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Abstract

Wave extreme events can be understood as the combination of storm-intensity,
directionality and intra-time distribution. However, the dependence structure
among these factors is still unclear. A methodology has been developed to model
wave-storms whose components are linked together. The model is composed by
three parts: an intensity module, a wave directionality module, and a intra-time
distribution module. In the Storm-intensity sub-model, generalized Pareto dis-
tributions and hierarchical Archimedean copulas have been used to characterize
the storm energy, unitary energy, peak wave-period and duration. In the Di-
rectionality and the Intra-time sub-models, the wave direction (at the peak of
the storm) and the storm growth-decay rates are linked to the variables from
the intensity model, respectively. The model is applied to the Catalan coast
(NW Mediterranean). The outcomes denote spatial patterns that coincide with
the state of knowledge. The proposed methodology is able to provide bound-
ary conditions for wave and near-shore studies, saving computational time and
establishing the dependence of the proposed variables. Such synthetic storms
reproduce the inter-variable co-dependence of the original data.

Keywords: wave storms, Catalan coast, von Mises distribution, multivariate
logit function, hierarchical Archimedean copula, generalized Pareto
distribution

1. Introduction

Wave storms strongly perturb the state of coastal environments, becom-
ing such changes concomitant with episodic coastal hazards such as coastal
flooding and erosion. These extreme phenomena drive complex hydrodynamic
processes whose understanding is paramount for proper infrastructure design
(Goda, 2010). The conventional approach is usually based on the probabilistic
definition of a single parameter, typically the wave height. Other concurrent
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components as the duration of the storm, the storm total energy and the as-
sociated wave period influence the final response of a beach or the damage
evolution of a structure (Martin-Soldevilla et al., 2015; Melby and Kobayashi,
2011). These variables are known to be semi-dependent (Salvadori et al., 2007;
de Waal and van Gelder, 2005), but the classical methodology either a) assumes
one variable to be stochastic and the other ones to be deterministic or, b) as-
sumes all variables to be stochastic but completely independent. In the latter
case, the lack of dependence structure hampers finding sets of physically plau-
sible storm components, and requires expert guidance plus local knowledge to
discern the suitable combinations.

A common modelling approach is to hindcast high energy events or to syn-
thesize storms to a representative extreme sea-state, which is generally predis-
posed by the degree of knowledge of the area. For the latter case, dependency
structures among the hydrodynamic variables pose a hurdle, as they tend to
be unknown. Exploratory methods, such as 2D scatter plots, have been widely
used as a rule-of-thumb for the most frequent problem, wave-height vs. wave-
period. However, the interpretation of existing co-dependences among several
variables is challenging. Recurrently, a wide scatter cloud can mislead about
biased co-dependence structures, due to subjective criteria. Storm modelling
requires to consider a multivariate analysis of storm parameters (Corbella and
Stretch, 2012), as univariate analyses may oversimplify coastal processes, often
leading to over or under-estimation of the storm induced damages.

Specialized statistical techniques such as copulas can be used for finding
existing relationships among storm variables (Genest and Favre, 2007; Trivedi
and Zimmer, 2007) with more objective criteria. Copulas were once described
by Sklar (1959), for bivariate models. They were popularized in the 1990s
in financial, insurance, econometrical, risk management and actuarial analy-
ses (Cherubini et al., 2004). Applications can also be found in hydrology (De
Michele and Salvadori, 2003; Salvadori and De Michele, 2004) and more recently,
in coastal engineering (Corbella and Stretch (2012); Wahl et al. (2011); among
others).

Corbella and Stretch (2012) employed copula based return-periods to iden-
tify the most probable combination of wave-height, wave-period, storm-duration,
and water-level for a given probability of exceeding at South Africa. The thresh-
old in the peak-over-threshold method was defined as a critical layer of multiple
dimensions that prescribe both a safe and a super-critical combination of storm
conditions. In the study, the extreme events were fitted to Generalized extreme
value distributions (GEVD). They also noted the importance that their statis-
tical model was constrained, to avoid unrealistic results. Hence, they proposed
wave steepness as a restriction that can increase model rigidity and enhance
system robustness.

Li et al. (2014) fitted maximum significant wave height, peak-wave-period
and storm-duration measured in the Dutch Coast with Generalized Pareto dis-
tributions (GPD). They had used the Kolmogorov-Smirnov and the Chi-square
tests to evaluate the goodness-of-fit. A similar approach had also been followed
by Corbella and Stretch (2013). Salvadori et al. (2014), on the other hand, fit-
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ted the significant wave-height and the duration to a Generalized Weibull model
(GW) distribution and used Akaike Information Criterion (AIC) to select the
suitable copula.

Wahl et al. (2012) applied fully nested Archimedean copulas to consider both
storm surge parameters (defined with the highest turning point and the inten-
sity) and the wave height, at the German coast. Nested copulas can characterize
multivariate random variables by determining a priori nesting architecture that
composes simpler copulas structures into larger and more complex ones. Wahl
et al. (2012) firstly characterized the highest turning point and intensity; and
then incorporated the significant wave height.

The main objective of this paper is to propose a methodology for inferring
multivariate wave storm parameters that shares a common structure. To this
aim, one of the main points of the paper has been to propose a dependence
structure that links the parameters that explain wave storms. The paper is
divided into two steps: Model building and Applicability. The proposed wave
storm model has been split into three modules: intensity, wave directionality
and intra-time storm distributions. This methodology has been tested on the
Catalan coast, a fetch limited environment.

The structure of the paper is as follows: Section 2 deals with the methods
for building the proposed statistical model. Section 3 presents the study area
and, section 4, the database used. Results are summarized in Section 5 and
discussed in Section 6. Finally, Section 7 sets out the conclusions.

2. Methods

2.1. Storm definition and variables

The determination of storms has three criteria: 1) intensity definition and
associated threshold, 2) minimum time-lapse between storms (D};,), and 3)
minimum duration of the storm (D,,;,). Wave storms are extreme phenomena
that can be dealt with the peak-over-threshold description (Embrechts et al.,
1997). The threshold separates storm conditions from non-storm conditions.
The D} .. helps satisfy independence of the samples. The independence is one
part of the “independent and equidistributed” assumption for data in many
statistical techniques. D,,;, discards the storms of insufficient duration and
which are, therefore, of lesser significance.

Eastoe et al. (2013) associates the threshold with the percentile 90 of the
wave height. In our paper, a different approach is proposed. The occurrence in
time of extreme events, for any given geographical location, follows a Poisson
distribution. Therefore, it can be deduced that the time lapse between storms
must be approximately an exponential distribution; if not, these events are not
extreme. Appart from this, the threshold should belong to the linear segment
of a mean-excess wave-height function (Ortego et al., 2012). At the same time,
the events must be statistically significant in number. The wave-height thresh-
old has been varied ranging from 1.5m to 3m, whose minimum doubles the
mean wave heights (CIIRC, 2010). The finally selected value of the wave-height
threshold is exposed in Section 5 and discussed in Section 6.



Turning to the independence and equal distribution of storm samples, neigh-
bouring storms are clustered if the D* that separates them is below D, . . which
means that both episodes belong to the same storm event. After clustering, each
storm can be considered to be independent from the others. On the other hand,
it is assumed that the marine extreme events are generated by a limited subset
of synoptic conditions (Lionello, 2012), which is true in Western Europe (Mazas
et al., 2014). Therefore, the storms are regarded as identically distributed.

Three candidates for D ;.. are proposed: 72hrs, 48hrs, and 12hrs. D} .. =
72hrs is because the two sub-storms in a twin storm tend to be less than 72hrs
appart. Approximately 20 — 30% of the total storm events on the Catalan coast
are twin, depending on the location (Wojtanowicz, 2010). The consideration
of D, = 48hrs is conceptually similar to Tolosana-Delgado et al. (2011),
whereas D . = 12hrs is based on direct observations of Catalan sea-storms.
* n value. The test

min
A sensitivity test is performed to select the most correct D} ..
- in Selected

consists of representing storms for different values of D}, . The D
and the reasons leading to this choice are stated in the Section 5 and discussed
in the Sub-section 6.1.

D is the duration of the event between the first and last threshold crossing
(Fig. 1a). It is not to be confounded with D*. The value of D,,;, is given in
Section 5.

From each independent storm, the total storm-energy (F), the maximum
storm-unitary-energy (E, ,), the peak wave period (T},), the duration D, the
direction of the peak-wave (65), the growth-rate and the decay-rate are obtained.

The Storm-intensity sub-model includes E, E,, ,, T}, and D.

