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Abstract

We prove that the solution of any linear mechanical system can be expressed
as a linear combination of signal transmission paths. This is done in the frame-
work of the Global Transfer Direct Transfer (GTDT) formulation for vibroa-
coustic problems. Transmission paths are expressed as powers of the transfer
matrix. The key idea of the proof is to generalise the Neumann series of the
transfer matrix –which is convergent only if its spectral radius is smaller than
one– into a modified Neumann series that is convergent regardless of the eigen-
values of the transfer matrix. The modification consists in choosing the ap-
propriate combination coefficients for the powers of the transfer matrix in the
series. A recursive formula for the computation of these factors is derived. The
theoretical results are illustrated by means of numerical examples. Finally, we
show that the generalised Neumann series can be understood as an acceleration
(i.e. convergence speedup) of the Jacobi iterative method.
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List of symbols

A system matrix
αi, βj,i, γi parameters in generalised Neumann series
b vector of forces or excitations
D diagonal part of matrix A
I identity matrix
L strict lower triangular part of matrix A
λ eigenvalues (typically of matrix T)
n problem dimension
Sj,m partial sum of order j (j modified parameters) and m+ 1 terms
T transfer matrix
TG global transfer matrix
U strict upper triangular part of matrix A
x vector of unknowns or signals

1 Introduction

Vibroacoustic problems are very often not easy to visualise and understand. Moreover,
the availability of experimental measurements is limited by operational costs and
times. For these reasons the intuition of engineers/physicists/acousticians has always
played an important role during the design process. A key concept is the transmission
path of sound and vibrations. This has remained an intuitive idea rather than a
properly defined and well established concept.

The first attempts to quantify the contribution of subsystems, even if they never
spoke about paths, can be found in [1] and later works [2, 3, 4, 5, 6]. They were moti-
vated by the need in the automotive industry to characterise how the noise generated
by the engine or in the moving parts of the vehicle were transmitted to the cabin. This
method is nowadays known as Operational Transfer Path Analysis (OTPA), [7, 8].

Paths are implicitly defined and quantified in [9]. The role of paths in more specific
situations was analysed in [10, 11], where the interest is focused in the characterisation
of the connectivity between system parts. This method is known as Global Transfer
Direct Transfer (GTDT) method in the papers or as Advanced Transfer Path Analysis
(ATPA) in the industry, where it has been widely used in many applications, such as
railways [12]. Some academic tests can be also found in [13, 14]. A comprehensive
classification of the methods and historical overview can be found in [15]. Paths have
also been defined and quantified in a Statistical Energy Analysis (SEA) framework
[16, 17, 18].

Other applications of the path concept can be found in the literature. An analysis
of the paths that contribute more to the system response by means of graph theory
is presented in [19, 20]. Path analysis was simplified considering forward paths only
in [18]. A comparison of path analysis with other methods was reported in [21].

In spite of the clear applicability of path analysis to practical situations, a theoret-
ical question remains open: a proof of completeness. In other words, the possibility of
fully describing the solution of a mechanical transfer problem by means of the super-
position of transmission paths. This theoretical question is addressed here, by using
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concepts and tools of numerical linear algebra (see textbooks [22, 23] for background
material).

It was clearly demonstrated in [24, 18] that a solution of a mechanical problem can
be described by means of the Neumann series1 of the transfer matrix T (the powers
of T are a representation of paths of different order in the mechanical system). The
series has strict convergence conditions, which in practise mean that the solution
description through transmission paths and Neumann series2 is not always possible.

The issue of the completeness of the solution description has also been addressed
in [25, 26, 19, 27]. [25] relates the convergence of the series with the damping of the
systems because the energy of undamped systems permanently excited would grow
indefinitely. However, this does not explain the situations when, even with damping,
the series diverge. For this reason [19] claims that other conditions to ensure the
convergence are required in addition to the existence of damping. The drawback of
the divergence of the solution expressed as a series also appears if the problem is not
strictly formulated in terms of the transfer matrix and its powers. This can be seen
in [26] for the matrix of coupling loss factors and in [27] for the coupling eigenvalues.

The goals and achievements of this research are as follows:

• To provide a definition of what a path is.

• To prove the possibility of expressing the solution of all linear problems in terms
of paths (especially applied to vibroacoustics). The proof is done in the frame-
work of the Direct and Global Transfer Matrix formulation of the problem. The
final result is a generalisation of the Neumann series.

