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Abstract

Wave extreme events can be understood as the combination of storm-intensity,
directionality and intra-time distribution. However, the dependence structure
among these factors is still unclear. A methodology has been developed to model
wave-storms whose components are linked together. The model is composed by
three parts: an intensity module, a wave directionality module, and a intra-time
distribution module. In the Storm-intensity sub-model, generalized Pareto dis-
tributions and hierarchical Archimedean copulas have been used to characterize
the storm energy, unitary energy, peak wave-period and duration. In the Di-
rectionality and the Intra-time sub-models, the wave direction (at the peak of
the storm) and the storm growth-decay rates are linked to the variables from
the intensity model, respectively. The model is applied to the Catalan coast
(NW Mediterranean). The outcomes denote spatial patterns that coincide with
the state of knowledge. The proposed methodology is able to provide bound-
ary conditions for wave and near-shore studies, saving computational time and
establishing the dependence of the proposed variables. Such synthetic storms
reproduce the inter-variable co-dependence of the original data.

Keywords: wave storms, Catalan coast, von Mises distribution, multivariate
logit function, hierarchical Archimedean copula, generalized Pareto
distribution

1. Introduction1

Wave storms strongly perturb the state of coastal environments, becom-2

ing such changes concomitant with episodic coastal hazards such as coastal3

�ooding and erosion. These extreme phenomena drive complex hydrodynamic4

processes whose understanding is paramount for proper infrastructure design5

(Goda, 2010). The conventional approach is usually based on the probabilistic6

de�nition of a single parameter, typically the wave height. Other concurrent7
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components as the duration of the storm, the storm total energy and the as-8

sociated wave period in�uence the �nal response of a beach or the damage9

evolution of a structure (Martin-Soldevilla et al., 2015; Melby and Kobayashi,10

2011). These variables are known to be semi-dependent (Salvadori et al., 2007;11

de Waal and van Gelder, 2005), but the classical methodology either a) assumes12

one variable to be stochastic and the other ones to be deterministic or, b) as-13

sumes all variables to be stochastic but completely independent. In the latter14

case, the lack of dependence structure hampers �nding sets of physically plau-15

sible storm components, and requires expert guidance plus local knowledge to16

discern the suitable combinations.17

A common modelling approach is to hindcast high energy events or to syn-18

thesize storms to a representative extreme sea-state, which is generally predis-19

posed by the degree of knowledge of the area. For the latter case, dependency20

structures among the hydrodynamic variables pose a hurdle, as they tend to21

be unknown. Exploratory methods, such as 2D scatter plots, have been widely22

used as a rule-of-thumb for the most frequent problem, wave-height vs. wave-23

period. However, the interpretation of existing co-dependences among several24

variables is challenging. Recurrently, a wide scatter cloud can mislead about25

biased co-dependence structures, due to subjective criteria. Storm modelling26

requires to consider a multivariate analysis of storm parameters (Corbella and27

Stretch, 2012), as univariate analyses may oversimplify coastal processes, often28

leading to over or under-estimation of the storm induced damages.29

Specialized statistical techniques such as copulas can be used for �nding30

existing relationships among storm variables (Genest and Favre, 2007; Trivedi31

and Zimmer, 2007) with more objective criteria. Copulas were once described32

by Sklar (1959), for bivariate models. They were popularized in the 1990s33

in �nancial, insurance, econometrical, risk management and actuarial analy-34

ses (Cherubini et al., 2004). Applications can also be found in hydrology (De35

Michele and Salvadori, 2003; Salvadori and De Michele, 2004) and more recently,36

in coastal engineering (Corbella and Stretch (2012); Wahl et al. (2011); among37

others).38

Corbella and Stretch (2012) employed copula based return-periods to iden-39

tify the most probable combination of wave-height, wave-period, storm-duration,40

and water-level for a given probability of exceeding at South Africa. The thresh-41

old in the peak-over-threshold method was de�ned as a critical layer of multiple42

dimensions that prescribe both a safe and a super-critical combination of storm43

conditions. In the study, the extreme events were �tted to Generalized extreme44

value distributions (GEVD). They also noted the importance that their statis-45

tical model was constrained, to avoid unrealistic results. Hence, they proposed46

wave steepness as a restriction that can increase model rigidity and enhance47

system robustness.48

Li et al. (2014) �tted maximum signi�cant wave height, peak-wave-period49

and storm-duration measured in the Dutch Coast with Generalized Pareto dis-50

tributions (GPD). They had used the Kolmogorov-Smirnov and the Chi-square51

tests to evaluate the goodness-of-�t. A similar approach had also been followed52

by Corbella and Stretch (2013). Salvadori et al. (2014), on the other hand, �t-53
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ted the signi�cant wave-height and the duration to a Generalized Weibull model54

(GW) distribution and used Akaike Information Criterion (AIC) to select the55

suitable copula.56

Wahl et al. (2012) applied fully nested Archimedean copulas to consider both57

storm surge parameters (de�ned with the highest turning point and the inten-58

sity) and the wave height, at the German coast. Nested copulas can characterize59

multivariate random variables by determining a priori nesting architecture that60

composes simpler copulas structures into larger and more complex ones. Wahl61

et al. (2012) �rstly characterized the highest turning point and intensity; and62

then incorporated the signi�cant wave height.63

The main objective of this paper is to propose a methodology for inferring64

multivariate wave storm parameters that shares a common structure. To this65

aim, one of the main points of the paper has been to propose a dependence66

structure that links the parameters that explain wave storms. The paper is67

divided into two steps: Model building and Applicability. The proposed wave68

storm model has been split into three modules: intensity, wave directionality69

and intra-time storm distributions. This methodology has been tested on the70

Catalan coast, a fetch limited environment.71

The structure of the paper is as follows: Section 2 deals with the methods72

for building the proposed statistical model. Section 3 presents the study area73

and, section 4, the database used. Results are summarized in Section 5 and74

discussed in Section 6. Finally, Section 7 sets out the conclusions.75

2. Methods76

2.1. Storm de�nition and variables77

The determination of storms has three criteria: 1) intensity de�nition and78

associated threshold, 2) minimum time-lapse between storms (D∗
min), and 3)79

minimum duration of the storm (Dmin). Wave storms are extreme phenomena80

that can be dealt with the peak-over-threshold description (Embrechts et al.,81

1997). The threshold separates storm conditions from non-storm conditions.82

The D∗
min helps satisfy independence of the samples. The independence is one83

part of the �independent and equidistributed� assumption for data in many84

statistical techniques. Dmin discards the storms of insu�cient duration and85

which are, therefore, of lesser signi�cance.86

Eastoe et al. (2013) associates the threshold with the percentile 90 of the87

wave height. In our paper, a di�erent approach is proposed. The occurrence in88

time of extreme events, for any given geographical location, follows a Poisson89

distribution. Therefore, it can be deduced that the time lapse between storms90

must be approximately an exponential distribution; if not, these events are not91

extreme. Appart from this, the threshold should belong to the linear segment92

of a mean-excess wave-height function (Ortego et al., 2012). At the same time,93

the events must be statistically signi�cant in number. The wave-height thresh-94

old has been varied ranging from 1.5m to 3m, whose minimum doubles the95

mean wave heights (CIIRC, 2010). The �nally selected value of the wave-height96

threshold is exposed in Section 5 and discussed in Section 6.97
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Turning to the independence and equal distribution of storm samples, neigh-98

bouring storms are clustered if the D∗ that separates them is below D∗
min, which99

means that both episodes belong to the same storm event. After clustering, each100

storm can be considered to be independent from the others. On the other hand,101

it is assumed that the marine extreme events are generated by a limited subset102

of synoptic conditions (Lionello, 2012), which is true in Western Europe (Mazas103

et al., 2014). Therefore, the storms are regarded as identically distributed.104

Three candidates for D∗
min are proposed: 72hrs, 48hrs, and 12hrs. D∗

min =105

72hrs is because the two sub-storms in a twin storm tend to be less than 72hrs106

appart. Approximately 20−30% of the total storm events on the Catalan coast107

are twin, depending on the location (Wojtanowicz, 2010). The consideration108

of D∗
min = 48hrs is conceptually similar to Tolosana-Delgado et al. (2011),109

whereas D∗
min = 12hrs is based on direct observations of Catalan sea-storms.110

A sensitivity test is performed to select the most correct D∗
min value. The test111

consists of representing storms for di�erent values of D∗
min. The D

∗
min selected112

and the reasons leading to this choice are stated in the Section 5 and discussed113

in the Sub-section 6.1.114

D is the duration of the event between the �rst and last threshold crossing115

(Fig. 1a). It is not to be confounded with D∗. The value of Dmin is given in116

Section 5.117

From each independent storm, the total storm-energy (E), the maximum118

storm-unitary-energy (Eu,p), the peak wave period (Tp), the duration D, the119

direction of the peak-wave (θ∗p), the growth-rate and the decay-rate are obtained.120

The Storm-intensity sub-model includes E, Eu,p, Tp, and D.121

The E is de�ned as122

E =

ˆ endT

iniT

H2
m0dt, (1)

where Hm0 is the spectral signi�cant wave-height, and t is time. In case that123

the wave-height returns below the threshold, during the event, the duration and124

the energy of these low intensity periods are included in the sums of D and E.125

It has been highlighted in Sánchez-Arcilla et al. (2014) that the capture with126

numerical models of the peak-wave-height lacks of exactitude, whereas a better127

skill is found for the existing temporal trend. Therefore, a new de�nition of the128

maximum wave-height (Hmax) is proposed through the de�nition of Eu,p:129

Eu,p = max
i

(
mean

(
Eu,(i−1) + Eu,i + Eu,(i+1)

))
, (2)

where Eu is the unitary storm-energy at each hour. The square root of Eu,p is130

proposed, here, as an improved de�nition of Hmax, and is herein called H∗
max.131

The H∗
max synthesizes the energy shortly before and after the peak. The132

subset (see Fig. 1b) presents a) point (t− 1): growing to reach the peak, b)133

point (t): Storm peak and c) point (t+ 1): decreasing or maintaining. The134

di�erential energy at (t+ 1) in decreasing or maintaining the energy is a crucial135

assumption for point t. The reason is that Mediterranean storms usually present136

a sharp gradient during wave height growth and a milder one during decay. The137
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variables E and H∗
max provide more complete metrics for the storm hazard138

rather than a representative wave height, as they describe the behaviour of the139

entire storm, rather than a snapshot.140

The Tp relates to the frequency in which the peak of the energy from the141

directional wave spectrum is located (Holthuijsen, 2007). The Tp of our wave-142

model is the value of the Tp when Eu takes the Eu,p value. The Tp does not143

vary much during each storm and its standard deviation is generally small. The144

reason of such reduced variation is a fetch-limited condition of the study area145

plus the ephemeral intensity of the storms.146

The directionality is represented by the Directionality sub-model, and it is147

parameterized with the wave-direction of the storm-peak (θ∗p). The value of θ
∗
p148

is assumed to be constant throughout each individual storm-event. Both Tp and149

θ∗p are values at the H
∗
max, as interest is herein put on the behaviour of the most150

extreme conditions, rather than on the rest of the storms.151

Milder slopes during decay have relevant consequences. For example, con-152

sider an emerged dune that collapses at the exact moment of the storm peak153

or maximum wave height. The after-e�ect (�ooding/erosion) would not be the154

same if the energy started to decrease at the same rate as the storm growth.155

A sharp growth leads to collapse, defence impairment and the decay phase can156

lead to the real �infrastructure damage� (Gràcia et al., 2013). A parameter157

that considers that e�ect is sought in this study, whilst maintaining as much158

information of the peak as possible.159

The storm wave evolution over threshold is modelled with either the irregular-160

trapezoidal or the triangular shapes (see Fig. 1c). A theoretical basis for the161

proposal of these two wave-height-evolution models can be found in Martin-162

Soldevilla et al. (2015), who conducted a shape analysis for one point at the NW163

Mediteranean Sea. This analysis is herein extended on a regional scale. The164

residuals associated with triangular and irregular-trapezoidal candidate wave-165

height-evolution models have been computed. The area below the hindcasted166

wave-height-evolution function has been compared to the area below each one of167

the candidate wave-height-evolution models. The area below the wave-height-168

evolution model is computed with the area within each �gure plus the area169

below the threshold; the maximum wave-height considered in such calculation170

is H∗
max.171

After adopting a shape, the D provides two indicators: a) the percentage172

of time from the beginning of the storm to the �rst H∗
max (growth-rate), and173

b) the percentage of time from the last H∗
max to the end of the storm (decay-174

rate). These are the ratios growth-time/D and decay-time/D, respectively, that175

de�ne the storm-shape. The growth and the decay-rates are characterized by176

the Intra-time-distribution sub-model.177

The Storm-intensity sub-model might in�uence the Directionality sub-model178

and the Intra-time-distribution sub-model. Therefore, the three sub-models are179

inter-linked.180
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2.2. Wave-storm model building181

Fig. 2 summarizes the main steps followed for the construction of the storm-182

model. There are three sub-models: intensity (orange boxes), wave direction-183

ality (olive green boxes) and intra-time (purple boxes). Rectangle boxes repre-184

sent the inputs/outputs, whereas the parallelogram boxes represent the actions185

taken.186

The storm components have been previously de�ned in sub-section 2.1.187

The thresholds for the extreme variables are de�ned by analysing the inter-188

storm-time-lapse (D∗) and the location of the wave-height-threshold on a mean-189

excess Hm0 plot.190

In the Storm-intensity sub-model, the univariate probability distributions of191

E, Eu,p, Tp, and D are characterized by GPDs, whereas their joint structures,192

at each geographical node, are described by hierarchical Archimedean copulas.193

The θ∗p, at each node (see Fig. 9), are �t to mixtures (n ≥ 2) of von Mises distri-194

butions (Barnerjee et al., 2005; Mardia and Jupp, 2009), abbreviated hereafter195

as mixture of vM, or movM. From the movM at one node, the mean of each196

vM distribution is considered a principal direction (PDi) of θ∗p. These PDi197

constitute categories for θ∗p. The PDi are linked to E, Eu,p, Tp, and D through198

a multivariate logistic model, then the Directional sub-model is formed.199

From the event-time-description associated to the Storm-intensity sub-model,200

the storm growth-decay rates are de�ned, and linked toD, resulting in the storm201

Intra-time sub-model.202

In summary, the Storm-intensity sub-model generates synthetic E, Eu,p,203

Tp, and D that, once introduced into the Storm intra-time sub-model and the204

Directional sub-model, generate the growth-decay rates and the wave directions,205

respectively. The total set of storm variables de�ne synthetic storms that, once206

�ltered, are ready for applications desired. Both the model and the SIMAR207

database (see Sec. 3) are validated/compared to the buoy records. Finally, the208

model-buoy validation and the SIMAR-buoy comparison are contrasted to see209

what kind of residual is introduced in our �nal model.210

2.3. Storm-intensity sub-model211

2.3.1. Univariate marginal distribution: GPDs212

The E, Eu,p, Tp and D are sea dynamic variables that take positive real213

values; consequently, they can be log-transformed to avoid scale e�ects. One of214

the most widely used distributions to characterize wave peaks in a peak-over215

threshold (POT) approach is the GPD (Coles, 2001). It is assumed that the216

events are time points which have an associated random magnitude, and they217

also must be independent and identically distributed (Coles, 2001; Tolosana-218

Delgado et al., 2010). If X is the magnitude of an event and x0 is, at the same219

time, a value of the support of X and a threshold, the excess over the threshold220

x0 is Y = X − x0, conditioned to X > x0. Therefore, the support of Y is either221

[0 , ysup] or a positive real line. The GPD cumulative function is222

FY (y|β, ξ) = 1−
(

1 +
ξ

β
y

)− 1
ξ

, 0 ≤ y ≤ ysup , β ≥ 0 , ξ ∈ R, (3)

6



and the associated probability density function is223

fY (y|β, ξ) =
1

β

(
1 +

ξ

β
y

)− 1
ξ−1

, 0 ≤ y < ysup , β ≥ 0 , ξ ∈ R, (4)

where β is the scale parameter and ξ is the shape parameter. ξ determines224

the domain of attraction of the distribution. For ξ < 0, the distribution belongs225

to the Weibull domain of attraction, and the support of y is limited, being226 [
0, ysup = −βξ

)
. For ξ > 0, the domain of attraction is Fréchet, and the support227

of y is [0,+∞). When ξ = 0, the support is in�nite and the distribution belongs228

to the Gumbel domain of attraction (Coles, 2001; Tolosana-Delgado et al., 2010).229

The selection of a physically justi�ed threshold for each variable enhances tail230

convergence.231

Thresholds have been de�ned for the GPD of each variable. Dmin is 6hrs,232

then the threshold of D is set as Dmin, the threshold of E is computed from233

H2
0 · Dmin, and the threshold of Eu,p is computed from H2

0 . The thresholds234

for E and Eu,p are based on their de�nition. The relationship of Hm0 to the235

most widely used signi�cant wave-height (Hs or H1/3) is Hm0 = H1/3/0.95,236

(Holthuijsen, 2007). The relationship of Tp with H1/3 can be approximated237

by a linear expression, de�ned in CIIRC (2010), so the threshold of Tp can be238

directly computed from the wave-height threshold.239

2.3.2. Dependence structure: the Hierarchical Archimedean Copulas (HAC)240

The set of storm components has passed a multivariate independence test241

based on the empirical copula process (Genest and Remillard, 2004). This test242

provides insight into inter-dependencies of any subsets of the variables. The243

resulting graph, the dependogram, displays the subsets on the horizontal axis244

and the statistic per subset (the departure from independence) on the vertical245

axis. A statistic (vertical line) below the threshold value (bullets) means a246

totally independent subset, whereas the length of the vertical line above the247

bullet represents the degree of co-dependence of the variables in the subset248

(refer to Fig. 4 for an example).249

Once the semi-dependence is demonstrated, several methods are available250

to model multivariate distributions. Hierarchical Archimedean copulas is one251

of them. The copula simpli�es the modelling as it estimates a multivariate252

distribution once the marginal distributions of each individual random variables253

are determined (Sklar, 1959). Pre-selected distributions separate the marginals254

from the dependence structure between the random variables. Consequently,255

the dependence modelling through copulas may be a suitable alternative for256

building multivariate distributions when the marginals are known and heavy257

tailed (de Waal and van Gelder, 2005). Heavy tails are present when extremes258

are much more divergent from the mean than it would be expected.259

The bivariate distribution described by Sklar can be generalized into a mul-260

tivariate one. For any multivariate distribution function H with margins Fj ,261

j ∈ {1, ..., d}, a copula C can be de�ned such that262

H (x1, ...,xd) = C (F1 (x1) , ...,Fd (xd)) ,x ∈ R. (5)
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Inversely, given a copula C and univariate distribution functions Fj , j ∈ {1, ..., d},263

an H de�ned by eq. 5 is a distribution function with marginals Fj , j ∈ {1, ..., d}.264

Being uj = Fj , a d-dimensional copula is Archimedean if it admits the repre-265

sentation266

C (u;φ) = φ−1 (φ (u1) + · · ·+ φ (ud)) , u ∈ [0, 1]
d
, (6)

where the generator function φ is continuous decreasing and convex, with φ (1) =267

0. An example of a generator function is the Gumbel generator function268

φ(u) = (− log (u))
θ
, θ ∈ [1,∞) , (7)

u is the storm component, and θ is the dependence parameter which indicates269

independence when θ = 1 and total dependence when θ →∞. The dependence270

parameter θ is distinguished from the peak-wave-direction θ∗p, in this text, by271

adding an asterisk to the latter parameter. Other types of Archimedean copula272

generator functions, such as Clayton and Frank, can be referred to in Wahl et al.273

(2011).274

Most common Archimedean copulas have constrained multivariate depen-275

dence structures, as they usually depend on a single parameter of the generator276

function. Moreover, they are insensitive to variable permutation, which implies277

that all margins of the same dimension are equal, deeming them unable to model278

asymmetries in the variable co-dependences(Hofert and Machler, 2011). Hier-279

archical Archimedean copulas (HAC, see Fig. 3 for an example) can be a useful280

tool to overcome these drawbacks, by nesting simple 2D-Archimedean copulas281

into multilayer tree structures that are �tted in a recursive way (Okhrin et al.,282

2013).283

The hyerarchical structure of the HAC provides a series of advantages: a) it is284

more �exible and intuitive than the simple Archimedean copulas, b) it can model285

asymmetries in the variable co-dependences, unlike simple Archimedean copulas,286

c) there is a marginal cumulative distribution function at each node of the tree,287

d) it require less parameters than other kinds of copulas (e.g. elliptical copula),288

and e) when basing each copula on a single generator function, the copula289

parameters rise as the level increases, enabling simpler dependence analyses.290

Di�erent generator functions can be used to obtain the θ at each nesting291

level of a HAC. Extreme storms present a typical pattern of producing extreme292

values for most storm components, such as E, Eu,p, Tp and D above a certain293

threshold. Then, the most suitable HAC type is Gumbel (when a generator294

function is used at all the levels of nesting of a HAC, this generator function295

gives its name to this HAC). The Gumbel HAC includes such upper extreme296

dependence (Salvadori et al., 2007). Other HACs, such as the Clayton and the297

Frank HACs, may also be employed, as discussed in Wahl et al. (2012). Hence,298

although the Gumbel type is selected a priori for this study, goodness-of-�t-tests299

are also applied to Clayton and Frank HAC types, with the aim of verifying the300

suitability of Gumbel.301

The aggregation at each nesting level depends on a parameter ε. If the302

absolute di�erence of the dependence parameters of two subsequent nodes is303
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smaller than ε (see eq. 8),304

|θ1 − θ2| < ε, (8)

the aggregation method �mean�, the one used here, equates the ε to the average305

value between the θs.306

An example of a four-dimensional HAC can be307

C (u1,u2,u3,u4) = C3 {C2 (u1,u2,u3) ,u4} = φ−1
3 {φ3 ◦ C2 (u1,u2,u3) + φ3 (u4)} .

(9)
If the copula tree (see Fig. 3) spreads its �branches� upside down, the lowest308

hierarchical level would be the tip of the branches. At such lowest hierarchical309

level, the parameter of any pair of the given variables is estimated. The couple310

with the strongest dependence is aggregated and substituted by a joint pseudo-311

variable (Okhrin et al., 2013). For example, let E and D share a common312

dependence parameter θ(E,D) = 4.44. Let it be the highest valued dependence313

parameter among all the pairs of variables. The pair of variables (E,D) can be314

substituted by the pseudo-variable315

Z(E,D)
def
= φ−1

θ̂(E,D)

[
φθ̂(E,D)

{
F̂D (D)

}
+ φ(θ̂E,D)

{
F̂E (E)

}]
. (10)

At the next level, the parameter of all the pairs of variables and pseudo-variables316

are again evaluated. This procedure is continued until the highest hierarchical317

level (i.e. the root) is reached (see Fig. 3).318

Several approaches can be found in the literature to determine the HAC319

agreement with data. Chen et al. (2004) proposed a dimension-free goodness-320

of-�t test which has been adpted to construct the HACs. The graphical test321

detailed in Okhrin and Ristig (2012) has been applied to check the goodness-322

of-�t at each nesting-level. It is complemented with quantitative values from a323

parameter k2 (Gan et al., 1991).324

Okhrin and Ristig (2012) compares the model probability-distribution with325

the empirical probability-distribution. The expression of an empirical copula is326

Ĉ (u1, ...,ud) = n−1
n∑
i=1

d∏
j=1

I
{

F̂j (Xij) ≤ uj

}
, (11)

where n is the sample size, d is the number of variables, F̂j (Xij) is the empirical327

marginal distribution function of a variable Xij , and uj is a vector belonging328

to the interval [0, 1]. I is a unit function (it is 1 when the argumet is true, and329

0, when the argument is false), so that the product represents the unit function330

of the AND combination of all the j conditions331

F̂j (Xij) ≤ uj .

.332

Gan et al. (1991)'s k2 quanti�es the agreement of the analysis at each nesting333

level. Each one of these levels only has two variables, then the criterion is herein334
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restricted to 1D dimension comparisons. k2 takes values in [0, 1], the larger the335

number, the highest the similarity of the vectors involved.336

Here, θ of di�erent Gumbel copulas are not easily comparable, as the support337

of θ is semi-in�nite. Thus, θ are transformed into Kendall's τ , or Kendall's rank338

correlation coe�cient (Kendall, 1937), the support of which is [0, 1). The value339

1 is excluded for corresponding to the in�nity value in θ.340

Once HAC structures are obtained for each node, τ(E,D) values are obtained341

through ordinary kriging (OK) (Wackernagel, 2003), along the Catalan coast,342

in order to visually identify the spatial distribution of the co-dependences of E343

and D. This approximation remains valid for zones where the observed hydro-344

dynamic patterns do not di�er excessively, and o�ers estimations at unsampled345

areas.346

2.4. Linking wave-direction to Storm-intensity: The wave directional sub-model347

It is not possible to include the θ∗p and the growth-decay rates into the HAC348

in the Storm-intensity sub-model, since these storm-components do not have a349

support in the space of the real numbers. However, according to results from350

dependograms, directionality and growth-decay rates are not entirely indepen-351

dent from the Storm-intensity model. Therefore, the directionality and the352

growth-decay rates are compelled to relate to the Storm-Intensity sub-model353

via a regression model, although not through a HAC structure.354

The standard approach transforms a continuous variable into a prede�ned355

set of categories. Usually, the reference coordinate system (i.e. North) and356

some prede�ned bins divide the wave-rose into 16 sectors. This poses a problem357

when the wave-directions are near the boundaries between two sectors, and can358

mislead regarding contingency. It is, then, crucial to select a set of categories359

based on the data itself. Both reference and bin size can be established with360

movM distributions. This type of distributions allow a more �exible de�nition361

of the wave-direction contingency, as elementary distributions are not assumed362

constant over preassigned subintervals. What is more, it can be transformed363

into categories of principal wave-directions (PD), simplifying the prediction of364

wave-directions.365

In this methodology, wave-directions are �rst characterized with movM dis-366

tributions (Barnerjee et al., 2005; Mardia and Jupp, 2009), whose probability367

distribution function of a mixture of k elements is368

f
(
x|Θ̂

)
=

k∑
h=1

αhfh

(
x|θ̂h

)
, k ∈ N, (12)

being x a circular variable, with µh as the hth mean, and κh as the hth �standard369

deviation�. The αh are the mixture probabilities, they are non-negative and sum370

to one; by de�nition, the mode with the largest αh is the principal direction.371

