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Abstract
Current processors exploit out-of-order execution and branch 
prediction to improve instruction level parallelism. When a 
branch prediction is wrong, processors flush the pipeline and 
squash all the speculative work. However, control-flow 
independent instructions compute the same results when they 
re-enter the pipeline down the correct path. If these 
instructions are not squashed, branch misprediction penalty 
can significantly be reduced. 

In this paper we present a novel mechanism that detects 
control-flow independent instructions, executes them before 
the branch is resolved, and avoids their re-execution in the 
case of a branch misprediction. The mechanism can detect 
and exploit control-flow independence even for instructions 
that are far away from the corresponding branch and even out 
of the instruction window. 
   Performance figures show that the proposed mechanism 
can exploit control-flow independence for nearly 50% of the 
mispredicted branches, which results in a performance 
improvement that ranges from 14% to 17,8% for realistic 
configurations of forthcoming microprocessors. 

1. Introduction
Current processors’ potential [13] to exploit instruction level 
parallelism depends on their ability to build a large instruction 
window. Branch instructions are the main problem [10] to 
build such large instruction windows for non-numeric 
applications. Every time a branch prediction is wrong, the 
pipeline is flushed, and the instruction window is built again 
through the correct path. However, control independent 
instructions, i.e., instructions that are encountered in every 
branch path computing the same values, could theoretically 
remain in the instruction window and their re-execution could 
be avoided. 

In this paper, we present a hardware mechanism that tries to 
identify control-flow independent instructions to speculatively 
execute them ahead of time and avoid their re-execution in 
case of branch mispredictions. The effect of this technique is a 
net increase in the effective instruction window size and thus, 
in performance. Moreover, the mechanism can pre-execute 
control-flow independent instructions before they enter the 
pipeline, increasing, virtually, the instruction window.  

We show that the proposed technique can exploit control-
flow independence for about 50% of the dynamic 
mispredicted branches in SpecInt 2000 benchmarks, which 
results in an average performance improvement of 17,8%. Due 
to the way the mechanism precomputes values, it is not 
necessary to store them in the register file, so we propose a 

possible implementation that consists in the addition of a 
simple and cheap slow memory to hold those speculative 
values. Numbers showing that this small memory achieves the 
same performance as an unbounded monolithic register file 
are provided.  

The rest of this paper is organized as follows. Section 2 
describes the proposed approach. Section 3 analyzes the 
performance of the proposed scheme. Related work is outlined 
in section 4. Finally, section 5 summarizes the main 
conclusions of this work.  

2. The Approach 
2.1. Control-Flow Independent Instructions
An instruction is control-flow independent with respect to a 
given branch instruction if its result is the same regardless of 
the branch outcome. Control-flow independent instructions are 
common in hammock control flow structures resulting from if-
then-else constructs. An example is shown in Figure 1. 

I1:     MOV R1, 0 
I2:     MOV R2, 0 
I3:     MOV R3, 0 
I4:     MOV R4, 0 
I5: loop: LD  R0, a[R1] 
I6:       CMP R0, 0 
I7:       BE  else 
I8: then: INC R2 
I9:       BR  IP 
I10:else: INC R3 
I11:IP:   ADD R4, R4, R0 
I12:      ADD R1, 4 
I13:      CMP R1, 400 
I14:      BLE loop

Figure 1: Sample code with a hammock. 

The code in Figure 1 counts how many elements of vector a
are equal to zero (stored in register R3) and how many are not 
(stored in register R2). Furthermore, the code accumulates the 
sum of all elements of vector a in register R4.

The branch at instruction I7 may be hard to predict (e.g., the 
data of vector a does not follow any regular pattern). 
However, instructions I11-I14 are executed and produce the 
same results regardless of the branch outcome. 

The first sequential instruction that is common to both taken 
and not taken paths of a branch will be referred to as the re-
convergent point. In Figure 1, instruction I11 is the re-
convergent point of branch I7. Control-flow independent 
instructions can be located starting from the re-convergent 
point onwards. 

Control-flow
independent

region

I1: MOV R1, 0

I2: MOV R2, 0

I3: MOV R3, 0

I4: MOV R4, 0

I5: LD RO,a[R1]

I6: CMP R0, 0

I7: BE else

I10: INC R3I8: INC R2

I9: BR  IP

I11: ADD R4,R4,R0

I12: ADD R1,4

I13: CMP R1,400

I14: BLE loop
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2.2. Overview of the Mechanism
The proposed mechanism works in four steps. The first two 
steps select the control-independent instructions when a 
branch misprediction is detected. The last two steps, 
effectively vectorize the selected instructions. The selection 
part and the vectorization part work separately and are 
communicated through just one bit in the stride predictor (as 
explained later in section 2.3.2 and 2.3.3). These steps are 
explained now following the example in Figure 1. 
• First step: when a hard-to-predict conditional branch is 

detected (see details later in Section 2.3.1) and 
mispredicted, the mechanism tries to find the re-convergent 
point of that branch. Supposing that I7 in Figure 1 is the 
mispredicted branch, the first step has to find I11 as the re-
convergent point. 

