point is analyzed and it is checked whether its
source operands have been changed by an instruction after
the branch and before the re-convergent point. If the source
operands have not changed, the set of nearest strided loads
above the branch on which the instruction depends are
selected for speculative vectorization [12][22]. In the
example of Figure 1, the first instruction whose operands
have not changed after the branch is the re-convergent point
itself (instruction I11). The loads above the branch on
which instruction I11 depends is just instruction I5.

• Third step: speculative vectorization of the selected
instructions next time they are encountered. Vectorization is
performed by generating multiple speculative replicas of the
vectorized instruction. These speculative instructions are
dispatched to the issue queue and executed but not
committed until they are verified. Moreover, every time an
instruction is fetched, it is checked whether any of its
source operands is the outcome of a previously vectorized
instruction, and if this is the case, it is also speculatively
vectorized. In the example of Figure 1, instruction I5 is the
selected strided load that will be vectorized. Instructions I6
and I11 will also be vectorized because they are dependent
on instruction I5. Notice that I11 is a control-flow
independent instruction.

• Fourth step: every time an instruction is fetched, it is
checked whether it was previously vectorized. If so, it is
checked whether the vectorization was correct, and in this
case, the instruction is just marked as completed and sent to
the commit stage. Otherwise, the instruction is normally
executed.
These steps are further detailed below.

2.3. Implementation of the Mechanism
Now, we are going to explain in detail, how those 4 steps of
our mechanism work.

2.3.1. First step: Hard-to-predict Branches and Re-
convergent Point Detection
First of all, in order to apply the control independence scheme
to branches that are responsible for a significant number of
mispredictions [8][9], a table that we refer to as the MBS table

(Mispredicted Branch Status) is used. This table is indexed by
the PC of branches and has a 4-bit saturated up-down counter
per entry. The counter is increased by taken branches and
decreased by not taken branches, if the direction is the same as
the previous outcome. Otherwise, the counter is set to the
value that is in the middle of its range. If the value of this
counter is the maximum or minimum value, the branch is
considered to be highly biased and thus assumed to be easy to
predict. Otherwise, the control independence scheme is
activated.

The scheme to identify re-convergent points for
mispredicted branches is an extension of previous work in [5]
and involves basically two hardware structures. The first one
is a queue, called NRBQ (Not Retired Branch Queue), where
the estimated re-convergent points of the in-flight conditional
branches are stored. The second is the CRP (Current Re-
convergent Point).

Identification of re-convergent points does not need to be
correct. Wrongly estimated re-convergent points will affect
the performance of the processor but not the correctness of the
execution. Re-convergent points are estimated with the
following heuristics.

If the branch is a backward branch [18][21], the re-
convergent point is assumed to be the next instruction, in
program order, that follows the branch (a backward branch
usually corresponds to the closing branch of a loop as shown
in Figure 2-a).

If the branch is a forward branch, the instruction situated
one location above the target address [3] is fetched and
analyzed. If the branch is predicted as taken this instruction is
fetched in the next cycle, possibly together with the target
instructions and succeeding ones. If the branch is predicted as
not taken, this instruction is fetched just after the recovery of
the misprediction. If this instruction is an unconditional
forward branch (which is the common case for an if-then-else
structure as shown in Figure 2-c), the re-convergent point is
assumed to be the address pointed by this branch. Otherwise,
the re-convergent point is assumed to be the destination
address of the conditional branch (which is the common case
for and if-then structure as shown in Figure 2-b).

Figure 2: Common program constructs.

When a branch is executed its prediction is checked. In case
of a misprediction, younger instructions are squashed and if
the static branch is supposed to cause many dynamic branch
mispredictions, the information regarding this static branch is
introduced into the CRP register (Current Re-convergent
Point). This register contains the PC of the re-convergent point
and the R (Reached) flag that indicates whether the re-
convergent point has been reached.

then

Re-convergent pointRe-convergent point

body

a) loop structure b) if-then structure c) if-then-else
 structure

then

If

Re-convergent point

decoded
instruction

If

else

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

2.3.2. Second step: Control-Independent Instruction
Detection and Filtering
Every time an instruction is fetched, its PC is checked with the
PC stored in CRP. If they match, the R flag is set, which
indicates that the re-convergent point has been reached. To
identify whether an instruction after the re-convergent point
does not depend on the instructions between the branch and
the re-convergent point, every entry of the NRBQ is extended
with a mask of bits. Each bit is associated to a logical register
and indicates whether this logical register has been written
after this branch and before the next branch. When a branch is
found, the corresponding mask is cleared. For each new
instruction, the bit corresponding to the destination register is
set to one for the entry at the tail of the NRBQ. After a branch
misprediction, the information of the mispredicted branch is
copied into the CRP as described above. The CRP has also a
mask of bits that in this case, indicates whether or not the
corresponding logical register has been written since the
branch was fetched and before the re-convergent point is
reached (in either the wrong or the correct path). In a branch
missprediction, the CRP mask is initialized by ORing all the
masks in NRBQ starting from the mispredicted branch to the
branch at the tail of the queue (i.e. the youngest one).
Afterwards, for every new decoded instruction before the re-
convergent point is found, the bit corresponding to its
destination logical register is set to 1.