• To derive a practical recursive methodology that allows the computation of the
solution based on the transfer matrix of the problem. The goal is also to provide
a closed-form expression of the solution as simple as possible.

• To illustrate this methodology with numerical examples.

• To explore the relationship between the proposed approach and Jacobi iterative
method for linear systems. The generalised Neumann series can be understood
as an acceleration (i.e. convergence speedup) of the Jacobi method.

The remainder of the paper is organised as follows. Some key concepts such as
the notion of path and the transfer matrix are defined in Section 2. A precise and
explicit definition of path is given. The theoretical core of the research is presented
in Section 3. It includes the proof of the existence of an expression of the system
solution based on a linear combination of paths. A general methodology to compute
the combination factors in the generalised Neumann series is provided. Numerical
examples that illustrate the theoretical results are shown in Section 4. The concluding
remarks of Section 5 close the paper.

1In honour of Karl Gottfried Neumann (1832-1925)
2A Neumann series has the form

∑∞

k=0
T

k.
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2 Definitions

2.1 Physical considerations on the ‘path’ concept

Various methods based on path analysis are useful to find engineering solutions in
vibroacoustic problems [15]. Nevertheless the ‘path’ concept is often not defined in a
rigorous way.

Our goal here is to provide this explicit definition of ‘path’. It will help later
in Section 3 in order to develop the core of this research. The definition must be
consistent with these three intuitive ideas:

1. A path is something different from a contribution. It must provide information
on how the system behaves, instead of being understood as a black box with an
input and an output. In techniques such as Transfer Path Analysis (TPA, [28])
the output is a product of multiple contributions that arrive through different
uncharacterised paths. This is not the case of ATPA (GTDT) or OTPA, which
are based on the path concept.

2. A path is not only defined by the topology of the problem. In addition, the
physical behaviour of the system must be considered. Clear examples of this are:
i) a beam, where the deflection of a point is linked not only with the deflection
of other points but also with the rotations [11]; or ii) an SEA description of
the sound transmission between two rooms, where coupling loss factors due to
forced or resonant transmissions must be considered in the same single wall
[29]. For the case i) see the simple sketch in Fig. 1 where a supported beam
is represented. Three different points in the beam are considered (i = 1, 2, 3).
Each of them is characterised by its displacement xi. However, this is not enough
in order to study the signal transmission between 1 and 3 because an imposed
displacement at 1 causes a displacement at 3 even if the displacement at 2 is
blocked. The signal can pass from 1 to 3 not only through the displacement in
2 but also through the rotation in 2. So, two different transmission paths must
be considered in order to properly characterise the mechanical system response.
It is clearly shown in the path diagram of Fig. 1.

3. A path is the edge of a weighted graph including the physical characteristics of
the problem. The quantity that characterises the link between two nodes must
be related with the physics of the problem.

2.2 Definition of paths

Let N = {1, 2, . . . , n} be a set of n nodes. The nodes may represent single points
in a continuous system, a degree of freedom associated to that point, single masses
in a discrete system of masses and springs or disjoint parts of a continuous system.
Their intersection must be null. Let xi be a physical signal and bi an excitation, both
associated to node i.
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Figure 1: Path representation of a simply supported beam. Four degrees of freedom
are considered: three displacements xi and one rotation α.

.

The behaviour of the mechanical system is properly described by the following
linear system of equations:

Ax = b xi, bi, aij ∈ C (1)

A direct path between nodes i and j exists and is represented by coefficient pij if
the following conditions are satisfied:

1. pij 6= 0 links signals xi and xj caused by an excitation in node i while all other
nodes are blocked:

xj = pijxi ∀j 6= i, for xk = 0, ∀k 6= i, j, bi 6= 0 and bj = 0 (2)

The non-zero coefficient pij will be called direct transfer between nodes i and j.

2. It is possible to express the solution of the system as a superposition of paths
of arbitrary order.
A k-order path p

(k)
ij is as a chain of k direct paths that starts at node i and ends

at node j with j 6= i or j = i such that: p
(k)
ij = pirprs . . . pqj

︸ ︷︷ ︸

k

.

