Exact Consensus Controllability of Multi-agent Linear Systems

M. ISABEL GARCÍA-PLANAS
Universitat Politècnica de Catalunya
Departament de Matèmatiques
Minería 1, Esc. C, 1-3, 08038 Barcelona
SPAIN
maria.isabel.garcia@upc.edu

Abstract: In this paper we study the exact controllability of multi-agent linear systems, in which all agents have an identical linear dynamic mode that can be in any order.

Key–Words: Multi-agent systems, consensus, controllability, exact consensus controllability.

1 Introduction

In the last years, the study of dynamic control multi-agents systems have attracted considerable interest, because they arise in a great number of engineering situations as for example in distributed control and coordination of networks consisting of multiple autonomous agents. There are many publications as for example ([4], [10], [12], [14]). It is due to the multi-agents appear in different fields as for example in consensus problem of communication networks ([10]), or formation control of mobile robots ([2]).

The consensus problem has been studied under different points of view, for example Jinhuan Wang, Daizhan Cheng and Xiaoming Hu in [12], analyze the case of multiagent systems in which all agents have an identical stable linear dynamics system, M.I. García-Planas in [4], generalize this result to the case where the dynamic of the agents are controllable.

Controllability is a fundamental topic in dynamic systems and it is studied under different approaches (see [1],[3],[7], for example). Given a linear system \(\dot{x} = Ax + Bu \), there are many possible control matrices \(B \) making the system \(\dot{x} = Ax + Bu \) controllable. The goal is to find the set of all possible matrices \(B \), having the minimum number of columns corresponding to the minimum number \(n_D(A) \) of independent controllers required to control the whole network. This minimum number is called exact controllability, that in a more formal manner is defined as follows.

Definition 1 Let \(A \) be a matrix. The exact controllability \(n_D(A) \) is the minimum of the rank of all possible matrices \(B \) making the system \(\dot{x} = Ax + Bu \) controllable.

\[
 n_D(A) = \min \{ \text{rank} B, \forall B \in M_{n \times |1 \leq i \leq n} | (A, B) \text{ controllable} \}
\]

In this paper, we investigate the exact controllability of a class of multiagent systems consisting of \(k \) agents with dynamics

\[
 \dot{x}^1 = Ax^1 + Bu^1 \\
\vdots \\
\dot{x}^k = Ax^k + Bu^k
\]

where \(A \in M_{n \times (\mathbb{C})} \), and \(B \) an unknown matrix having \(n \) rows and an indeterminate number \(1 \leq \ell \leq n \) of columns.

For this study, we need to introduce some basic concepts on Graph theory and matritial algebra.

We consider a graph \(G = (\mathcal{V}, \mathcal{E}) \) of order \(k \) with the set of vertices \(\mathcal{V} = \{ 1, \ldots, k \} \) and the set of edges \(\mathcal{E} = \{ (i,j) | i,j \in \mathcal{V} \} \subset \mathcal{V} \times \mathcal{V} \).

Given an edge \((i,j)\) \(i \) is called the parent node and \(j \) is called the child node and \(j \) is in the neighbor of \(i \), concretely we define the neighbor of \(i \) and we denote it by \(N_i \) to the set \(N_i = \{ j \in \mathcal{V} | (i,j) \in \mathcal{E} \} \).

The graph is called undirected if verifies that \((i,j) \in \mathcal{E} \) if and only if \((j,i) \in \mathcal{E} \). The graph is called connected if there exists a path between any two vertices, otherwise is called disconnected.

Associated to the graph we consider a matrix \(G = (g_{ij}) \) called (unweighted) adjacency matrix defined as follows \(g_{ii} = 0 \), \(g_{ij} = 1 \) if \((i,j) \in \mathcal{E} \), and \(g_{ij} = 0 \) otherwise.

In a more general case we can consider that a weighted adjacency matrix is \(G = (g_{ij}) \) with \(g_{ii} = 0 \), \(g_{ij} > 0 \) if \((i,j) \in \mathcal{E} \), and \(g_{ij} = 0 \) otherwise.

The Laplacian matrix of the graph is

\[
 L = (l_{ij}) = \begin{cases}
 |N_i| & \text{if } i = j \\
 -1 & \text{if } j \in N_i \\
 0 & \text{otherwise}
\end{cases}
\]

Remark 2 i) If the graph is undirected then the...
matrix \mathcal{L} is symmetric, then there exist an orthogonal matrix P such that $P \mathcal{L} P^T = D$.

ii) If the graph is undirected then 0 is an eigenvalue of \mathcal{L} and $1_k = (1, \ldots, 1)^T$ is the associated eigenvector.

iii) If the graph is undirected and connected the eigenvalue 0 is simple.

For more details about graph theory see (D. West, 2007).

With respect Kronecker product, remember that $A = (a_{ij}) \in M_{m \times n}(\mathbb{C})$ and $B = (b_{ij}) \in M_{p \times q}(\mathbb{C})$ the Kronecker product is defined as follows.