An instruction is considered to be control independent if it
is fetched after the re-convergent point, and its source
operands have their corresponding bits cleared in the mask of
the CRP. These instructions will be the target of the
speculative vectorization scheme. In addition, all instructions
that belong to any dependence chain of the backward slice (i.e.
all its predecessors) of a selected instruction are also
vectorized if the chain starts with a strided load. For example,
in the code of Figure 1, I11 and I5 are vectorized if I5 has
been observed to follow a strided pattern. But instructions I12
and I13, even if they are control independent, will not be
considered for our mechanism given that they are not
dependent on a strided load. In the worst case, if I5 is not an
strided load, no instruction will be vectorized in the example
of Figure 1.

To identify these backward chains that start with a strided
load, every time a load is fetched the stride predictor [7] is
checked and if the load is considered to follow a strided
pattern, its PC is associated to the logical destination register.
In our scheme, the stride predictor is implemented using a
table that is indexed by the PC of the load instruction, and
contains the PC of the instruction, the last accessed address
and the last observed stride, as shown in Figure 3. A
confidence field is also included, which is implemented as a
two bit up-down saturating counter. The prediction is trusted
when this field has a value greater than 1. The S flag indicates
whether this load has been selected for speculative
vectorization, as described later.

Figure 3: Stride predictor entry with the length, in bits,
of every field.

To propagate the PC of a strided load down the dependence
graph, every entry in the rename map table is extended with a
new field called stridedPC., where the PC of the strided load
is stored. Arithmetic instructions propagate the stridedPC of
their source operands to their destination. In theory, one
instruction may have many strided loads as in its backward
slice. However, we have experimentally evaluated that
SpecInt2000 needs on average 1,7 PCs per entry. In fact,
increasing the number of PCs per entry from 2 to 4 hardly
changes the performance, as shown in Figure 4 (details of the
architecture are later described in section 3.1).

When an instruction after the re-convergent point is selected
for vectorization, the strided loads on which it depends are
also selected for vectorization, by setting to 1 the flag S in the
stride predictor. When the selected load reenters the pipeline,
it checks whether the stride keeps on being the same, and in
this case, this load is vectorized. Every time an instruction is
fetched, if any of its source operands is vectorized, the
instruction is also vectorized.

IPC depending on the number of propagate
PC's per instruction

1,5

2,0

2,5

3,0

3,5

4,0

4,5

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

IN
T

1PC

2PC

4PC

Figure 4: IPC depending on the number of propagated
PCs per instruction.

Figure 5 shows the percentage of mispredicted branches for
which the mechanism does not find any control independent
instruction (white portion), selects at least one control
independent instruction (gray portion), and selects control
independent instructions and successfully reuse precomputed
instances (through speculative vectorization) of them (black
portion) for SpecInt2000. Control independent instructions are
selected for about 70% of the mispredicted branches (black
and gray portions). For 49% of the mispredicted branches
(black portion), at least one control-independent instruction is
correctly vectorized. The remaining 21% of the mispredicted
branches (gray portion) where vectorization is not successful
are basically due to the fact that they do not depend on strided
loads.

It is important to remark that speculative vectorized
instructions perform work that is beyond the current
instruction window. These speculative instructions can be at
any distance from the mispredicted branch of which they are
control independent.

2.3.3. Third step: Instruction Replication
Once a load with the corresponding S flag set is fetched,
multiple instances of it are speculatively dispatched to the

PC

64

Last
address

64

Stride

64

Confidence

2

S

1

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

issue queue. Each dynamic instance will read a different
memory address, which is computed by adding to the last
effective address the stride multiplied by the order rank of the
dynamic instance (current_address+(stride*n)). Depending
on where to store the precomputed data, replicas will use, as
an outcome, a different scalar register (monolithic register
file) or a different position of the provided small memory (see
details later is Section 2.4.6) The processor keeps on fetching
instructions in the conventional sequential approach. When a
replicated instruction is fetched again, the first speculative
instance is validated and if the validation is correct, the
instruction is just marked as completed. Following replicas
will be validated in the same way. When the last replica is
validated, another set of multiple speculative instances of the
instruction are dispatched again.

Percentage of branches with CI instructions that reuse, not reuse
or not found

0%
10%

20%
30%
40%
50%

60%
70%

80%
90%

100%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

IN
T

>=1reuse no reuse not found

Figure 5: Percentage of mispredicted branches for
which no control independent instruction is selected,
(white portion), at least one control independent
instruction is selected (gray portion), at least one control
independent instruction is correctly vectorized (black
portion).

These multiple instances are managed by means of an
additional table, the SRSMT table (Scalar Register Set Map
Table). This table is indexed by the PC and stores the PCs of
the replicated instructions and several other fields, as shown in
Figure 6 (the purpose of the last two fields will be explained
later in Section 2.5).