• Second step: identification of the instructions (I11, I12 and 
I13) after the re-convergent point  (included) that are likely 
to produce the same outcome after the branch misprediction 
recovery and can be effectively vectorized  (only I11 can be 
vectorized). For this purpose, every instruction after the re-
convergent point is analyzed and it is checked whether its 
source operands have been changed by an instruction after 
the branch and before the re-convergent point. If the source 
operands have not changed, the set of nearest strided loads 
above the branch on which the instruction depends are 
selected for speculative vectorization [12][22]. In the 
example of Figure 1, the first instruction whose operands 
have not changed after the branch is the re-convergent point 
itself (instruction I11). The loads above the branch on 
which instruction I11 depends is just instruction I5.

• Third step: speculative vectorization of the selected 
instructions next time they are encountered. Vectorization is 
performed by generating multiple speculative replicas of the 
vectorized instruction. These speculative instructions are 
dispatched to the issue queue and executed but not 
committed until they are verified. Moreover, every time an 
instruction is fetched, it is checked whether any of its 
source operands is the outcome of a previously vectorized 
instruction, and if this is the case, it is also speculatively 
vectorized. In the example of Figure 1, instruction I5 is the 
selected strided load that will be vectorized. Instructions I6
and I11 will also be vectorized because they are dependent 
on instruction I5. Notice that I11 is a control-flow 
independent instruction.  

• Fourth step: every time an instruction is fetched, it is 
checked whether it was previously vectorized. If so, it is 
checked whether the vectorization was correct, and in this 
case, the instruction is just marked as completed and sent to 
the commit stage. Otherwise, the instruction is normally 
executed. 
These steps are further detailed below. 

2.3. Implementation of the Mechanism 
Now, we are going to explain in detail, how those 4 steps of 
our mechanism work. 

2.3.1. First step: Hard-to-predict Branches and Re-
convergent Point Detection
First of all, in order to apply the control independence scheme 
to branches that are responsible for a significant number of 
mispredictions [8][9], a table that we refer to as the MBS table 

(Mispredicted Branch Status) is used. This table is indexed by 
the PC of branches and has a 4-bit saturated up-down counter 
per entry. The counter is increased by taken branches and 
decreased by not taken branches, if the direction is the same as 
the previous outcome. Otherwise, the counter is set to the 
value that is in the middle of its range. If the value of this 
counter is the maximum or minimum value, the branch is 
considered to be highly biased and thus assumed to be easy to 
predict. Otherwise, the control independence scheme is 
activated. 

The scheme to identify re-convergent points for 
mispredicted branches is an extension of previous work in [5] 
and involves basically two hardware structures. The first one 
is a queue, called NRBQ (Not Retired Branch Queue), where 
the estimated re-convergent points of the in-flight conditional 
branches are stored. The second is the CRP (Current Re-
convergent Point). 

Identification of re-convergent points does not need to be 
correct. Wrongly estimated re-convergent points will affect 
the performance of the processor but not the correctness of the 
execution. Re-convergent points are estimated with the 
following heuristics. 

If the branch is a backward branch [18][21], the re-
convergent point is assumed to be the next instruction, in 
program order, that follows the branch (a backward branch 
usually corresponds to the closing branch of a loop as shown 
in Figure 2-a).  

If the branch is a forward branch, the instruction situated 
one location above the target address [3] is fetched and 
analyzed. If the branch is predicted as taken this instruction is 
fetched in the next cycle, possibly together with the target 
instructions and succeeding ones. If the branch is predicted as 
not taken, this instruction is fetched just after the recovery of 
the misprediction. If this instruction is an unconditional 
forward branch (which is the common case for an if-then-else
structure as shown in Figure 2-c), the re-convergent point is 
assumed to be the address pointed by this branch. Otherwise, 
the re-convergent point is assumed to be the destination 
address of the conditional branch (which is the common case 
for and if-then structure as shown in Figure 2-b).  

Figure 2: Common program constructs. 

When a branch is executed its prediction is checked. In case 
of a misprediction, younger instructions are squashed and if 
the static branch is supposed to cause many dynamic branch 
mispredictions, the information regarding this static branch is 
introduced into the CRP register (Current Re-convergent 
Point). This register contains the PC of the re-convergent point 
and the R (Reached) flag that indicates whether the re-
convergent point has been reached. 

then 

Re-convergent pointRe-convergent point

body

a) loop structure        b) if-then structure      c) if-then-else      
    structure

then 

If

Re-convergent point

decoded
instruction

If

else
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2.3.2. Second step: Control-Independent Instruction 
Detection and Filtering
Every time an instruction is fetched, its PC is checked with the 
PC stored in CRP. If they match, the R flag is set, which 
indicates that the re-convergent point has been reached. To 
identify whether an instruction after the re-convergent point 
does not depend on the instructions between the branch and 
the re-convergent point, every entry of the NRBQ is extended 
with a mask of bits. Each bit is associated to a logical register 
and indicates whether this logical register has been written 
after this branch and before the next branch. When a branch is 
found, the corresponding mask is cleared. For each new 
instruction, the bit corresponding to the destination register is 
set to one for the entry at the tail of the NRBQ. After a branch 
misprediction, the information of the mispredicted branch is 
copied into the CRP as described above. The CRP has also a 
mask of bits that in this case, indicates whether or not the 
corresponding logical register has been written since the 
branch was fetched and before the re-convergent point is 
reached (in either the wrong or the correct path). In a branch 
missprediction, the CRP mask is initialized by ORing all the 
masks in NRBQ starting from the mispredicted branch to the 
branch at the tail of the queue (i.e. the youngest one). 
Afterwards, for every new decoded instruction before the re-
convergent point is found, the bit corresponding to its 
destination logical register is set to 1.  

