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Abstract

We study the Smith-Purcell light emission produced by electrons moving parallel to linear aperi-

odic particle arrays. This constitutes a generalization of this type of phenomenon from periodic to

aperiodic structures. Like in the periodic case, the emission is found to exhibit intense features in

its angular and frequency distributions, associated with the condition of constructive interference

between the contributions arising from different particles in the array. This condition can also be

expressed in terms of momentum conservation involving reciprocal wave-vector transfers from the

array. We consider two examples of quasiperiodic and hyperuniform aperiodic arrays that allow us

to illustrate this idea. Our study opens a new unexplored direction in the interaction of fast elec-

trons with aperiodic arrays characterized by strong features in reciprocal space, which dominate

the electron-array interaction.

PACS numbers: 41.60.-m,78.60.Hk,42.25.Fx,
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I. INTRODUCTION

The interaction of an electron with an inhomogeneous dielectric environment gives rise to

transient induced charges and currents that result in the emission of radiation. In particular,

the Smith-Purcell (SP) effect1 refers to the light emission produced by an electron moving

parallel to a periodic grating. As the electron passes close to each successive element along

the grating, its evanescent electromagnetic field induces light emission at selected frequencies

and directions resulting from a simple condition of constructive interference. This condition

is analogous to the Huygens construction, but now also involving the time delay used by the

electron to interact with consecutive grating periods. Following the initial demonstration and

explanation of the SP effect,1 subsequent studies have further corroborated the dependence

of the emission on electron energy and grating period,2,3 confirming that it occurs over a

wide spectral range, including X-rays,4 UV2 and visible1,5 light, NIR,6 FIR,7 and THz.8,9 The

SP effect is the basis of free-electron lasers,10,11 whereby the emission intensity produced a

large number of electrons bunched within a small spatial region compared with the emitted

light wavelength is proportional to the square of the number of electrons8,12–14. Experimental

realizations of the SP effect have focused on periodic structures of different nature, including

metallic gratings1,15, where an interesting interplay takes place between the emitted light

and the plasmons supported by the metal surface, as well as dielectric structures16 and

photonic crystals.17–19

Strong resonances in reciprocal space lie at the core of SP emission: the emission angles

and frequencies are determined by the reciprocal lattice vectors of the periodic lattice with

which the electron interacts. One expects that similarly intense emission patterns would

result from the interaction with other types of structures, not necessarily periodic, in which

strong features are also present in reciprocal space. We explore this extension of the SP

effect in this work by first studying the reciprocal-space properties of quasiperiodic20 and

hyperuniform21 one-dimensional arrangements of particles. We find the resulting emission

to also display intense features, which we further compare with those of periodic arrays.
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II. THEORETICAL MODEL

A. Smith-Purcell emission in linear arrays

We consider a linear array of N identical particles placed along the z axis at positions

zn and an electron moving with constant velocity v parallel to this axis at a distance b

from the array, as illustrated by Fig. 1. The electron generates an external evanescent field

FIG. 1: Schematic representation of the system under consideration. A linear array of

spherical particles aligned along the z axis is characterized by the positions of the sphere centers

zn. An electron moves parallel to the array with constant velocity v at a distance b from the z

axis. The array contains N particles with the same diameter D.

Eext(z, t) =
∫
Eext(z, ω)e−iωtdω/2π acting on the particles, whose component of frequency ω

reduces to22 Eext(z, ω) = eiωz/vg(ω), where
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γ = 1/
√

1− v2/c2 is the Lorentz factor, and Kν are modified Bessel functions.23 In what

follows, we describe each ω component independently, as it generates radiation at that

frequency when scattered by the array.