The Set of registers field holds the identifiers of the
physical registers (for monolithic register files or positions for
implementations following the memory implementation
detailed in Section 2.4.6) that will be used as destination
registers for the replica instructions and the field Nregs stores
the number of registers that have been allocated (which equals
to the number of replicas). Note that, in the case that not
enough free registers are available for the desired number of
replicas, a lower number of replicas or none at all are created.

Figure 6: Entry in the SRSMT assuming 4 replicas per
instruction and 256 available registers. Field length is in
bits.

The next two fields, the decode and the commit fields, track
the state of the set of replicas. The decode indicates which is
the next replica to be validated. This field is incremented
when a new dynamic instance of the instruction enters into the
decode stage. The commit field indicates the last replica that
has been committed. This field is incremented when a
dynamic instance of an instruction is successfully validated
and commits. When a recovery action is needed, (e.g. in case
of a branch misprediction) the state of the table can be easily
recovered by copying the content of the commit field into the
decode field for every entry of the table. When the decode and
commit fields are equal, the entry in the SSRMT is
deallocated. Note that this does not imply the deallocation of
physical registers.

The issue field holds the number of replicas that are being
executed (i.e., have been issued but their execution has not
finished). The purpose of this field is later discussed in this
section.

The next two fields, seq1 and seq2, identify the instructions
that compute the source operands if they have been vectorized,
or the value of the scalar operand otherwise (not all source
operands must be vector operands). The identifier of a
vectorized instruction is its PC (also called Seq or Sequence).

The rename table is extended to include for each logical
register whether the latest instruction that writes to it has been
vectorized and if this is the case, it contains the PC of that
instruction. Figure 7 depicts and entry of the rename table.

Figure 7: Entry of the rename map table. Lengths of
fields are in bits.

When an instruction is vectorized, an entry is allocated in
the SRSMT table. A free entry is chosen but if none is
available, an entry is tried to be deallocated. An entry can be
deallocated when the fields decode and commit have the same
value, and the field issue is set to 0. If several entries are
candidates to be deallocated (depending on the indexing
function) the LRU is chosen. When an entry is deallocated, the
resources allocated by it are released. If no entry can be
deallocated, the instruction is not vectorized.

The identifiers of the source operands for a newly
vectorized instruction are obtained from the rename table. If
an operand is scalar, its value is read from the register file. If
the value is not ready, the instruction and following ones are
stalled.

2.3.4. Fourth Step: Speculation Validation
Every time an instruction is fetched, its PC is looked up in the
SRSMT and if found, it means that the instruction has been
vectorized and must be validated. Validation of arithmetic
instructions consists in checking whether the producer’s
identifiers currently found in the rename table for its source
operands are equal to those of the SRSMT validates. For a
load, the stride must keep on being the same. If these checks
are successful, the instruction is not executed and it is sent to
the commit stage where it will finalize its validation. In the
commit stage it will wait until the fields decode and commit of
its source operands in the SRSMT table are equal. When it

Physical reg.

8

V/S

1

Seq

64

stridedPC

64

2x642646422224x864

Set of
registers

Nregs Decode Commit Issue Seq1 Seq2 DAEC Range PC

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

commits, the commit field of its entry in the SRSMT is
increased. Notice that every dynamic instance of a replicated
instruction sets the bit V/S to 1 and the field sequence is set to
the “sequence” of the instruction in the rename map table.

If the speculation is not correct, the corresponding entry in
the SSRMT and the scalar registers associated to the replicas
of this instruction are deallocated, and new replicas are created
with the new operands.

2.4. Other Microarchitecture Considerations
2.4.1. Issue Logic
Speculative vectorized instructions are given less priority than
the rest. In case of a branch misprediction they are not
squashed (they are supposed to be control independent). These
speculative instructions are not committed (their activity is
committed by the corresponding scalar instruction that does
the validation). After execution, they are retired in the write-
back stage.

2.4.2. Releasing Physical Registers
One of the critical resources of the processor is the register
file. Scalar instructions and replicas use the register file to
store the computed data. Furthermore, since speculative values
are computed much earlier than in a conventional
microarchitecture, their lifetimes are stretched and the register
pressure is increased. Several implementations [1][6] have
been discussed previously at literature to alleviate the
problem. For out study we have chosen the inclusion of a
small and cheap memory as described later in Section 2.4.6.

Physical registers are released after their value is used,
using the same approach as a conventional processor does (i.e.
when an instruction commits, the physical register allocated
by the previous instruction with the same logical destination is
released). However, there may be values that are never used
due to wrong speculation. In that case, the associated registers
are not released until the entry of the SRSMT is deallocated
and given to another vectorized instruction. To release earlier
these registers, a new field in the SRSMT, called DAEC
(Dead Association Elimination Counter) is included. This field
is incremented for those entries whose decode and commit
fields have the same value (otherwise the counter is set to 0)
when a branch misprediction recovery action is performed.
When this field reaches the value of 2, the registers allocated
by the corresponding vectorized instruction that have not been
validated are deallocated. This avoids long lifetimes of values
because the scheme supposes that if an entry is not used
during several branch mispredictions, the speculative work
done for this entry is wrong.