Definition 3 Let $A = (a_{ij}) \in M_{m \times n}(\mathbb{C})$ and $B \in M_{p \times q}(\mathbb{C})$ be two matrices, the Kronecker product of A and B, write $A \otimes B$, is the matrix

$$A \otimes B = \left(\begin{array}{cccc} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{array} \right) \in M_{mp \times nq}(\mathbb{C})$$

Among the properties that verifies the product of Kronecker we will make use of the following

1) $(A + B) \otimes C = (A \otimes C) + (B \otimes C)$

2) $A \otimes (B + C) = (A \otimes B) + (A \otimes C)$

3) $(A \otimes B) \otimes C = A \otimes (B \otimes C)$

4) If $A \in \text{GL}(n; \mathbb{C})$ and $B \in \text{GL}(p; \mathbb{C})$, then $A \otimes B \in \text{GL}(np; \mathbb{C})$ and $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$

5) If the products AC and BD are possible, then $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$

See [9] for more information and properties.

Given a square matrix $A \in M_n(\mathbb{C})$, it can be reduced to a canonical reduced form (Jordan form):

$$J = \left(\begin{array}{cccc} J(\lambda_1) & & & \\ & \ddots & & \\ & & \ddots & \\ & & & J(\lambda_n) \end{array} \right),$$

where $J(\lambda_i) = \left(\begin{array}{cccc} \lambda_i & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_i \end{array} \right)$. (1)

See [5] for more information and properties.

2 Consensus

The consensus problem can be introduced as a collection of processes such that each process starts with an initial value, where each one is supposed to output the same value and there is a validity condition that relates outputs to inputs. It is a canonical problem that appears in the coordination of multi-agent systems. The objective is that Given initial values (scalar or vector) of agents, establish conditions under which through local interactions and computations, agents asymptotically agree upon a common value, that is to say: to reach a consensus.

The dynamic of each agent defining the system considered, is given by the following manner.

$$\dot{x}_i^1 = Ax_i^1 + Bu_i^1$$
$$\dot{x}_i^k = Ax_i^k + Bu_i^k$$

$x_i^1 \in \mathbb{R}^n$, $u_i^1 \in \mathbb{R}^\ell$, $1 \leq i \leq k$. Where matrices $A \in M_n(\mathbb{R})$ and $B \in M_{nx\ell}(\mathbb{R})$, $1 \leq \ell \leq n$.

The communication topology among agents is defined by means the undirected graph \mathcal{G} with

i) Vertex set: $\mathcal{V} = \{1, \ldots, k\}$

ii) Edge set: $\mathcal{E} = \{(i, j) \mid i, j \in \mathcal{V}\} \subset \mathcal{V} \times \mathcal{V}$.

an in a more specific form, we have the following definition.

Definition 4 Consider the system 2. We say that the consensus is achieved using local information if there exists a state feedback

$$u_i^j = K_i \sum_{j \in \mathcal{N}_i} (x_i^j - x_i^j), \quad 1 \leq i \leq k$$

such that

$$\lim_{t \to \infty} \|x_i^j - x_i^j\| = 0, \quad 1 \leq i, j \leq k.$$
3 Exact Consensus Controllability

We are interested in study the exact controllability of the obtained system 3. In our particular setup

Definition 5 Let A be a matrix. The exact controllability $n_D(I_k \otimes A)$ is the minimum of the rank of all possible matrices B making the system 3 controllable.

$$n_D(I_k \otimes A) = \min \{ \text{rank}(B), \forall B \in M_{n \times i} : 1 \leq i \leq n \mid (I_k \otimes A, L \otimes B) \text{ controllable} \}.$$

The controllability condition depends directly on the structure of the matrix L.

Proposition 7 Let J be the Jordan reduced of the matrix L and P such that $L = P^{-1}JP$. Then, the system 3 is controllable if and only if

$$\text{rank} \left(sI_{kn} - (I_k \otimes A) \right) J \otimes B = kn$$

Proof. Suppose that there exist S such that $P^{-1}JP = L$ and

$$\begin{align*}
\text{rank} \left(sI_{kn} - (I_k \otimes A) \right) J \otimes B &= \\
\text{rank} \left(P^{-1}I_n \right) (sI_{kn} - (I_k \otimes A)) J \otimes B &= \\
\text{rank} \left(sI_{kn} - (I_k \otimes A) \right) J \otimes B &=
\end{align*}$$

Corollary 8 Suppose that the matrix L can be reduced to the Jordan form (1), with non-zero eigenvalues $\lambda_1, \ldots, \lambda_r$. Then, the system 3 is controllable if and only if each agent is controllable.