An instruction is considered to be control independent if it 
is fetched after the re-convergent point, and its source 
operands have their corresponding bits cleared in the mask of 
the CRP. These instructions will be the target of the 
speculative vectorization scheme. In addition, all instructions 
that belong to any dependence chain of the backward slice (i.e. 
all its predecessors) of a selected instruction are also 
vectorized if the chain starts with a strided load. For example, 
in the code of Figure 1, I11 and I5 are vectorized if I5 has 
been observed to follow a strided pattern. But instructions I12 
and I13, even if they are control independent, will not be 
considered for our mechanism given that they are not 
dependent on a strided load. In the worst case, if I5 is not an 
strided load, no instruction will be vectorized in the example 
of Figure 1. 

To identify these backward chains that start with a strided 
load, every time a load is fetched the stride predictor [7] is 
checked and if the load is considered to follow a strided 
pattern, its PC is associated to the logical destination register. 
In our scheme, the stride predictor is implemented using a 
table that is indexed by the PC of the load instruction, and 
contains the PC of the instruction, the last accessed address 
and the last observed stride, as shown in Figure 3. A 
confidence field is also included, which is implemented as a 
two bit up-down saturating counter. The prediction is trusted 
when this field has a value greater than 1. The S flag indicates 
whether this load has been selected for speculative 
vectorization, as described later. 

Figure 3: Stride predictor entry with the length, in bits, 
of every field. 

To propagate the PC of a strided load down the dependence 
graph, every entry in the rename map table is extended with a 
new field called stridedPC., where the PC of the strided load 
is stored. Arithmetic instructions propagate the stridedPC of 
their source operands to their destination. In theory, one 
instruction may have many strided loads as in its backward 
slice. However, we have experimentally evaluated that 
SpecInt2000 needs on average 1,7 PCs per entry. In fact, 
increasing the number of PCs per entry from 2 to 4 hardly 
changes the performance, as shown in Figure 4 (details of the 
architecture are later described in section 3.1). 

When an instruction after the re-convergent point is selected 
for vectorization, the strided loads on which it depends are 
also selected for vectorization, by setting to 1 the flag S in the 
stride predictor. When the selected load reenters the pipeline, 
it checks whether the stride keeps on being the same, and in 
this case, this load is vectorized. Every time an instruction is 
fetched, if any of its source operands is vectorized, the 
instruction is also vectorized.  
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Figure 4: IPC depending on the number of propagated 
PCs per instruction.

Figure 5 shows the percentage of mispredicted branches for 
which the mechanism does not find any control independent 
instruction (white portion), selects at least one control 
independent instruction (gray portion), and selects control 
independent instructions and successfully reuse precomputed 
instances (through speculative vectorization) of them (black 
portion) for SpecInt2000. Control independent instructions are 
selected for about 70% of the mispredicted branches (black 
and gray portions). For 49% of the mispredicted branches 
(black portion), at least one control-independent instruction is 
correctly vectorized. The remaining 21% of the mispredicted 
branches (gray portion) where vectorization is not successful 
are basically due to the fact that they do not depend on strided 
loads. 

It is important to remark that speculative vectorized 
instructions perform work that is beyond the current 
instruction window. These speculative instructions can be at 
any distance from the mispredicted branch of which they are 
control independent. 

2.3.3. Third step: Instruction Replication
Once a load with the corresponding S flag set is fetched, 
multiple instances of it are speculatively dispatched to the 
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issue queue. Each dynamic instance will read a different 
memory address, which is computed by adding to the last 
effective address the stride multiplied by the order rank of the 
dynamic instance (current_address+(stride*n)). Depending 
on where to store the precomputed data, replicas will use, as 
an outcome, a different scalar register (monolithic register 
file) or a different position of the provided small memory (see 
details later is Section 2.4.6) The processor keeps on fetching 
instructions in the conventional sequential approach. When a 
replicated instruction is fetched again, the first speculative 
instance is validated and if the validation is correct, the 
instruction is just marked as completed. Following replicas 
will be validated in the same way. When the last replica is 
validated, another set of multiple speculative instances of the 
instruction are dispatched again. 

Percentage of branches with CI instructions that reuse, not reuse 
or not found
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Figure 5: Percentage of mispredicted branches for 
which no control independent instruction is selected, 
(white portion), at least one control independent 
instruction is selected (gray portion), at least one control 
independent instruction is correctly vectorized (black 
portion). 