For SpecInt2000, in unified register file implementations,
the average number of physical registers in use when their
number is unbounded is 812 without this scheme (see details
in section 3.1) and 304 if this scheme is in place. Notice that
this counter prevents the utilization of large register files that
can impact seriously in the cycle time.

2.4.3. Memory Coherence
When a strided load is detected, the mechanism creates
speculative replicas that fetch data into scalar registers. When
a store instruction commits and modifies the data of the L1
data cache, it checks whether this data has been speculatively
loaded in any scalar register.

For this purpose, a conservative but simple mechanism is
proposed. One extra field is included in each entry of the
SRSMT to hold the initial and final memory addresses of each
vectorized load instruction (this field is meaningless for other
instructions). When a store commits, it checks if its address is
inside the range of addresses of any entry and if this is the
case, the entry and the resources assigned to the replicated
instruction are deallocated, and the instructions in the
conventional instruction window (i.e. all except those
generated by the speculative vectorization scheme) that follow
the store are squashed. To account for this extra activity, an
additional cycle has been assumed for committing a store
instruction and only up to 2 stores can be committed in the
same cycle. Fortunately, less than 3% of the stores write into
an address whose data has been previously read by a
speculative load.

2.4.4. Branch Mispredictions
In a branch misprediction, the content of the commit field of
each entry of the SRSMT table is copied into the
corresponding decode field. No speculative vectorized
instruction is squashed and no resource assigned to replicated
instructions is deallocated. This gives the processor the
opportunity of exploiting control-flow independence.

2.4.5. Wide Bus
Vectorizing loads opens the possibility of better exploiting
spatial locality since most loads have a unit stride. For this
purpose, buses of the data cache are assumed to be wide. A
wide bus [11][14][23] can read a whole cache line for every
access and multiple outstanding loads can use these data. To
limit the number of additional ports to the register file, only up
to 4 loads can be served in one of these wide accesses.

Figure 8 shows the number of cache accesses for the
superscalar processor with scalar ports (scalxp), with wide
buses (wbxp), and the mechanism of control independence
(cixp), with 1 port (x=1) or 2 wide ports (x=2). The wide bus
significantly reduces the number of cache access but the
control independence mechanism reduces it further in spite of
executing more speculative loads.

Number of accesses to L1 data cache

0,00E+00

1,00E+07

2,00E+07

3,00E+07

4,00E+07

5,00E+07

6,00E+07

7,00E+07

8,00E+07

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

IN
T

scal1p

wb1p

ci1p

scal2p

wb2p

ci2p

Figure 8: Number of accesses to L1 data cache for the
baseline (scalxp), the baseline with a wide bus (wbxp)
and the control independence mechanism (cixp) with
one (x=1) and two wide ports (x=2).

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

2.4.6. Speculative Data Memory
In scenarios where the register file is critical, dynamic
vectorization of control-independent instructions can produce
slowdowns due to the lack of scalar registers. Although our
mechanism does not need a large amount of scalar registers
(on average 304 as shown in Section 2.4.2), it is always
recommendable to alleviate the pressure in the register file and
to avoid large register files that can impact seriously in the
processor’s cycle time. For this, we propose, as a possible
implementation, the use of a small and cheap slow memory,
similar to a hierarchical register file [6] to hold the speculative
data created by replicas. Speculative instructions are assigned
positions from this small memory as destination registers.
Data cannot be read directly from this memory as input
operands in the functional units because this memory is not
connected to the functional units but the register file. Data
movement between this memory and the register file is
performed through a copy instruction inserted in the issue
queue when a validation instruction enters the decode stage.
This copy instruction allocates one register from the register
file to store the value moved from this small memory.
Dependent instructions of the validation instruction become
dependent on the copy instruction to read the values from the
register file. Validation instructions, as previously
commented, pass from the decode stage to the commit stage to
validate the speculative data without waiting for the execution
of the copy instruction. Both the register of the register file
and the position in this memory are deallocated when the
following scalar instruction with the same destination logical
register as the validation instruction commits.

This small memory only has two write ports from the
functional units and two read ports to the register file. It is also
twice slower than the register file.

3. Performance Evaluation
3.1. Experimental Framework
For the performance evaluation we have extended the
SimpleScalar v3.0c [2] to include the microarchitectural
extensions described above.

The baseline microarchitecture is an 8-way issue
superscalar processor. To evaluate the register file impact, we
use, for a clear evaluation, monolithic register file
configurations of 128, 256, 512, 768 and infinite registers.
Afterwards, we will provide numbers of the inclusion of the
small memory to hold speculative data.

To evaluate the impact of the aggressiveness of the
speculation, dynamic vectorization schemes that generate 1, 2,
4 or 8 replicas per scalar instruction are explored. Other
parameters of the microarchitecture are shown in Table 1.

For the experiments we use the whole SpecInt2000
benchmark [20] suite because they include programs with
significant number of branch mispredictions. Programs were
compiled with the Compaq/Alpha compiler using –O5 –ifo –
non_shared optimisation flags. Each program was simulated
for 100 million instructions after skipping the initialization
part.