The E is defined as

endT
E= H? odt, (1)
iniT

where H,,o is the spectral significant wave-height, and ¢ is time. In case that
the wave-height returns below the threshold, during the event, the duration and
the energy of these low intensity periods are included in the sums of D and E.
It has been highlighted in Sanchez-Arcilla et al. (2014) that the capture with
numerical models of the peak-wave-height lacks of exactitude, whereas a better
skill is found for the existing temporal trend. Therefore, a new definition of the

maximum wave-height (Hynqz) is proposed through the definition of E,, ,:

E.p,= max (mean (Ey (i—1) + Bui + Eui41))) » (2)

where E, is the unitary storm-energy at each hour. The square root of E,, , is
proposed, here, as an improved definition of H,,,,, and is herein called H}, .-

The H}, .. synthesizes the energy shortly before and after the peak. The
subset (see Fig. 1b) presents a) point (¢t — 1): growing to reach the peak, b)
point (t): Storm peak and c¢) point (¢ + 1): decreasing or maintaining. The
differential energy at (¢+ 1) in decreasing or maintaining the energy is a crucial
assumption for point . The reason is that Mediterranean storms usually present

a sharp gradient during wave height growth and a milder one during decay. The
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variables E and H},,, provide more complete metrics for the storm hazard
rather than a representative wave height, as they describe the behaviour of the
entire storm, rather than a snapshot.

The T, relates to the frequency in which the peak of the energy from the
directional wave spectrum is located (Holthuijsen, 2007). The T,, of our wave-
model is the value of the T, when E,, takes the E, , value. The T}, does not
vary much during each storm and its standard deviation is generally small. The
reason of such reduced variation is a fetch-limited condition of the study area
plus the ephemeral intensity of the storms.

The directionality is represented by the Directionality sub-model, and it is
parameterized with the wave-direction of the storm-peak (6). The value of 0
is assumed to be constant throughout each individual storm-event. Both T}, and
¢, are values at the H}, ., as interest is herein put on the behaviour of the most

extreme conditions, rather than on the rest of the storms.

Milder slopes during decay have relevant consequences. For example, con-
sider an emerged dune that collapses at the exact moment of the storm peak
or maximum wave height. The after-effect (flooding/erosion) would not be the
same if the energy started to decrease at the same rate as the storm growth.
A sharp growth leads to collapse, defence impairment and the decay phase can
lead to the real «infrastructure damage» (Gracia et al., 2013). A parameter
that considers that effect is sought in this study, whilst maintaining as much
information of the peak as possible.

The storm wave evolution over threshold is modelled with either the irregular-
trapezoidal or the triangular shapes (see Fig. 1c). A theoretical basis for the
proposal of these two wave-height-evolution models can be found in Martin-
Soldevilla et al. (2015), who conducted a shape analysis for one point at the NW
Mediteranean Sea. This analysis is herein extended on a regional scale. The
residuals associated with triangular and irregular-trapezoidal candidate wave-
height-evolution models have been computed. The area below the hindcasted
wave-height-evolution function has been compared to the area below each one of
the candidate wave-height-evolution models. The area below the wave-height-
evolution model is computed with the area within each figure plus the area
below the threshold; the maximum wave-height considered in such calculation
is HY oa-

After adopting a shape, the D provides two indicators: a) the percentage
of time from the beginning of the storm to the first H}, . (growth-rate), and
b) the percentage of time from the last H, . to the end of the storm (decay-
rate). These are the ratios growth-time/D and decay-time/ D, respectively, that
define the storm-shape. The growth and the decay-rates are characterized by
the Intra-time-distribution sub-model.

The Storm-intensity sub-model might influence the Directionality sub-model
and the Intra-time-distribution sub-model. Therefore, the three sub-models are
inter-linked.



2.2. Wave-storm model building

Fig. 2 summarizes the main steps followed for the construction of the storm-
model. There are three sub-models: intensity (orange boxes), wave direction-
ality (olive green boxes) and intra-time (purple boxes). Rectangle boxes repre-
sent the inputs/outputs, whereas the parallelogram boxes represent the actions
taken.

The storm components have been previously defined in sub-section 2.1.

The thresholds for the extreme variables are defined by analysing the inter-
storm-time-lapse (D*) and the location of the wave-height-threshold on a mean-
excess H,,q plot.

In the Storm-intensity sub-model, the univariate probability distributions of
E, E,p, Ty, and D are characterized by GPDs, whereas their joint structures,
at each geographical node, are described by hierarchical Archimedean copulas.
The 65, at each node (see Fig. 9), are fit to mixtures (n > 2) of von Mises distri-
butions (Barnerjee et al., 2005; Mardia and Jupp, 2009), abbreviated hereafter
as mizture of vM, or movM. From the movM at one node, the mean of each
vM distribution is considered a principal direction (PD;) of 6. These PD;
constitute categories for ¢;. The PD; are linked to F, E, p, T}, and D through
a multivariate logistic model, then the Directional sub-model is formed.

From the event-time-description associated to the Storm-intensity sub-model,
the storm growth-decay rates are defined, and linked to D, resulting in the storm
Intra-time sub-model.

In summary, the Storm-intensity sub-model generates synthetic E, E, ,,
T,, and D that, once introduced into the Storm intra-time sub-model and the
Directional sub-model, generate the growth-decay rates and the wave directions,
respectively. The total set of storm variables define synthetic storms that, once
filtered, are ready for applications desired. Both the model and the SIMAR
database (see Sec. 3) are validated/compared to the buoy records. Finally, the
model-buoy validation and the SIMAR-buoy comparison are contrasted to see
what kind of residual is introduced in our final model.

2.3. Storm-intensity sub-model
2.8.1. Univariate marginal distribution: GPDs

The E, F,p, T, and D are sea dynamic variables that take positive real
values; consequently, they can be log-transformed to avoid scale effects. One of
the most widely used distributions to characterize wave peaks in a peak-over
threshold (POT) approach is the GPD (Coles, 2001). It is assumed that the
events are time points which have an associated random magnitude, and they
also must be independent and identically distributed (Coles, 2001; Tolosana-
Delgado et al., 2010). If X is the magnitude of an event and xzy is, at the same
time, a value of the support of X and a threshold, the excess over the threshold
o is Y = X — xg, conditioned to X > xy. Therefore, the support of Y is either
[0, ysup) Or a positive real line. The GPD cumulative function is

Fy(ylﬁ7£)=1—(1+gy> : , 0<y < Youp, >0, €R, (3)
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and the associated probability density function is

_1_ 7
fy(ylﬂ,é“):;(Hgy) : , 0<y <Youp, >0, €R, (4)

where § is the scale parameter and & is the shape parameter. £ determines
the domain of attraction of the distribution. For £ < 0, the distribution belongs
to the Weibull domain of attraction, and the support of y is limited, being

0, Ysup = —?) For £ > 0, the domain of attraction is Fréchet, and the support

of y is [0, +00). When ¢ = 0, the support is infinite and the distribution belongs
to the Gumbel domain of attraction (Coles, 2001; Tolosana-Delgado et al., 2010).
The selection of a physically justified threshold for each variable enhances tail
convergence.

Thresholds have been defined for the GPD of each variable. D,,;, is 6hrs,
then the threshold of D is set as D,,;n, the threshold of E is computed from
HZ - Dyin, and the threshold of E, , is computed from HZ. The thresholds
for £ and E, , are based on their definition. The relationship of H,,o to the
most widely used significant wave-height (H, or Hy,3) is Hyo = Hi/3/0.95,
(Holthuijsen, 2007). The relationship of T}, with H;/3 can be approximated
by a linear expression, defined in CIIRC (2010), so the threshold of T}, can be
directly computed from the wave-height threshold.

2.3.2. Dependence structure: the Hierarchical Archimedean Copulas (HAC)

The set of storm components has passed a multivariate independence test
based on the empirical copula process (Genest and Remillard, 2004). This test
provides insight into inter-dependencies of any subsets of the variables. The
resulting graph, the dependogram, displays the subsets on the horizontal axis
and the statistic per subset (the departure from independence) on the vertical
axis. A statistic (vertical line) below the threshold value (bullets) means a
totally independent subset, whereas the length of the vertical line above the
bullet represents the degree of co-dependence of the variables in the subset
(refer to Fig. 4 for an example).

Once the semi-dependence is demonstrated, several methods are available
to model multivariate distributions. Hierarchical Archimedean copulas is one
of them. The copula simplifies the modelling as it estimates a multivariate
distribution once the marginal distributions of each individual random variables
are determined (Sklar, 1959). Pre-selected distributions separate the marginals
from the dependence structure between the random variables. Consequently,
the dependence modelling through copulas may be a suitable alternative for
building multivariate distributions when the marginals are known and heavy
tailed (de Waal and van Gelder, 2005). Heavy tails are present when extremes
are much more divergent from the mean than it would be expected.