These multiple instances are managed by means of an 
additional table, the SRSMT table (Scalar Register Set Map 
Table). This table is indexed by the PC and stores the PCs of 
the replicated instructions and several other fields, as shown in 
Figure 6 (the purpose of the last two fields will be explained 
later in Section 2.5).   

The Set of registers field holds the identifiers of the 
physical registers (for monolithic register files or positions for 
implementations following the memory implementation 
detailed in Section 2.4.6) that will be used as destination 
registers for the replica instructions and the field Nregs stores 
the number of registers that have been allocated (which equals 
to the number of replicas). Note that, in the case that not 
enough free registers are available for the desired number of 
replicas, a lower number of replicas or none at all are created. 

Figure 6: Entry in the SRSMT assuming 4 replicas per 
instruction and 256 available registers. Field length is in 
bits. 

The next two fields, the decode and the commit fields, track 
the state of the set of replicas. The decode indicates which is 
the next replica to be validated. This field is incremented 
when a new dynamic instance of the instruction enters into the 
decode stage. The commit field indicates the last replica that 
has been committed. This field is incremented when a 
dynamic instance of an instruction is successfully validated 
and commits. When a recovery action is needed, (e.g. in case 
of a branch misprediction) the state of the table can be easily 
recovered by copying the content of the commit field into the 
decode field for every entry of the table. When the decode and 
commit fields are equal, the entry in the SSRMT is 
deallocated. Note that this does not imply the deallocation of 
physical registers. 

The issue field holds the number of replicas that are being 
executed (i.e., have been issued but their execution has not 
finished). The purpose of this field is later discussed in this 
section. 

The next two fields, seq1 and seq2, identify the instructions 
that compute the source operands if they have been vectorized, 
or the value of the scalar operand otherwise (not all source 
operands must be vector operands). The identifier of a 
vectorized instruction is its PC (also called Seq or Sequence).

The rename table is extended to include for each logical 
register whether the latest instruction that writes to it has been 
vectorized and if this is the case, it contains the PC of that 
instruction. Figure 7 depicts and entry of the rename table.  

Figure 7: Entry of the rename map table. Lengths of 
fields are in bits. 

When an instruction is vectorized, an entry is allocated in 
the SRSMT table. A free entry is chosen but if none is 
available, an entry is tried to be deallocated. An entry can be 
deallocated when the fields decode and commit have the same 
value, and the field issue is set to 0. If several entries are 
candidates to be deallocated (depending on the indexing 
function) the LRU is chosen. When an entry is deallocated, the 
resources allocated by it are released. If no entry can be 
deallocated, the instruction is not vectorized. 

The identifiers of the source operands for a newly 
vectorized instruction are obtained from the rename table. If 
an operand is scalar, its value is read from the register file. If 
the value is not ready, the instruction and following ones are 
stalled.  

2.3.4. Fourth Step: Speculation Validation
Every time an instruction is fetched, its PC is looked up in the 
SRSMT and if found, it means that the instruction has been 
vectorized and must be validated. Validation of arithmetic 
instructions consists in checking whether the producer’s 
identifiers currently found in the rename table for its source 
operands are equal to those of the SRSMT validates. For a 
load, the stride must keep on being the same. If these checks 
are successful, the instruction is not executed and it is sent to 
the commit stage where it will finalize its validation. In the 
commit stage it will wait until the fields decode and commit of 
its source operands in the SRSMT table are equal. When it 
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commits, the commit field of its entry in the SRSMT is 
increased. Notice that every dynamic instance of a replicated 
instruction sets the bit V/S to 1 and the field sequence is set to 
the “sequence” of the instruction in the rename map table.  

If the speculation is not correct, the corresponding entry in 
the SSRMT and the scalar registers associated to the replicas 
of this instruction are deallocated, and new replicas are created 
with the new operands. 

2.4. Other Microarchitecture Considerations
2.4.1. Issue Logic
Speculative vectorized instructions are given less priority than 
the rest. In case of a branch misprediction they are not 
squashed (they are supposed to be control independent). These 
speculative instructions are not committed (their activity is 
committed by the corresponding scalar instruction that does 
the validation). After execution, they are retired in the write-
back stage. 

2.4.2. Releasing Physical Registers 
One of the critical resources of the processor is the register 
file. Scalar instructions and replicas use the register file to 
store the computed data. Furthermore, since speculative values 
are computed much earlier than in a conventional 
microarchitecture, their lifetimes are stretched and the register 
pressure is increased. Several implementations [1][6] have 
been discussed previously at literature to alleviate the 
problem. For out study we have chosen the inclusion of a 
small and cheap memory as described later in Section 2.4.6.  

Physical registers are released after their value is used, 
using the same approach as a conventional processor does (i.e. 
when an instruction commits, the physical register allocated 
by the previous instruction with the same logical destination is 
released). However, there may be values that are never used 
due to wrong speculation. In that case, the associated registers 
are not released until the entry of the SRSMT is deallocated 
and given to another vectorized instruction. To release earlier 
these registers, a new field in the SRSMT, called DAEC 
(Dead Association Elimination Counter) is included. This field 
is incremented for those entries whose decode and commit
fields have the same value (otherwise the counter is set to 0) 
when a branch misprediction recovery action is performed. 
When this field reaches the value of 2, the registers allocated 
by the corresponding vectorized instruction that have not been 
validated are deallocated. This avoids long lifetimes of values 
because the scheme supposes that if an entry is not used 
during several branch mispredictions, the speculative work 
done for this entry is wrong. 