For simplicity, we assume spherical particles described through their dipolar polariz-

ability α(ω), which is related to the electric Mie coefficient tE1 through22 α(ω) = 3tE1 /2k
3,

where k = ω/c and k′ =
√
ε k. In particular, we present results for homogeneous spheres

of radius a and permittivity ε, so that tE1 = i/(1 + i∆1), where ∆1 = [y1(ka)J(k′a) −

εY (ka)j1(k
′a)]/[j1(ka)J(k′a) − εJ(ka)j1(k

′a)], j1 and y1 are spherical Bessel functions,23

J(ρ) = ρj0(ρ)− j1(ρ), and Y (ρ) = ρy0(ρ)− y1(ρ). The use of the Mie coefficient instead of

an electrostatic expression for α allows us to account for retardation effects in the dipolar

response, such as particle resonance redshifts and radiative broadenings.
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The electron field produces a direct induced dipole on each particle n given by

αEext(zn, ω) = αeiωzn/vg(ω). Interaction among the particles then leads to self-consistent

dipoles

pn = α

(
eiωzn/vg +

∑
n′ 6=n

Gnn′pn′

)
, (2)

where the sum yields the electric field produced on particle n by the rest of the particles,

mediated by the 3× 3 dipole-dipole interaction matrix

Gnn′ =
eiθnn′

|zn − zn′|3

×
[
(θ2nn′ + iθnn′ − 1)I− (θ2nn′ + 3iθnn′ − 3)(ẑ⊗ ẑ)

]
where θnn′ = k|zn − zn′ |, I is the 3× 3 identity matrix, and ⊗ denotes the dyadic product.

Now, these dipoles give rise to a scattered electric far-field Escat = f(r̂) eikr/r, where

f(r̂) = k2
∑
n

[pn − (pn · r̂)r̂] e−ikzn cos θ (3)

is the field amplitude for a direction of emission r̂ that forms an angle θ with the array.

Calculating the far-field Poynting vector and dividing by the photon energy h̄ω, we finally

obtain the emission probability22 Γ =
∫∞
0
dω
∫
d2r̂Γ(ω, r̂), where

Γ(ω, r̂) =
1

4π2h̄k
|f(ω, r̂)|2 (4)

is the doubly differential probability of emitting one photon per electron and per unit of

frequency and solid-angle ranges.

B. Lattice structures

We consider three types of lattices: periodic, quasiperiodic, and hyperuniform, all of them

with the same average distance between particles d. The set of lattices belong to each of

these sets is a subset of the preceding one, but here, we focus on three specific realizations.

Despite their very different short-range structure, they exhibit long-range correlations that

translate into resonances in reciprocal space, and consequently, also into different angular

SP emission patterns (see below).

The main property of hyperuniform lattices is the absence of long-wavelength fluctua-

tions: this is mathematically equivalent to the vanishing of their structure factor for large

4



distances (i.e., low wave vector, see Eq. (6) below)21,24. We study tessellated arrays as an

example of one-dimensional hyperuniform arrangements.21 A tessellated array of N particles

is constructed by considering N contiguous segments of length d along the z axis, and then

placing one particle in each segment with a uniform random distribution along its length.

We also study Fibonacci arrays as a special case of one-dimensional quasicrystals.20 In

these arrays there are two possible distances between contiguous particles, which we denote

long (L) and short (S) ones. The N -particle array is constructed by starting with two parti-

cles separated by a distance L. Then, we iteratively apply the following pair of substitutions:

every distance L is substituted by a pair of distances LS (i.e., with a new particle inserted),

and every distance S is transformed into L. This procedure is repeated until a number of

particles ≥ N is obtained, and we then retain only the first N particles. By construction, the

ratio between L and S intervals contained in the array is the golden ratio φ = (1 +
√

5)/2,20

so that the average nearest-neighbor distance is d = (φL + S)/(φ + 1). In this study, we

take L = φS.

C. Simple analytical model based on momentum conservation

Interestingly, the z dependence of Eext(z, ω) [see Eq. (1)] comes only through a phase

factor eiωz/v. For a large periodic array of period d, this allows us to write

pn ≈ eiωzn/vp, (5)

where p is shared by all particles. Additionally, the far-field produced by these dipoles is

proportional to
∑

n ei(ω/v−k‖)dn, where k‖ is the projection of the light wave vector along z.

In the limit of a large number of particles (N � 1), this sum becomes ≈ (2π/d)
∑

m δ(k‖ −

ω/v − 2πm/d), leading to the well-known condition mλ/d = cos θ − c/v for SP emission

of order m with wavelength λ along an angle θ relative to the array direction.1 Momentum

conservation can thus involve transfers to the particle lattice associated with wave vectors

2πm/d.