The bivariate distribution described by Sklar can be generalized into a mul-
tivariate one. For any multivariate distribution function H with margins F;,
j €{1,...,d}, a copula C can be defined such that

H(x1,...,xq) =C(F1 (x1),...,Fq (x4)) ,x € R. (5)
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Inversely, given a copula C and univariate distribution functions F;, j € {1,...,d},
an H defined by eq. 5 is a distribution function with marginals F;, j € {1,...,d}.
Being u; = Fj, a d-dimensional copula is Archimedean if it admits the repre-
sentation

C(u;¢) = (¢ (ur) +- -+ ¢ (uq)), uelo,1?, (6)

where the generator function ¢ is continuous decreasing and convex, with ¢ (1) =
0. An example of a generator function is the Gumbel generator function

$(u) = (—log (u)’, 0 € [1,00), (7)

u is the storm component, and 6 is the dependence parameter which indicates
independence when 6 = 1 and total dependence when # — co. The dependence
parameter 6 is distinguished from the peak-wave-direction 6, in this text, by
adding an asterisk to the latter parameter. Other types of Archimedean copula
generator functions, such as Clayton and Frank, can be referred to in Wahl et al.
(2011).

Most common Archimedean copulas have constrained multivariate depen-
dence structures, as they usually depend on a single parameter of the generator
function. Moreover, they are insensitive to variable permutation, which implies
that all margins of the same dimension are equal, deeming them unable to model
asymmetries in the variable co-dependences(Hofert and Machler, 2011). Hier-
archical Archimedean copulas (HAC, see Fig. 3 for an example) can be a useful
tool to overcome these drawbacks, by nesting simple 2D-Archimedean copulas
into multilayer tree structures that are fitted in a recursive way (Okhrin et al.,
2013).

The hyerarchical structure of the HAC provides a series of advantages: a) it is
more flexible and intuitive than the simple Archimedean copulas, b) it can model
asymmetries in the variable co-dependences, unlike simple Archimedean copulas,
c) there is a marginal cumulative distribution function at each node of the tree,
d) it require less parameters than other kinds of copulas (e.g. elliptical copula),
and e) when basing each copula on a single generator function, the copula
parameters rise as the level increases, enabling simpler dependence analyses.

Different generator functions can be used to obtain the 6 at each nesting
level of a HAC. Extreme storms present a typical pattern of producing extreme
values for most storm components, such as F, I, ,, T, and D above a certain
threshold. Then, the most suitable HAC type is Gumbel (when a generator
function is used at all the levels of nesting of a HAC, this generator function
gives its name to this HAC). The Gumbel HAC includes such upper extreme
dependence (Salvadori et al., 2007). Other HACs, such as the Clayton and the
Frank HACs, may also be employed, as discussed in Wahl et al. (2012). Hence,
although the Gumbel type is selected a priori for this study, goodness-of-fit-tests
are also applied to Clayton and Frank HAC types, with the aim of verifying the
suitability of Gumbel.

The aggregation at each nesting level depends on a parameter . If the
absolute difference of the dependence parameters of two subsequent nodes is
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smaller than ¢ (see eq. 8),
01 — 02 <e, (8)

the aggregation method «meany, the one used here, equates the € to the average
value between the 6s.
An example of a four-dimensional HAC can be

C (u1,uz,u3,u4) = C3 {C2 (u1,uz,u3) ,us} = ¢35 " {¢3 0 Ca (ur, uz, u3) + 3 (ug)} .

(9)
If the copula tree (see Fig. 3) spreads its “branches” upside down, the lowest
hierarchical level would be the tip of the branches. At such lowest hierarchical
level, the parameter of any pair of the given variables is estimated. The couple
with the strongest dependence is aggregated and substituted by a joint pseudo-
variable (Okhrin et al., 2013). For example, let E and D share a common
dependence parameter 6 py = 4.44. Let it be the highest valued dependence
parameter among all the pairs of variables. The pair of variables (E, D) can be
substituted by the pseudo-variable

def qu1

0(.p)

Z(5.) (93,00, {Fp (D)} + 006, ) {FB)}] . (10)

At the next level, the parameter of all the pairs of variables and pseudo-variables
are again evaluated. This procedure is continued until the highest hierarchical
level (i.e. the root) is reached (see Fig. 3).

Several approaches can be found in the literature to determine the HAC
agreement with data. Chen et al. (2004) proposed a dimension-free goodness-
of-fit test which has been adpted to construct the HACs. The graphical test
detailed in Okhrin and Ristig (2012) has been applied to check the goodness-
of-fit at each nesting-level. It is complemented with quantitative values from a
parameter k? (Gan et al., 1991).

Okhrin and Ristig (2012) compares the model probability-distribution with
the empirical probability-distribution. The expression of an empirical copula is

n d
C(ul,...,ud) :n_lznl {13‘3 (Xij) Suj}, (11)

i=1j=1

where n is the sample size, d is the number of variables, Fj (X;;) is the empirical
marginal distribution function of a variable X;;, and u; is a vector belonging
to the interval [0, 1]. I is a unit function (it is 1 when the argumet is true, and
0, when the argument is false), so that the product represents the unit function
of the AND combination of all the j conditions

Fy (Xi5) < uj.

Gan et al. (1991)’s k? quantifies the agreement of the analysis at each nesting
level. Each one of these levels only has two variables, then the criterion is herein
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restricted to 1D dimension comparisons. k? takes values in [0, 1], the larger the
number, the highest the similarity of the vectors involved.

Here, 0 of different Gumbel copulas are not easily comparable, as the support
of 0 is semi-infinite. Thus, # are transformed into Kendall’s 7, or Kendall’s rank
correlation coefficient (Kendall, 1937), the support of which is [0,1). The value
1 is excluded for corresponding to the infinity value in 6.

Once HAC structures are obtained for each node, 7(g p) values are obtained
through ordinary kriging (OK) (Wackernagel, 2003), along the Catalan coast,
in order to visually identify the spatial distribution of the co-dependences of E
and D. This approximation remains valid for zones where the observed hydro-
dynamic patterns do not differ excessively, and offers estimations at unsampled
areas.

2.4. Linking wave-direction to Storm-intensity: The wave directional sub-model

It is not possible to include the ¢ and the growth-decay rates into the HAC
in the Storm-intensity sub-model, since these storm-components do not have a
support in the space of the real numbers. However, according to results from
dependograms, directionality and growth-decay rates are not entirely indepen-
dent from the Storm-intensity model. Therefore, the directionality and the
growth-decay rates are compelled to relate to the Storm-Intensity sub-model
via a regression model, although not through a HAC structure.

The standard approach transforms a continuous variable into a predefined
set of categories. Usually, the reference coordinate system (i.e. North) and
some predefined bins divide the wave-rose into 16 sectors. This poses a problem
when the wave-directions are near the boundaries between two sectors, and can
mislead regarding contingency. It is, then, crucial to select a set of categories
based on the data itself. Both reference and bin size can be established with
movM distributions. This type of distributions allow a more flexible definition
of the wave-direction contingency, as elementary distributions are not assumed
constant over preassigned subintervals. What is more, it can be transformed
into categories of principal wave-directions (PD), simplifying the prediction of
wave-directions.

In this methodology, wave-directions are first characterized with movM dis-
tributions (Barnerjee et al., 2005; Mardia and Jupp, 2009), whose probability
distribution function of a mixture of k elements is

F(+10) = s (s16), kem (12
h=1

being z a circular variable, with uy as the hth mean, and x, as the Ath “standard
deviation”. The aj, are the mixture probabilities, they are non-negative and sum
to one; by definition, the mode with the largest a4, is the principal direction.

b, = (o, kp) for 1 < h < k, and 6= {al, a0, .,ék}. O represents the
mixture probabilities, as well as the means and standard deviations of the vM
distributions in the mixture. Both # and © have hats, in order to distinguish
them from the peak-wave-directions (¢;) and HAC parameters ().

10
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An Expectation maximization (EM) approach is used for maximizing the
expectation of eq. 12. With the constraints on the vMF mean and deviance,
u{uh =1 and kj > 0, the expression of the mixture probabilities «y, is:

op = %ip (h\gc“(:)) , n €N, (13)
i=1

where n is the total number of elements in the sample, x is the angle, and
O is the parameter appearing in the eq. 12, and described above. p (h|xi, é) is
the probability of appearance of the h vM distribution, given the angle z; and
the parameter O.
From the soft EM framework used here, the distribution p <h|xi, @) is given
by
. anfn <$z‘|é)
p(hzi,0) = —; ~, (14)
Doy aufi <$i|@)

where a4, z;, k, and © are the same variable as in egs. 12 and 13, and
f (xl\é) is the probability distribution function of z;, given ©. The soft EM
framework, assigns soft (or probabilistic) labels to each point given by eq. 14.
Other candidates can be the hard, or “winner takes all”, EM, but the soft EM
is selected for its flexibility, in comparison with the hard EM.