For SpecInt2000, in unified register file implementations, 
the average number of physical registers in use when their 
number is unbounded is 812 without this scheme (see details 
in section 3.1) and 304 if this scheme is in place. Notice that 
this counter prevents the utilization of large register files that 
can impact seriously in the cycle time. 

2.4.3. Memory Coherence 
When a strided load is detected, the mechanism creates 
speculative replicas that fetch data into scalar registers. When 
a store instruction commits and modifies the data of the L1 
data cache, it checks whether this data has been speculatively 
loaded in any scalar register. 

For this purpose, a conservative but simple mechanism is 
proposed. One extra field is included in each entry of the 
SRSMT to hold the initial and final memory addresses of each 
vectorized load instruction (this field is meaningless for other 
instructions). When a store commits, it checks if its address is 
inside the range of addresses of any entry and if this is the 
case, the entry and the resources assigned to the replicated 
instruction are deallocated, and the instructions in the 
conventional instruction window (i.e. all except those 
generated by the speculative vectorization scheme) that follow 
the store are squashed. To account for this extra activity, an 
additional cycle has been assumed for committing a store 
instruction and only up to 2 stores can be committed in the 
same cycle. Fortunately, less than 3% of the stores write into 
an address whose data has been previously read by a 
speculative load. 

2.4.4. Branch Mispredictions 
In a branch misprediction, the content of the commit field of 
each entry of the SRSMT table is copied into the 
corresponding decode field. No speculative vectorized 
instruction is squashed and no resource assigned to replicated 
instructions is deallocated. This gives the processor the 
opportunity of exploiting control-flow independence. 

2.4.5. Wide Bus
Vectorizing loads opens the possibility of better exploiting 
spatial locality since most loads have a unit stride. For this 
purpose, buses of the data cache are assumed to be wide. A 
wide bus [11][14][23] can read a whole cache line for every 
access and multiple outstanding loads can use these data. To 
limit the number of additional ports to the register file, only up 
to 4 loads can be served in one of these wide accesses. 

Figure 8 shows the number of cache accesses for the 
superscalar processor with scalar ports (scalxp), with wide 
buses (wbxp), and the mechanism of control independence 
(cixp), with 1 port (x=1) or 2 wide ports (x=2). The wide bus 
significantly reduces the number of cache access but the 
control independence mechanism reduces it further in spite of 
executing more speculative loads.  
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Figure 8: Number of accesses to L1 data cache for the 
baseline (scalxp), the baseline with a wide bus (wbxp)
and the control independence mechanism (cixp) with 
one (x=1) and two wide ports (x=2). 
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2.4.6. Speculative Data Memory 
In scenarios where the register file is critical, dynamic 
vectorization of control-independent instructions can produce 
slowdowns due to the lack of scalar registers. Although our 
mechanism does not need a large amount of scalar registers 
(on average 304 as shown in Section 2.4.2), it is always 
recommendable to alleviate the pressure in the register file and 
to avoid large register files that can impact seriously in the 
processor’s cycle time. For this, we propose, as a possible 
implementation, the use of a small and cheap slow memory, 
similar to a hierarchical register file [6] to hold the speculative 
data created by replicas. Speculative instructions are assigned 
positions from this small memory as destination registers. 
Data cannot be read directly from this memory as input 
operands in the functional units because this memory is not 
connected to the functional units but the register file. Data 
movement between this memory and the register file is 
performed through a copy instruction inserted in the issue 
queue when a validation instruction enters the decode stage. 
This copy instruction allocates one register from the register 
file to store the value moved from this small memory. 
Dependent instructions of the validation instruction become 
dependent on the copy instruction to read the values from the 
register file. Validation instructions, as previously 
commented, pass from the decode stage to the commit stage to 
validate the speculative data without waiting for the execution 
of the copy instruction. Both the register of the register file 
and the position in this memory are deallocated when the 
following scalar instruction with the same destination logical 
register as the validation instruction commits. 

This small memory only has two write ports from the 
functional units and two read ports to the register file. It is also 
twice slower than the register file. 

3. Performance Evaluation
3.1. Experimental Framework
For the performance evaluation we have extended the 
SimpleScalar v3.0c [2] to include the microarchitectural 
extensions described above. 

The baseline microarchitecture is an 8-way issue 
superscalar processor. To evaluate the register file impact, we 
use, for a clear evaluation, monolithic register file 
configurations of 128, 256, 512, 768 and infinite registers. 
Afterwards, we will provide numbers of the inclusion of the 
small memory to hold speculative data.  

To evaluate the impact of the aggressiveness of the 
speculation, dynamic vectorization schemes that generate 1, 2, 
4 or 8 replicas per scalar instruction are explored. Other 
parameters of the microarchitecture are shown in Table 1. 