Proof. Let $\lambda_i \neq 0$, $i = 1, \ldots, r$ be the eigenvalues of L.

$$\begin{align*}
\text{rank} \left(s(I_{k_{i,j}} \otimes I_n) - (I_k \otimes A) \right) J_j \lambda_i \otimes B &= \\
\text{rank} \left(sI_{kn} - A \right) \lambda_i B &= \\
\text{rank} \left(sI_{kn} - A \right) B &=
\end{align*}$$

$k \cdot \text{rank} \left(sI_{kn} - A \right)$

with $k_1 + \ldots + k_r = k$, $k_{i_1} + \ldots k_{i_n} = k_i$.

Corollary 9 A necessary condition for controllability of the system 3 is that the matrix L has full rank.

Example We consider 3 identical agents with the following dynamics of each agent

$$\begin{align*}
\dot{x}^1 &= Ax^1 + Bu^1 \\
\dot{x}^2 &= Ax^2 + Bu^2 \\
\dot{x}^3 &= Ax^3 + Bu^3
\end{align*}$$

with $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $B \in M_{2 \times \ell}(C)$, $1 \leq 2$.

The communication topology is defined by the undirected graph (V, E):

$V = \{1, 2, 3\}$

$E = \{(i, j) \mid i, j \in V\} = \{(1, 2), (1, 3)\} \subset V \times V$

and the adjacency matrix:

$G = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

The neighbors of the parent nodes are $N_1 = \{2, 3\}$, $N_2 = \{1\}$, $N_3 = \{1\}$.

The Laplacian matrix of the graph is

$L = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$

with eigenvalues $\lambda_1 = 0$, $\lambda_2 = 1$, $\lambda_3 = 3$.

$$\begin{align*}
\text{rank} \left(sI_{6} - (I \otimes A) \right) L \otimes B &= \\
\text{rank} \left(sI_{k_{i,j}} - (I_k \otimes A) \right) J_j \lambda_i B &= \\
\text{rank} \left(sI_{kn} - A \right) B &=
\end{align*}$$

In fact, for all matrix $B \in M_{2 \times \ell}(C)$ for all $\ell \geq 0$

$$\begin{align*}
\text{rank} \left(sI_{6} - (I \otimes A) \right) L \otimes B &= \\
6 \text{ for all } s \neq 0 \\
5 \text{ for } s = 0
\end{align*}$$

If the matrix L has full rank, then the number of columns for exact controllability of matrix $I_k \otimes A$ depends on the multiplicity of the eigenvalues of the matrix A and we have the following result.
Proposition 10 Let L be the Laplacian matrix of a graph having full rank. Then, the exact controllability $n_D(I_k \otimes A)$ for the system $\dot{x} = (I_k \otimes A)x + (L \otimes B)\bar{u}$ coincides with the exact controllability $n_D(A)$ for the system $\dot{x} = Ax + Bu$.

Example We consider 3 identical agents with the following dynamics of each agent

\[
\begin{align*}
\dot{x}_1^1 &= Ax_1^1 + Bu_1^1 \\
\dot{x}_2^2 &= Ax_2^2 + Bu_2^2 \\
\dot{x}_3^3 &= Ax_3^3 + Bu_3^3
\end{align*}
\]

with $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $B \in M_{2 \times l}(\mathbb{C})$, $1 \leq 2$.

The communication topology is defined by the undirected graph (V, E):

\[
\begin{align*}
V &= \{1, 2, 3\} \\
E &= \{(i, j) \mid i, j \in V\} = \{(1, 1), (1, 2), (2, 1), (2, 3), (3, 1)\} \subset V \times V
\end{align*}
\]

and the adjacency matrix:

\[
G = \begin{pmatrix}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\]

The neighbors of the parent nodes are $N_1 = \{1, 2\}, N_2 = \{1, 3\}, N_3 = \{1\}$.

The Laplacian matrix of the graph is

\[
L = \begin{pmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
-1 & 0 & 1
\end{pmatrix}
\]

with eigenvalues $\lambda_1 = 0.3820$, $\lambda_2 = 2$, $\lambda_3 = 2.6180$.

\[
\begin{pmatrix}
s & -1 & 0 & 0 & 0 & 0 & 2a & -a & 0 \\
0 & s & 0 & 0 & 0 & 0 & 2b & -b & 0 \\
0 & 0 & s & -1 & 0 & 0 & -a & 2a & -a \\
0 & 0 & 0 & s & 0 & 0 & -b & 2b & -b \\
0 & 0 & 0 & 0 & s & -1 & -a & 0 & a \\
0 & 0 & 0 & 0 & 0 & s & -b & 0 & b
\end{pmatrix}
\]

rank 6 for all s and $b \neq 0$.

Obviously the system $\dot{x} = Ax + Bu$ with $B = \begin{pmatrix} a \\ b \end{pmatrix}$ and $b \neq 0$.

4 Conclusions

In this paper, the exact controllability for multi-agent systems where all agents have an identical linear dynamic mode are analyzed.

References:
