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Abstract

Current high performance computing architectures are composed of large shared memory

NUMA nodes, among other components. Such nodes are becoming increasingly complex

as they have several NUMA domains with different access latencies depending on the core

where the access is issued.

In this work, we propose techniques to efficiently mitigate the negative impact of NUMA

effects on parallel applications performance. We leverage runtime system metadata ex-

pressed in terms of a task dependency graph, where nodes are sequential pieces of code

and edges are control or data dependencies between them, to efficiently reduce data

transfers using graph partitioning techniques. With our proposals, we are able to im-

prove the execution time of OpenMP parallel codes a factor of 2.02× on average when

run on architectures with strong NUMA effects.

Resum

Les arquitectures per a computació d’altes prestacions actuals estan formades per grans

nodes NUMA (amb accessos a memòria no uniformes) de memòria compartida, entre d’al-

tres components. Aquests nodes estan incrementant la seva complexitat donat l’increment

en la quantitat de dominis NUMA amb latències diferents segons la unitat de procés des

d’on s’ha sol·licitat l’accés a les dades.

En aquest treball proposem tècniques per tal de reduir l’impacte negatiu dels efectes

NUMA en el rendiment d’aplicacions paral·leles. Fem servir les dades del sistema expressa-

des com a un graf de dependències, on els vèrtexs són peces de codi seqüencial i les arestes

són dependències de dades o control entre elles, per tal de reduir les dades transferides

mitjançant tècniques de particionat de grafs. Amb aquestes propostes, som capaços de

millorar el temps d’execució de codis paral·lels OpenMP amb un factor 2.02× de mitjana

en arquitectures que tenen grans efectes NUMA.

MSC2010: 68M07 (primary), 68M20, 68R10.

Keywords: graph partitioning, task dependency graph, directed acyclic graph, non-uniform
memory access.
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1 Introduction
1.1 Problem background

Since the end of Dennard scaling and the subsequent stagnation of the CPU clock

frequency, computing infrastructures can only increase their peak performance via

augmenting their number of computing units. In the High Performance Comput-

ing (HPC) context, this trend has brought an increase in the hardware components

count as well as in the heterogeneity among them. As such, shared memory nodes,

which are fundamental building blocks of HPC infrastructures, are experiencing

an increase in the number of sockets they integrate. Besides the benefits in terms

of a unified flat memory address space and large core counts, integrating many

sockets into the same node exacerbates its Non-Uniform Memory Access (NUMA)

effects, which can become a serious performance bottleneck if they are not prop-

erly handled. For example, synchronisation operations or barriers can seriously

slowdown the whole parallel execution if software components that access locally

stored data remain idle while waiting for other software components accessing

remote data to reach the barrier.

Figure 1.1: Example of a NUMA topology with

two pairs of NUMA nodes, gener-

ated using the lstopo tool from

hwloc, the Portable Hardware Loca-

tion package [6], [21].

To mitigate NUMA effects, techniques con-

sisting in migrating threads, memory pages or

both already exist [15], [16], [41]. These

techniques aim to move either computa-

tion or data to reduce memory access time.

Even though they effectively mitigate NUMA

effects, they do not exploit any kind of

application-specific information to predict ac-

cesses to remotely allocated data before a par-

ticular software component starts displaying

this behaviour. As such, already proposed

OS-level thread or page migration techniques

can only take action when the application is

already suffering from remote memory accesses, which ends up bringing subop-

timal solutions in most of the cases. Oppositely, other approaches transfer the

NUMA management responsibility to the programmer [30], [44], exploiting in-
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1 Introduction

formation at the application source code level to carry out NUMA-aware schedul-

ing decisions. However, these approaches require significant code refactoring and

programmer effort to be effective.

1.2 Task-based parallelism and its opportunities in NUMA
systems

This section describes the main characteristics of task-based programming models

together with their potential to mitigate NUMA effects on large shared memory

systems.

1.2.1 Task-based programming models

The most common way to program shared memory nodes are thread-based pro-

gramming models like OpenMP [32] or Pthreads [11]. The OpenMP standard has

support for tasking and dependencies since version 4.0, which means that the ap-

plication source code is split into several pieces called tasks, with their data or

control dependencies explicitly indicated by means of #pragma compiler direct-

ives. A directed acyclic graph where nodes represent tasks and edges express the

dependence between them is maintained by the runtime system to orchestrate the

parallel execution and is commonly referred as the application’s Task Dependency

Graph (TDG).

Building the task dependency graph

In a task-based data-flow programming model like OpenMP 4.0, the programmer

does not indicate the dependencies between tasks explicitly but by means of the

pieces of data that are read from or written to. The runtime system is then the one

in charge of building the task dependency graph with this information. This can

create various kinds of dependence relations between the tasks. Consider task A

should occur in time before task B if they were executed sequentially; if they use

data that is stored in the same place, we can have the following three options:

flow dependency Also know as read-after-write (RAW), when B reads from where

A writes to.
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1.2 Task-based parallelism and its opportunities in NUMA systems

anti-dependency Also known as write-after-read (WAR), when B writes where A

reads from.

output dependency Also know as write-after-write (WAW), when B and A write to

the same place but B does not read from there.

In these cases it is important that B is executed after A, or at least that some

kind of data consistency method is used, otherwise the result might not be correct.

See that there is no read-after-read option: when two consecutive tasks want to

just read from the same place (not write), there is no risk that one modifies the

data needed by the other one

As an example, consider that we have three vectors u, v,w ∈ ℝ3 and we want

to calculate z = ⟨u + v, v + w⟩ ∈ ℝ. Algorithm 1.1 is a sample version coded in C,

with the TDG in figure 1.2. It is not an efficient way to do it, but it will serve to

show flow and anti-dependencies.

Algorithm 1.1: Small task-based program

double foo(double u[3], double v[3], double w[3]) {

double z = 0.0;

for (int i = 0; i < 3; ++i) {

#pragma omp task inout(u[i]) in(v[i]) label(first_sum)

{

u[i] = u[i] + v[i];

}

#pragma omp task inout(v[i]) in(w[i]) label(second_sum)

{

v[i] = v[i] + w[i];

}

#pragma omp task in(u[i], v[i]) out(w[i]) label(product)

{

w[i] = u[i] + v[i]

}

}

#pragma omp task in(w[0], w[1], w[2]) out(z) label(reduction)

{

z = w[1] + w[2] + w[3];

}

#pragma omp taskwait

return z;

}
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Figure 1.2: Task dependency graph for algorithm 1.1. Solid arcs show flow dependencies,

dashed arcs show anti-dependencies. Numbers represent the execution order in

the sequential case.