From the description of the implementation of the
mechanism, one could derive that the proposed structures are
large and complex. But in fact they are not. Since control logic
hardware requirements are difficult to compute without the
layout of the processor, we only give numbers of the hardware

needed for the structures. For the evaluated configuration, the
size of the additional hardware required by the control-flow
independence scheme is:
• The SRSMT occupies 11520 bytes (4 ways * 64 elements

per way * 45 bytes per element).
• The stride predictor occupies 24576 bytes (4 ways * 256

elements per way * 24 bytes per element).
• The MBS occupies 2048 bytes (4 ways * 64 elements per

way * 8 bytes per element).
• The NRBQ occupies 128 bytes (16 entries * 8 bytes per

entry).
• THE CRP occupies 16 bytes (8 bytes from the PC and 8

bytes from the mask of bits).
• The extension of the rename map table occupies 1024 bytes

(16 bytes per entry * 64 entries).

Parameter Value
Fetch Width 8 instructions (up to 1 taken branch)
I-Cache 64Kb, 2-way set associative, 64 byte lines, 1 cycle hit, 6 cycle

miss time
Branch Predictor Gshare with 64K entries
Inst. Window size 256 entries
Scalar functional units
(latency in brackets)

6 simple int (1); 3 int mult/div (2 for mult and 12 for div); 4
simple FP(2); 2 FP mult/div (4 for mult and 14 for div); 1
load/store

Load/store queue 64 entries with store-load forwarding
Issue mechanism 8-way out of order issue; loads may execute when prior store

addresses are known
D-cache 64Kb, 2-way set associative, 32 byte lines, 1 cycle hit time,

write-back, 6 cycle miss time, up to 16 outstanding misses
L2 cache 256Kb, 4-way set associative, 32 byte lines, 6 cycle hit time, 18

cycle miss time
L3 cache 2Mb, 4-way set associative, 64 byte lines, 18 cycle hit time, 100

cycle miss time (main memory access time)
Commit width 8 instructions
Stride predictor 4-way set associative with 256 sets
SRSMT 4-way set associative with 64 sets
MBS 4-way set associative with 64 sets

Table 1: Processor configuration.

This results in a total of 39 Kbytes of extra storage easily
affordable in current designs. On the other hand, using this
amount of extra hardware in i.e., the L1 data cache only
increases about 5% the performance of the processor, while
we will report performance improvements of about 17%.

3.2. Performance Evaluation
Figure 9 shows the IPC obtained with the proposed
mechanism (cixp) compared with a superscalar processor
(scalxp) and a superscalar processor with wide buses (wbxp),
for a varying number of L1 data cache ports (1 port x=1, 2
ports x=2) and a varying number of physical registers (128,
256, 512, 768 and infinite). In this first set of experiments, a
single-level register file is considered. Harmonic means are
used to average IPC across the whole benchmark suite.
Vectorization creates 4 replicas per vectorized instruction.

Several conclusions can be drawn from Figure 9. First, we
can see that wide buses provide a significant benefit for a
superscalar processor. This is due to the fact that a wide bus
exploits the spatial of memory accesses. As the number of
ports increases, this performance benefit decreases since
multiple ports can also exploit spatial locality although with a
much higher implementation cost.

For the baseline configuration with and without wide buses,
performance is significantly improved when the number of
registers increases from 128 to 256, except for 1 non-wide
port, which is mainly limited by memory bandwidth. For
configurations with more than 256 registers the reorder buffer

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

has been increased to the size of the number of registers;
otherwise, many registers would be useless due to the lack of
instructions in-flight. However, this hardly improves
performance due to the branch mispredictions and the limited
ILP of these applications.

IPC depending on the L1 ports and scalar
registers

1,0

1,5

2,0

2,5

3,0

3,5

128
regs

256
regs

512
regs

768
regs

Inf

scal1p

wb1p

ci1p

scal2p

wb2p

ci2p

Figure 9: IPCs for a superscalar processor (scalxp), a
superscalar processor with wide buses (wbxp) and a
superscalar processor with wide buses and the proposed
mechanism (cixp), for 1 L1 data cache port (x=1) and 2
ports (x=2), and for 256, 512, 768 and infinite registers.

When the mechanism for control independence is included,
and enough registers are available, the performance increases
more than 17,8% for both configurations (1 port and 2 ports)
over the superscalar processor with wide buses. This is
basically due to the exploitation of control independence,
which allows the processor to execute instructions ahead of
the resolution of the branches on which they depend,
regardless of the correctness of the branch prediction, and
even if they are far away of the current instruction window.
The vectorization scheme also favors the exploitation of
spatial locality, since the speculative instances of a vectorized
load instruction are unit strided most of the times.