The linear aperiodic arrays under consideration can also absorb momentum with certain

preferential wave vectors that should correspond to lattice singularities in Fourier space. In

order to determine those wave vectors, we analyze the structure-factor sum

SN(k‖) =
∑
n

eik‖zn . (6)
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FIG. 2: Periodic and aperiodic arrays in real and reciprocal space. We consider three

different types of arrays: (a) periodic, (b) tessellated, and (c) Fibonacci, all of them with N = 100

particles. The average distance between sites is d in all cases. For each type of array, we show

examples of the particle distributions (black dots), as well as dispersion diagrams of the inter-

particle interaction [contour plots, | det{G(k‖, ω)}/ω2|, Eq. (7)], and the lattice structure factors

[lower plots, |SN (k‖)/N |2, Eq. (6)]. The light cone (red lines), the electron line (blue lines), and

their replicas, associated with displacements by wave vectors corresponding to the divergences of

SN , are shown in the dispersion diagrams.

Obviously, SN(k‖) diverges for periodic arrays when the parallel wave vector k‖ is a multiple

of 2π/d, as shown in the lower part of 2(a), which represents |SN/N |2 for two different values

of N . Understandably, the tessellated lattice produces divergences at the same k‖ positions

as in the periodic array (see Fig. 2(b), lower part), although their strength diminishes with

increasing order, essentially as a result of hyperuniformity.21 In contrast, the Fibonacci
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lattice gives rise to sharp resonances associated with its two different characteristic lengths

(see Fig. 2(c), lower part, where we observe peaks at multiples of 2π/S and 2π/L).

A similar analysis can be performed to study the optical modes supported by the ar-

rays. Inspired again by periodic structures, in which such modes are controlled by lattice

resonances associated with the in-phase interaction between distant sites, as revealed by

divergences in the Fourier transform of G,25 we consider the sum

G(k‖, ω) =
1

N

∑
n

∑
n′ 6=n

Gnn′eik‖(zn−zn′ ). (7)

The color plots of Fig. 2 represent | det{G(k‖, ω)}/ω2| for the three types of lattices under

consideration (with N = 100 elements each). We observe that a central resonance occurs

at the line cone (k‖ = k), which is flanked by replicas that are displaced by wave vectors

corresponding to the divergences of SN .

We are now prepared to extend the kinematical condition of SP radiation to aperiodic

arrays:

k‖,jλ/2π = cos θ − c/v, (8)

where j runs over the divergences of SN(k‖). This condition is represented by blue lines in

Fig. 2. We thus expect to find emission maxima at directions roughly determined by the

crossings of those lines with the divergences of G. This picture must be however corrected by

dynamical effects in the interaction between particles, which render maximum polarization

at frequencies that are slightly shifted with respect to the noted condition. For a qualitative

analysis of this effect, which turns out to be rigorous in periodic arrays, we can adopt Eq.

(5) as an approximate relation also for aperiodic lattices. Upon insertion of this expression

into Eq. (2), we find

p ≈ 1

α−1 −G(k‖, ω)
· g(ω). (9)

Obviously, the condition for maximum polarization is det{α−1 − G} = 0. Notice that G

receives individual dipole-dipole interaction contributions that scale as 1/(min{d, λ})3 with

particle separation d and emission wavelength λ, whereas α is typically of the order of the

particle volume, unless strong particle resonances are excited. Therefore, α−1 can only be

compensated by G when the latter diverges as a result of coherent lattice interactions, as

described in Fig. 2. The actual resonances of the array therefore depend on the type and
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FIG. 3: Cathodoluminescence probability and angular emission profiles. (a-c) We show

the SP emission probability as a function of photon wave vector k and parallel wave vector k‖

for the three different arrays considered in Fig. 2. The probability is calculated from Eq. (4) and

represented in color scale for arrays consisting of N = 100 particles. (d) Angle-integrated emission

probability for the three types of arrays, as compared with the emission from a single particle. (e-g)

Angular distribution of the emission for fixed frequency, as indicated by corresponding horizontal

cuts shown in (a-c). We compare results for N = 20 and N = 100. The electron beam is passing

at a distance b = 75 nm from the particle centers with energy E ∼ 200 keV (i.e., v ∼ 0.7c). The

average spacing is d = 120 nm. The spheres have a diameter of 50 nm and a permittivity ε = 12.

size of the particles:25 they are generally closer to the divergences of G when the particles

are smaller, and they are redshifted with respect to that condition when the real part of α

is positive.