The algorithm stores the sum u + v overwriting u, and v + w overwriting w.

Output dependencies might not seem useful at first. However, they are in the

case of stencil algorithms that work by saving in every cell the average of the

neighbouring cells, such as stationary heat diffusion algorithms.

1.2.2 Suitability for NUMA-aware scheduling

The runtime system is in charge of managing the parallel execution, releasing

the programmer from the burden of explicitly expressing task synchronisation or

scheduling at the application source code level. In this way, tasks are scheduled

to cores once their data or control dependencies are satisfied. A key aspect of this

data-flow execution model is the explicit knowledge the runtime system has in

terms of the ranges of memory addresses that are going to be accessed by tasks

before they actually start running, which enables improvements in terms of data

prefetching [33] or cache coherence protocol optimizations [26]. In this context,

our work is the first in showing the need for dynamic graph partitioning at the

runtime system level to exploit data locality and mitigate NUMA effects on large

shared memory systems without programmer intervention.

Task-based data-flow programming models are specially well suited for large

shared memory systems with NUMA effects. The specification of the input and
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1.2 Task-based parallelism and its opportunities in NUMA systems

output dependencies for the tasks provide the runtime systemwith the information

of what data is going to be accessed. Also, the runtime system has the knowledge

of where the data resides within the NUMA regions of the node. In this case, it is

possible to schedule a given task in a thread local to the NUMA region where its

required data resides, thus avoiding the cost of increased latency and bandwidth

waste which might otherwise be experienced by scheduling the task at a larger

NUMA distance from its data. This NUMA-aware scheduling also provides a higher

probability for a task to hit its data in the Last-Level Cache (LLC) of the processor

if previous tasks using this data also ran in the same socket. As a consequence,

memory accesses to inputs and outputs will always access close memories during

the execution of tasks, exploiting the data locality of the application as a result.

1.2.3 Task scheduling in NUMA systems

The typical behaviour of a thread in a task-based runtime system consists in re-

questing tasks to the scheduler, executing them and notifying about task com-

pletions to enable the wake up and execution of dependent computations. Once

a thread sends a request to the runtime system, a task is picked up based on a

certain policy. A very simple one consists in selecting tasks based on a First-In

First-Out (FIFO) regime without any other consideration. To improve data local-

ity, a simple optimisation consists in scheduling the immediate successor: When

a task has a dependent computation and it is the only remaining parent to finish,

the thread executing that task selects the dependent computation to be run right

after parent’s execution finishes. However, this optimisation does not consider the

data location of previously finished parent tasks. As an alternative, some authors

propose to enrich the Application Programming Interface (API) of the runtime sys-

tem, so that the programmer can manage data placement and exploit data locality

by specifying the socket where the task should be executed [17], [30]. These ap-

proaches also implement a distance-aware work-stealing method that steals tasks

from the closest NUMA regions, which allows reducing load imbalance. However,

they are not automatic, increasing the programmability burden in parallel systems.

Alternatively, in this work we propose to leverage the information contained in

the TDG to automatically mitigate NUMA effects without any specific programmer

intervention.

5



1 Introduction

1.3 Graph partitioning

1.3.1 The graph partitioning problem

In this work we are going to show the usefulness of graph partitioning techniques

to improve the performance of task-based applications in NUMA systems. A good

general definition for the graph partitioning problem is that from a recent survey

in graph partitioning and its applications by Buluç et al. [10]. This definition is

the one given in problem 1.1.

Problem1.1 (Graph partitioning). Given a positive integer k and an undirected graph
G = (V, E)with positive edge weightsω: E ⟶ℝ+, find a partitionΠ = (V1,… ,Vk)
of the set of vertices.

In general, we want partitions that are balanced, that is |Vi| ≤ (1 + ε)⌈V/k⌉ for
some ε ≥ 0, and such that some metric is minimal. If we define the mapping

φ:V ⟶ 1,… , k that assigns every vertex to the partition where it belongs, or

φ(v) = i if v ∈ Vi in Π, we want to minimise the objective function


uv∈E

φ(u)≠φ(v)

ω(uv).

This function is known as the edge-cut of the solution and corresponds to the total

weight of the edges connecting pairs of vertices from two different parts in Π.

Under these constraints, the problem is np-hard, but it has been studied for

many years and there are known algorithms and heuristics for approximating

it [10]. Some of the available libraries in the HPC scenario are Metis [24], [25],

Scotch [36], [37] and the Zoltan framework [5]. In fact, these libraries have

been developed mostly to reduce the data transfer in parallel systems, but for the

case of message-passing applications (which can be seen as undirected graphs).

1.3.2 Graph partitioning algorithms

In this work we will use standard graph partitioning tools for undirected graphs

to partition the TDG of applications, which are directed acyclic graphs. Here we

give a brief summary of the algorithms used in the Scotch library by Pellegrini

[36, 37]. Our main reference for this is Scotch User’s Guide [35].
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1.3 Graph partitioning

Dual recursive bipartition

This is one of themost basic and usedmethods. It is a recursive divide-and-conquer

algorithm that consists in doing a 2-partition of the set of parts, and a 2-partition

of the set of vertices and map the last two to the pair of sets of parts. The mapping

is done recursively until what is assigned is a set of tasks to a single part. The

bipartitions are done using some heuristics that use the information from the edge

weights to make good decisions.

Multilevel mapping

Rather than a partitioning/mapping algorithm, this is a scheme to do the partition

in an easier way or with higher quality. It coarsens the input graph (makes it more

rough, joining vertices), then applies the partitioning algorithm to the coarsened

graph, projects back the partition to the original graph and refines it. This is quite

well shown in figure 3 from the user manual [35].

Diffusion

It is a general method that, in the case of a bipartition, is easily understood with

a metaphor. Two vertices are selected (using some heuristic) and one of two

antagonistic liquids are poured into them (we can also think of the liquids as

matter and anti-matter). In every vertex a bit of the liquid is lost, and the vertex

gets to the part of the liquid that has arrived with more quantity. They annihilate

each other (and hence the comparison with matter and anti-matter).

Fiduccia-Mattheyses

This algorithm is a local-search algorithm somewhat extended not to stall in a

local minimum. Starting with a given partition, it tries to improve it by moving

vertices from one partition to another.

1.3.3 Related work and existing results using graph partitioning

Graph partitioning has been used for long time to assign tasks to processors in

parallel machines, as commented by Pellegrini [37]. This has been done mostly

in two ways, one is dividing the data graph, where every vertex corresponds to a
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block of data and the adjacencies come from the simultaneous use of the data in a

task/process. The other one is a process graph, mostly related to message-passing

programming models, where each vertex corresponds to one of the processes and

the edges show the communications between them. Our work is the first to apply

graph partitioning during execution time in a shared-memory system, while pre-

vious approaches partition the graph statically (in advance, not in real time) or

focus on distributed memory systems.

One of the most recent developments to guide task schedulers via graph parti-

tioning techniques is SPAWN by Papin et al. [34]. This approach takes advantage

of sophisticated properties of the graph that are extracted from the input data and

the application source code. The process of building the graph is considerably

complex as it requires a precise understanding of the targeted application source

code and its input, needing the help of the programmer to define distances in the

physical domain of the application, which is something our approach does not

require since the graph is generated on runtime without the need for any specific

programmer intervention.

SPAWNworks by building a graph representing the physical domain of the prob-

lem solved by the application and embed it on a geometric space. Initially, the

processing elements of the target machine executing the parallel application are

uniformly distributed on the region occupied by the problem domain (giving an

electrical charge to each element), and the domain is partitioned using a Voro-

noi tessellation. As the time advances, the electrical charges of the processing

elements are modified according to their work load, inducing a new Voronoi tes-

sellation and effectively fixing possible load imbalances.

There have been previous results in partitioning directed acyclic graphs us-

ing standard partitioners. For example, Tanaka and Tatebe [40] used the multi-

constraint capabilities of METIS to schedule workflows, which are more coarse-

grained than usual shared-memory task dependency graphs. Using an approach

with multiple load balance constraints, the vertices have an r-dimensional weight

(for some constant r) and the target parts also have an r-dimensional capacity

each. This way, the partitioner must meet the load imbalance in all dimensions

instead (the usual case is for r = 1). In the paper, the authors take advantage of

this capability by setting the component corresponding to their depth in the graph

to one (or the desired weight) and the rest to zero. Our initial results showed a

high overhead when trying to use a similar approach, however, when compared
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1.3 Graph partitioning

to single-dimensional constraints.

There are many more works that tackle the goal of scheduling directed acyclic

graphs, but most of them aim at only reducing the total execution time and work

using approaches other than graph partitioning. Some highly used methods are

those based on the Earliest Finish Time (EFT), a greedy algorithm that schedules

the tasks in such a way that they would finish the earliest possible. This approach

and many more are described in a survey by Wu, Wu, and Tan [46], focused on

the scheduling of workflows.
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2 Exploiting the task dependency graph
to mitigate NUMA effects

To automatically orchestrate a parallel execution while optimally mitigating NUMA

effects on large shared memory nodes, we exploit the information contained in the

task dependency graph of the application. To do so, we consider techniques that

either analyse the TDG by means of a simple heuristic and also techniques based

on sophisticated graph partitioning algorithms.

2.1 Dependency Easy Placement (DEP)

Under the Dependency Easy Placement (DEP) policy, tasks are scheduled to the

socket where most of their data dependencies are allocated. To figure out which

specific socket contains a particular block of data, the runtime system keeps a table

to map blocks to sockets. The first address of a block is used as its identifier. In

this way, we avoid invoking external libraries that make extensive usage of system

calls to figure out the sockets where data is allocated. Tasks that have no inputs,

i.e., initialisation tasks, are assigned to sockets via a round-robin fashion if most

of their output data is not allocated yet. In our approach there is a parameter to

set the stride of the round-robin approach (a stride 2 round-robin means that the

two first tasks are assigned to the first socket, the third and the fourth tasks to the

second socket and so on). When the task to be scheduled is not an initialisation task

and there is a tie between two or more sockets in terms of the tasks’ dependencies

they contain, the socket is randomly chosen.

In algorithm 2.1 we give a high-level description of the DEP approach. In there,

the call to chooseBest (weights) returns the position of the highest number, math-

ematically speaking it is mostly like doing

argmax weightsi  0 ≤ i ≤ numSockets  ,

where numSockets accounts for the total number of NUMA nodes available for use

in the system. However, if the argmax is 0, it means that most of the data is not

allocated yet, and the call returns the following socket in the round-robin order.

11



2 Exploiting the task dependency graph to mitigate NUMA effects

Although this is not strictly a graph partitioning technique, the scheduling defines

an implicit partition of the task graph. In some simple cases, doing a stride 1

round-robin policy is enough, but in other cases larger strides can increase data

locality exploitation. For example, stencil algorithms use most of the data from

their own blocks, but also need to communicate with their neighbouring blocks.

This implies that mapping neighbours to the same socket, which can be achieved

by round-robin mechanisms with strides larger than 1, can bring significant bene-

fits. For more complex graphs, this might not be enough and more sophisticated

techniques can make a difference.

Algorithm 2.1: Dependency Easy Placement

depSocket: Dictionary(Address⟶ Socket)

taskSocket: Dictionary(Task⟶ Socket)

numSockets: Integer ▷ Total number of sockets / NUMA nodes

procedure onTaskCreation(task: Task)
weightsi ← 0 ∀i ∈ {0,… , numSockets}
for all dependency ∈ task.inputs ∪ task.outputs do

if depSocket.hasKey (dependency.address) then
s← depSocket(dependency.address)

else

s← 0
end if

weightss ← weightss + dependency.size
end for

socket ← chooseBest (weights)
for all dependency ∈ task.outputs do

if ¬depSocket.hasKey (dependency.address) then
depSocket.put (dependency.address↦ socket)

end if

end for

taskSocket.put (task↦ socket)
end procedure
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2.2 Considerations about applying graph partitioning algorithms to applications’ TDGs

2.2 Considerations about applying graph partitioning
algorithms to applications’ TDGs

Figure 2.1: Partition of six chained it-

erations of the Gauss-Seidel

application, described in sec-

tion 3.1.5, into two sockets.

Considering the TDG as an un-

directed graph can lead to bad

partitions.

A B C D

J

a b c d

Figure 2.2: The old dependencies option

includes the dashed edges to

help the partitioning library.

Since graph partitioning targets undirected graphs,

most of the available graph libraries do not work

with directed graphs. Simply considering the TDG

as an undirected graph is not an option, because for

graphs with task paths larger than their width the

partition scheme ends up splitting the graph in a way

that all potentially concurrent tasks are assigned to

the same partition, which makes the partition useless

in practice. For example, in figure 2.1 we show one

case where a graph has been split into two domains

that roughly correspond to tasks that are supposed to

run either during the first or the second half of the

execution, which is useless in practice. This issue

is overcome by operating over small task subgraphs

instead of over the whole TDG. Also, since in prac-

tice the dependency graph is built as parallel execu-

tions progress, the complete TDG is never available

at runtime. For these reasons, partitioning subgraphs

and then extrapolating this partition to the upcom-

ing tasks following a certain policy is a natural way

to proceed.

Applications containing tasks acting as barriers

can also be challenging since the partitioner may not

have enough information to properly split the TDG.

For this reason we add the option of including the old

dependencies in the graph. This option considers as

predecessors the two last writers of a piece of data,

and not only the last one. Figure 2.2 shows a simple

example where task J acts as a barrier and all its in-

put dependencies are included in the graph in terms

of input dependencies to tasks a, b, c and d. However, including these edges is not

always good because they increase the cost of the partitioning scheme.
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2 Exploiting the task dependency graph to mitigate NUMA effects

2.3 Runtime Informed Partitioning (RIP)

Under the Runtime Informed Partitioning (RIP) policy, task scheduling decisions

are based on graph partitioning techniques. The TDG is built at runtime by lever-

aging information in terms of task dependencies. The graph is updated every

time new tasks are instantiated and partitioned once the execution goes through

a barrier point or a limit in terms of the total number of tasks contained in the

graph is reached, which we call the window size limit. The graph partitioning

algorithm uses the TDG as input, weights its edges depending on the amount of

bytes they represent and assigns tasks to a particular socket taking into account

the machine NUMA distances contained in the firmware. Sections 3.1.3 and 3.1.4

give more details on how the partition is done and on the information contained

in the firmware, respectively. When tasks are ready to be executed (i.e., all their

input dependencies are solved), but the partition is not yet done, they are put to a

temporary queue. Once they are assigned to a socket, they are moved to the cor-

responding queue. For those tasks that are assigned to a given socket before they

are ready to run, they are pushed to the correct queue once their dependencies are

met, without getting to the temporary queue at all. Algorithm 2.2 has a high-level

description of the RIP algorithm in general.

Algorithm 2.2: Runtime Informed Partitioning

depSocket: Dictionary(Address⟶ Socket)

taskSocket: Dictionary(Task⟶ Socket)

tdg: TaskDependencyGraph

procedure onTaskCreation(task: Task)
tdg.add (task)
if tdg.size = windowSize then

doPartition()
else, if tdg.size > windowSize then

propagatePartition (task)
end if

end procedure
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2.3 Runtime Informed Partitioning (RIP)

Once the initial subgraph has been partitioned, we consider two possible options

to proceed: The first one consists in propagating that same partition in some way,

which corresponds to the RIP-DEP and RIP-SP techniques. The other alternative

is to keep partitioning the different subgraphs the runtime system generates as the

execution progresses, which corresponds to the RIP-MW approach. What follows

are the details of these techniques.

2.3.1 RIP with Dependency Easy Placement (RIP-DEP)

The RIP-DEP technique consists in propagating the partition obtained from the ini-

tial subgraph by taking into account where the tasks’ input data resides. As such,

if most of the input data of a given task resides in a particular socket, this task is

assigned to be run on that socket. This technique is close to the DEP approach,

already described in section 2.1. The main difference between DEP and RIP-DEP is

the way they do the initial partition: While DEP applies simple round-robin mech-

anisms, RIP-DEP partitions the graph. In that sense, the call to propagatePartition
in this policy simply consists in the description of DEP in algorithm 2.1.

2.3.2 RIP with Socket Propagation (RIP-SP)

RIP-SP propagates the partition obtained from the initial subgraph by doing a

simple greedy algorithm. Every task is assigned to the socket where most of its

predecessors are, giving more weight to those from which more data is read. The

main difference between the RIP-SP and RIP-DEP policies is that the first might

not choose the socket where most of the data is, since the output of the parents

might be allocated in a socket different to where the task was executed.

The detailed description is shown in algorithm 2.3. We can notice that the array

weights starts at position 1 instead of 0 when compared to DEP and RIP-DEP. The

reason for this is simply because in this case we are sure that all the predecessors

for the current task have been assigned a partition already.

2.3.3 RIP with Moving Window (RIP-MW)

In this case, the graph partitioner is run many times throughout the execution

of the program. Once the subgraph contains a particular amount of tasks, the

window size, or a barrier point is reached, the partitioning algorithm is run.
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2 Exploiting the task dependency graph to mitigate NUMA effects

Algorithm 2.3: RIP with Socket Propagation propagatePartition

taskSocket: Dictionary(Task⟶ Socket)

tdg: TaskDependencyGraph

procedure propagatePartition(task: Task)
weightsi ← 0 ∀i ∈ {1,… , numSockets}
for all parent ∈ tdg.parents (task) do

s← taskSocket(parent)
weightss ← weightss + tdg.edgeWeight (parent, task)

end for

socket ← chooseBest (weights)
taskSocket.put (task↦ socket)

end procedure
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Figure 2.3: Small drawing showing the options for

RIP with Moving Window

Once the partitioner finishes its job, the old-

est tasks are flushed from the graph and a

new subgraph starts getting built. The user

can set up the window size, an initial extra

amount of tasks for the first window and the

size of the intersection between two consecut-

ive windows. This intersection is considered

to allow the graph partitioner to exploit the

already made partitions to generate the new

ones, which is an optimization that aims at

reducing the overhead and keeping the data

locality whenever it is possible. Figure 2.3

shows a very high level diagram of these op-

tions.

