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Abstract

In this paper, a sliding mode controller for the stator voltage amplitude of a stand-alone wound rotor syn-

chronous generator is presented. The standard dq-model of the electrical machine connected to an isolated inductive

load is obtained. Then, the control law is designed using sliding mode techniques. The controller introduces a

dynamic extension so that the stator voltage amplitude has relative degree one. As a result, a fast controller, robust

to both machine and load parameters variations, is obtained. The control algorithm, that does not requires the

knowledge of the parameters, is implemented and validated experimentally.
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I. INTRODUCTION

Applications related with the production, transportation and consumption of electrical energy are widely

studied. The increasing use of the electrical energy is due to the advantages of transmission possibilities,

flexibility and control capacity among others. Electrical energy is mainly generated by interconnecting

electric generators driven by prime-movers which are basically wind, hydro, steam turbines or internal

combustion engines. Standard power generators are Wound Rotor Synchronous Generators (WRSG)

connected in parallel setting up a theoretical infinite bus. Hence, this kind of machine is normally studied

connected to an infinite bus called “power grid” [1]. The own grid determines the stator voltage and

frequency, while the rotor voltage helps to improve the power factor and to compensate the reactive

power at the connection point. Usually, the stator transients can be neglected [2].

A significantly different scenario is when the synchronous generator is isolated from the grid. This paper

is focused on the stand-alone case of the wound rotor synchronous machine where neither amplitude nor

frequency of stator voltage are fixed. For this isolated configuration, the mechanical speed determines

the frequency, and the rotor voltage is used to set the stator voltage amplitude. This topology is used

in many applications as isolated electrical power generation (for instance uninterruptible power supplies,

UPS) with an internal combustion engine, aircraft electric systems [3], ship electrical power generation

[4], wind turbines [5] or in propulsion systems for Hybrid Electric Vehicles [6] [7].

Several examples can be found in the literature about the control of synchronous machines. The

permanent magnet case (PMSM, Permanent Magnet Synchronous Machine) is the most studied. Examples

for controlling PMSM include linear techniques [8], Model Predictive Controls [9], direct torque control

[10], hybrid sensorless control [11]and, recently, nonlinear control techniques such as Passivity-based

control [12] Optimal torque control [13], Fault-Tolerant Control [14] or Lyapunov-based designs [15] are

also used for driving applications.



However, examples for the WRSG are not so extensive. The stator voltage regulation has been mainly

studied using linear techniques. From classical approaches in [16] and [17] or a PID design [18], to

a more sophisticated methods as pole assignment self tuning technique [19] or, more recently, using

H∞ algorithms [20] or Robust controllers [21]. Linear control methodology is usually insufficient for

inherent nonlinear high-order multivariable plants such as AC machines where parameter changes caused

by winding temperature variation, converter switching effect and saturation are well recognized and

infrequently accounted for. Sliding mode control technique, with its distinctive features (order reduction,

disturbance rejection and strong robustness with a minimum of implementation complexity [22]), had

arisen the interest of many researchers in power electronics [23] and electrical machines.

The sliding mode control methodology has already been used for a generator in a stand-alone config-

uration. The design obtained in [24], valid only for static loads, includes a virtual high value resistances

into the model to compute the voltages in the stator side. In this case, the controller results in a complex

function which depends on both the machine and load parameters and requires the measurement of the

whole state. A different approach, taking into account the load model, is presented in [25] and [26]. The

result are simple and robust control algorithms but only valids for the resistive case.

The main contribution of this work is an experimentally tested sliding mode control algorithm for a

stand alone wound rotor synchronous generator with resistive-inductive load. In this case, SMC cannot be

directly applied, because the desired system output (the stator voltage amplitude) is relative degree zero.

Instead, a dynamical extension of the system is proposed so that the output relative degree is one. SMC

makes closed loop system robust to machine and load parameter variations and, moreover, local stability

of the closed loop dynamics can be proved by using nonlinear techniques. The resulting controller, which

only uses the stator voltage measurements and neither the machine parameters nor load knowledge are

required, is easy to implement (with a low CPU use) and shows a good performance and a fast response

as well.