The wave-direction is decomposed into the sine and cosine of the angle, and
these two elements are then fit by movM. The corresponding movM parameters
can be used to generate synthetic pairs of sine-cosine that can be combined
to estimate the synthetic wave-direction. The Watson’s two-sample uniformity
test then helps identifying the strictly necessary number of modes in the movM
distribution (Pewsey et al., 2013). By doing so, it improves goodness-of-fit,
whereas avoiding over-fitting. This test checks whether two groups are extracted
from a common distribution. The criterion for the goodness of fit is set as
the statistic U2 to be smaller than 0.152, which corresponds to p-value= 0.1.
When this criterion is met, it means absence of significant difference between
the empirical distribution and the model distribution.

The means py, of each movM are considered as principal directions (PDy).
These PDy, delimit a set of categories. Hence, the continuous wave-direction in
each storm is labelled by a category that bonds the “influence area” of one of
the k& vM distributions in the mixture. The main advantage of this approach is
that the categorization of this variable is data-dependent, so the ranks can be
related to the Storm-intensity sub-model.

The relationship between the predicted PDjy categories and the variables
from the Storm-intensity sub-model (log E, log E,, ,, log T', log D) is built with a
multinomial logistic model (Hosmer et al., 2013). A multinomial logistic model
consists of a regression model where the dependent variables (i.e. PDjy) are
categories and the explanatory variables can be continuous. Particularly, the
predictors used in the multinomial logistic model are &, T}, and D. E,, , is not
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non-significant as a predictor. Therefore, the multinomial model predicts the
probabilities that a particular PDy can happen under certain intensity quanti-
ties, then joining directional patterns with its associated F, T}, and D.

2.5. Intra-time distribution sub-model

This sub-model is linked with the Storm-intensity sub-model via the D.
A polynomial function is adopted; it predicts the growth-decay rates from a
given D. Other variables from the Storm-intensity sub-model do not show clear
relationship to the growth-decay rates.

A polynomial function is sufficiently flexible capturing the inner structure
within D intervals vs. the growth-decay rates. What is more, a suitable rela-
tionship is a third degree polynomial function, where the independent variable
is D: f(D)=ap+ a1 D+ azD? + azD>.

2.6. Wave storm generator

Once our model is built, the applicability consists of generating synthetic
storms, whose parameters are related. These storms has been produced by
recursive simulations that consider the nested structure of the HAC model, as
well as the links between our three sub-models. The storms are generated for a
given design return periods (7.) until there is approximately a sample with more
than 1000 storms, at each node. The selected tolerance for the error in joint
and marginal T, in the storm generation, is 20%. This degree of tolerance is
suggested by an estimate of observational residuals in the Catalan Sea (Sanchez-
Arcilla et al., 2008a, 2014).

There is not a unique correct design T, since in a multidimensional space
there is no single total order. There is a variety of failure modes and diverse
probabilities of failure that combine the existing parameters. Several criteria
exist to define a multivariate (n-variate) T, (Salvadori and De Michele, 2010),
and four representative expressions are listed below. These T, take into consid-
eration the various storm descriptors in the Storm-intensity sub-model.

The Kendall T, (Salvadori et al., 2007) is:

1

SRR

AeR, x=(x1,...,24...,2,) € R", (15)

where A is the annual occurrence of storms, x is the storm components
characterized by HACs, and F (x) is

F(x) = %ZF (X; < z), (16)

where A is the same concept as in the Kendall’s T, u; is the cumulative
probability of a 1D—variable, I is the unit interval [0, 1], the critical threshold

t € Tis given by t = inf{se€1: K¢ (s) =p} = K[CTI] (p), where K¢ is the
Kendall coefficient.
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Two other possible ways to compute the joint 7, are via the mean value of
the marginal T, (eq. 17) or the geometric mean value of the marginal T, (eq.
18):

1 n
Tr = EZ;TW (x) ,x €R, (17)

n
[[7ri = eR, (18)

=1

where T'r; is the T, of z. z is a storm component and T'r; is calculated by
means of eq. 15.

All these different definition of 7). bring forth the need for further research
into multivariate T;., as the currently available tools are mostly statistical the-
oretical artefacts based on the not always true assumption that high values of
variables are dangerous. All four definitions of 7). have been tested on, and,
finally, the eq. 17 is selected for presenting a better approach to physical mea-
surements. See Section 5 for results, and Section 6 for the discussion.

For a contingency study, the storm components are considered truncated.
So pie-charts can be applied to represent which intervals are more frequent
than others. A pie-chart leads to visually assess the different categories and
the relative weights over a total simulated number of storms. For the case of
of wave-height, the H, are within 3 — 3.5 m, and these values constitute the
principal category. This visualization of the frequencies leads to a simple inter-
pretation of the storm component interactions among themselves, thus aiding to
find representative scenarios given a T;.. The 1, 2, 5, 10, 25 year return periods
have been selected for synthetic data clustering, as they are routine in infras-
tructure design. The life-time of a hard coastal protection infrastructure (e.g.
revetment, groyne, etc.) may be established as 25 years (DGP, 2001), whereas
soft coastal protection (e.g. nourishment, dune building, etc.) are associated
with lower T, (5 or 10yr) (Garcia-Leon et al., 2015; Sanchez-Arcilla et al., ress).
Direct applications of this methodology can provide hydrodynamic loads for
infrastructure design and diagnosis.

3. Study area

The Catalan coast is part of the north-western Mediterranean Sea (see Fig.
5). This water body is characterized by its semi-enclosed nature, the orographic
patterns, air-sea temperature differences and the passage of low pressure cen-
tres from the Atlantic (Lionello, 2012). The main morphological features are
the existence of mountain chains parallel and close to the coast, the Pyrenees
Mountains to the north, and the Ebre river valley to the south. These oro-
graphic discontinuities, together with the major river valleys, allow for strong
winds to be channelled down to the coast (Grifoll et al., 2015).

The Catalan coastal winds are typically low to medium, on average, ranging
up to 11.05m/s (Sanchez-Arcilla et al., 2008b). The most frequent and intense
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wind is the Tramuntana (N), appearing from November to March. It has been
observed that it is the major forcing for the northern and central Catalan coastal
waves. From latitude 41° N southward, the principal wind direction is the Mis-
tral (NW). It is channelled by the western Pyrenees and the Ebre valley. The
NW winds are formed by the superposition of gap and downhill flows from the
Pyrenees. A secondary wind mass, the Ponent, comes from the depressions in
northern Europe and sweeps the entire Iberian Peninsula from west to east.

Eastern winds are frequent during the summer. They are commonly trig-
gered by an intense high-pressure area on the British Islands. Another origin is
a high level of cold air pool deepening over the Mediterranean sea, which lead
to cyclo-genesis, resulting in the passage of a low off the Catalan coast (Bolanos
et al., 2009; Lionello, 2012). Winds are more variable for higher intensities.
Thus, some relatively large wind modulus-variability is generated during storms
(Bolaifios, 2004). Wave-directions are directly correlated with wind-direction,
except the angle 50° of waves, which can be generated by winds in the sector
NNW-ENE, approximately. This might be explained by the orientation of the
coast-line, all winds, at some point, seems to create an alongshore wave-train.

The Catalan coast has a micro-tidal environment (Lionello, 2012). The slope
of the bathymetry is relatively steep in the north, while it becomes milder to
the south. This has a direct impact on how waves behave when reaching the
coast, as the bathymetry has an effect on the type of the impacting wave, and
the beach slope determines the vulnerability to flooding. Waves on the Catalan
Sea also have a critical effect on sediment-transport, as the short wave-lengths
do not allow the beach sediment to restore itself during summer-time.

For fetch limited environments, direct correlation has been observed between
wind and wave-directions, this suggest that the local wind is the main forcing
for waves at the Catalan Sea, rather than distant winds, so we stress on the
difference between local (which generate wind-waves) and distant winds (which
generate swell-waves). This reinforces the idea that storm-waves at the Catalan
coast are driven by mesoscale processes that span the entire fetch, whereas the
swell contributions can be considered as secondary.