2.3.4 Benefits of graph partitioning

While simple heuristics based on round-robin approaches (e.g., DEP) are able to

produce optimal partitions in some scenarios, in some other cases they fail in

optimally partitioning the graph. In these scenarios, policies based on graph par-

titioning clearly outperform simple round-robin approaches.
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FIFO optimal DEP RIP-DEP

Figure 2.4: Task assignments into two sockets on the first iteration of the Gauss-Seidel

method applied to a 8 × 8 grid.

As an example, we consider the stationary heat diffusion problem using the it-

erative Gauss-Seidel method with a 4-element stencil (top, bottom, left, right) in

an 8 × 8 regular grid, which corresponds to the the Gauss-Seidel application later

described in section 3.1.5. Each task operates over one cell of the grid. In each it-

eration, computations over every cell depend on the data of the four neighbouring

cells, and the algorithm execution follows a wavefront scheme in the direction of

the main diagonal, exploiting the fact that the tasks in the same anti-diagonal are

independent between them. For that reason, when targeting two sockets, the op-

timal partition consists in dividing the domain along the main diagonal, so at each

instant half of the anti-diagonal can be executed in a different socket but main-

taining locality as much as possible. This can be seen in figure 2.4, which also

shows the different partitions that each approach has produced over the first iter-

ation of the Gauss-Seidel method. The specific details on how the graph partition

is carried out are explained in section 3.1.4.

We can compare this optimal division with those obtained with a round-robin

of stride 2 (DEP) and using graph partitioning (RIP-DEP). For the first case, which

follows a round-robin approach, we do not get a partition close to the optimal

one. There is a column set to one socket before the stride 2 round-robin distribu-

tion since there are some control tasks not shown in the physical domain that are

assigned in the same socket as first column’s tasks. In the second case, RIP-DEP

makes a division which is much more similar to the optimal one. Finally, the FIFO

scheduler distributes the tasks in a complete domain-oblivious way, as we can also

see in figure 2.4.

In figure 2.5 we show these partitions expressed at the TDG level on three it-

erations of the Gauss-Seidel application (section 3.1.5). The representation of the

FIFO scheduler partition is omitted due to its lack of interest since tasks are just
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2 Exploiting the task dependency graph to mitigate NUMA effects

randomly assigned to one of the two sockets. It is clear that data transfers between

tasks assigned to different sockets are minimised in the optimal partition and the

one obtained via graph partitioning (RIP-DEP). In contrast, the DEP approach pro-

duces a sub-optimal graph partition. The implications of these partitions in terms

of the total performance of the Gauss-Seidel application are detailedly commented

in section 3.2.

optimal DEP

RIP-DEP

Figure 2.5: Task dependency graph corresponding to three iterations of the Gauss-Seidel

code and its optimal partition plus the ones achieved by the DEP and RIP-DEP

techniques in a two-socket system.
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3 Experiments
3.1 Experimental environment

3.1.1 Software environment

In all cases, we use the OmpSs [18] toolsuite with a customised Nanos++ v0.9

runtime system and the Mercurium 1.99.9 (rev. 627c863) compiler. For the in-

strumentation and analysis of the results we use Extrae 3.2.1 and Paraver 4.5 [7].

OmpSs is a forerunner of the OpenMP task execution model and we will con-

sider them as equivalent in our work. In the case of programs using the Lin-

ear Algebra Package (LAPACK), we use the open-source implementation from

OpenBLAS 0.2.15 [31], [45] compiled for each architecture. Threading of the

library is disabled so as not to interfere with Nanos++.

3.1.2 Considered platforms

To evaluate the usefulness of the proposed techniques, we consider three different

platforms:

Intel Sandy Bridge

We make use of a single node in a large scale HPC facility. Each node has two

8-core Intel Xeon E5-2760 CPU (Sandy Bridge) at 2.6GHz with 20MB of shared

last-level cache and Hyper-Threading disabled, and 8 DIMM of 4GB DDR3 RAM at

1600MHz. The facility is composed of IBM System X server iDataPlex dx360 M4

nodes interconnected with InfiniBand Mellanox FDR10. It uses IBM LSF queue sys-

tem for scheduling the jobs, allowing exclusive use of the requested computation

node. We use GCC version 4.8.2 as the backend compiler for Mercurium.

SGI UV100

This is an SGI Altix UltraViolet 100 machine with 3 individual rack units (IRUs)

interconnected with NUMAlink at 15GB/s. Each IRU contains two IP93 blades

with two 8-core Intel Xeon E7-8837 CPU (Westmere-EX) at 2.66GHz and 24MB
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3 Experiments

of shared last-level cache, and 16 DIMM of 16GB DDR3 RAM at 1066MHz. We

use GCC version 4.8.2 as the backend compiler for Mercurium.

IBM POWER8

This is an IBM Power System S824L (8247-42L) machine with two sockets com-

posed of two 6-core POWER8 chips, called chiplets, running at 3GHz and up to

8 threads per core. This is the scale-out version of the POWER8 system, which

means that the two chiplets in a socket neither share the last-level cache nor the

memory controller (i.e., each chiplet has its own NUMA node). Each chip has a

48MB shared L3 cache with non-uniform access times, and 16 CDIMM of 64GB

RAM at 1600MHz. For the experiments, we limit the use of hardware threads to

one per core. We use GCC version 4.9.3 as the backend compiler for Mercurium.

3.1.3 Memory latency characterisation of the platforms

Table 3.1:NUMA distances obtained using the

numactl --hardware command.

machine chiplet socket node system

Intel Sandy Bridge − 10 11 −
SGI UV100 − 10 13 40/48

IBM POWER8 10 20 40 −

Information regarding the NUMA to-

pology of a system is typically avail-

able to the runtime system from the

firmware via the OS. The numactl

--hardware command displays the

information the OS provides regard-

ing NUMA distances within the system. Table 3.1 summarises the obtained NUMA

distances. Besides this information, we measure the real latencies when mov-

ing data across the different NUMA domains in the evaluated platforms. We use

lat_mem_rd tool from LMbench [27] to measure the real latencies. These results

are shown in figure 3.1. In the case of the Intel Sandy Bridge system, there is an

average 68% latency penalty in accessing the remote NUMA region memory. In

the case of the IBM POWER8, accesses to the memory of the other chiplet located

in the same socket suffer from 40% latency penalty, while accessing the memory

of the remote socket increases the penalty up to 95%. In the case of the SGI

UV100, accesses within the same blade have an increased latency of 17% com-

pared to accessing the local memory, while there is a significant latency penalty

of 3× to access data in other IRUs, or even close to 3.4× in the distant sockets.