That is, it must be possible to express every signal xj as

xj =
n∑

i=1

∞∑

all paths
k=1

γkp
(k)
ij xi (3)

where γk are combination factors that depend on the order of the path (see
Section 3 where γk are defined in Eq. (42)).
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Several models used to describe the response of mechanical systems can fit in the
definition of the path concept presented here, see for example [9, 26, 27, 30].

2.3 The Global Transfer Direct Transfer (GTDT) frame for
paths

The basic concepts of the GTDT method [9] are briefly reviewed here.

2.3.1 Problem statement

Consider the linear system of equations (1), where A is a (in general complex but
possibly real) invertible matrix of dimension n. Matrix A may be expressed as

A = D+ L +U (4)

where D, L and U are the diagonal, strict lower and strict upper parts of matrix A.
By assuming that D is invertible, system (1) may be recast as

x = D−1b+Tx (5)

where

T = −D−1(L+U) (6)

is the transfer matrix. This matrix is the transpose of the Direct Transfer Matrix
defined in [9] with zeros in the diagonal. Note that T is not symmetrical in general
and that it takes into account the coupling between the unknowns: for T = 0, the
system is diagonal and the solution is simply x = D−1b.

From Eq. (5), the solution of system (1) may be expressed as

x = (I−T)−1D−1b (7)

Finally, we define the Global Transfer Matrix

TG = (I−T)−1D−1 (8)

Note that the definition of the Global Transfer Matrix in [9] contains a diagonal
scaling matrix not included here. This allows a change between forces and displace-
ments as main variables. In an experimental research it is often more advantageous to
work with displacements because they can be measured more easily. On the contrary,
in the context of the present work it is more convenient to think in terms of a force-
displacement formulation. This diagonal scaling matrix implies that the coefficients
of TG have the physical meaning of receptance Frequency Response Functions (FRF).

2.3.2 Transfer matrices: physical meaning

Note that, under the assumptions of Eq. (2), equation j of the linear system (5) is

xj = tjixi ∀j 6= i, for xk = 0, ∀k 6= i, j, bi 6= 0 and bj = 0 (9)
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where tji are the entries of matrix T. This means that matrix T contains all the
information on the direct signal transmission from one node to another when all the
rest are blocked. This the first requirement in Section 2.2. The main goal of this
research is to prove that matrix T also satisfies the second requirement.

The formulation of the problem in terms of the transfer matrix is valid for the mod-
elling of mechanical systems by means of different techniques such as: i) Statistical
Energy Analysis [29], in which case the system matrix A is created from the coupling
loss factors that relate the subsystems and their damping coefficient; ii) the Finite
Element Method (FEM [31]), in which case the system matrix A = K− ω2M, where
K and M are the stiffness and mass matrices (damping can also be considered); or
iii) models or methods where T can be indirectly obtained by means of experimental
measurements in a laboratory as described in [9].

Matrix T contains information of the system connectivity and its successive powers
are a representation of the k-order paths. This can be deduced from the graph theory
and the properties of the powers of the adjacency matrix, see for example [32].

The recursive substitution of Eq. (5) in itself leads to the following identity:

x = (I+T+T2 + .. +Tk−1)D−1b+Tkx (10)

This makes evident the relationship between the Neumann series, the re-formulation
of the problem in terms of the transfer matrix and the solution of the original linear
problem. When the spectral radius (i.e. largest modulus of eigenvalues, see [33, 22,
23]) of T is less than one, the limit for k tending to infinity of vector Tkx is zero and
the solution of the problem is the Neumann series. In other words, the solution of the
problem is the simplest (all combination coefficients equal one) linear combination of
k-order paths. The order k starts at zero and the series makes sense when k tends to
infinity. This case is more rigorously considered later in Section 3.1.

The coefficients of the Global Transfer Matrix TG, as defined in Eq. (8), express
the signal in node j exciting the node i when the rest of the nodes are not blocked.
Consequently, the signal at node j includes the contributions of all the paths. TG is
more easily measurable in the laboratory than T, which must be indirectly measured
by means of laborious tests like the strip method [34].

Finally, matrix D−1 is the matrix of direct transfers from node i to node i: dii. It
accounts for the part of the signal in node i that does not come from the other nodes
but from the external applied forces.