According to Bolafios et al. (2009), who used XIOM buoy data, the largest
waves come from the east, caused by the joint action of the most significant
fetches and winds. In further analysis with dependograms, it can be specified
that such directionality is most evident for T),, at almost the entire Catalan
coast. The directionality of H,,q is limited to nodes N4, N5, C2, C4, S1 and S4.

The mean significant wave-height (Hj) is 0.72m from Barcelona city north-
ward (the quantile 75 of Hy is qm, 75 = 0.89m, Hj mee = 5.85m), and 0.78m
southward (gg, 75 = 0.98m, Hj ez = 5.48m). The extreme values are ap-
proximately seven times the average values. In fact, the standard deviation is
relatively high, being 30% of the mean. What can be expected is that a struc-
ture can be severely challenged by storms of higher 7,.. Northern storms might
be slightly more hazardous, as it is observed here that H ;44 are 0.37m higher
at northern sites than southern ones.

The mean peak-wave-period (7,) is 5.85s on the northern Catalan coast
(q1,,75 = 6.738, T} maz = 15.87s) and 5.62s on the southern Catalan coast
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(qr,,75 = 6.658, T maz = 14.1s) (CIIRC, 2010). In this case, standard deviation
is double the mean value. However, the quantile 75, the maximum and the
mean are of a similar order of magnitude. The T}, including the mean and the
maximum values, is geographically homogeneous.

The NW waves are the highest in Tortosa cape, while the eastern and south-
ern waves are steepest in Llobregat delta (Bolafos et al., 2009). There is also a
weakly linear relationship between the mean wave-period (7,) and the H,, that
is, for each increase in 2s of T, H, increases by 1m.

The study area is divided into hydro-dynamically homogeneous sectors of
similar lengths (see Fig. 5). The northern sector (N-) spans the area from the
border with France (42.44°N, 3.18°F) to the Mataro Port (41.53°N, 2.44°F),
the central sector (C-) extends from the Mataro Port to the Segur de Calafell
port (41.19°N, 1.61°FE), and the southern sector (S-) ranges from the Segur
de Calafell port to the border with the Autonomous Community of Valencia
(40.53°N, 0.52°F). The sector boundaries are political frontiers and locations
of change in beach orientation. Each sector features a mean shoreline orientation
that determines “a posteriori” whether a simulated synthetic storm (see Section
2) will reach the coastline.

4. Data source, and explanatory analysis of the storms

The training set that the proposed statistical model uses comes from the
SIMAR dataset (Gomez and Carretero, 2005). The data consist of wave-hindcast-
simulations by WAM (WAMDI Group et al., 1988) and WAVEWATCH3 (Tol-
man, 2009), fed with HIRLAM wind fields (Unden et al., 2002). SIMAR pro-
vides consistent, gap-less and spatially dense time series. A series of nodes are
selected to representatively cover each one of the above mentioned sectors. This
results in 6-8 nodes being assigned to each sector. N1 is near Creus Cape and
S7 is well below Ebre Delta (see Fig. 5). SIMAR nodes are located at —50m
depth, which are intermediate waters, in this area.

The hindcast ranges from the 14*" January 1996 to the 25" February 2013.
Data in some nodes extend to the 22"¢ January 2014. SIMAR provides a variety
of wave-spectra-parameters, such as H,,0 and 7},, among other information,
including incoming wave direction and moment in time. The time resolution
before June 2000 is of 3hrs and changes to 1hr thereafter. Spline-interpolation
has been applied to discretize all time-series with the same temporal resolution.

Storms are obtained from the SIMAR dataset with the methodology de-
scribed in Section 2. Explanatory analysis shows that the quantiles 50 of F,
HY .o, Tp and D are spatially uniform, whereas their quantile 85 present more
geographical heterogeneity: higher values in the north, lower values in the south
and in the Roses Bay (see Fig. 5); specifically, the E, D, and H,,o decrease ap-
proximately 25% southward and in the Roses Bay, while the T, increases 10% in
the same direction. The Northern part of the Catalan coast (above 41.2°N) has
higher waves in its strongest storms, reaching values above 4m. Storms in these
locations also have a longer D, surpassing 50hrs. The T},, on the other hand, are
larger from 41.8° N southward. Note that the quantiles under 50, the quantiles
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15of E, H}, .., T and D, for instance, are also spatially homogeneous, but they
are ignored, as they are influenced greatly by the selected GPD thresholds.
Both PdE («Puertos del Estado» or State harbours) and XIOM buoy records
(see Fig. 5 and table 1) are used for model validation. The selected buoys are
located at similar positions to the SIMAR nodes. XIOM buoys provide H,,,
mean wave period (7},), and date. For the sake of comparison with SIMAR

dataset, the relation T,,,/T, = 0.8 (Goda, 2010) is considered.

5. Results

Figs. 6a through 6h, and Figs. 7a and 7b show a threshold iteration test
on the nearest PAE and SIMAR nodes to the Barcelona City. This location is
chosen for being the geographical centroid of the Catalan coast. The storm-
threshold is named hg. Following to the criteria mentioned in Section 2, the
selected value for hg is 2.2m. On the other hand, the most adequate D;,,,, is
12hr.

The numbers of storms, at each node, are listed on Table 2. The northern
zone is the stormiest whereas lower number of storms were found at the south,
coinciding with the state of the art (Sanchez-Arcilla et al., 2008b).

The GPD threshold of D is considered to be D,,;, = 6hrs, the threshold of
Eis H? - Dyin = 29.4m? hr, and the threshold of E, , is H = 4.84m?. The
threshold of T}, corresponding to H; /3 = 0.95 - H,, is 8.17s (CIIRC, 2010). E,
E. p, Tp and D are well fit by GPD, with the selected thresholds (see parameters
in table 3).

The joint structure of the Storm-intensity sub-model is compared through
goodness-of-fit plots for the Gumbel, Clayton and Frank HACs. The three HACs
present similar qualitative behaviour and k? parameter value. Then, the Gumbel
type HAC is selected for being able to include upper extreme dependence. The
“mean” aggregation method, in combination with the Gumbel type HAC, is
adopted, for providing the best fit.

Two Gumbel HAC tree types (A and B) are observed (see Fig. 3), based on
the co-dependence of E, , to £ and D. Type A HAC-trees differ slightly from
type B HAC-trees. In type A trees, E, , has a stronger relationship with E and
D. There is no clear spatial pattern in how A and B trees are distributed (see
table 4), but there is strong co-dependence between D, E, and E,, ,; fact that
is corroborated by the dependograms (see Fig. 4). The dependence parameter
of log D and log E' (610 £,10¢ D)) OF, in other words, that of D and E (6p k),
is transformed into a 7 value (Kendall, 1937). This 7, which has been called
T(E,D), 18 kriged on the —50m bathymetry (see Fig. 8). It is detected that this
dependence has a tendency to decrease southward (see Fig. 8).

The contingency of ¢, are shown on Fig. 9 and table 5. It is observed
that the principal p is, from N1 to N6, approximately 330°-20° (except at N3).
Central nodes (N7 to S2) are heavily influenced by easterly waves, whereas
southern nodes (S3 to S7) suffer more heterogeneous influences. The secondary
direction at N1 to S6 are eastern waves, whereas it becomes predominantly
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southern waves from N7 southward. The wave-contingency at N3 is similar to
neighbouring nodes, only that the principal and the second directions are at
the opposite direction than at node N2, for instance. It is observed that most
nodes have bi-modal wave-directions, coinciding with (Alomar, 2012; Bolanos
et al., 2009). The coefficients of the multivariate logit function to predict 6y,
from log E, log E,, ;,, logT and log D, are listed on table 6.

Regarding the residuals associated with the triangular and irregular-trapezoidal

candidate wave-height-evolution models, both the overestimation and underesti-
mation residuals are well below 3m - hr (that is considerably inferior to the area
below the H,,o time-series’ curve) and ranges from a quantile 10 of 20.20m - hr to
a quantile 90 of 157.65m - hr. The trapezoidal model overestimates in 0-1m - hr
more than the triangular model, and the triangular underestimates in 0—1m - hr
more than the trapezoidal model. Therefore, the trapezoidal model is selected
as overestimation has been considered to be less harmful than underestimation,
assuming that both residuals are of the same order of magnitude.

The growth-decay rates are assessed with heat-maps, whose “affection areas”
are defined with a bandwidth of radius = 5hrs ( see Fig. 10). When several
points are inside the “affection area” of one point, the frequency for such pair-
ing is higher and the area becomes “darker”. The coefficients of third degree
polynomial that relates D and growth are shown on table 7.