As shown in figure 3.1, these latencies follow the same pattern and similar ratios

as the data obtained from the firmware displayed in table 3.1, except in the case
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Figure 3.1:Measured memory latencies (in nanoseconds) as we increase the working set size

with LMbench lat_mem_rd.

of the IBM POWER8, where the firmware annotations are not consistent with the

real measurements and the proportions in the firmware are the double of the real

ones.

3.1.4 Graph partitioning

For partitioning the graphs, we use the methods available in the Scotch 6.0.4 [36]

graph partitioning library. When using Scotch, it is possible to partition the

graph into k equal parts or to map the graph to a target graph with k vertices.

The second option is of much more interest, since it allows to specify the different

NUMA distances in the target architecture in order to help the partitioner to group

the tasks in the correct way. We represent the target architecture as a complete

graph with as many vertices as cores, and with edge distances related to the NUMA

distances obtained from the firmware as explained in section 3.1.3. Then, after

doing the mapping of the tasks to the target architecture, we assign each task to

the NUMA domain where the assigned core resides. For the TDG describing the

application, we use the total amount of transferred data between the tasks to give

a weight to the edges.

3.1.5 Tested applications

Conjugate gradient

CG is an iterative method for solving linear systems of equations with a symmetric

positive-definite matrix. We use a sparse matrix version with a task decomposition

as described by Jaulmes et al. [22]. The source code level annotations to guide

the NUMA-aware scheduling assign tasks to sockets in a round-robin fashion.
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Gauss-Seidel

This is an algorithm solving the stationary heat diffusion problem using the iter-

ative Gauss-Seidel method with a 4-element stencil (top, bottom, left, right). The

implementation is based on the available one from BAR [8], with a task decom-

position given by tiles but with a modified data allocation strategy to make the tile

contents contiguous in memory instead of the rows. The graph follows a wave-

front shape, as shown in figure 2.1. The source code level annotations defining

the optimal NUMA-aware scheduling are optimised for two sockets and follow a

division along the main diagonal of the stencil.

Integral histogram

This algorithm computes a cumulative histogram for each pixel of an image, using

a cross-weave scan as described by Porikli [38]. We use a modified version (to use

aligned allocations) from the one available in BAR [8]. The halos are allocated in

a round-robin fashion, the image data and scan tasks are assigned to a socket in

round-robin using the column identifier.

Jacobi

This application solves the stationary heat diffusion problem using the iterative

Jacobi method with a similar implementation to the Charm++project [20], [23].

This implementation uses a 5-element stencil (top, bottom, left, right, centre) and

a task decomposition given by blocks of rows. The source code level annotations

for assign the blocks of rows to a socket follow a round-robin approach. The

double-buffer nature of Jacobi gives an embarrassingly parallel algorithm inside

every iteration. Together with the highly symmetric shape of the task dependency

graph, it becomes simple to partition, in contrast to the Gauss-Seidel code that

solves the same problem.

NStream

NStream is a synthetic benchmark to measure memory bandwidth from the Intel

Parallel Research Kernels benchmark suite [43] based on STREAM by McCalpin

[28]. We use a task-based implementation ported to OmpSs. Since it works with

N independent arrays (a multiple of the number of threads, usually) that get all
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the operations done, its task graph is made of isomorphic connected components,

so partitioning it should be as easy as assigning every component to one socket.

Due to the simplicity of the graph, the benchmark gives a good way to detect

strange behaviour in the partitioner. The user-level annotations for the NUMA-

aware scheduler assign each array to a socket following a round-robin approach.

QR factorisation

Given a general matrix A, a QR factorisation of A is a product A = QR where Q

is orthogonal and R is upper triangular. We use a task-based implementation of

the tiled algorithm described by Buttari et al. [12], that saves the R matrix in the

upper-triangular part of A and the Householder reflectors that allow to compute

Q in the lower-triangular part. It uses procedures from LAPACK as kernels for the

computations. The source code level annotations assign the blocks of the matrix

in a round-robin approach using the row identifier, while the subsequent tasks are

assigned where most blocks reside (using the row identifier).

Red-Black

This is the third and last algorithm solving the stationary heat diffusion problem.

The data decomposition is exactly the same as for Gauss-Seidel, but the task graph

is more similar to Jacobi; the red sub-iterations are embarrassingly parallel (by

tiles) and so are the black sub-iterations. The source code level annotations split

tasks by following a division along the main diagonal of the stencil.

Symmetric matrix inversion

This algorithm is used to compute the inverse of a symmetric matrix in a fast way

by means of a Cholesky decomposition. We use the tiled task decomposition of the

dense linear algebra version as described by Al-Omairy et al. [30], and compare

our results against the NUMA-aware scheduling. It uses procedures from LAPACK

as kernels for the computations. The user-level annotations for the NUMA-aware

scheduler assign tasks in a round-robin approach as proposed in that same article.
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3.2 Evaluation

In this section we evaluate the performance of the proposed mechanisms consid-

ering the 7 applications and 3 platforms described in section 3.1. Our evaluation

considers six different approaches:

• First-In First-Out (FIFO) task scheduler that is unaware of data location. This

is the baseline scheduler.

• Socket Aware (SA) scheduler, which is driven by annotations at the source

code level. The specific annotations of each benchmark are explained in

section 3.1.5.

• The four approaches described in chapter 2: DEP, RIP-DEP, RIP-SP and RIP-

MW. In the case of DEP, we use a stride of 2.

For each application, platform and method we repeat each experiment 10 times.

In all speedup plots shown in this section, bars are averaged among the different

repetitions and normalised to the baseline FIFO scheduler. Bar height represents

the mean value, a horizontal thick line is the median, and error bars show the

standard deviation of the 10 repetitions. Our experiments run on 16 cores when

considering the Sandy Bridge system, on 16 cores when running on the UV100

(a total of 8 cores per socket considering runs on 2 sockets) and on 24 cores in

the POWER8 (6 per chiplet, using 4 chiplets). For each system configuration we

include a plot of the geometric mean computed over all the executions done con-

sidering the 7 benchmarks.