Eq. (5) can be premultiplied by xtD leading to

xtDx = xtb+ xtDTx (11)

This new expression can be interpreted in energetic terms. The left-hand-side repre-
sents the kinetic and potential energy of individual elements and xtb is the external
work. Consequently, the transfer matrix T plays the role of an interaction potential.
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3 Solution based on paths superposition: mathe-

matical proof

The mathematical proof for the existence of a linear combination of paths that leads to
the solution of the problem is given here. The methodology is based on the framework
presented in Section 2, so, the proof is valid for a wide variety of models that satisfy
a very usual algebraic structure: linear system of equations reformulated in terms of
the transfer matrix.

In those cases the mathematical expression of path addition is Eq. (10). However,
the convergence of the series cannot always be ensured. It depends on very different
factors related with the physical properties or the modelling technique, such as the
damping distribution in the mechanical system, how are the SEA subsystems defined,
which points are chosen in order to define a transfer matrix, etc. Divergence is found
if the spectral radius of the transfer matrix is not less than one, ρ(T) ≮ 1. This
situation, which in fact is the motivation of the discussion and the main goal of the
research, is analysed in Section 3.2.

The main question to be answered here, linked with the second aspect of the path
definition in Section 2.2, is if it is possible to express (I − T)−1 (and, hence, the
solution x) as a linear combination of powers of the transfer matrix T also in the
case when the spectral radius of T is larger than one. This non-trivial case will be
analysed afterwards in Section 3.2.

3.1 Some useful well-known results

Theorem

Let B be a square matrix. The following conditions are equivalent (see for example
Theorem 1.5-1 in [33]):

1. lim
k→∞

Bk = 0

2. lim
k→∞

Bkv = 0 for any vector v

3. ρ(B) < 1, where ρ(·) is the spectral radius

Neumann series, spectral radius less than one

If T verifies the conditions above, then

(I−T)−1 =
∞∑

k=0

Tk (12)

To show this, we consider the partial sum S0,m =

m∑

k=0

Tk. Subscript m denotes the

upper limit of the summation, whereas subscript 0 indicates that it is the original

8



Neumann series. Then,

lim
m→∞

(I−T)S0,m = lim
m→∞

( m∑

k=0

Tk −

m∑

k=0

Tk+1

)

= I− lim
m→∞

Tm+1 = I (13)

Note that for ρ(T) < 1,

lim
m→∞

S0,m = (I−T)−1 (14)

3.2 Transfer matrices with spectral radius larger than one

The remainder of the section shows that Eq. (12) can be always generalised to deal
with transfer matrices T such that ρ(T) ≮ 1. In other words, the solution of a linear
system of equations representing a mechanical system can be expressed as a linear
combination of paths of different order as defined in Section 2.3.

3.2.1 One-parameter modification

Consider the sequence of matrices {P1,k} with

P1,0 = α1T
0 and P1,k = (1− α1)T

k−1 + α1T
k for k ≥ 1 (15)

where α1 is a free parameter to be determined later, and the modified partial sum

S1,m =

m∑

k=0

P1,k = α1T
0 + (1− α1)T

0 + α1T
1 + · · ·+ (1− α1)T

m−1 + α1T
m

= S0,m−1 + α1T
m

(16)

Note that, for α1 = 1, one retrieves the Neumann series (12). The question here is to
know, for the case α1 6= 1, under what conditions does the partial sum (16) converge
to the inverse of (I−T):

lim
m→∞

(I−T)S1,m = lim
m→∞

(S1,m −TS1,m)

= lim
m→∞

(S0,m−1 + α1T
m −TS0,m−1 − α1T

m+1)

= I− lim
m→∞

(

(1− α1)T
m + α1T

m+1

)
(17)

The equality (I − T)S0,m−1 = I − Tm is used for the last step. Eq. (17) shows that
S1,m converges to (I−T)−1 if and only if

lim
m→∞

(

(1− α1)T
m + α1T

m+1

)

= lim
m→∞

P1,m+1 = 0 (18)

This condition is less restrictive (and includes) the usual condition limm→∞Tm+1 = 0.
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3.2.2 Two-parameter modification

The modification strategy of section 3.2.1 can be applied again. Consider the sequence
of matrices {P2,k} with

P2,0 = α2P1,0 and P2,k = (1− α2)P1,k−1 + α2P1,k for k ≥ 1 (19)

and the modified partial sum

S2,m =

m∑

k=0

P2,k = S1,m−1 + α2P1,m (20)