Our model has been validated by buoy data (see Figs. 13 and 14). Figs.
13 and 14 are then contrasted with Figs. 11 and 12. The amount of residuals
present in our model is comparable to the one present in the SIMAR, database.
T, shows a poorer fit (see Figs. 13c and 14c). The same poor fit is present in
Figs. 1lc and 12c. This behaviour can be explained because the wave-model
(WAM and WAVEWATCH) considers a priori a parametrized wave-spectra.
Such spectra has a predefined shape that does not necessarily represent the real
sea state (Pallarés et al., 2014; Alomar et al., 2014). The method of represent-
ing the wave-contingency with the principal directions seems to be useful to
represent the wave-contingency (see Fig 11g). Regarding the SIMAR model,
wave-directions from node N5 seems to differ significantly from the records of
the nearest buoy, which suggests sensitivity of the wave-direction registry to the
location of the node. The predicted growth and decay suffer rotation from the
perfect fit, in the Q-Q plot, that is, central values are better fit than extreme
ones (see Figs. 13e, 13f, 14e and 14f). Nonetheless, this better fit of the central
values is also present for the node N5 in the SIMAR model ( see Figs. 11e and
11f). Ergo, the SIMAR E, E, ;,, T, D and ¢ are well validated by the buoy
datasets (see Figs. 11 and Fig. 12).

Storms simulated from the statistical model developed herein have been
classified according to 7T, (eq. 17), and represented in a series of pie-charts
along the coast. It can be observed, for example, that E for a 7T;. of 5years is
mainly of the highest values at nodes N1 through N4 (except at Roses Bay, N3),
whereas the more southern coastal tracts present less E (see Fig. 15). Similar
gradation occurs to D (see Fig. 15d), whereas a milder one occurs to H}, .. (see
Fig. 15b) and none is observed in T, (see Fig. 15¢). In general, the same spatial
gradations are observed at each respective storm component for any one of the
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T, from 1 to 25 years.

6. Discussion

The discussion section will be divided into two parts: the first one will discuss
the results from the proposed methodology (Model Building and Validation, in
Fig. 2), whereas the second one will focus on the Wave-storm-generator.

6.1. The statistical model

This paper has proposed a statistical model that feeds upon a dataset from
a wave-model (Section 3) which reproduces the main processes within the study
area (Lionello, 2012). The Mediterranean Sea is characterized by local con-
straints, such as mountain chains that funnel wind fluxes in a manner that
limits the storm-pattern modes (Sanchez-Arcilla et al., 2008b). The Balearic Is-
lands also trigger wave transformation-processes. At the south-most part of the
central sector, the beach shoreline orientation induces a sheltering effect from
northerly and easterly waves. It can be seen from Fig. 5 that the north-most
part of the central sector is not sheltered from wave-storms. Strong forcings from
the north and east directions cause the wind to exchange bursts of momentum
with waves. The north direction has shorter fetch, while the east direction has
different fetches depending on the location of the cyclo-genesis.

In a further consideration, the role of the sea level within a storm, especially
when dealing with its consequences, is undeniable. Some authors (Masina et al.,
2015) detected a considerable positive correlation between the peak water level
(PWL) and the H,. However, other authors (Mendoza et al., 2011) support the
premise that the sea water level is independent from the storm conditions. This
paper is based on the definition of storm-waves, therefore, it has focused only
on storm-wave components, neglecting the effects of the water level.

The perception threshold in the Catalan Sea is Hy = 2.0m (H,,0 = 2.1m)
(Bolafios and Sanchez-Arcilla, 2006; DGP, 1992) and is introduced as an initial
value in the iteration. The goodness-of-fit of observations to exponential models
yield residuals to be analyzed. In Figs. 6a and 6Ge, as the threshold is low,
these residuals are large, meaning that the corresponding D* does not belong
to exponential distributions. When the threshold rises, as observed in Figs. 6c,
6d, 6g, and 6h, the residuals are minimized.

Bernardara et al. (2014) discussed that a limitation to this rise in threshold is
the statistical significance in number of events over the threshold. It is observed
in Figs. 7a and 7b that it is not recommended to go further than H,,y =
3m. Model validation has served to refine the value to H,,0 = 2.2m. This
result intends to complement Sanchez-Arcilla et al. (2008a), which proposed
H; = 2.0m based on mean-excess plots and Kolmogorov-Smirnov goodness-of-
fit tests. The threshold H,,0 = 2.2m is adequate because a) the associated
D* is close to be exponentially distributed, b) the threshold falls in the linear
part of the mean-excess-graphs, and c¢) the resulting storms are statistically
significant in number. Please note that the fit to the exponential distribution is
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not perfect, so the excess-over-treshold plot has been crucial in the selection of
the storm-threshold.

On the other hand, the sensitivity test on D* has shown that 12hrs is the
most adequate value, since 48 or 72hrs lead to unrealistic storms that differ from
field observations. Once storms are defined, it can be perceived that, in general,
the northern Catalan coast is stormier than the southern one (see Table 2). N3
behaves differently as it is located inside the Creus Cape (see Fig. 5), which
shelters the area from cyclonic activity.

The validation of our model by the buoy records helps identify the sources
of residuals in our model. For instance, the lesser similarity of 7}, in our model
to the buoy recorded T}, partly comes due to the difficulties of modelling this
parameter with state-of-the art wave-models (WISE Group, 2007; Pallarés et al.,
2014). Another possible explanation is that, for a given H,,o, the T, depends
heavily on fetch length and its origin. However, the influence of the 7}, is not
filtered by the intensity threshold.

Residuals in the growth-decay rates come from two main sources: physical
and numerical. A physical source of residuals appears as offshore and onshore
winds show distinct growth-decay rates, depending on remarkable differences in
fetch extension. These differences can be compensated by uneven wind intensi-
ties, but their effect remains in the growth and decay rates.

The numerical residuals in the growth-decay rates come from the third-grade
polynomial, used to link growth-decay rates to D, and from the SIMAR dataset.
The limitations of SIMAR datasets in representing growth-decay rates might be
due to the fact that wave-models usually introduce residuals when reproducing
sharp gradients (Cavaleri, 2009; Sanchez-Arcilla et al., 2014). This limitation
may be partly alleviated with the novel terms for the wave-action-balance equa-
tion (Zieger et al., 2015), that show better agreement with recent measurements.
Also, at the study area, storm-wave patterns can be affected by current intensi-
fications originated in the joint action of sustained winds from the NE-SE plus
a shelf narrowing effect (Mestres et al., 2016). Thus, coupling the wave-model
with a high resolution circulation model may improve the results. The short-
coming of the third-degree polynomial is that it has difficulties reflecting a link
of the growth-decay rates for a D below 100hrs, where a dense cloud of values is
present (see Fig. 10); further research on the intra-time distribution module is
on-going. Apart from these issues, the statistical model reproduces the promi-
nent features at the study area, and the storm components show agreement with
the buoy records.

It can be inferred from the HAC results (see table 4) that the strongest de-
pendent variables are log D and log E. This dependency structure is consistent
with physical observations, as the most enduring storms are usually those which
have higher hydrodynamic forcings. It can be argued that, as F is integrated
over D, that the correlation between them has to be the most prominent. The
outcomes also show that, despite some dependence exists between F, , and the
E or the D, the dependence among E, , and (E, D) is weaker. This behaviour
can be explained due to the point-based definition of E, , that presents more
variability than the integrated values of £ and D, that features lower variabil-
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ity. It can be observed how 7(g p) increases northward (Fig. 8), implying more
correlation between durations and northern storm magnitudes. At nodes where
type A trees are prevalent, not only F, but also H,,.. is co-dependent on D.

Please regard that 0} is the direction of the storm-peak, and therefore repre-
sents the storm at its peak, rather than being a mean direction of the event. The
East is one of the principal 6, and the main effective 6 at a great part of the
Catalan coast. Waves that blow northward from the Gulf of Lyon tend to veer
counter-clockwise and do not impact at the Catalan coast (Bolafos et al., 2009).
The coastline orientation (from N6 northward) is the reason, as despite having
more recorded storms at the SIMAR points, the effective storms obtained with
synthetic simulations were not as significant in number than the other southern
points. Due to larger fetch, from N6 northward, northern 6, are dominating.
From N7 southward, the southern waves gain importance. The buoy used to
validate either SIMAR or our data should be as close as possible to the node in
the model to validate, as 67 is considerably sensible to location.

The intercept of the growth-rate is, generally, 0.46, as well as the intercept
of the decay-rate (see table 7). Both growth and decay-rates are considerably
independent of D for durations under 100hrs. However, for D > 100hrs, while
the growth-rate become asymptotic to 0.8, the decay-rate becomes asymptotic to
0.2. That is, under this condition of D, more durable storms tend to also present
higher growth-rates and lower decay-rates. Such large growth-rate and small
decay-rate contradict the common phenomenon. The high 7. events recorded
at the Catalan coast (November 2001 , October 2003 and December 2008) are
scarce, but reflect this sharp gradient response, veered by the pulsative wind
momentum.