θ̂h = (µh, κh) for 1 ≤ h ≤ k, and Θ̂ =
{
α1, . . . , αk, θ̂1, . . . , θ̂k

}
. Θ̂ represents the372

mixture probabilities, as well as the means and standard deviations of the vM373

distributions in the mixture. Both θ̂ and Θ̂ have hats, in order to distinguish374

them from the peak-wave-directions (θ∗p) and HAC parameters (θ).375
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An Expectation maximization (EM) approach is used for maximizing the376

expectation of eq. 12. With the constraints on the vMF mean and deviance,377

µThµh = 1 and κh ≥ 0, the expression of the mixture probabilities αh is:378

αh =
1

n

n∑
i=1

p
(
h|xi, Θ̂

)
, n ∈ N, (13)

where n is the total number of elements in the sample, x is the angle, and379

Θ̂ is the parameter appearing in the eq. 12, and described above. p
(
h|xi, Θ̂

)
is380

the probability of appearance of the h vM distribution, given the angle xi and381

the parameter Θ̂.382

From the soft EM framework used here, the distribution p
(
h|xi, Θ̂

)
is given383

by384

p
(
h|xi, Θ̂

)
=

αhfh

(
xi|Θ̂

)
∑k
l=1 αlfl

(
xi|Θ̂

) , (14)

where αh, xi, k, and Θ̂ are the same variable as in eqs. 12 and 13, and385

f(xi|Θ̂) is the probability distribution function of xi, given Θ̂. The soft EM386

framework, assigns soft (or probabilistic) labels to each point given by eq. 14.387

Other candidates can be the hard, or �winner takes all�, EM, but the soft EM388

is selected for its �exibility, in comparison with the hard EM.389

The wave-direction is decomposed into the sine and cosine of the angle, and390

these two elements are then �t by movM. The corresponding movM parameters391

can be used to generate synthetic pairs of sine-cosine that can be combined392

to estimate the synthetic wave-direction. The Watson's two-sample uniformity393

test then helps identifying the strictly necessary number of modes in the movM394

distribution (Pewsey et al., 2013). By doing so, it improves goodness-of-�t,395

whereas avoiding over-�tting. This test checks whether two groups are extracted396

from a common distribution. The criterion for the goodness of �t is set as397

the statistic U2 to be smaller than 0.152, which corresponds to p-value= 0.1.398

When this criterion is met, it means absence of signi�cant di�erence between399

the empirical distribution and the model distribution.400

The means µk of each movM are considered as principal directions (PDk).401

These PDk delimit a set of categories. Hence, the continuous wave-direction in402

each storm is labelled by a category that bonds the �in�uence area� of one of403

the k vM distributions in the mixture. The main advantage of this approach is404

that the categorization of this variable is data-dependent, so the ranks can be405

related to the Storm-intensity sub-model.406

The relationship between the predicted PDk categories and the variables407

from the Storm-intensity sub-model (logE, logEu,p, log T , logD) is built with a408

multinomial logistic model (Hosmer et al., 2013). A multinomial logistic model409

consists of a regression model where the dependent variables (i.e. PDk) are410

categories and the explanatory variables can be continuous. Particularly, the411

predictors used in the multinomial logistic model are E, Tp and D. Eu,p is not412
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non-signi�cant as a predictor. Therefore, the multinomial model predicts the413

probabilities that a particular PDk can happen under certain intensity quanti-414

ties, then joining directional patterns with its associated E, Tp and D.415

2.5. Intra-time distribution sub-model416

This sub-model is linked with the Storm-intensity sub-model via the D.417

A polynomial function is adopted; it predicts the growth-decay rates from a418

given D. Other variables from the Storm-intensity sub-model do not show clear419

relationship to the growth-decay rates.420

A polynomial function is su�ciently �exible capturing the inner structure421

within D intervals vs. the growth-decay rates. What is more, a suitable rela-422

tionship is a third degree polynomial function, where the independent variable423

is D: f (D) = a0 + a1D + a2D
2 + a3D

3.424

2.6. Wave storm generator425

Once our model is built, the applicability consists of generating synthetic426

storms, whose parameters are related. These storms has been produced by427

recursive simulations that consider the nested structure of the HAC model, as428

well as the links between our three sub-models. The storms are generated for a429

given design return periods (Tr) until there is approximately a sample with more430

than 1000 storms, at each node. The selected tolerance for the error in joint431

and marginal Tr, in the storm generation, is 20%. This degree of tolerance is432

suggested by an estimate of observational residuals in the Catalan Sea (Sánchez-433

Arcilla et al., 2008a, 2014).434

There is not a unique correct design Tr, since in a multidimensional space435

there is no single total order. There is a variety of failure modes and diverse436

probabilities of failure that combine the existing parameters. Several criteria437

exist to de�ne a multivariate (n-variate) Tr (Salvadori and De Michele, 2010),438

and four representative expressions are listed below. These Tr take into consid-439

eration the various storm descriptors in the Storm-intensity sub-model.440

The Kendall Tr (Salvadori et al., 2007) is:441

Trk =
1

λ · (1− F (x))
, λ ∈ R , x = (x1, . . . , xi, . . . , xn) ∈ Rn, (15)

where λ is the annual occurrence of storms, x is the storm components442

characterized by HACs, and F (x) is443

F (x) =
1

n

n∑
i=1

F (Xi < xi) , (16)

where λ is the same concept as in the Kendall's Tr, ui is the cumulative444

probability of a 1D−variable, I is the unit interval [0, 1], the critical threshold445

t ∈ I is given by t = inf {s ∈ I : KC (s) = p} = K
[−1]
C (p), where KC is the446

Kendall coe�cient.447
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Two other possible ways to compute the joint Tr are via the mean value of448

the marginal Tr (eq. 17) or the geometric mean value of the marginal Tr (eq.449

18):450

Tr =
1

n

n∑
i=1

Tri (x) , x ∈ R, (17)

Tr = n

√√√√ n∏
i=1

Tri , x ∈ R, (18)

where Tri is the Tr of x. x is a storm component and Tri is calculated by451

means of eq. 15.452

All these di�erent de�nition of Tr bring forth the need for further research453

into multivariate Tr, as the currently available tools are mostly statistical the-454

oretical artefacts based on the not always true assumption that high values of455

variables are dangerous. All four de�nitions of Tr have been tested on, and,456

�nally, the eq. 17 is selected for presenting a better approach to physical mea-457

surements. See Section 5 for results, and Section 6 for the discussion.458

For a contingency study, the storm components are considered truncated.459

So pie-charts can be applied to represent which intervals are more frequent460

than others. A pie-chart leads to visually assess the di�erent categories and461

the relative weights over a total simulated number of storms. For the case of462

of wave-height, the Hs are within 3 − 3.5 m, and these values constitute the463

principal category. This visualization of the frequencies leads to a simple inter-464

pretation of the storm component interactions among themselves, thus aiding to465

�nd representative scenarios given a Tr. The 1, 2, 5, 10, 25 year return periods466

have been selected for synthetic data clustering, as they are routine in infras-467

tructure design. The life-time of a hard coastal protection infrastructure (e.g.468

revetment, groyne, etc.) may be established as 25 years (DGP, 2001), whereas469

soft coastal protection (e.g. nourishment, dune building, etc.) are associated470

with lower Tr (5 or 10yr) (García-León et al., 2015; Sánchez-Arcilla et al., ress).471

Direct applications of this methodology can provide hydrodynamic loads for472

infrastructure design and diagnosis.473

3. Study area474

The Catalan coast is part of the north-western Mediterranean Sea (see Fig.475

5). This water body is characterized by its semi-enclosed nature, the orographic476

patterns, air-sea temperature di�erences and the passage of low pressure cen-477

tres from the Atlantic (Lionello, 2012). The main morphological features are478

the existence of mountain chains parallel and close to the coast, the Pyrenees479

Mountains to the north, and the Ebre river valley to the south. These oro-480

graphic discontinuities, together with the major river valleys, allow for strong481

winds to be channelled down to the coast (Grifoll et al., 2015).482

The Catalan coastal winds are typically low to medium, on average, ranging483

up to 11.05m/s (Sánchez-Arcilla et al., 2008b). The most frequent and intense484
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wind is the Tramuntana (N), appearing from November to March. It has been485

observed that it is the major forcing for the northern and central Catalan coastal486

waves. From latitude 41◦N southward, the principal wind direction is the Mis-487

tral (NW). It is channelled by the western Pyrenees and the Ebre valley. The488

NW winds are formed by the superposition of gap and downhill �ows from the489

Pyrenees. A secondary wind mass, the Ponent, comes from the depressions in490

northern Europe and sweeps the entire Iberian Peninsula from west to east.491

Eastern winds are frequent during the summer. They are commonly trig-492

gered by an intense high-pressure area on the British Islands. Another origin is493

a high level of cold air pool deepening over the Mediterranean sea, which lead494

to cyclo-genesis, resulting in the passage of a low o� the Catalan coast (Bolaños495

et al., 2009; Lionello, 2012). Winds are more variable for higher intensities.496

Thus, some relatively large wind modulus-variability is generated during storms497

(Bolaños, 2004). Wave-directions are directly correlated with wind-direction,498

except the angle 50◦ of waves, which can be generated by winds in the sector499

NNW-ENE, approximately. This might be explained by the orientation of the500

coast-line, all winds, at some point, seems to create an alongshore wave-train.501