For the experiments we use the whole SpecInt2000 
benchmark [20] suite because they include programs with 
significant number of branch mispredictions. Programs were 
compiled with the Compaq/Alpha compiler using –O5 –ifo –
non_shared optimisation flags. Each program was simulated 
for 100 million instructions after skipping the initialization 
part. 

From the description of the implementation of the 
mechanism, one could derive that the proposed structures are 
large and complex. But in fact they are not. Since control logic 
hardware requirements are difficult to compute without the 
layout of the processor, we only give numbers of the hardware 

needed for the structures. For the evaluated configuration, the 
size of the additional hardware required by the control-flow 
independence scheme is: 
• The SRSMT occupies 11520 bytes (4 ways * 64 elements 

per way * 45 bytes per element). 
• The stride predictor occupies 24576 bytes (4 ways * 256 

elements per way * 24 bytes per element). 
• The MBS occupies 2048 bytes  (4 ways * 64 elements per 

way * 8 bytes per element). 
• The NRBQ occupies 128 bytes (16 entries * 8 bytes per 

entry). 
• THE CRP occupies 16 bytes (8 bytes from the PC and 8 

bytes from the mask of bits). 
• The extension of the rename map table occupies 1024 bytes 

(16 bytes per entry * 64 entries). 

Parameter Value 
Fetch Width 8 instructions (up to 1 taken branch) 
I-Cache 64Kb, 2-way set associative, 64 byte lines, 1 cycle hit, 6 cycle 

miss time 
Branch Predictor Gshare with 64K entries 
Inst. Window size 256 entries 
Scalar functional units 
(latency in brackets) 

6 simple int (1); 3 int mult/div (2 for mult and 12 for div); 4 
simple FP(2); 2 FP mult/div (4 for mult and 14 for div); 1 
load/store 

Load/store queue 64 entries with store-load forwarding 
Issue mechanism 8-way out of order issue; loads may execute when prior store 

addresses are known 
D-cache 64Kb, 2-way set associative, 32 byte lines, 1 cycle hit time, 

write-back, 6 cycle miss time, up to 16 outstanding misses
L2 cache 256Kb, 4-way set associative, 32 byte lines, 6 cycle hit time, 18 

cycle miss time 
L3 cache 2Mb, 4-way set associative, 64 byte lines, 18 cycle hit time, 100 

cycle miss time (main memory access time) 
Commit width 8 instructions 
Stride predictor 4-way set associative with 256 sets 
SRSMT 4-way set associative with 64 sets 
MBS 4-way set associative with 64 sets 

Table 1: Processor configuration. 

This results in a total of 39 Kbytes of extra storage easily 
affordable in current designs. On the other hand, using this 
amount of extra hardware in i.e., the L1 data cache only 
increases about 5% the performance of the processor, while 
we will report performance improvements of about 17%. 

3.2. Performance Evaluation
Figure 9 shows the IPC obtained with the proposed 
mechanism (cixp) compared with a superscalar processor 
(scalxp) and a superscalar processor with wide buses (wbxp),
for a varying number of L1 data cache ports (1 port x=1, 2 
ports x=2) and a varying number of physical registers (128, 
256, 512, 768 and infinite). In this first set of experiments, a 
single-level register file is considered. Harmonic means are 
used to average IPC across the whole benchmark suite. 
Vectorization creates 4 replicas per vectorized instruction. 

Several conclusions can be drawn from Figure 9. First, we 
can see that wide buses provide a significant benefit for a 
superscalar processor. This is due to the fact that a wide bus 
exploits the spatial of memory accesses. As the number of 
ports increases, this performance benefit decreases since 
multiple ports can also exploit spatial locality although with a 
much higher implementation cost.  

For the baseline configuration with and without wide buses, 
performance is significantly improved when the number of 
registers increases from 128 to 256, except for 1 non-wide 
port, which is mainly limited by memory bandwidth. For 
configurations with more than 256 registers the reorder buffer 

Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05) 
1530-2075/05 $ 20.00 IEEE



has been increased to the size of the number of registers; 
otherwise, many registers would be useless due to the lack of 
instructions in-flight. However, this hardly improves 
performance due to the branch mispredictions and the limited 
ILP of these applications. 

IPC depending on the L1 ports and scalar 
registers
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Figure 9: IPCs for a superscalar processor (scalxp), a 
superscalar processor with wide buses (wbxp) and a 
superscalar processor with wide buses and the proposed 
mechanism (cixp), for 1 L1 data cache port (x=1) and 2 
ports (x=2), and for 256, 512, 768 and infinite registers. 

When the mechanism for control independence is included, 
and enough registers are available, the performance increases 
more than 17,8% for both configurations (1 port and 2 ports) 
over the superscalar processor with wide buses. This is 
basically due to the exploitation of control independence, 
which allows the processor to execute instructions ahead of 
the resolution of the branches on which they depend, 
regardless of the correctness of the branch prediction, and 
even if they are far away of the current instruction window. 
The vectorization scheme also favors the exploitation of 
spatial locality, since the speculative instances of a vectorized 
load instruction are unit strided most of the times. 