The paper is organized as follows. Section II deals with the WRSM model, the control goals and the

equilibrium points. The synthesis and analysis of a SMC are presented in Section III. Section IV is devoted

to a brief description of the hardware used for experiments which, in turn, are reported in Section V.

Finally, conclusions are drawn in Section VI.

II. SYSTEM DESCRIPTION

Figure 1 shows the proposed scenario: a primary mover drags, at a constant speed, a WRSM which

acts as a generator to feed a resistive-inductive isolated load. Is worth to mention that, due to the constant

speed assumption, electric wind turbines (which require working with a variable speed range [27]) does

not follow the proposed scheme.
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Figure 1. Scheme of a stand alone wound rotor synchronous generator.

As explained before, this system differs from the typical grid-connected systems in that, in the last case,

the frequency and the voltage amplitude are fixed by the grid. For a stand-alone connection the frequency

is determined by the mechanical speed, ωm, (provided by the primary mover), while the voltage amplitude

is set by the rotor field voltage. This configuration can be found in several scenarios, an example is the

Series Hybrid Electric Vehicles in which the rotor power excitation is obtained from a on board battery

pack [6].



A. Dynamic model

From the dynamic equations, in dq-coordinates [28], of a cylindrical-rotor WRSG1 and the intercon-

nection rules with an inductive load, the whole dynamical system is presented.

The electrical part of the wound rotor synchronous machine can be described as

L
dx
dt

=


−Rs ωLs 0

−ωLs −Rs −ωLm

0 0 −RF

x+


vd

vq

vF

 (1)

where

L =


Ls 0 Lm

0 Ls 0

Lm 0 LF


is the inductance matrix, xT = (id, iq, iF)∈R3 are the dq-stator and field currents, Rs and RF are the stator

and field resistances, Ls, Lm and LF are the stator, mutual and field inductances, ω is the electrical speed

(ω = npωm, where np is the number of pole pairs), vd , vq are the dq-stator voltages and vF is the field

voltage which will be used as a control input.

As a first approximation, the load is modeled by a pure resistive element, RL, in series with a pure

inductive element, LL. All the possible variations (and complexities) of the actual load with respect to the

simple RL load can be seen as derivations from the ideal model and, consequently, should be compensated

by the robustness of the used controller. This can be appreciated during the experimental validation, when

a realistic case of an induction motor as a load is presented. The load equation is given by

vL = (RLI2 +ωLLJ2)iL +LL
d
dt

iL, (2)

1Since the mechanical speed is provided by an external prime-mover, and the electrical and mechanical time constant have different

magnitude orders, the mechanical speed is considered constant and externally regulated.



where vT
L = (vLd,vLq) ∈ R2 and iTL = (iLd, iLq) ∈ R2 are the dq voltages and currents, and

I2 =

 1 0

0 1

 J2 =

 0 −1

1 0

 .

According to Figure 1, the interconnection rules are

vs = vL

iL = −is. (3)

Thus, putting together (1), (2) and (3), the system can be written in an affine form as

L̂
dx
dt

= Ax+BvF , (4)

where L̂ is a new inductance matrix,

L̂ =


Ls +LL 0 Lm

0 Ls +LL 0

Lm 0 LF


and the homogeneous dynamics A and the input vector B are respectively given by

A =


−(Rs +RL) ω(Ls +LL) 0

−ω(Ls +LL) −(Rs +RL) −ωLm

0 0 −RF


and

B =


0

0

1

 .



B. Control objective

As mentioned before, this machine must ensure the stator voltage amplitude and frequency. For a

synchronous machine, the stator frequency is directly given by the mechanical speed which, in this paper,

is assumed to be constant and externally regulated. Then, the system output is the stator voltage amplitude

Vs =
√

v2
d + v2

q, that using (2) and (3) results in

V 2
s =

(
−RLid +ωLLiq −LL

did
dt

)2

+

(
−RLiq −ωLLid −LL

diq
dt

)2

(5)

From (4)

µd
did
dt

= LF(−(Rs +RL)id +ω(Ls +LL)iq)

−Lm(−RF iF + vF) (6)

µq
diq
dt

= −ω(Ls +LL)id − (Rs +RL)iq −ωLmiF (7)

where µd = LF(Ls +LL)−L2
m and µq = Ls +LL.