An approximate expression for the SP emission probability in the large N limit is obtained

by inserting Eq. (9) into Eq. (3), and this in turn into Eq. (4) to yield

Γ(ω, r̂) ≈ k3

4πh̄
|p− (r̂ · p)r̂|2

∣∣SN(ω/v − k‖)
∣∣2 , (10)

where SN is the structure factor defined in Eq. (6).
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III. RESULTS AND DISCUSSION

Figure 3 shows the emission probability for finite periodic and aperiodic arrays as a

function of photon energy and angle of emission. The emission intensity is peaked around

a frequency region in which each individual particle shows a prominent response [see Fig.

3(d)], which is associated with the first Mie mode for the 50 nm diameter silicon spheres

(ε = 12) under consideration. For reference, the average spacing between sphere centers is

d = 120 nm. As expected, the fine structure within this region is dominated by the crossings

with the electron dispersion line and its replicas [Fig. 3(a-c), orange curves]. Additionally, the

intensity is enhanced near the crossings of the line cone and its replicas. This is more clearly

emphasized in the angular distribution patterns shown in Fig. 3(e-g). Remarkably, the

angular patterns are still clearly identifiable when a relatively small number of particles (N =

10) is considered in all three types of lattices. Incidentally, the periodic and the tessellated

lattices both lead to the same angles of emission, although the former displays stronger

features, in agreement with the results of Fig. 2. In contrast, the Fibonacci lattice produces

a more involved angular pattern, which reveals a denser set of resonances in reciprocal space.

We put the analytical model described above to the test in Fig. 4, where we compare it

with the full calculation of Eq. (4) for periodic and aperiodic arrays consisting of eitherN = 5

or N = 100 particles. Interestingly, both the periodic and the tessellated arrays are well

reproduced by the analytical model, thus corroborating that the approximate phase relation

of Eq. (5) constitutes a good ansatz. In contrast, the Fibonacci lattice is only qualitatively

described by this approximation, which is an indication that the complex behavior of this

type of lattice in reciprocal space cannot be well captured by such a simple phase relation.

A class of aperiodic structures is formed by randomly removing particles from an originally

periodic array. This is explored in Fig. 5, which in this way also address the robustness of the

SP emission features against imperfections of the array. Remarkably, the dominant emission

feature is clearly resolvable even after removing 40% of the particles.

IV. CONCLUSION

In summary, we have shown that sharp SP emission patterns are produced by en electron

moving parallel to different types of one-dimensional particle arrays, including periodic and
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FIG. 4: Analytical description of SP emission in finite aperiodic arrays. We show the

emission intensity for electrons moving parallel to finite arrays consisting of N = 5 and N = 100

particles with periodic (a) and aperiodic (b,c) arrangements. The emission energy and angle

correspond to the AB segments indicated in Fig. 2.

aperiodic arrangements. The condition for such intense patterns is that the lattice displays

strong features in reciprocal space. We have shown examples of strong features in the Fourier

transforms of periodic, quasiperiodic, and hyperuniform lattices, which lead to SP emission

peaks associated with a generalized condition that relates the angle and frequency of the

emission to the peak wave vectors in reciprocal space [see Eq. (8)]. A simple analytical model

for the emission produces results in very good agreement with a more exact analysis, taking

into account the interaction among particles and its dominant reciprocal-space features.
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FIG. 5: Robustness of the SP emission features. We show the emission from an initially

periodic array consisting of N = 1000 particles in which a a fraction of them have been randomly

removed. The emission is shown for different percentages of particles remaining. The spectral

range covers the dominant right feature of Fig. 4(a).
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16 F. J. Garćıa de Abajo, Phys. Rev. E 61, 5743 (2000).

17 K. Ohtaka and S. Yamaguti, Optics and Spectroscopy 91, 506 (2001).

18 T. Ochiai and K. Ohtaka, Opt. Express 13, 7683 (2005).
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