3.2.1 Intel Sandy Bridge

Figure 3.2 shows the execution time speedups when applying the different schedul-

ing methods to executions on the Intel Sandy Bridge machine. Average results are

also included, using the geometric mean of individual results. SA achieves an av-

erage 1.16× speedup, while DEP reaches 1.14×. RIP schedulers show more vari-

ability in their behaviour. RIP-DEP achieves very competitive results, reaching

average 1.12× speedups. In contrast, RIP-SP is competitive for half of the bench-

marks, and suffers significant slowdowns in three benchmarks (CG, QR and SMI).

Consequently, average performance is degraded (although the average median is
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Figure 3.2: Speedup results when running on a 2-socket 8-core Intel Sandy Bridge platform.

still above FIFO). Finally, RIP-MW does not reach the speedups of DEP or RIP-DEP

in any benchmark due to the overhead of periodically repartitioning the TDG. As

a result, an average 10% slowdown is obtained.

Individual results per benchmark follow similar trends and are coherent with

the different latencies shown in figure 3.1. In the case of CG, the matrix is divided

into blocks that are allocated in both NUMA regions. The number of matrix blocks

is 30, two less than the double of the number of threads, to make sure there are

enough parallel tasks to achieve good performance on 16 cores. While all the con-

sidered approaches allocate approximately half of the matrix on each region, the

FIFO scheduler is not aware of this situation and it sometimes assigns tasks to the

wrong socket. The SA approach based on source code annotations always manages

to execute tasks to the right socket. The DEP approach applies a simple modulo

function to initialisation tasks and then tasks execute on the socket where more

data has been initialised. As a result, DEP attains a significant 1.42× speedup. In

case of RIP-DEP each socket seems to get specialised in executing a certain kind

of tasks, getting a 1.34× speedup. Finally, RIP-SP and RIP-MW fail in providing

significant benefits due to the wrong task placement decisions in the first case and

the large overhead of the multiple graph partitions performed by the second. In

the case of the exact numerical algorithms QR and SMI, the RIP methods do not

improve the performance of the baseline FIFO scheduler since these two bench-

marks show very low sensitivity to NUMA effects when using only two sockets,

especially if they have similar latencies [30].

Interestingly, in case of the Gauss-Seidel and Red-Black applications, the DEP

approach fails in emulating the speedups of 1.11× achieved by the SA approach,
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which is guided by user code annotations. In contrast, the RIP-DEP approach does

indeed achieve good speedups (1.07×) since its initial graph partition defines a

task to sockets mapping very close to the one defined at the application source

code level, as shown in figures 2.4 and 2.5. The RIP-SP and RIP-MW techniques

fail in providing significant benefits. Although they start from the same good

partition as RIP-DEP, the propagation performed by RIP-SP is flawed and the high

overhead of RIP-MW undermines its performance.

3.2.2 SGI Altix UV100
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Figure 3.3: Speedup results in the SGI UV100 using 2 sockets.

For the SGI Altix UV100 machine, we have done experiments using two sockets

with results visible in figure 3.3. We do not have support to run our executions

in isolation in this system, which sometimes adds noise to our experiments. On

average, DEP achieves speedups of 1.98× over the FIFO approach, while RIP-DEP,

RIP-SP and RIP-MW achieve improvements of 2.02×, 1.28× and 1.09× respect-

ively. As figure 3.3 shows, some of our methods match or in certain cases outper-

form the speedup obtained by the partition designed by the programmer, which

is expressed under the SA category.

The strong NUMA effects of the Altix system, described in section 3.1.3, allow

the RIP-DEP technique to clearly beat the DEP approach on average due to the

excellent speedups it achieves when dealing with the Gauss-Seidel and the Red-

Black applications. The DEP technique, based on simple round-robin policies, is
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not able to emulate the optimal partition expressed at the application source level.

In contrast, the partition obtained by RIP-DEP is close to the best possible one,

which allows the RIP-DEP technique to achieve speedups of 2.01× in Gauss-Seidel

and 2.08× in Red-Black, very close to the ones achieved by SA, which is 2.05×
faster than FIFO in both cases.

3.2.3 IBM POWER8
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Figure 3.4: Speedup results in the IBM POWER8.

In the IBM POWER8 machine, we run tests on the four chiplets. Results are

shown in figure 3.4. In this occasion, DEP reaches a speedup of 1.20×, doubling
the 1.10× speedup of SA, while RIP-DEP goes up to 1.11×. On the other hand,

RIP-SP and RIP-MW have around a 20% performance loss.

Contrary to the good results achieved by the RIP-DEP approach in applications

like CG and Integral Histogram seen in the Intel or the Altix platforms, in the

POWER8 the RIP-DEPmethod does not showmuch performance. This is caused by

the inaccurate NUMA distances set in the firmware of the machine as section 3.1.3

describes in detail. Since the graph partitioning performed by RIP-DEP is fed by

the firmware NUMA distances, the final partition is suboptimal.

The case for Jacobi, on the other hand, is that our methods surpass the results

of the manual partition using the socket-aware scheduler. As we explained in sec-

tion 3.1.5, the manual partition done by the programmer is using a simple round-

robin approach, assigning every block of rows and their corresponding tasks to a
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different socket. DEP outperforms the SA techniques by applying a round-robin

task distribution of stride 2. Interestingly, RIP-DEP achieves the same perform-

ance as DEP without the need for setting up the round robin stride parameter,

which highlights the benefits of graph partitioning approaches over DEP and SA.

Regarding the Gauss-Seidel and Red-Black benchmarks, the manual partition

using the socket-aware scheduler is optimised for two NUMA regions, as explained

in section 3.1.5. For this reason, DEP has a much better performance than SA in

these applications even if the partition is not perfect, and this shows our proposals

are more prepared for future many-socket scenarios.

3.2.4 Sensitivity to the window size
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Figure 3.5: Sensitivity of Jacobi to the win-

dow size using RIP-DEP in the In-

tel Sandy Bridge when using 150

blocks of rows.

Figure 3.6: Load imbalance problems when

choosing an inadequate window

size. Dashed tasks and edges are

not in the window, colours show

the partition.