The Catalan coast has a micro-tidal environment (Lionello, 2012). The slope502

of the bathymetry is relatively steep in the north, while it becomes milder to503

the south. This has a direct impact on how waves behave when reaching the504

coast, as the bathymetry has an e�ect on the type of the impacting wave, and505

the beach slope determines the vulnerability to �ooding. Waves on the Catalan506

Sea also have a critical e�ect on sediment-transport, as the short wave-lengths507

do not allow the beach sediment to restore itself during summer-time.508

For fetch limited environments, direct correlation has been observed between509

wind and wave-directions, this suggest that the local wind is the main forcing510

for waves at the Catalan Sea, rather than distant winds, so we stress on the511

di�erence between local (which generate wind-waves) and distant winds (which512

generate swell-waves). This reinforces the idea that storm-waves at the Catalan513

coast are driven by mesoscale processes that span the entire fetch, whereas the514

swell contributions can be considered as secondary.515

According to Bolaños et al. (2009), who used XIOM buoy data, the largest516

waves come from the east, caused by the joint action of the most signi�cant517

fetches and winds. In further analysis with dependograms, it can be speci�ed518

that such directionality is most evident for Tp, at almost the entire Catalan519

coast. The directionality of Hm0 is limited to nodes N4, N5, C2, C4, S1 and S4.520

The mean signi�cant wave-height (Hs) is 0.72m from Barcelona city north-521

ward (the quantile 75 of Hs is qHs,75 = 0.89m, Hs,max = 5.85m), and 0.78m522

southward (qHs,75 = 0.98m, Hs,max = 5.48m). The extreme values are ap-523

proximately seven times the average values. In fact, the standard deviation is524

relatively high, being 30% of the mean. What can be expected is that a struc-525

ture can be severely challenged by storms of higher Tr. Northern storms might526

be slightly more hazardous, as it is observed here that Hs,max are 0.37m higher527

at northern sites than southern ones.528

The mean peak-wave-period (Tp) is 5.85s on the northern Catalan coast529

(qTp,75 = 6.73s, Tp,max = 15.87s) and 5.62s on the southern Catalan coast530
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(qTp,75 = 6.65s, Tp,max = 14.1s) (CIIRC, 2010). In this case, standard deviation531

is double the mean value. However, the quantile 75, the maximum and the532

mean are of a similar order of magnitude. The Tp, including the mean and the533

maximum values, is geographically homogeneous.534

The NW waves are the highest in Tortosa cape, while the eastern and south-535

ern waves are steepest in Llobregat delta (Bolaños et al., 2009). There is also a536

weakly linear relationship between the mean wave-period (Tz) and the Hs, that537

is, for each increase in 2s of Tz, Hs increases by 1m.538

The study area is divided into hydro-dynamically homogeneous sectors of539

similar lengths (see Fig. 5). The northern sector (N-) spans the area from the540

border with France (42.44◦N , 3.18◦E) to the Mataro Port (41.53◦N , 2.44◦E),541

the central sector (C-) extends from the Mataro Port to the Segur de Calafell542

port (41.19◦N , 1.61◦E), and the southern sector (S-) ranges from the Segur543

de Calafell port to the border with the Autonomous Community of Valencia544

(40.53◦N , 0.52◦E). The sector boundaries are political frontiers and locations545

of change in beach orientation. Each sector features a mean shoreline orientation546

that determines �a posteriori� whether a simulated synthetic storm (see Section547

2) will reach the coastline.548

4. Data source, and explanatory analysis of the storms549

The training set that the proposed statistical model uses comes from the550

SIMAR dataset (Gomez and Carretero, 2005). The data consist of wave-hindcast-551

simulations by WAM (WAMDI Group et al., 1988) and WAVEWATCH3 (Tol-552

man, 2009), fed with HIRLAM wind �elds (Unden et al., 2002). SIMAR pro-553

vides consistent, gap-less and spatially dense time series. A series of nodes are554

selected to representatively cover each one of the above mentioned sectors. This555

results in 6-8 nodes being assigned to each sector. N1 is near Creus Cape and556

S7 is well below Ebre Delta (see Fig. 5). SIMAR nodes are located at −50m557

depth, which are intermediate waters, in this area.558

The hindcast ranges from the 14th January 1996 to the 25th February 2013.559

Data in some nodes extend to the 22nd January 2014. SIMAR provides a variety560

of wave-spectra-parameters, such as Hm0 and Tp, among other information,561

including incoming wave direction and moment in time. The time resolution562

before June 2000 is of 3hrs and changes to 1hr thereafter. Spline-interpolation563

has been applied to discretize all time-series with the same temporal resolution.564

Storms are obtained from the SIMAR dataset with the methodology de-565

scribed in Section 2. Explanatory analysis shows that the quantiles 50 of E,566

H∗
max, Tp and D are spatially uniform, whereas their quantile 85 present more567

geographical heterogeneity: higher values in the north, lower values in the south568

and in the Roses Bay (see Fig. 5); speci�cally, the E, D, and Hm0 decrease ap-569

proximately 25% southward and in the Roses Bay, while the Tp increases 10% in570

the same direction. The Northern part of the Catalan coast (above 41.2◦N) has571

higher waves in its strongest storms, reaching values above 4m. Storms in these572

locations also have a longer D, surpassing 50hrs. The Tp, on the other hand, are573

larger from 41.8◦N southward. Note that the quantiles under 50, the quantiles574
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15 of E, H∗
max, Tp and D, for instance, are also spatially homogeneous, but they575

are ignored, as they are in�uenced greatly by the selected GPD thresholds.576

Both PdE (�Puertos del Estado� or State harbours) and XIOM buoy records577

(see Fig. 5 and table 1) are used for model validation. The selected buoys are578

located at similar positions to the SIMAR nodes. XIOM buoys provide Hm0,579

mean wave period (Tm), and date. For the sake of comparison with SIMAR580

dataset, the relation Tm/Tp = 0.8 (Goda, 2010) is considered.581

5. Results582

Figs. 6a through 6h, and Figs. 7a and 7b show a threshold iteration test583

on the nearest PdE and SIMAR nodes to the Barcelona City. This location is584

chosen for being the geographical centroid of the Catalan coast. The storm-585

threshold is named h0. Following to the criteria mentioned in Section 2, the586

selected value for h0 is 2.2m. On the other hand, the most adequate D∗
min is587

12hr.588

The numbers of storms, at each node, are listed on Table 2. The northern589

zone is the stormiest whereas lower number of storms were found at the south,590

coinciding with the state of the art (Sánchez-Arcilla et al., 2008b).591

The GPD threshold of D is considered to be Dmin = 6hrs, the threshold of592

E is H2
0 · Dmin = 29.4m2 hr, and the threshold of Eu,p is H2

0 = 4.84m2. The593

threshold of Tp corresponding to H1/3 = 0.95 ·Hm0 is 8.17s (CIIRC, 2010). E,594

Eu,p, Tp and D are well �t by GPD, with the selected thresholds (see parameters595

in table 3).596

The joint structure of the Storm-intensity sub-model is compared through597

goodness-of-�t plots for the Gumbel, Clayton and Frank HACs. The three HACs598

present similar qualitative behaviour and k2 parameter value. Then, the Gumbel599

type HAC is selected for being able to include upper extreme dependence. The600

�mean� aggregation method, in combination with the Gumbel type HAC, is601

adopted, for providing the best �t.602

Two Gumbel HAC tree types (A and B) are observed (see Fig. 3), based on603

the co-dependence of Eu,p to E and D. Type A HAC-trees di�er slightly from604

type B HAC-trees. In type A trees, Eu,p has a stronger relationship with E and605

D. There is no clear spatial pattern in how A and B trees are distributed (see606

table 4), but there is strong co-dependence between D, E, and Eu,p; fact that607

is corroborated by the dependograms (see Fig. 4). The dependence parameter608

of logD and logE (θ(logE,logD)), or, in other words, that of D and E (θD,E),609

is transformed into a τ value (Kendall, 1937). This τ , which has been called610

τ(E,D), is kriged on the −50m bathymetry (see Fig. 8). It is detected that this611

dependence has a tendency to decrease southward (see Fig. 8).612

The contingency of θ∗p are shown on Fig. 9 and table 5. It is observed613

that the principal µ is, from N1 to N6, approximately 330◦-20◦ (except at N3).614