The eq. 17 and 18, of T,, by being arithmetic and geometric averages,
respectively, set physical constraints on each marginal variable. This equalizes
the marginal T;. of each variable to the total T,. of the storm, as real maritime
storms present such equivalence between marginal and total 7;.. For example,
when the T, of a storm is 10yrs, the storm should not have a H,,¢ of T,, = 50yrs
and a D of T,. = lyrs. The T, from eq. 17, in particular, provides the best
constraints to the 7). of each integrating marginal storm component.

FE and D can reach significantly large values with increasing 7). at the North
(see Figs. 15a and 15d). Eastern storms generated at the Ligurian Sea are the
most energetic and lasting storms due to the fetch distance (near 600 km). For
T, = byrs (see Fig. 7?7 and the section below), larger D can significantly affect
E, as H,,o appears to be more spatially uniform along the Catalan coast.

6.2. Application

In order to visualize the potential of the methodology used, an example of
the characterization of storms for a 7, = Syears is presented. The 5-year T;. has
been selected because it is an extreme condition in which a) SIMAR dataset
has a representative number of samples and b) the order of magnitude of such
category has been analysed in detail for the study area (Mendoza et al., 2011;
Sanchez-Arcilla et al., 2008b). As to provide suitable data for elements on the
coast, the land originated storms (non-effective storms) are filtered from the set
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of synthetic storms. Note that, as the principal directions at some nodes might
be land-generated, the number of effective storms decrease considerably after
the filtering, compared to other nodes.

Our model provides joint combinations of E, E, ,, T;, D, 6, and growth-
decay rates. The outcomes of the model can be examined at Fig. 15. The
seven predicted variables are summarized in pie-charts, the categories of which
describe the differences and principal patterns that appear on a particular node.
One of the main findings of this paper is that, rather than a single value that
represents a particular category (i.e. a T,) for a specific wave component, a
range of plausible values can be considered, instead. Note, however, that within
this plausible range, there may be various intervals of disparate frequency (i.e.
particular intervals shown in the pie-charts). The seven variables are linked via
statistical models and it appears that a wide range of possibilities satisfy the
clustering criteria. A description of the general study area is provided, whereas
numeric outcomes are given for an example-node, N5.

The Storm-intensity sub-model provides the first variables of the synthetic
storms generated by our model. Fig. 15b shows that the H, . can range from
2.2m (by definition) to over 8m. The highest waves are located in the northern
coast-sector, and decreases southward, just as described in Sec. 5. mode (HY,,..)
at node N5 is (6,7.5]m (mode (Hy3) = (5.7,7.1]m). Fig. 15c shows that T,
is independent from the location along the coast. The mode (T},) at node N5
is (11,12.5]s. D presents a clear boundary at node C2: southward of node C2,
storms generally span 48hrs (2days) of duration (see Fig. 15d). The mode (D)
is > 96hr. Fig. 15a shows a geographical distribution that is clearly the result
of a combination of the effects of both H,,y and D. The mode (F) at node N5
is > 2000m? hr. The above-mentioned large values for mode (D) and mode (E)
are due to the effects of the GPD extreme value functions and the Gumbel
HAC, and they surpass physical constraints to such storm components, so the
values of 96hrs and 2000m? hr are to be used for mean-D (D) and mean-E (E),
respectively. These values reinforce the existing idea that storms magnitudes at
the northern part of the coast are higher than at the rest of the coast.

The Directionality sub-model specifies that the 6 along the Catalan coast
are mainly eastern directions (see Fig. 15e). At node N3, in particular, the
principal peak-wave direction is 76.27° (see Table 5); this is the PC2 at node
N5, but regard that PC1 is not an effective wave-direction.

The Intra-time distribution sub-model reproduce higher growth-rates than
decay ones (see Figs. 15f and 15g). The exception is at the Northern nodes,
where longer fetches exist and thus, a wider variety of wave ages can be found.
The growth-decay rates are geographically uniform, although this is due to an
above-mentioned limitation of the SIMAR model and the Intra-time distribution
sub-model. The growth-rate to consider at node N5 is (0.5,0.6], and the decay-
rate is (0.3, 0.4].

The results from our model are compared to the conventional engineering
approach, where, given a 7T, and a location, a H, is obtained, followed by the
T,. The conventional method presents the following 90% confidence interval,
for Tr = byrs, Hy, = (4.3,5)m, and T, = (12.4,12.8)s (CIIRC, 2010). The
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D is usually considered as 24hrs in the Catalan Sea. The storm wave-height
evolution is usually modelled by an isosceles triangle where the height is the
maximum H,. In this case, the conventional E is (491.7,726) m?h, and other
information such as incoming wave-direction can be obtained from contingency
tables in the literature.

The storms from our model are consistent with the values provided in Men-
doza et al. (2011); Sanchez-Arcilla et al. (2008b). The Hy and the T, in our
model are slightly larger than in the conventional methodology, in this case,
without significant physical implications. E and D from our model, although
considerably larger, are possibly more accurate than their classical counterparts,
and the same applies to the growth-decay rates. Also, D = 24hrs is an average
duration, while D = (114, 168] hrs derives from the SIMAR dataset. ¢y is an
extra information provided here and which is not so much considered in the
conventional approach. Most importantly, the conventional methodology can
hardly reflect the probable behaviour of the storm, mainly because it ignores
the variable interactions and feedbacks.

7. Conclusions

The statistical wave-storm model proposed is composed by three sub-modules:
a) Storm-intensity, b) Wave-directionality and c) Intra-time distribution. In
these sub-modules, waves have been defined by a set of storm-components (E,
Eup, Ty, D, 05 and growth-decay rates), representing their nature in a more
accurate manner. Our model is well validated by buoy records, whereas main
sources of residuals are related to growth-decay rates.

Storms have been defined with a threshold of H,,p = 2.2m, which has been
obtained after testing on D*, plus H,,o excess-over-threshold plots.

In the Intensity sub-model, the marginal distributions of each variable are
characterized by GPDs, whereas dependences among the variables are repre-
sented by HACs. The best fitting HAC type is Gumbel. It is observed that
the strongest dependence may be between E and D. Two HAC structures are
observed along the Catalan coast: type A and type B, depending on the degree
of semi-dependence between E, , and (E,D). The semi-dependence param-
eter 7(g p) increases northward. Therefore, northern ' and D present more
correlation.

Wave-directions are described via movM. The movM distribution is selected
using a statistic from the Watson test as convergence criteria. The princi-
pal peak-wave incoming-direction, 67, at N1 to N6 are, by decreasing order
of importance, North and East; whereas eastern and southern directions are
predominant from N7 to S7.

The most appropriate model for wave-height evolution is the irregular-trapezoidal

model. On the other hand, the growth-decay rates are related to the rest of the
storm components through a polynomial relationship with D. A mean behaviour
of D for D < 100hrs is reproduced by the model, although for greater D the
model tends to predict higher growth rates and lower decay rates.

22



886

209

910

911

912

918

919

920

921

922

923

924

One feature of our model is its ability to generate synthetic storm conditions
and to classify them by T,.; these storms are evaluated in the form of pie-charts.
In general, for a T, of 5yrs, storms at the northern Catalan coast have greater
E, D, and Hp,o; while T}, are similar to central or southern Catalan coasts.
Also, the principal 6 is eastern and the growth and decay rates approximate
0.55 and 0.35, respectively.
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Figure 1: a) Definition of variables for a single peak storm, where H,,o is the wave-height,
D is the storm duration, b) definition of the peak-unitary-storm energy, E. ,, where E,, ;
are the unitary-storm-energies at each hour (the red dashed line is the actual storm and the
green line is an equivalent storm without the skewness problem), ¢) proposed storm shapes
(irregular-trapezoid and triangular), where the parameters are initial time (¢;,;), ending time

(tend), and our model’s maximum wave-height (H}, ).
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Figure 2: Flow-chart of the methodology used to construct the statistical storm model. The
model is composed by three sub-models: intensity (orange), wave directionality (olive green)
and intra-time (purple). Rectangle boxes represent input/output data whereas the parallelo-
grams represent the actions taken.
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(b)