The control independence scheme increases the pressure in
the register file due to longer lifetimes and wrongly speculated
instructions. Because of that, when the number of registers is
too low (128 registers for a 256-entry reorder buffer), the
control independence scheme results in some performance
degradation. For configurations with 256 registers, the control
independence mechanism hardly affects performance when
compared with the superscalar configuration with wide buses.
This is due to the fact that a large number of scalar registers
are used to store the values created by the speculative
instructions, slowing down the execution of the code that has
not been vectorized because less registers are available for it.
However, when the number of physical registers keeps on
increasing, the superscalar processor performance flattens out
whereas the control independence scheme provides significant
performance gains.

As discussed above, one of the main benefits of the
proposed scheme is its potential to pre-execute instructions

that are outside the instruction window (and potentially far
away). To quantify this effect, we have simulated a
hypothetical scheme where control independence is exploited
only for the control-independent instructions that have entered
the instruction window before the branch misprediction is
detected and the recovery action is initiated (this scheme is
sometimes referred to as squash reuse). Figure 10 shows the
performance of that scheme (ci-iw) compared with a
superscalar processor (scal), a superscalar processor with a
wide bus (wb) and the proposed control independence scheme
(ci).

Difference between CI and CI with precomputation

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

IN
T

IPC

scal

wb

ci-iw

ci

Figure 10: Performance of exploiting control
independence only inside the instruction window (ci-
iw). The other bars correspond to a superscalar
processor with one L1 data cache port, either single
(scal) or wide (wb), and the proposed control
independence scheme (ci).

Exploiting control independence by reusing only
instructions of the wrong path that have entered the instruction
window provides an improvement of 9,1% whereas the
proposed control independence scheme results in a 17,8%
performance gain.

An important parameter of the proposed scheme is the
number of speculative instances that are generated for every
vectorized instruction. A higher number of speculative
instances implies a higher potential to exploit control
independence but also a higher pressure on the register file
(i.e., more mispeculations and longer lifetimes). Figure 11
shows the effect when this parameter is varied from 1 to 8
instructions. From this experiment we can conclude that either
2 or 4 replicas per vectorized instruction seem the most
convenient approach. Generating only 1 speculative version
looses a lot of opportunities to exploit control independence.
On the other hand, generating 8 replicas only improves
performance by very little when the number of registers is
very high.

Figure 12 shows the number of: a) committed instructions
that do not reuse a precomputed value (dark portion), b)
committed instructions that reuse a precomputed value (dark

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

gray), c) fetched instructions that do not commit due to a
branch missprediction (light gray), and d) speculative
instructions generated by the control independence scheme
(white) for 2 (left bars per spec) and 4 (right bars) replicas per
vectorized instruction.

IPC depending on the number of created replicas

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

2,6

2,8

128 256 512 768 inf

8rep

4rep

2rep

1rep

sc

wb

Figure 11: IPC depending on the number of replicas per
vectorized instruction and the number of available
registers.

Figure 12 shows that increasing the number of replicas from
2 to 4 increases the percentage of committed instructions that
benefit from reuse increases from 12,3% to 14%. On the other
hand, this extra reuse comes at the expense of a non-negligible
increase in number of speculative instructions generated by
the control independence scheme. We can also observe in
Figure 12 that the amount of speculative activity generated by
the control independence scheme is comparable to the activity
generated by wrongly speculated instructions due to branch
misspredictions.

Speculative instructions creating 2 or 4 replicas

290M239M

6,00E+07

8,00E+07

1,00E+08

1,20E+08

1,40E+08

1,60E+08

1,80E+08

2,00E+08

2,20E+08

2,40E+08

bzip2 crafty eon gap gcc gzip mcf parser perlbmk twolf vortex vpr INT

noR Reuse specBP specCI

Figure 12: Number of committed instructions that do
not reuse (dark), committed instruction that reuse (dark
gray), fetched instructions that do not commit due to a
branch missprediction (light gray), and instructions
generated by the control independence scheme (white)
for 2 replicas (left bars) and 4 replicas (right bars) per
vectorized instruction.

Although the mechanism does not need a large amount of
registers, we have evaluated the benefits of including a
memory to hold speculative data created by replicas, as shown
in Figure 13, for both alleviating the pressure in the register
file and not to increasing the cycle time due to a large register
file.

For our simulations we have restricted the number of ports
to this memory (2 read ports and 2 write ports) to easily
accommodate the access time in 2 cycles. Since this memory
is out of the critical path and movements of values from this
memory to the register file are not critical, longer latencies are
allowed without degrading significantly the performance (a
latency of 5 cycles only slowdowns about 3% in
configurations with 256 registers in the register file and 768
positions in the proposed small memory). Several
configurations of this memory have been simulated as shown
in Figure 13.

Figure 13 shows that a register file of 256 registers and a
memory holding 768 speculative values has about the same
performance as a monolithic, single-latency register file with
an unbounded number or registers.

Figure 13: Performance of the control-flow
independence mechanism with a memory able to hold
128 (ci-h-128), 256 (ci-h-256), 512 (ci-h-512) and 768
speculative values (ci-h-768). The number of registers
in the register file is given by the X-axis. The graph also
shows a superscalar processor (scal), a superscalar
processor with a wide bus (wb) and a superscalar
processor with a wide bus and the control-flow
independence mechanism with a monolithic register file
(ci), for a varying number of registers.