The window size parameter, corresponding

to the number of tasks in the subgraph as

introduced in section 2.3, is fundamental

for all the RIP methods. For iterative al-

gorithms, such as the solvers for the heat

diffusion problem or CG, a good window is

obtained by selecting a number of tasks of

around 2 or 3 whole iterations (plus the ini-

tialisation tasks), with an intersection of one

iteration for RIP-MW. For dense exact lin-

ear algebra applications, the optimal win-

dow size is around 2 or 3 times the total num-

ber of matrix blocks and an intersection of a

couple of complete rows. In all cases, setting

up a good window size does not require a

deep understanding of the application source

code, just a high-level idea of what the al-

gorithm does.

Figure 3.5 shows how the window size af-

fects the performance of Jacobi when using the RIP-DEP approach with 150 blocks.

We can see how after having 150 tasks, one for each block, in the window the bene-

fits of RIP-DEP over FIFO decrease. The reason is that up until then all tasks tasks

are for initialising the data and the task graph is completely disconnected. This
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works fine because, by default, when there is no more information the Scotch

library tries to group the vertices in the same order as their identifiers, given by the

creation order, which corresponds to consecutive blocks of the stencil, so locality

is preserved.

After the initial 152 tasks (2 of them are for setting the borders of the problem),

the following 150 tasks carry out the computations of the first iteration of the

algorithm, one per block, so when not taking into account all the tasks of the

iteration the partitioner is forced to map the connected tasks to the same socket

and put the rest freely. For the first iteration, when using two sockets the worst

case is when only 1/3 of the iteration is on the window, because then those tasks

and the initializers of the data corresponding to their blocks get to one socket,

and the rest to the other. This is seen precisely in figure 3.6, where the stencil is

divided into 12 blocks and we get 4 blocks in one part and 8 in the other (plus

one border in each part), thus creating a considerably high load imbalance.

In general, the RIP approaches require a window size that is large enough to

be representative of the whole parallel run. However, if the windows size is too

large, the partition of the initial subgraph becomes too costly, which undermines

the benefits of the RIP technique.

3.2.5 Work stealing

Work stealing is an effective technique to improve the performance of parallel

applications [3], [4], [39], [47]. Figure 3.7 compares the benefits of all the tech-

niques considered in this paper with (grey) and without (white) work stealing

when run on the Intel Sandy Bridge and the SGI Altix UV100 using two sockets.

The results for the IBM POWER8 are similar to those of the Sandy Bridge. Results

appearing in white in figure 3.7 correspond to the ones appearing in figures 3.2

and 3.3.

System-wise, we can see how work stealing provides better results when ap-

plied on the Sandy Bridge system than on the SGI UV100. The reason is the large

memory latency of the latter system, which hides the benefits of stealing work

between sockets. Technique-wise, we see in figure 3.7 how work stealing under-

mines the benefits of the SA and DEP techniques, specially when run on the UV100

System. Since these two techniques already provide well balanced task schedules,

adding work stealing to them does not add any benefit and, contrarily, forces some
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Figure 3.7: Benefits over the FIFO scheduler without applying work stealing (white) and

with work stealing (shaded in grey). Values are the geometric means for the

applications presented in section 3.1.5.

tasks to run on sockets that are far from the data they need. The RIP-DEP tech-

nique gets its performance slightly improved by stealing tasks between sockets

when running on the Sandy Bridge system and gets its performance degraded on

the UV100. These observations indicate small load imbalances with a minimal im-

pact on the final performance. The benefits of fixing these imbalances are hidden

on the SGI Altix UV100 by the slowdowns due to wrong task scheduling decisions.

In all the considered scenarios RIP-SP performs better with work stealing, which

indicates that this technique suffers from large load imbalances that undermine

its effectiveness.
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Final words
In this work we have shown how graph partitioning methods can increase the

performance of parallel applications by mitigating NUMA effects, and it is in fact

the first work to present results in a multi-socket cache-coherent NUMA system.

In various cases, the benefit of using graph partitioning is on par with a manual

mapping of the work to the sockets of a shared-memory node, but without the need

for specific annotations at the source code level to guide the scheduling decisions.

The benefits of using these techniques are not only so from a theoretical point

of view, we have done tests on multiple real-life machines which have made the

approach look highly promising.

Graph partitioning is more difficult to use with exact linear algebra algorithms

and other applications that do not have an iterative flow, due to their ever-changing

structure, not so predictable. In these cases, work stealing can help to improve

the performance when compared to blind assignments not taking into account the

structure of the program.

To improve the partition, future work can go in the direction of taking even

more advantage of the structure of the graph. Indeed, the partitioner can be ex-

tended to get better performance with RIP-MW, which should be the way to go

with applications that change behaviour during the execution. We expect that

the overhead associated with RIP-MW can be reduced with some sort of hard-

ware support, following the path set by the Runtime-Aware Architectures point of

view [13], [42]. In this way, RIP-MW can be improved to produce high quality

graph partitions under a very low cost. Another proposal for future work consists

in applying the partition at the core level, and not at the NUMA region level. This

idea aims to get benefit of the data locality within private caches, although the

overhead of partitioning is probably higher than just partitioning at the NUMA

domain level.
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Glossary
execution model specification of how a program execution should take place.

processing element one of the basic execution units in a computer, such as a Cent-

ral Processing Unit (CPU).

round-robin assignment done in circular order.

runtime system piece of software that implements part of the execution model,

controls and carries over the execution of a program.

task in a task-based programming model, portion of a program that is executed

sequentially and is considered a unit.

task-based programming model test.

work-stealing scheduling option in which a processing element can execute work

from another intended to be executed by another processing element.
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Acronyms
API Application Programming Interface.

CPU Central Processing Unit.

DEP Dependency Easy Placement.

EFT Earliest Finish Time.

FIFO First-In First-Out.

HPC High Performance Computing.

IRU individual rack unit.

LAPACK Linear Algebra Package.

LLC Last-Level Cache.

NUMA Non-Uniform Memory Access.

RAW read-after-write.

RIP Runtime Informed Partitioning.

RIP-DEP RIP with Dependency Easy Placement.

RIP-MW RIP with Moving Window.

RIP-SP RIP with Socket Propagation.

TDG Task Dependency Graph.

WAR write-after-read.

WAW write-after-write.
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