Figure 3: Types of HAC trees obtained for the Catalan Sea. a) Type-A: HAC structured with
3 levels of variable dependencies (at node N1), b) type-B: HAC structured with 2 levels of
variable dependencies (at node N7). The upmost level is the «root». The variables sequentially
cluster according to their dependence (6) with other variables.
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Figure 5: Map of the study area showing wave measurement networks (XIOM and PdE), and
the SIMAR nodes. The colour lines of the regions (red, orange, green, blue and purple) and
the coloured areas (red, yellow and blue) cluster the coast into the three sectors: North (France
to Mataro harbour), Central (Mataro harbour to Segur de Calafell harbour) and South (Segur
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Figure 7: Mean-excess-plot of Hy,o for the a) SIMAR node C3 and b) PdE-BCN-II buoy
node. The red line represents the log-transformed number of events over a given threshold,
while gs0, g5 and qg5 are the quantiles 50, 5 and 95, of Hypo.
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Figure 8: Spatial distribution of the Kendall’s rank correlation coefficient (7) between F and
D (7(g,py)- T €[0,1), where 0 is total independence and 1 is total dependence.
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Figure 10: Heat map of a) dimensionless growth-rate vs. D, and b) decay-rate vs. D, at node
C3. Greater density is represented by darker blue colour.
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Figure 15: Storm components predicted by the proposed model, for T’ of 5years, and at each studied node: a) energy (E), b) maximum wave-height
(H}az), ¢) peak-period (Tp), d) duration (D), e) wave-direction at peak (0), f) growth-rate, and g) decay-rate. Pie-charts represents the frequency
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Figure 12: Q-Q plots of PdE-Barcelona-II buoy vs. the SIMAR node C3. The graphs are represented with the same elements (e.g. line colour) than
for the PdE-Palamos buoy.
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Figure 14: Validation of the node C3 our model by the PdE-Barcelona-II buoy data. Graphs are represented with exactly the same elements (e.g.
line colour) than for the N5 case.
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100 11. Tables

Table 1: Buoy location and data availability. All the considered buoys are directional.

Buoy Longitude Latitude  Depth Data availability
(°E) (°N) (m)

PdE-Palamos 3.19 41.83 90 26/03/2010 to
30/06/2011

XIOM-Blanes 2.82 41.65 74 13/07/2007 to
31/12/2012

PdE-Barcelona 2.15 41.29 50 08,/03/2004 to
I 22/12/2013

PdE-Barcelona 2.20 41.32 68 08/03/2004 to
11 30/11/2011

XIOM- 2.14 41.28 45 05/02/2004 to
Llobregat 31/12/2012

XIOM-Tortosa 0.98 40.72 60 15/06,/1990 to
31/12/2012

Table 2: Number of storms per node.

Node Storms Node Storms Node Storms Node Storms

N1 471 N6 201 C3 75 S3 44
N2 467 N7 134 C4 49 S4 31
N3 88 N8 62 C5 7 S5 99
N4 255 C1 60 S1 42 S6 73
N5 348 C2 99 S2 65 S7 52
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Table 3: Parameters of the GPD adjusted to each SIMAR node: location (u), scale (o), and
shape (£). The E is the storm energy, E, p is the maximum unitary storm energy, T}, is the
peak-wave-period associated to H,,.., and D is the storm duration. The hg = 2.2m is the
wave height threshold. The D,;, = 6hrs is the required minimum storm duration or duration
threshold. The T, = 8.17s is the T}, threshold, obtained from CIIRC (2010).

GPD parameters

logE (1= log By p logT log D
Dynin - Hf) (= H) (1t ="Tmin) (1= Dmin)
Node o £ o 3 o § o §

N1 2.65 -0.54 101 -0.34 0.10 -0.00 194 -0.50
N2 2.57 -0.52 098 -0.32 0.10 -0.02 2.00 -0.57
N3 242 -0.72 0.71 -0.30 033 -0.79 191 -0.76
N4 232 -0.50 0.81 -0.24 0.15 -0.24 183 -0.54
N5 237 -048 091 -0.27 0.14 -0.23 1.86 -0.55
N6 227 -0.55 081 -0.24 0.17 -0.29 2.08 -0.76
N7 236 -0.63 0.81 -0.26 0.25 -0.53 188 -0.72
N8 254 -0.75 0.81 -0.27v 0.28 -0.53 1.77 -0.68
C1 231 -0.68 0.79 -0.25 031 -0.59 143 -0.56
C2 232 -0.61 08 -024 029 -0.61 1.72 -0.62
C3 220 -0.62 0.83 -0.25 0.27 -0.48 2.02 -0.99
C4 221 -0.64 081 -0.22 0.26 -047 1.87 -0.90
C5 224 -0.63 082 -024 021 -0.34 190 -0.87
S1 2.0r -0.76 0.66 -0.22 0.16 -0.12 1.53 -0.75
S2 220 -0.68 0.76 -0.25 0.17 -0.21 1.99 -0.95
S3 223 -0.76 0.71 -0.25 0.14 -0.08 1.78 -0.86
S4 204 -0.74 067 -0.23 0.16 0.01 199 -1.09
S5 1.87 -061 064 -0.20 0.28 -0.48 1.50 -0.68
S6 1.87 -0.59 068 -0.23 0.24 -0.38 1.45 -0.62
S7 1.64 -049 065 -0.20 0.16 0.00 1.31 -0.65
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Table 4: Parameters of HACs. The selected copula type is Gumbel-HAC, and the aggregation
method is “mean”. These parameters can be used to compare different locations.

Node Tree Q(E,D) 9((E,D),Eu,p) Hmot Node Tree H(E,D) 9((E,D),Eu,p) OTOOt

type type
N1 A 1.16 2.15 444  C3 A 1.27 2.03 3.79
N2 A 1.22 2.23 447  C4 A 1.29 1.97 4.17
N3 A 1.14 1.87 489 Ch B 1.62 3.54
N4 A 1.27 2.10 4.54 S1 B 1.48 3.74
N5 A 1.45 2.10 4.66 S2 A 1.18 1.81 3.74
N6 B 1.67 4.08 S3 A 1.33 1.92 3.69
N7 B 1.58 3.90 S4 B 1.55 4.30
N8 A 1.43 1.98 3.92 S5 A 1.22 2.01 4.47
C1 A 1.23 1.94 3.95 S6 A 1.29 1.84 4.11
C2 A 1.23 2.03 4.36 S7 A 1.59 2.19 3.89

Table 5: The wave directions at each node derive into pairs of (sin, cos). The set of sines and
the set of cosines are characterized by seldom movM distributions. Means (u) of the movM
distributions are provided for each principal principal direction (PD).

Mean (p) [°] Mean (p) [°]

Node PD1 PD2 PD3 Node PD1  PD2
N1 344 84 C3 78 198
N2 353 76 C4 81 196
N3 73 353 C5 81 220
N4 11 78 S1 91 195
N5 15 76 S2 85 203
N6 23 88 S3 183 88
N7 74 33 205 S4 94 176
N8 81 200 S5 82 320
C1 84 198 S6 334 77
C2 70 205 S7 74 109
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Table 7: Parameters of the function f (D) = ag + a1D + a2D? + a3 D3, where D is storm
duration, and f (D) is either growth or decay-rate.

growth rate decay rate

ao ai az as ao ai az as

N1 0.48 -0.52 0.10 -0.39 045 0.85 -0.29  0.581

N2 048 -048 0.25 -0.57 045 1.09 -0.56  0.78

N3 0.48 -0.46 0.24 -0.55 045 1.17 -0.62 0.81

N4 047 -045 040 -0.68 045 1.35 -0.91 1.07

N5 047 -0.52 0.61 -0.82 045 1.48 -1.11 1.21

N6 047 -0.58 067 -090 045 150 -1.15 130

N7 047 -0.50 061 -0.8 0.45 147 -1.13 131

N8 047 -0.47 062 -0.89 0.45 1.46 -1.13  1.33

Cl 047 -045 061 -0.90 0.45 1.45 -1.12 1.34

C2 046 -047 064 -092 045 147 -1.15 1.36

C3 046 -047 065 -094 046 1.49 -1.18  1.40

C4 046 -047 065 -0.94 046 1.50 -1.19 141

C5 046 -0.51 0.69 -097 046 156 -1.24 1.46

S1 0.46 -0.52 0.70 -098 046 159 -1.27 148

S2 0.46 -0.53 0.71 -1.00 046 1.59 -1.27  1.49

S3 0.46 -0.52 0.71 -1.00 046 1.61 -1.29 1.52

S4 0.46 -0.52 0.72 -1.02 046 1.63 -1.31 1.53

S5 0.46 -0.55 0.75 -1.04 046 166 -1.33 1.54

S6 046 -060 0.79 -1.07 046 1.70 -1.35 1.55

S7 046 -061 080 -1.08 046 1.71 -1.35 1.53
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