Notice that, while the system dynamics is linear, as equation (4) indicates, Vs, is a tedious highly

nonlinear function, which can be obtained replacing (6) and (7) in (5). Additionally, even for a pure

resistive load the stator voltage is relative degree one [25], when loads include inductive terms, the stator

voltage is relative degree zero. It is appropriate to mention here that having relative degree one is a

necessary condition for a switching surface to have sliding modes on it. Hence, the standard procedure

used in the resistive case will be modified through a dynamic extension.

C. Equilibrium points

The equilibrium points can be parametrized by the control input vF , this resulting in

x∗ =−A−1BvF ,



which defines the straight line

x∗T =

[
−ω2(Ls +LL)Lm

RF |Zs|2
,−ω(Rs +RL)Lm

RF |Zs|2
,

1
RF

]
vF (8)

where |Zs|2 = ω2(Ls +LL)
2 +(Rs +RL)

2.

The desired equilibrium point is defined by Vs = Vre f . From (5), (6) and (7), and taking into account

that two solutions are possible, the field voltage vF in equilibrium is

v∗F =± |Zs|
|ZL|

RF

ωLm
Vre f , (9)

where |ZL|2 = ω2L2
L +R2

L. Finally, replacing vF = v∗F from (9) in (8), i∗d , i∗q and i∗F can be obtained.

III. CONTROL DESIGN

In this Section the Sliding Mode Control technique is applied to an isolated wound rotor synchronous

generator feeding an inductive load. The WRSG parameters are assumed to be constant. First, a switching

function is designed, then, the equivalent control is computed and a switching controller is obtained. As

mentioned before, a system dynamics extension is carried out in order to the switching surface has relative

degree one. Finally, the Ideal Sliding Dynamics is analyzed.

A. Switching function and equivalent control

According to the control goals the switching function, s(x), is defined as

s(x) =V 2
s −V 2

re f (10)

where Vre f is the stator voltage amplitude reference. Using (2), (5) and taking into account (3), the

switching function can be given as a function of the state variables

s(x) =

(
−RLid +ωLLiq −LL

did
dt

)2

+

(
−RLiq −ωLLid −LL

diq
dt

)2

−V 2
re f , (11)

where did
dt and diq

dt are respectively given in (6) and (7).



Since s(x) has relative degree zero, the system (4) is extended by considering vF as a new state variable

and its derivative dvF
dt as a fictitious input, i.e. a new input u is defined by

dvF

dt
= ku, (12)

for a positive constant k. The extended system can be written as

L
dz
dt

= Az+Bu, (13)

where zT = (id, iq, iF ,vF) and u are, respectively, the new state and input variables,

A =



−(Rs +RL) ω(Ls +LL) 0 0

−ω(Ls +LL) −(Rs +RL) −ωLm 0

0 0 −RF 1

0 0 0 0


,

L =

 L̂ 0

0 1


and

B =



0

0

0

k


.

The equivalent control, ueq, defined so that ṡ = 0, results in

ueq =−
(

∂s
∂z

L−1B

)−1 ∂s
∂z

L−1Az. (14)

taking into account that B has zeros in the first, second and third row, L−1 contains only a non-zero term

in the fourth row and vq does not depend on vF and using some algebra yields,

ueq =− µd

2kLLLm

1
vd

(
∂s
∂z

L−1Az
)
. (15)

Note that sliding motion can only be expected in the subspace defined by vd ̸= 0.



B. Ideal Sliding Dynamics

The Ideal Sliding Dynamics (ISD), i.e. the dynamics on the sliding surface (presumed an infinite

switching frequency), is obtained assuming ds
dt = 0 together with s(x) = 0. This implies u = ueq and

vd(x) =
√

V 2
re f − v2

q(x). (16)

where vq(x) = Dq · x, with

Dq =

(
0, − 1

µq
(RLLs −RsLL), ωLmLL

µq

)
.