Central nodes (N7 to S2) are heavily in�uenced by easterly waves, whereas615

southern nodes (S3 to S7) su�er more heterogeneous in�uences. The secondary616

direction at N1 to S6 are eastern waves, whereas it becomes predominantly617
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southern waves from N7 southward. The wave-contingency at N3 is similar to618

neighbouring nodes, only that the principal and the second directions are at619

the opposite direction than at node N2, for instance. It is observed that most620

nodes have bi-modal wave-directions, coinciding with (Alomar, 2012; Bolaños621

et al., 2009). The coe�cients of the multivariate logit function to predict θ∗p,622

from logE, logEu,p, log T and logD, are listed on table 6.623

Regarding the residuals associated with the triangular and irregular-trapezoidal624

candidate wave-height-evolution models, both the overestimation and underesti-625

mation residuals are well below 3m · hr (that is considerably inferior to the area626

below theHm0 time-series' curve) and ranges from a quantile 10 of 20.20m · hr to627

a quantile 90 of 157.65m · hr. The trapezoidal model overestimates in 0-1m · hr628

more than the triangular model, and the triangular underestimates in 0−1m · hr629

more than the trapezoidal model. Therefore, the trapezoidal model is selected630

as overestimation has been considered to be less harmful than underestimation,631

assuming that both residuals are of the same order of magnitude.632

The growth-decay rates are assessed with heat-maps, whose �a�ection areas�633

are de�ned with a bandwidth of radius = 5hrs ( see Fig. 10). When several634

points are inside the �a�ection area� of one point, the frequency for such pair-635

ing is higher and the area becomes �darker�. The coe�cients of third degree636

polynomial that relates D and growth are shown on table 7.637

Our model has been validated by buoy data (see Figs. 13 and 14). Figs.638

13 and 14 are then contrasted with Figs. 11 and 12. The amount of residuals639

present in our model is comparable to the one present in the SIMAR database.640

Tp shows a poorer �t (see Figs. 13c and 14c). The same poor �t is present in641

Figs. 11c and 12c. This behaviour can be explained because the wave-model642

(WAM and WAVEWATCH) considers a priori a parametrized wave-spectra.643

Such spectra has a prede�ned shape that does not necessarily represent the real644

sea state (Pallarés et al., 2014; Alomar et al., 2014). The method of represent-645

ing the wave-contingency with the principal directions seems to be useful to646

represent the wave-contingency (see Fig 11g). Regarding the SIMAR model,647

wave-directions from node N5 seems to di�er signi�cantly from the records of648

the nearest buoy, which suggests sensitivity of the wave-direction registry to the649

location of the node. The predicted growth and decay su�er rotation from the650

perfect �t, in the Q-Q plot, that is, central values are better �t than extreme651

ones (see Figs. 13e, 13f, 14e and 14f). Nonetheless, this better �t of the central652

values is also present for the node N5 in the SIMAR model ( see Figs. 11e and653

11f). Ergo, the SIMAR E, Eu,p, Tp, D and θ∗p are well validated by the buoy654

datasets (see Figs. 11 and Fig. 12).655

Storms simulated from the statistical model developed herein have been656

classi�ed according to Tr (eq. 17), and represented in a series of pie-charts657

along the coast. It can be observed, for example, that E for a Tr of 5years is658

mainly of the highest values at nodes N1 through N4 (except at Roses Bay, N3),659

whereas the more southern coastal tracts present less E (see Fig. 15). Similar660

gradation occurs to D (see Fig. 15d), whereas a milder one occurs to H∗
max (see661

Fig. 15b) and none is observed in Tp (see Fig. 15c). In general, the same spatial662

gradations are observed at each respective storm component for any one of the663
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Tr from 1 to 25 years.664

6. Discussion665

The discussion section will be divided into two parts: the �rst one will discuss666

the results from the proposed methodology (Model Building and Validation, in667

Fig. 2), whereas the second one will focus on the Wave-storm-generator.668

6.1. The statistical model669

This paper has proposed a statistical model that feeds upon a dataset from670

a wave-model (Section 3) which reproduces the main processes within the study671

area (Lionello, 2012). The Mediterranean Sea is characterized by local con-672

straints, such as mountain chains that funnel wind �uxes in a manner that673

limits the storm-pattern modes (Sánchez-Arcilla et al., 2008b). The Balearic Is-674

lands also trigger wave transformation-processes. At the south-most part of the675

central sector, the beach shoreline orientation induces a sheltering e�ect from676

northerly and easterly waves. It can be seen from Fig. 5 that the north-most677

part of the central sector is not sheltered from wave-storms. Strong forcings from678

the north and east directions cause the wind to exchange bursts of momentum679

with waves. The north direction has shorter fetch, while the east direction has680

di�erent fetches depending on the location of the cyclo-genesis.681

In a further consideration, the role of the sea level within a storm, especially682

when dealing with its consequences, is undeniable. Some authors (Masina et al.,683

2015) detected a considerable positive correlation between the peak water level684

(PWL) and the Hs. However, other authors (Mendoza et al., 2011) support the685

premise that the sea water level is independent from the storm conditions. This686

paper is based on the de�nition of storm-waves, therefore, it has focused only687

on storm-wave components, neglecting the e�ects of the water level.688

The perception threshold in the Catalan Sea is Hs = 2.0m (Hm0 ≈ 2.1m)689

(Bolaños and Sánchez-Arcilla, 2006; DGP, 1992) and is introduced as an initial690

value in the iteration. The goodness-of-�t of observations to exponential models691

yield residuals to be analyzed. In Figs. 6a and 6e, as the threshold is low,692

these residuals are large, meaning that the corresponding D∗ does not belong693

to exponential distributions. When the threshold rises, as observed in Figs. 6c,694

6d, 6g, and 6h, the residuals are minimized.695

Bernardara et al. (2014) discussed that a limitation to this rise in threshold is696

the statistical signi�cance in number of events over the threshold. It is observed697

in Figs. 7a and 7b that it is not recommended to go further than Hm0 =698

3m. Model validation has served to re�ne the value to Hm0 = 2.2m. This699

result intends to complement Sánchez-Arcilla et al. (2008a), which proposed700

Hs = 2.0m based on mean-excess plots and Kolmogorov-Smirnov goodness-of-701

�t tests. The threshold Hm0 = 2.2m is adequate because a) the associated702

D∗ is close to be exponentially distributed, b) the threshold falls in the linear703

part of the mean-excess-graphs, and c) the resulting storms are statistically704

signi�cant in number. Please note that the �t to the exponential distribution is705
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not perfect, so the excess-over-treshold plot has been crucial in the selection of706

the storm-threshold.707

On the other hand, the sensitivity test on D∗ has shown that 12hrs is the708

most adequate value, since 48 or 72hrs lead to unrealistic storms that di�er from709

�eld observations. Once storms are de�ned, it can be perceived that, in general,710

the northern Catalan coast is stormier than the southern one (see Table 2). N3711

behaves di�erently as it is located inside the Creus Cape (see Fig. 5), which712

shelters the area from cyclonic activity.713

The validation of our model by the buoy records helps identify the sources714

of residuals in our model. For instance, the lesser similarity of Tp in our model715

to the buoy recorded Tp partly comes due to the di�culties of modelling this716

parameter with state-of-the art wave-models (WISE Group, 2007; Pallarés et al.,717

2014). Another possible explanation is that, for a given Hm0, the Tp depends718

heavily on fetch length and its origin. However, the in�uence of the Tp is not719

�ltered by the intensity threshold.720

Residuals in the growth-decay rates come from two main sources: physical721

and numerical. A physical source of residuals appears as o�shore and onshore722

winds show distinct growth-decay rates, depending on remarkable di�erences in723

fetch extension. These di�erences can be compensated by uneven wind intensi-724

ties, but their e�ect remains in the growth and decay rates.725

The numerical residuals in the growth-decay rates come from the third-grade726

polynomial, used to link growth-decay rates to D, and from the SIMAR dataset.727

The limitations of SIMAR datasets in representing growth-decay rates might be728

due to the fact that wave-models usually introduce residuals when reproducing729

sharp gradients (Cavaleri, 2009; Sánchez-Arcilla et al., 2014). This limitation730

may be partly alleviated with the novel terms for the wave-action-balance equa-731

tion (Zieger et al., 2015), that show better agreement with recent measurements.732

Also, at the study area, storm-wave patterns can be a�ected by current intensi-733

�cations originated in the joint action of sustained winds from the NE-SE plus734

a shelf narrowing e�ect (Mestres et al., 2016). Thus, coupling the wave-model735

with a high resolution circulation model may improve the results. The short-736

coming of the third-degree polynomial is that it has di�culties re�ecting a link737

of the growth-decay rates for a D below 100hrs, where a dense cloud of values is738

present (see Fig. 10); further research on the intra-time distribution module is739

on-going. Apart from these issues, the statistical model reproduces the promi-740

nent features at the study area, and the storm components show agreement with741

the buoy records.742

It can be inferred from the HAC results (see table 4) that the strongest de-743

pendent variables are logD and logE. This dependency structure is consistent744

with physical observations, as the most enduring storms are usually those which745

have higher hydrodynamic forcings. It can be argued that, as E is integrated746

over D, that the correlation between them has to be the most prominent. The747

outcomes also show that, despite some dependence exists between Eu,p and the748

E or the D, the dependence among Eu,p and (E,D) is weaker. This behaviour749

can be explained due to the point-based de�nition of Eu,p that presents more750

variability than the integrated values of E and D, that features lower variabil-751
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ity. It can be observed how τ(E,D) increases northward (Fig. 8), implying more752

correlation between durations and northern storm magnitudes. At nodes where753

type A trees are prevalent, not only E, but also H∗
max is co-dependent on D.754

Please regard that θ∗p is the direction of the storm-peak, and therefore repre-755

sents the storm at its peak, rather than being a mean direction of the event. The756

East is one of the principal θ∗p, and the main e�ective θ∗p at a great part of the757

Catalan coast. Waves that blow northward from the Gulf of Lyon tend to veer758

counter-clockwise and do not impact at the Catalan coast (Bolaños et al., 2009).759

The coastline orientation (from N6 northward) is the reason, as despite having760

more recorded storms at the SIMAR points, the e�ective storms obtained with761

synthetic simulations were not as signi�cant in number than the other southern762

points. Due to larger fetch, from N6 northward, northern θ∗p are dominating.763

From N7 southward, the southern waves gain importance. The buoy used to764

validate either SIMAR or our data should be as close as possible to the node in765

the model to validate, as θ∗p is considerably sensible to location.766

The intercept of the growth-rate is, generally, 0.46, as well as the intercept767

of the decay-rate (see table 7). Both growth and decay-rates are considerably768

independent of D for durations under 100hrs. However, for D > 100hrs, while769

the growth-rate become asymptotic to 0.8, the decay-rate becomes asymptotic to770