4. Related Work
Chou et al. [5] present a mechanism for exploiting control
independence that is based on a structure called DCI that
stores copies of decoded instructions. After a recovery from a
branch misprediction, new fetched instructions are looked up
in the DCI to locate the beginning of a control independent
region. Furthermore, an out-of-order fetch mechanism is

Performance with a speculative data memory

1,40
1,50
1,60
1,70
1,80
1,90
2,00
2,10
2,20
2,30
2,40
2,50
2,60
2,70
2,80

128 regs 256 regs 512 regs 768 regs Inf

scal wb ci ci-h-128

ci-h-256 ci-h-512 ci-h-768

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

presented to start fetching from the control independent region
after a branch prediction is performed.

Rotenberg et al. present a mechanism to exploit control
flow independence in superscalar [15] and trace [16][17]
processors. Their approach is based on identifying re-
convergent points dynamically, and a hardware organization
of the instruction window that allows the processor to insert
the instructions after a branch misprediction in between
instructions previously dispatched, i.e., after the mispredicted
branch and before the control independent point.

Sodani et al. [19] present a mechanism for global reuse
based on keeping history of previous executions of
instructions. When an instruction is decoded a structure, called
Reuse Buffer, is checked to see if there is a previous execution
of this instruction and if the result for that execution can be
reused. In that paper, several implementations of the Reuse
Buffer that differ in the way the reuse test is performed are
proposed and evaluated.

Cher et al. present Skipper [4], a mechanism to overlap the
latency of hard-to-predict branches with the execution of
control-flow independent instructions following the re-
convergent point of those branches. To achieve this, when a
repeatedly mispredicted branch is detected, the fetch is
redirected to the re-convergent point, creating a gap in the
reorder buffer (large enough to hold the skipped instructions),
and the processor proceeds to execute the instructions after the
re-convergent point. When the branch is resolved, the skipped
instructions are executed. Dependences among skipped
instructions and the instructions after the re-convergent point
are checked to ensure the correctness of the execution,
performing recovery actions when needed.

Pajuelo et al. [12] present a mechanism that dynamically
creates speculative vector instructions to exploit SIMD
parallelism. Vectorization is triggered by strided loads, which
create speculative instances of the load instruction. Dependent
instructions are also vectorized. The exploitation of SIMD
parallelism, data prefetching and control independence
instructions are reported to be the three sources of
performance improvement.

The scheme proposed in this paper is a much more cost-
effective approach to exploit control independence than the
one in [12] because it is tailored to exploit control
independence instead of full-blown vectorization of every
strided load and all their successors in the dependence graph,
including instructions in wrongly predicted paths. Besides, it
requires neither vector units nor vector registers since
vectorization is performed by replication of scalar instructions.

Figure 14 shows the performance comparison between the
control independence scheme proposed in this paper (cix2p)
and the vectorization approach proposed in [12] (vect2p) for 2
wide L1 data cache ports and a varying number of registers
(for comparison purposes, a hierarchical register file is not
included).

We can conclude from Figure 14 that the scheme proposed
in this work has better performance than the dynamic
vectorization scheme of [12], except for a huge number of
registers. For an unbounded number of registers, the dynamic
vectorization scheme outperforms the control independence
mechanism by a very small difference (4%). The control
independence scheme, in addition to require a simpler
hardware (no vector resources are needed, which simplifies

the dispatch, issue and execution stages because the processor
only deals with scalar instructions), generates much less
useless activity: wrongly speculated instructions represent
29,62% of the total executed instructions in the control
independence scheme, whereas they represent 48,45% for the
dynamic vectorization approach. The control independence
generates much less speculative activity and this activity is
much more accurate. Overall, both schemes reuse pre-
computed values for a similar number of committed
instructions (14% the control independence scheme vs. 17%
the dynamic vectorization mechanism). Besides, the few
additional instructions (3%) reused by the dynamic
vectorization scheme are in general less critical (i.e., have less
effect on performance) than the control independent ones.

IPC of the Control Independence and Dynamic
Vectorization Mechanisms

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

128 regs 256 regs 512 regs 768 regs Inf

ci

vect

Figure 14: Comparison of the control independence
mechanism with the dynamic vectorization scheme of
[12].

5. Conclusions
In this paper we have proposed a mechanism to exploit
control-flow independence. The mechanism is based on a
simple heuristic to detect re-convergent points, a technique to
identify the strided loads on which the control independent
instructions depend and a scheme to dynamically generate
speculative instances of these strided loads and their
successors in the data dependence graph. The proposed
scheme can pre-execute control independent instructions
before a branch is resolved, no matter how far these
instructions are from the branch.

The performance evaluation experiments reveal an
average speedup of 17,8% over a superscalar processor, about
the same performance as a previously proposed full-blown
vectorization approach but with a much lower hardware cost,
and better performance than the full-blown vectorization when
a moderate number of registers is considered (less than 700).