Using (11) with (6) and (7), the field voltage can be expressed as

vF(x) = c(vd(x)−Dd · x) (17)

where

Dd =

(
−RL +

LF
cLm

(Rs +RL), −ωLm
c , −RF

c

)
,

and c = µd
LLLm

> 0.

Replacing u = ueq, and using (17) and (16) in (13), the ISD results in

L̂ẋ = Ax+ cB(vd(x)−Ddx)

that in terms of the error, e = x− x∗, with respect to any of the two equilibrium points can be written as

L̂ė = (A− cBDd)e+ cBξ(e), (18)

where

ξ(e) = vd(e+ x∗)− v∗d,

and v∗d = vd(x∗). Note that at the equilibria, e = 0, ξ(e) vanishes, and the linear part is stable if LL <
LsRL

Rs
,

see the Appendix.

Following the generalised Krasovski theorem, local stability (and the domain of attraction) can be

proved using the positive definite function V = f T L̂ f as a Lyapunov candidate, where f (e) = ė, i.e.,

f (e) = L̂−1((A− cBDd)e+ cBξ(e)
)



has been defined. Moreover note that

ḟ = L̂−1M(e) f

where M(e) = A− cB
(

Dd − ∂ξ
∂e

)
, in fact

M(e) =


−(Rs +RL) ω(Ls +LL) 0

−ω(Ls +LL) −(Rs +RL) −ωLm

α1 α2
vq(e)
vd(e)

+ωLm −α3
vq(e)
vd(e)

 ,

with

α1 = cRL −
LF

Lm
(Rs +RL),

α2 =
RLLs −RsLL

µq
,

α3 =
ωLmLL

µq
,

and vd and vq previously defined by (16) and vq(e) = Dq · e.

The derivative of the Lyapunov function, using (III-B), yields

V̇ = f T(M+MT) f

and a necessary condition for M+MT < 0, is given by

−4(Rs +RL)α3
vq(e)
vd(e)

+α2
1 +α2

2

(
vq(e)
vd(e)

)2

< 0. (19)

Then, the stability of (18) is guaranteed if the previous inequality is fulfilled. Notice that (19) also implies

vq
vd

> 0. Figure 2, plot the region where the inequality (19) fulfills. This numerical analysis corresponds

to the experimental case presented in Section V (see the WRSG parameters in Table II) and shows that

for a given load value, there exists two invariant regions (one of each containing one equilibrium point)

where the trajectories go the equilibrium point.
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Figure 2. Stability regions depending on the dq-voltage values for the experimental case presented in Section V. The colored areas correspond

to stable regions for RL = 64Ω (both dark and light zones) and RL = 1000Ω (only the light zone). The equilibrium points given by two

stator voltage amplitude references, 220V and 380V, are also depicted with an asterisk (RL = 64Ω) and a circle (RL = 1000Ω).

C. Sliding Mode Controller

Sliding mode controller is in charge of ensuring local attractiveness and flow invariance for the subset

of the switching surface where sliding modes hold. Proceeding as usual, the switching action is designed

so that sds
dt < 0. Adding and subtracting Bueq, taking into account (14) and particularizing all of the

computations to the model given in (13) and to the switching function (10) one yields

s
ds
dt

=−svd
(
u−ueq

)
.

Hence,

u = ueq + sign(svd) ,

entails

s
ds
dt

=−|svd| ≤ 0. (20)

If the control input u takes values in the discrete set {u1,u2}, where u1 < u2 is presumed, the input u



is defined as

u =


u1 if −svd > 0

u2 if −svd < 0
(21)

which also assures (20) in the subset of the sliding surface where u1 ≤ ueq ≤ u2. Note that the (fictitious)

input u is a function that neither depends on the load values nor on the machine parameters. In turn, the

switching function only depends on vd and vq (which are measured). Therefore, the closed loop system is

robust to parameter variations and to load values. It is worth to mention the simplicity of (21) compared

with the control law presented in [24].

A more complicated task is to analytically relate the range of [u1,u2] to the sliding domain and its

basin of attraction. This is non trivial because of the expression of ueq, see equation (15). However, ueq

evaluated in equilibrium points is zero. Indeed,from (15),

ueq|x=x∗ =− µd

2kLLLm

1
v∗d

(
∂s
∂z

L−1Az∗
)
, (22)

In addition, from A and B in (13), the equilibrium point z∗ must fulfill Az∗ = 0. Consequently, u1 < 0< u2

ensures that there are sliding modes in a neighborhood of the ideal sliding dynamics equilibrium point.