The control independence scheme increases the pressure in 
the register file due to longer lifetimes and wrongly speculated 
instructions. Because of that, when the number of registers is 
too low (128 registers for a 256-entry reorder buffer), the 
control independence scheme results in some performance 
degradation. For configurations with 256 registers, the control 
independence mechanism hardly affects performance when 
compared with the superscalar configuration with wide buses.  
This is due to the fact that a large number of scalar registers 
are used to store the values created by the speculative 
instructions, slowing down the execution of the code that has 
not been vectorized because less registers are available for it. 
However, when the number of physical registers keeps on 
increasing, the superscalar processor performance flattens out 
whereas the control independence scheme provides significant 
performance gains.  

As discussed above, one of the main benefits of the 
proposed scheme is its potential to pre-execute instructions 

that are outside the instruction window (and potentially far 
away). To quantify this effect, we have simulated a 
hypothetical scheme where control independence is exploited 
only for the control-independent instructions that have entered 
the instruction window before the branch misprediction is 
detected and the recovery action is initiated (this scheme is 
sometimes referred to as squash reuse). Figure 10 shows the 
performance of that scheme (ci-iw) compared with a 
superscalar processor (scal), a superscalar processor with a 
wide bus (wb) and the proposed control independence scheme 
(ci).
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Figure 10: Performance of exploiting control 
independence only inside the instruction window (ci-
iw). The other bars correspond to a superscalar 
processor with one L1 data cache port, either single 
(scal) or wide (wb), and the proposed control 
independence scheme (ci).

Exploiting control independence by reusing only 
instructions of the wrong path that have entered the instruction 
window provides an improvement of 9,1% whereas the 
proposed control independence scheme results in a 17,8% 
performance gain. 

An important parameter of the proposed scheme is the 
number of speculative instances that are generated for every 
vectorized instruction. A higher number of speculative 
instances implies a higher potential to exploit control 
independence but also a higher pressure on the register file 
(i.e., more mispeculations and longer lifetimes). Figure 11 
shows the effect when this parameter is varied from 1 to 8 
instructions. From this experiment we can conclude that either 
2 or 4 replicas per vectorized instruction seem the most 
convenient approach. Generating only 1 speculative version 
looses a lot of opportunities to exploit control independence. 
On the other hand, generating 8 replicas only improves 
performance by very little when the number of registers is 
very high. 

Figure 12 shows the number of: a) committed instructions 
that do not reuse a precomputed value (dark portion), b) 
committed instructions that reuse a precomputed value (dark 
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gray), c) fetched instructions that do not commit due to a 
branch missprediction (light gray), and d) speculative 
instructions generated by the control independence scheme 
(white) for 2 (left bars per spec) and 4 (right bars) replicas per 
vectorized instruction. 

IPC depending on the number of created replicas
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Figure 11: IPC depending on the number of replicas per 
vectorized instruction and the number of available 
registers. 

Figure 12 shows that increasing the number of replicas from 
2 to 4 increases the percentage of committed instructions that 
benefit from reuse increases from 12,3% to 14%. On the other 
hand, this extra reuse comes at the expense of a non-negligible 
increase in number of speculative instructions generated by 
the control independence scheme. We can also observe in 
Figure 12 that the amount of speculative activity generated by 
the control independence scheme is comparable to the activity 
generated by wrongly speculated instructions due to branch 
misspredictions. 

Speculative instructions creating 2 or 4 replicas
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Figure 12: Number of committed instructions that do 
not reuse (dark), committed instruction that reuse (dark 
gray), fetched instructions that do not commit due to a 
branch missprediction (light gray), and instructions 
generated by the control independence scheme (white) 
for 2 replicas (left bars) and 4 replicas (right bars) per 
vectorized instruction. 

Although the mechanism does not need a large amount of 
registers, we have evaluated the benefits of including a 
memory to hold speculative data created by replicas, as shown 
in Figure 13, for both alleviating the pressure in the register 
file and not to increasing the cycle time due to a large register 
file.  

For our simulations we have restricted the number of ports 
to this memory (2 read ports and 2 write ports) to easily 
accommodate the access time in 2 cycles. Since this memory 
is out of the critical path and movements of values from this 
memory to the register file are not critical, longer latencies are 
allowed without degrading significantly the performance (a 
latency of 5 cycles only slowdowns about 3% in 
configurations with 256 registers in the register file and 768 
positions in the proposed small memory). Several 
configurations of this memory have been simulated as shown 
in Figure 13.

Figure 13 shows that a register file of 256 registers and a 
memory holding 768 speculative values has about the same 
performance as a monolithic, single-latency register file with 
an unbounded number or registers. 

Figure 13: Performance of the control-flow 
independence mechanism with a memory able to hold 
128 (ci-h-128), 256 (ci-h-256), 512 (ci-h-512) and 768 
speculative values (ci-h-768). The number of registers 
in the register file is given by the X-axis. The graph also 
shows a superscalar processor (scal), a superscalar 
processor with a wide bus (wb) and a superscalar 
processor with a wide bus and the control-flow 
independence mechanism with a monolithic register file 
(ci), for a varying number of registers.