0.2. That is, under this condition of D, more durable storms tend to also present771

higher growth-rates and lower decay-rates. Such large growth-rate and small772

decay-rate contradict the common phenomenon. The high Tr events recorded773

at the Catalan coast (November 2001 , October 2003 and December 2008) are774

scarce, but re�ect this sharp gradient response, veered by the pulsative wind775

momentum.776

The eq. 17 and 18, of Tr, by being arithmetic and geometric averages,777

respectively, set physical constraints on each marginal variable. This equalizes778

the marginal Tr of each variable to the total Tr of the storm, as real maritime779

storms present such equivalence between marginal and total Tr. For example,780

when the Tr of a storm is 10yrs, the storm should not have a Hm0 of Tr = 50yrs781

and a D of Tr = 1yrs. The Tr from eq. 17, in particular, provides the best782

constraints to the Tr of each integrating marginal storm component.783

E and D can reach signi�cantly large values with increasing Tr at the North784

(see Figs. 15a and 15d). Eastern storms generated at the Ligurian Sea are the785

most energetic and lasting storms due to the fetch distance (near 600 km). For786

Tr = 5yrs (see Fig. ?? and the section below), larger D can signi�cantly a�ect787

E, as Hm0 appears to be more spatially uniform along the Catalan coast.788

6.2. Application789

In order to visualize the potential of the methodology used, an example of790

the characterization of storms for a Tr = 5years is presented. The 5-year Tr has791

been selected because it is an extreme condition in which a) SIMAR dataset792

has a representative number of samples and b) the order of magnitude of such793

category has been analysed in detail for the study area (Mendoza et al., 2011;794

Sánchez-Arcilla et al., 2008b). As to provide suitable data for elements on the795

coast, the land originated storms (non-e�ective storms) are �ltered from the set796
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of synthetic storms. Note that, as the principal directions at some nodes might797

be land-generated, the number of e�ective storms decrease considerably after798

the �ltering, compared to other nodes.799

Our model provides joint combinations of E, Eu,p, Tp, D, θ∗p and growth-800

decay rates. The outcomes of the model can be examined at Fig. 15. The801

seven predicted variables are summarized in pie-charts, the categories of which802

describe the di�erences and principal patterns that appear on a particular node.803

One of the main �ndings of this paper is that, rather than a single value that804

represents a particular category (i.e. a Tr) for a speci�c wave component, a805

range of plausible values can be considered, instead. Note, however, that within806

this plausible range, there may be various intervals of disparate frequency (i.e.807

particular intervals shown in the pie-charts). The seven variables are linked via808

statistical models and it appears that a wide range of possibilities satisfy the809

clustering criteria. A description of the general study area is provided, whereas810

numeric outcomes are given for an example-node, N5.811

The Storm-intensity sub-model provides the �rst variables of the synthetic812

storms generated by our model. Fig. 15b shows that the H∗
max can range from813

2.2m (by de�nition) to over 8m. The highest waves are located in the northern814

coast-sector, and decreases southward, just as described in Sec. 5. mode (H∗
max)815

at node N5 is (6, 7.5] m (mode
(
H1/3

)
= (5.7, 7.1] m). Fig. 15c shows that Tp816

is independent from the location along the coast. The mode (Tp) at node N5817

is (11, 12.5] s. D presents a clear boundary at node C2: southward of node C2,818

storms generally span 48hrs (2days) of duration (see Fig. 15d). The mode (D)819

is > 96hr. Fig. 15a shows a geographical distribution that is clearly the result820

of a combination of the e�ects of both Hm0 and D. The mode (E) at node N5821

is > 2000m2 hr. The above-mentioned large values for mode (D) and mode (E)822

are due to the e�ects of the GPD extreme value functions and the Gumbel823

HAC, and they surpass physical constraints to such storm components, so the824

values of 96hrs and 2000m2 hr are to be used for mean-D (D) and mean-E (E),825

respectively. These values reinforce the existing idea that storms magnitudes at826

the northern part of the coast are higher than at the rest of the coast.827

The Directionality sub-model speci�es that the θ∗p along the Catalan coast828

are mainly eastern directions (see Fig. 15e). At node N5, in particular, the829

principal peak-wave direction is 76.27◦ (see Table 5); this is the PC2 at node830

N5, but regard that PC1 is not an e�ective wave-direction.831

The Intra-time distribution sub-model reproduce higher growth-rates than832

decay ones (see Figs. 15f and 15g). The exception is at the Northern nodes,833

where longer fetches exist and thus, a wider variety of wave ages can be found.834

The growth-decay rates are geographically uniform, although this is due to an835

above-mentioned limitation of the SIMAR model and the Intra-time distribution836

sub-model. The growth-rate to consider at node N5 is (0.5, 0.6], and the decay-837

rate is (0.3, 0.4].838

The results from our model are compared to the conventional engineering839

approach, where, given a Tr and a location, a Hs is obtained, followed by the840

Tp. The conventional method presents the following 90% con�dence interval,841

for Tr = 5yrs, Hs = (4.3, 5)m, and Tp = (12.4, 12.8) s (CIIRC, 2010). The842
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D is usually considered as 24hrs in the Catalan Sea. The storm wave-height843

evolution is usually modelled by an isosceles triangle where the height is the844

maximum Hs. In this case, the conventional E is (491.7, 726)m2 h, and other845

information such as incoming wave-direction can be obtained from contingency846

tables in the literature.847

The storms from our model are consistent with the values provided in Men-848

doza et al. (2011); Sánchez-Arcilla et al. (2008b). The Hs and the Tp in our849

model are slightly larger than in the conventional methodology, in this case,850

without signi�cant physical implications. E and D from our model, although851

considerably larger, are possibly more accurate than their classical counterparts,852

and the same applies to the growth-decay rates. Also, D = 24hrs is an average853

duration, while D = (114, 168] hrs derives from the SIMAR dataset. θ∗p is an854

extra information provided here and which is not so much considered in the855

conventional approach. Most importantly, the conventional methodology can856

hardly re�ect the probable behaviour of the storm, mainly because it ignores857

the variable interactions and feedbacks.858

7. Conclusions859

The statistical wave-storm model proposed is composed by three sub-modules:860

a) Storm-intensity, b) Wave-directionality and c) Intra-time distribution. In861

these sub-modules, waves have been de�ned by a set of storm-components (E,862

Eu,p, Tp, D, θ∗p and growth-decay rates), representing their nature in a more863

accurate manner. Our model is well validated by buoy records, whereas main864

sources of residuals are related to growth-decay rates.865

Storms have been de�ned with a threshold of Hm0 = 2.2m, which has been866

obtained after testing on D∗, plus Hm0 excess-over-threshold plots.867

In the Intensity sub-model, the marginal distributions of each variable are868

characterized by GPDs, whereas dependences among the variables are repre-869

sented by HACs. The best �tting HAC type is Gumbel. It is observed that870

the strongest dependence may be between E and D. Two HAC structures are871

observed along the Catalan coast: type A and type B, depending on the degree872

of semi-dependence between Eu,p and (E,D). The semi-dependence param-873

eter τ(E,D) increases northward. Therefore, northern E and D present more874

correlation.875

Wave-directions are described via movM. The movM distribution is selected876

using a statistic from the Watson test as convergence criteria. The princi-877

pal peak-wave incoming-direction, θ∗p, at N1 to N6 are, by decreasing order878

of importance, North and East; whereas eastern and southern directions are879

predominant from N7 to S7.880

The most appropriate model for wave-height evolution is the irregular-trapezoidal881

model. On the other hand, the growth-decay rates are related to the rest of the882

storm components through a polynomial relationship withD. A mean behaviour883

of D for D < 100hrs is reproduced by the model, although for greater D the884

model tends to predict higher growth rates and lower decay rates.885
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One feature of our model is its ability to generate synthetic storm conditions886

and to classify them by Tr; these storms are evaluated in the form of pie-charts.887

In general, for a Tr of 5yrs, storms at the northern Catalan coast have greater888

E, D, and Hm0; while Tp are similar to central or southern Catalan coasts.889

Also, the principal θ∗p is eastern and the growth and decay rates approximate890

0.55 and 0.35, respectively.891
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10. Figure Captions1089
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Figure 1: a) De�nition of variables for a single peak storm, where Hm0 is the wave-height,
D is the storm duration, b) de�nition of the peak-unitary-storm energy, Eu,p, where Eu,i

are the unitary-storm-energies at each hour (the red dashed line is the actual storm and the
green line is an equivalent storm without the skewness problem), c) proposed storm shapes
(irregular-trapezoid and triangular), where the parameters are initial time (tini), ending time
(tend), and our model's maximum wave-height (H∗

max).
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Figure 2: Flow-chart of the methodology used to construct the statistical storm model. The
model is composed by three sub-models: intensity (orange), wave directionality (olive green)
and intra-time (purple). Rectangle boxes represent input/output data whereas the parallelo-
grams represent the actions taken.
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logE logD
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logTθ = 2.15