Better definitions for u1 and u2 require computing upper and lower bounds for the WRSG states in (22).

The control law designed for the extended system, is applied to the actual plant using (12), i.e.,

vF = k
∫

udt, (23)

where u is given in (21). It is worth noting that the control here reported is substantially different than

the classic integral action2 (integral of the error instead of u). Also, the control gain k and the values of

u1 and u2 are redundant, which implies that for the final implementation one of them can be disregarded

(for instance, setting k = 1). Moreover, assuming vd > 0 and setting |u1|= |u2|= γ
k , the control law (21)

2For instance the one used in a proportional-integral (PI) controller, vF = kPṼs + kI
∫

Ṽsdt, where Ṽs =Vre f −Vs.



with (23) results in

vF = −γψ

ψ̇ = sign(s).

Figure 3 shows the proposed control scheme. It needs the stator voltages and the rotor position as

inputs and provides a continuous function vF as output. vF would be implemented by means of a pulse

width modulator (PWM). The control algorithm does not require the knowledge of the WRSG and the

load parameters. Only, it should be guaranteed the conditions given in Section III-B to ensure the stability

of the ISD. Also, thanks to the dynamic extension, the discontinuous control action is filtered (by the

integrator block before vF ) which helps to minimize the possible ripple of the state variables, also known

as the chattering phenomena.
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Figure 3. Control scheme.

IV. HARDWARE DESCRIPTION AND CONTROLLER IMPLEMENTATION

A. Hardware description

Figure 4 shows the hardware scheme of the experimental setup. In this case, the WRSG is dragged

by a DC motor (which acts as primary mover). Using two differential sensors the WRSG stator voltages

are measured. The rotor position is obtained with a sensor coupled to the DC motor in order to compute

the voltage dq-transformation. This transformation is required because the previously designed controller

works in this reference frame. Notice that the mechanical speed measurement (or its reconstruction using

the rotor position) is not necessary for the designed control algorithm. These measures are acquired by
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Figure 4. Interconnection scheme of the experimental setup.

the DSP which is programmed from a personal computer. The grid voltage is rectified in order to provide

the DC bus voltage to the DC/DC power converter which applies the control defined by the DSP card to

the WRSG. The DC motor used to provide a constant speed to the WRSG, is a 3kW, 1500rpm machine,

controlled by the 4Q2 commercial speed controller from Control Techniques Drives Ltd. For more detailed

information see [29]. The WRSG is a 2.4kVA, 4 poles three-phase machine. Its nameplate data are shown

in Table I.

f = 50Hz n = 1500rpm P = 2.4kVA

3ph ∆/Y VF = 100V

IF = 2.4A Vs = 220/380V Is = 6.3/3.65A

Table I

NAMEPLATE DATA OF THE WRSG.

The WRSG parameters, shown in Table II,3 were obtained using IEEE Std. 115-1995 [30].

Rs = 3.06Ω Ls = 0.48H RF = 39.65Ω

Lm = 0.31H LF = 3.87H n = 4

R′
F = 2.48Ω L′

F = 0.24H

Table II

WRSG PARAMETERS.

3The apostrophe signal indicates that parameters are referred from the rotor to the stator, and n is the transformation relationship.



The power converter, is a full bridge DC/DC converter, which can provide ±VDCV. This voltage is

obtained from the power grid with a diode rectifier, an L filter and a capacitor DC bus. This converter

applies the control law defined by the DSP card to the WRSG rotor. In the experimental tests the bus

voltage is set to VDC = 137.5V.

The load is composed of a resistive bank (equivalent to RL = 128Ω) and a 736W squirrel cage induction

machine as inductive load. This scenario, with an induction machine load instead of a constant LL value,

is used to test the robustness of the proposed controller.