4. Related Work
Chou et al. [5] present a mechanism for exploiting control 
independence that is based on a structure called DCI that 
stores copies of decoded instructions. After a recovery from a 
branch misprediction, new fetched instructions are looked up 
in the DCI to locate the beginning of a control independent 
region. Furthermore, an out-of-order fetch mechanism is 

Performance with a speculative data memory
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presented to start fetching from the control independent region 
after a branch prediction is performed. 

Rotenberg et al. present a mechanism to exploit control 
flow independence in superscalar [15] and trace [16][17] 
processors. Their approach is based on identifying re-
convergent points dynamically, and a hardware organization 
of the instruction window that allows the processor to insert 
the instructions after a branch misprediction in between 
instructions previously dispatched, i.e., after the mispredicted 
branch and before the control independent point. 

Sodani et al. [19] present a mechanism for global reuse 
based on keeping history of previous executions of 
instructions. When an instruction is decoded a structure, called 
Reuse Buffer, is checked to see if there is a previous execution 
of this instruction and if the result for that execution can be 
reused. In that paper, several implementations of the Reuse 
Buffer that differ in the way the reuse test is performed are 
proposed and evaluated. 

Cher et al. present Skipper [4], a mechanism to overlap the 
latency of hard-to-predict branches with the execution of 
control-flow independent instructions following the re-
convergent point of those branches. To achieve this, when a 
repeatedly mispredicted branch is detected, the fetch is 
redirected to the re-convergent point, creating a gap in the 
reorder buffer (large enough to hold the skipped instructions), 
and the processor proceeds to execute the instructions after the 
re-convergent point. When the branch is resolved, the skipped 
instructions are executed. Dependences among skipped 
instructions and the instructions after the re-convergent point 
are checked to ensure the correctness of the execution, 
performing recovery actions when needed. 

Pajuelo et al. [12] present a mechanism that dynamically 
creates speculative vector instructions to exploit SIMD 
parallelism. Vectorization is triggered by strided loads, which 
create speculative instances of the load instruction. Dependent 
instructions are also vectorized. The exploitation of SIMD 
parallelism, data prefetching and control independence 
instructions are reported to be the three sources of 
performance improvement. 

The scheme proposed in this paper is a much more cost-
effective approach to exploit control independence than the 
one in [12] because it is tailored to exploit control 
independence instead of full-blown vectorization of every 
strided load and all their successors in the dependence graph, 
including instructions in wrongly predicted paths. Besides, it 
requires neither vector units nor vector registers since 
vectorization is performed by replication of scalar instructions. 

Figure 14 shows the performance comparison between the 
control independence scheme proposed in this paper (cix2p)
and the vectorization approach proposed in [12] (vect2p) for 2 
wide L1 data cache ports and a varying number of registers 
(for comparison purposes, a hierarchical register file is not 
included).  

We can conclude from Figure 14 that the scheme proposed 
in this work has better performance than the dynamic 
vectorization scheme of [12], except for a huge number of 
registers. For an unbounded number of registers, the dynamic 
vectorization scheme outperforms the control independence 
mechanism by a very small difference (4%). The control 
independence scheme, in addition to require a simpler 
hardware (no vector resources are needed, which simplifies 

the dispatch, issue and execution stages because the processor 
only deals with scalar instructions), generates much less 
useless activity: wrongly speculated instructions represent 
29,62% of the total executed instructions in the control 
independence scheme, whereas they represent 48,45% for the 
dynamic vectorization approach. The control independence 
generates much less speculative activity and this activity is 
much more accurate. Overall, both schemes reuse pre-
computed values for a similar number of committed 
instructions (14% the control independence scheme vs. 17% 
the dynamic vectorization mechanism). Besides, the few 
additional instructions (3%) reused by the dynamic 
vectorization scheme are in general less critical (i.e., have less 
effect on performance) than the control independent ones. 

IPC of the Control Independence and Dynamic 
Vectorization Mechanisms
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Figure 14: Comparison of the control independence 
mechanism with the dynamic vectorization scheme of 
[12].

5. Conclusions
In this paper we have proposed a mechanism to exploit 
control-flow independence. The mechanism is based on a 
simple heuristic to detect re-convergent points, a technique to 
identify the strided loads on which the control independent 
instructions depend and a scheme to dynamically generate 
speculative instances of these strided loads and their 
successors in the data dependence graph. The proposed 
scheme can pre-execute control independent instructions 
before a branch is resolved, no matter how far these 
instructions are from the branch.  

The performance evaluation experiments reveal an 
average speedup of 17,8% over a superscalar processor, about 
the same performance as a previously proposed full-blown 
vectorization approach but with a much lower hardware cost, 
and better performance than the full-blown vectorization when 
a moderate number of registers is considered (less than 700). 

Furthermore, we have studied the benefits of including a 
small memory to hold the speculative data. We have shown 
that this memory can be easily implemented in the processor 
and alleviates the additional register pressure generated by 
replicas. A configuration with a register file of 256 registers 
and memory able to hold 768 speculative values has 
practically the same performance as an unbounded single-
level register file. 
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