Furthermore, we have studied the benefits of including a
small memory to hold the speculative data. We have shown
that this memory can be easily implemented in the processor
and alleviates the additional register pressure generated by
replicas. A configuration with a register file of 256 registers
and memory able to hold 768 speculative values has
practically the same performance as an unbounded single-
level register file.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

Acknowledgments
This work has been partially supported by the Ministry of
Education and Science under grants TIN2004-07739-C02-01
and TIN2004-03072, the CICYT project TIC2001-0995-C02-
01, Feder Funds, Intel Corporation and the European Network
of Excellence on High-Performance Embedded Architecture
and Compilation (HiPEAC). We would like to thank the
anonymous reviewers by their comments.

References

[1] R. Balasubramonian, S. Dwarkadas and D. Albonesi,
“Reducing the Complexity of the Register File in
Dynamic Superscalar Processors”, in Proceedings of the
International Conference on Microarchitecture, Dec.
2001.

[2] D. Burger and T. Austin, “The SimpleScalar Tool Set,
Version 2.0”, Technical Report No. CS-TR-97-1342,
University of Wisconsin-Madison, June 1997.

[3] P. Chang, E. Hao and Y. Patt, “Target Prediction for
Indirect Jumps”, 24th International Symposium on
Computer Architecture, June 1997.

[4] C. Cher and T. N. Vijaykumar, “Skipper: A
Microarchitecture For Exploiting Control-flow
Independence”, in Proceedings of the 34th Annual
International Symposium on Microarchitecture,
December 2001.

[5] Y. Chou, J. Fung and J. P. Shen, “Reducing Branch
Misprediction Penalties Via Dynamic Control
Independence Detection”, in Proceedings of the 13th

International Conference on Supercomputing, June 1999.
[6] J. L. Cruz, A. González, M. Valero and N. Topham,

“Multiple-Banked Register File Architectures”, in
Proceedings of 27th International Symposium on
Computer Architecure, June 2000.

[7] J. González and A. González, “Memory Address
Prediction for Data Speculation”, in Proceedings of
Europar 97, August 1997.

[8] D. Grunwald, A. Klauser, S. Manne and A. Pleszkun,
“Confidence Estimation for Speculation Control”, in
Proceedings of the 25th International Symposium on
Computer Architecture, June 1998.

[9] E. Jacobsen, E. Rotenberg and J. E. Smith, “Assigning
Confidence to Conditional Branch Predictions”, in
Proceedings of the 29th International Symposium on
Microarchitecture, December 1996.

[10] M. Lam and R. Wilson, “Limits of Control-Flow on
Parallelism”, in Proceedings of 19th International
Symposium on Computer Architecture, June 1992.

[11] D. López, J. Llosa, M.Valero and E. Ayguadé,
“Widening Resources: A Cost-Effective Technique for
Aggressive ILP Architectures”, in Proceedings of the 31st

International Symposium on Microarchitecture, Dec.
1998.

[12] A. Pajuelo, A. Gonzalez and M. Valero, “Speculative
Dynamic Vectorization”, in Proceedings of the 29th

International Symposium on Computer Architecture,
May, 2002.

[13] S. Palacharla, N. P. Jouppi and J. Smith, “Complexity-
Effective Superscalar Processors”, in Proceedings of the
24th International Symposium on Computer Architecture,
June 1997.

[14] J.A. Rivers, G. S. Tyson, E. S. Davidson and T. M.
Austin, “On High-Bandwidth Data Cache Design for
Multi-Issue Processors”, in Proceedings of the 30th

Symposium on Microarchitecture, 1997.
[15] E. Rotenberg, Q. Jacobson and J. Smith, “A Study of

Control Independence in Superscalar Processors”, 5th

International Symposium on High Performance
Computer Architecture, Jan 1999.

[16] E. Rotenberg, Q. Jacobson, Y. Sazeides and J. Smith,
“Trace Processors”, in 30th International Symposium on
Microarchitecture, Dec 1997.

[17] E. Rotenberg and J. Smith, “Control Independence in
Trace Processors”, 32nd International Symposium on
Microarchitecture, Jan 1999.

[18] T. Sherwood and B. Calder, “Loop Termination
Prediction”, 3rd International Symposium on High
Performance Computing, October 2000.

[19] A. Sodani and G. S. Sohi, “Dynamic Instruction Reuse”,
24th International Symposium on Computer Architecture,
May 1997.

[20] SPEC 2000. http://www.specbench.org/osg/cpu2000/
[21] J. Tubella and A. González, “Control Speculation in

Multithread Processors through Dynamic Loop
Detection”, in Proceedings of the 4th International
Symposium on High-Performance Computer
Architecture, Feb. 1998.

[22] S. Vajapeyam, J. P. Joseph and T. Mitra, “Dynamic
Vectorization: A Mechanism for Exploiting Far-Flung
ILP in Ordinary Programs”, in Proceedings of the 26th

International Symposium on Computer Architecture, May
1999.

[23] K. M. Wilson and K. Olukotun, “High Bandwidth On-
Chip Cache Design”, IEEE Transactions on Computers,
vol. 50, No. 4, April 2001.

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
1530-2075/05 $ 20.00 IEEE