B. Control implementation

The control algorithm is programmed into a Texas Instruments floating point 150Mhz Digital Signal

Processor (DSP TMS 320F28335). The DSP has 12-bit resolution 16 ADC channels with a maximum

conversion speed of 12.5 MSPS, 6 PWM and 6 HRPWM outputs and 88 GPIO pins which can be used

for communication purposes.

Real Time Workshop C code generation from Matlab/Simulink allows the code implementation to be

simplified to the DSP without using a C code editor directly. Texas Target support package is used to

configure the ADC, PWM, SPI, GPIO ports and interruptions. The control action, vF , is implemented

through a 10kHz switching frequency PWM.

V. EXPERIMENTAL RESULTS

In this Section, a set of experiments using the designed controller are presented. Furthermore, in order

to compare the proposed approach with an existing industrial technique, the tests are also performed using

a linear PI controller . In both cases, the mechanical speed reference for the DC motor is set at 1500rpm

that corresponds to f = 50Hz for the synchronous machine. Also, the proposed controller is tested under

speed variations in order to check its robustness.



A. Sliding mode controller

Control parameters of (21) and (23) have been tuned at k = 1, u1 = −105 and u2 = 105. In the first

experiment, a step change in the reference of the stator voltage amplitude from 250Vrms to 380Vrms is

applied while the WRSG feeds the induction machine. Figures 5 and 6 show the three-phase stator voltage,

vs, and the switching function, s, respectively. At the bottom, the picture at top was zoomed around t = 0.5

s. As it can be seen, the stator voltage amplitude is perfectly regulated. A frequency analysis reveals that

the stator voltages does not contain significant other frequencies than 50Hz, and the THD remains close

to 1%. The switching function oscillates around zero but, the consequent chattering phenomenon is not

reflected in the experimental test due to the filter effect of the digital to analog converter. The switch

driver signal equivalent to the field voltage, vF , and the fictitious equivalent control action are displayed

in Figure 7. The high frequency noise is due to the measurement from the DSP card. It is interesting

to note that commutation (sliding mode) is lost for a short period when the reference voltage changes.

However, it recovers fastly, and the equivalent control returns into the operation strip.
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Figure 5. Three phase stator voltages, vabc: Voltage reference change from 250 Vrms to 380 Vrms feeding an induction machine.

In the second and third experiments the controller is validated under load perturbations. The reference

line voltage is set to 380Vrms. First, the generator starts without any load and the induction machine is

suddenly connected at t = 0.5s. Results are displayed in Figures 8, 9 and 10. The second perturbation
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Figure 6. Switching function, s(x): Voltage reference change from 250 Vrms to 380 Vrms feeding an induction machine.
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Figure 7. Field voltage action, vF , and extended control input, u: Voltage reference change from 250 Vrms to 380 Vrms feeding an induction

machine.

consists in the generator feeding a resistive load (one half of the nominal load value) and then, at t = 0.5s,

the induction machine is connected. See the obtained results in Figures 11, 12 and 13.

These two latter experiments show how the stator voltage regulation is achieved, recovering the reference

value fastly after the load change. Furthermore, they also indicate that the time response is directly related

to the VDC voltage, because during the transient time the control action remains saturated.
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Figure 8. Three phase stator voltages, vabc: Load change from no load to an induction machine connection.
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Figure 9. Switching function, s(x): Load change from no load to an induction machine connection.

B. Comparison with a PI controller

The experiments described in the previous subsection are also tested using a PI controller, i.e.,

vF = kP(Vre f −Vs)+ kI

∫
(Vre f −Vs)dt,

where the gains have been set at kP = 10 and kI = 0.1.

Figure 14 compares the behavior of the stator voltages under a change of the reference, from Vre f =

250Vrms to Vre f = 380Vrms. Two subfigures (at the top and at the middle) display the three-phase stator

voltages using the sliding mode controller and the PI design, respectively. The third figure (at the bottom)
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Figure 10. Field voltage action, vF , and extended control input, u: Load change from no load to an induction machine connection.
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Figure 11. Three phase stator voltages, vabc: Load change from half load to half load plus an induction machine connection.

represents the stator voltage amplitudes (scaled to the RMS value) for both cases. The load change test,

starting without any load and then connecting the induction machine, is depicted in Figure 15.