θ = 4.44

θ = 1.16

(a)

logE logD

logT logEu,pθ = 3.9
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Figure 3: Types of HAC trees obtained for the Catalan Sea. a) Type-A: HAC structured with
3 levels of variable dependencies (at node N1), b) type-B: HAC structured with 2 levels of
variable dependencies (at node N7). The upmost level is the �root�. The variables sequentially
cluster according to their dependence (θ) with other variables.
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Figure 4: Dependogram: dependence among variables logE (1), logEu,p (2), log T (3), and
logD (4), at node C3. The length of the bar (statistic) exceeding the bullet (critical value)
represents the degree of dependence. E and D present the greatest dependence, followed by
the subsets {E,Eu,p} and {Eu,p, D}.
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Figure 5: Map of the study area showing wave measurement networks (XIOM and PdE), and
the SIMAR nodes. The colour lines of the regions (red, orange, green, blue and purple) and
the coloured areas (red, yellow and blue) cluster the coast into the three sectors: North (France
to Mataro harbour), Central (Mataro harbour to Segur de Calafell harbour) and South (Segur
de Calafell harbour to the Autonomous Community of Valencia).
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Figure 7: Mean-excess-plot of Hm0 for the a) SIMAR node C3 and b) PdE-BCN-II buoy
node. The red line represents the log-transformed number of events over a given threshold,
while q50, q5 and q95 are the quantiles 50, 5 and 95, of Hm0.
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Figure 10: Heat map of a) dimensionless growth-rate vs. D, and b) decay-rate vs. D, at node
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11. Tables1090

Table 1: Buoy location and data availability. All the considered buoys are directional.

Buoy Longitude
(◦E)

Latitude
(◦N)

Depth
(m)

Data availability

PdE-Palamos 3.19 41.83 90 26/03/2010 to
30/06/2011

XIOM-Blanes 2.82 41.65 74 13/07/2007 to
31/12/2012

PdE-Barcelona
I

2.15 41.29 50 08/03/2004 to
22/12/2013

PdE-Barcelona
II

2.20 41.32 68 08/03/2004 to
30/11/2011

XIOM-
Llobregat

2.14 41.28 45 05/02/2004 to
31/12/2012

XIOM-Tortosa 0.98 40.72 60 15/06/1990 to
31/12/2012

Table 2: Number of storms per node.

Node Storms Node Storms Node Storms Node Storms

N1 471 N6 201 C3 75 S3 44

N2 467 N7 134 C4 49 S4 31

N3 88 N8 62 C5 77 S5 59

N4 255 C1 60 S1 42 S6 73

N5 348 C2 99 S2 65 S7 52
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Table 3: Parameters of the GPD adjusted to each SIMAR node: location (µ), scale (σ), and
shape (ξ). The E is the storm energy, Eu,p is the maximum unitary storm energy, Tp is the
peak-wave-period associated to H∗

max, and D is the storm duration. The h0 = 2.2m is the
wave height threshold. The Dmin = 6hrs is the required minimum storm duration or duration
threshold. The Tmin = 8.17s is the Tp threshold, obtained from CIIRC (2010).

GPD parameters

logE (µ =
Dmin ·H2

0 )
logEu,p
(µ = H2

0 )
log T

(µ = Tmin)
logD

(µ = Dmin)

Node σ ξ σ ξ σ ξ σ ξ

N1 2.65 -0.54 1.01 -0.34 0.10 -0.00 1.94 -0.50

N2 2.57 -0.52 0.98 -0.32 0.10 -0.02 2.00 -0.57

N3 2.42 -0.72 0.71 -0.30 0.33 -0.79 1.91 -0.76

N4 2.32 -0.50 0.81 -0.24 0.15 -0.24 1.83 -0.54

N5 2.37 -0.48 0.91 -0.27 0.14 -0.23 1.86 -0.55

N6 2.27 -0.55 0.81 -0.24 0.17 -0.29 2.08 -0.76

N7 2.36 -0.63 0.81 -0.26 0.25 -0.53 1.88 -0.72

N8 2.54 -0.75 0.81 -0.27 0.28 -0.53 1.77 -0.68

C1 2.31 -0.68 0.79 -0.25 0.31 -0.59 1.43 -0.56

C2 2.32 -0.61 0.85 -0.24 0.29 -0.61 1.72 -0.62

C3 2.20 -0.62 0.83 -0.25 0.27 -0.48 2.02 -0.99

C4 2.21 -0.64 0.81 -0.22 0.26 -0.47 1.87 -0.90

C5 2.24 -0.63 0.82 -0.24 0.21 -0.34 1.90 -0.87

S1 2.07 -0.76 0.66 -0.22 0.16 -0.12 1.53 -0.75

S2 2.20 -0.68 0.76 -0.25 0.17 -0.21 1.99 -0.95

S3 2.23 -0.76 0.71 -0.25 0.14 -0.08 1.78 -0.86

S4 2.04 -0.74 0.67 -0.23 0.16 0.01 1.99 -1.09

S5 1.87 -0.61 0.64 -0.20 0.28 -0.48 1.50 -0.68

S6 1.87 -0.59 0.68 -0.23 0.24 -0.38 1.45 -0.62

S7 1.64 -0.49 0.65 -0.20 0.16 0.00 1.31 -0.65

44



Table 4: Parameters of HACs. The selected copula type is Gumbel-HAC, and the aggregation
method is �mean�. These parameters can be used to compare di�erent locations.

Node Tree
type

θ(E,D) θ((E,D),Eu,p) θroot Node Tree
type

θ(E,D) θ((E,D),Eu,p) θroot

N1 A 1.16 2.15 4.44 C3 A 1.27 2.03 3.79

N2 A 1.22 2.23 4.47 C4 A 1.29 1.97 4.17

N3 A 1.14 1.87 4.89 C5 B 1.62 3.54

N4 A 1.27 2.10 4.54 S1 B 1.48 3.74

N5 A 1.45 2.10 4.66 S2 A 1.18 1.81 3.74

N6 B 1.67 4.08 S3 A 1.33 1.92 3.69

N7 B 1.58 3.90 S4 B 1.55 4.30

N8 A 1.43 1.98 3.92 S5 A 1.22 2.01 4.47

C1 A 1.23 1.94 3.95 S6 A 1.29 1.84 4.11

C2 A 1.23 2.03 4.36 S7 A 1.59 2.19 3.89

Table 5: The wave directions at each node derive into pairs of (sin, cos). The set of sines and
the set of cosines are characterized by seldom movM distributions. Means (µ) of the movM
distributions are provided for each principal principal direction (PD).

Mean (µ) [◦] Mean (µ) [◦]

Node PD1 PD2 PD3 Node PD1 PD2

N1 344 84 C3 78 198

N2 353 76 C4 81 196

N3 73 353 C5 81 220

N4 11 78 S1 91 195

N5 15 76 S2 85 203

N6 23 88 S3 183 88

N7 74 33 205 S4 94 176

N8 81 200 S5 82 320

C1 84 198 S6 334 77

C2 70 205 S7 74 109
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Table 7: Parameters of the function f (D) = a0 + a1D + a2D2 + a3D3, where D is storm
duration, and f (D) is either growth or decay-rate.

growth rate decay rate

a0 a1 a2 a3 a0 a1 a2 a3

N1 0.48 -0.52 0.10 -0.39 0.45 0.85 -0.29 0.51

N2 0.48 -0.48 0.25 -0.57 0.45 1.09 -0.56 0.78

N3 0.48 -0.46 0.24 -0.55 0.45 1.17 -0.62 0.81

N4 0.47 -0.45 0.40 -0.68 0.45 1.35 -0.91 1.07

N5 0.47 -0.52 0.61 -0.82 0.45 1.48 -1.11 1.21

N6 0.47 -0.58 0.67 -0.90 0.45 1.50 -1.15 1.30

N7 0.47 -0.50 0.61 -0.86 0.45 1.47 -1.13 1.31

N8 0.47 -0.47 0.62 -0.89 0.45 1.46 -1.13 1.33

C1 0.47 -0.45 0.61 -0.90 0.45 1.45 -1.12 1.34

C2 0.46 -0.47 0.64 -0.92 0.45 1.47 -1.15 1.36

C3 0.46 -0.47 0.65 -0.94 0.46 1.49 -1.18 1.40

C4 0.46 -0.47 0.65 -0.94 0.46 1.50 -1.19 1.41

C5 0.46 -0.51 0.69 -0.97 0.46 1.56 -1.24 1.46

S1 0.46 -0.52 0.70 -0.98 0.46 1.59 -1.27 1.48

S2 0.46 -0.53 0.71 -1.00 0.46 1.59 -1.27 1.49

S3 0.46 -0.52 0.71 -1.00 0.46 1.61 -1.29 1.52

S4 0.46 -0.52 0.72 -1.02 0.46 1.63 -1.31 1.53

S5 0.46 -0.55 0.75 -1.04 0.46 1.66 -1.33 1.54

S6 0.46 -0.60 0.79 -1.07 0.46 1.70 -1.35 1.55

S7 0.46 -0.61 0.80 -1.08 0.46 1.71 -1.35 1.53
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