The obtained results are similar using both techniques. The stabilizing time is practically the same (the

PI controller is slightly faster when changing the reference, Figure 14). However, the sudden change of

load implies a higher drop of voltage when using the PI controller (see Figure 15).

The advantage when implementing the sliding mode algorithm is its simplicity compared with the PI

controller, which allow to reduce the computation time on the DSP around 15% (5.56µs when using the

sliding mode technique and 6.42µs for the PI controller).
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Figure 12. Switching function, s(x): Load change from half load to half load plus an induction machine connection.
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Figure 13. Field voltage action, vF , and extended control input, u: Load change from half load to half load plus an induction machine

connection.

C. Behavior under speed variations

During the control design process a constant mechanical speed is assumed. However, in a practical

scenario, the mechanical speed may be slightly variant with time. The proposed control algorithm is

tested under a speed change (from 1500 to 1150 rpm). Figures 16 and 17 show the behavior of the

a-phase stator voltage and the stator voltage amplitude, respectively. Note how the controller regulates

the stator voltage independently on the rotor speed. Moreover, as it is expected, the speed variation only

affects the stator voltage frequency, as appreciated in Figure 16.
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Figure 14. At the top and at the middle, Three-phase stator voltages, for SMC and PI controller, respectively, and their stator voltage

amplitude (at the bottom): Voltage reference change from 250Vrms to 380Vrms feeding an induction machine.

VI. CONCLUSIONS

A sliding mode controller for the stator voltage regulation of a WRSG feeding an isolated resistive-induc-

tive load has been designed in this paper. The closed loop system regulates the stator voltage amplitude

irrespectively of the load value, and it is robust in front of the WRSG parameters as well. Furthermore,

the control implementation is very simple: it only measures the stator voltages and the rotor position (to

compute the dq transformation). Moreover, the knowledge of the WRSG parameters is not required.

The control design involves a dynamic extension to overcome a zero relative degree output problem.

This implies defining a fictitious control action which is integrated to obtain the actual field voltage to

apply to the generator. The closed loop system has been analyzed and it results asymptotically stable.

The proposed controller is validated experimentally. Several tests, including step changes in the reference

value and load perturbations, are performed. Results show a good regulation as well as robustness of the
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Figure 15. At the top and at the middle, Three-phase stator voltages, for SMC and PI controller, respectively, and their stator voltage

amplitude (at the bottom): Load change from no load to an induction machine connection.
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Figure 16. a-phase stator voltages: Speed change feeding an induction machine.

closed loop system. From the experimental tests, it can be observed that the proposed control method is

also able to work under speed variations.

Compared with other existing methods, the obtained algorithm guarantees stability in a state space
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Figure 17. stator voltage amplitude: Speed change feeding an induction machine connection.

region, in front of the local stability provided by using the linear algorithms (as PI controllers). Exper-

imentally, the proposed sliding mode controller offers a similar performance and accuracy than the PI

controller, with the advantage that it reduces the computation time by 15%. The main difference with

respect the sliding mode controllers in [24][25][26] is the ability to regulate the stator voltage amplitude

for inductive loads, moreover is considerably simpler and robust than the nonlinear control law proposed

in [24].

APPENDIX

As mentioned in Section III, the stability of the linear part of the ISD is determined by the L̂−1(A−

cBDd) matrix. Let us compute its characteristic polynomial

λ3 +a2λ2 +a1λ1 +a0

where

a2 =
1

µqLL
(LL(Rs +RL)+RL(Ls +LL))

a1 =
1

µqLL

(
RL(Rs +RL)+ω2LL(Ls +LL)

)
a0 =

1
µqLL

ω2 (RLLs −RsLL)



From the Routh-Hurwitz criterion, sufficient conditions for stability are

a2,a0 > 0 (24)

together with

a2a1 −a0 > 0. (25)

From (24), a2 > 0 is automatically fulfilled, and a0 > 0 implies

LL <
LsRL

Rs
. (26)

Replacing a0, a1 and a2 in (25), this condition is also guaranteed for all parameter values. This implies

that the system L̂ė = (A− cBDd)e is stable if (26) is fulfilled.
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