The question here is to know under what conditions does the partial sum (20) converge
to the inverse of (I−T):

lim
m→∞

(I−T)S2,m = lim
m→∞

(

S2,m −TS2,m

)

= I− lim
m→∞

P2,m+1 (21)

To obtain the second equality in Eq. (21), one takes into account the definition of the
partial sums S0,m, S1,m and S2,m. Eq. (21) shows that S2,m converges to (I−T)−1 if
and only if

lim
m→∞

P2,m+1 = lim
m→∞

(

(1− α2)P1,m + α2P1,m+1

)

= 0 (22)

This condition is less restrictive (and includes, for α2 = 1) the condition limm→∞P1,m+1 =
0 derived in section 3.2.1.

3.2.3 Multi-parameter modification

In fact, the modification strategy can be applied recursively. Consider the sequence
of matrices {Pj,k} with

Pj,0 = αjPj−1,0 and Pj,k = (1− αj)Pj,k−1 + αjPj−1,k for k ≥ 1 (23)

and the modified partial sum

Sj,m =

m∑

k=0

Pj,k = Sj−1,m−1 + αjPj−1,m (24)

The following limit is considered to show under what conditions does the partial sum
(24) converge to the inverse of (I−T):

lim
m→∞

(I−T)Sj,m = lim
m→∞

(

Sj,m −TSj,m

)

= I− lim
m→∞

Pj,m+1 (25)

Eq. (25) shows that Sj,m converges to (I−T)−1 if and only if

lim
m→∞

Pj,m+1 = lim
m→∞

(

(1− αj)Pj−1,m + αjPj−1m+1

)

= 0 (26)

For the reasons discussed next, this recursion is applied at most n times, where n
is the problem dimension.

10



3.2.4 Selection of parameters

Once the less restrictive convergence conditions of Eqs. (18), (22) and (26) are avail-
able, an strategy to select the optimal values of the parameters α1, α2, . . . , αn is re-
quired.

Consider the basis {ui}
n
i=1 of eigenvectors of matrix T, associated to eigenval-

ues {λi}
n
i=1 (over the complex field C, any matrix T either i) diagonalises or ii) is

arbitrarily close to one with distinct eigenvalues that does).
By expressing an arbitrary vector v (see condition 2 in theorem of section 3.1) in

this eigenvector basis, v = a1u1 + a2u2 + · · ·anun, one gets

Tkv = a1λ
k
1u1 + a2λ

k
2u2 + · · · anλ

k
nun (27)

If |λi| < 1 for i = 1, . . . , n, then theorem in section 3.1 applies. Assume now
that eigenvalue λ1 violates this condition, |λ1| > 1, so the Neumann series does not
converge. Then, for the one-parameter modification of section 3.2.1,

P1,m+1v = a1

(

(1− α1) + α1λ1

)

λm
1 u1 + · · · an

(

(1− α1) + α1λn

)

λm
n un (28)

To cancel out the divergent term λm
1 u1, the accompanying scalar should be zero:

(1− α1) + α1λ1 = 0 =⇒ α1 =
1

1− λ1
(29)

By applying the same argument recursively for each additional eigenvalue that violates
the constraint, one gets

α1 =
1

1− λ1

; α2 =
1

1− λ2

; · · · ;αn =
1

1− λn

(30)

Remarks:

1. If |λi| < 1, the modification step with coefficient αi is not strictly necessary for
convergence, but it does accelerate the convergence. This can also be seen in
Appendix A.

2. In fact, αi = 1/(1 − λi) are the eigenvalues of (I − T)−1; it is not surprising
that incorporating this information into the iterative algorithm improves the
convergence.

3.3 Analysis of different cases

3.3.1 Real transfer matrix

If the transfer matrix T is real, then its eigenvalues are either real or complex conju-
gate. Note that, in any case, matrices I−T and (I−T)−1 are real.

All eigenvalues real If {λi}
n
i=1 ∈ R, then {αi}

n
i=1 ∈ R, and the weighted sum of

powers of T indeed results in a real matrix (I−T)−1.
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Some complex conjugate eigenvalues Assume now that matrix T has one pair
of complex conjugate eigenvalues, λ2 = λ1. Then the corresponding factors are also
complex conjugate, α2 = α1. The two-parameter modification of section 3.2.2 results
in

S2,m = S1,m−1 + α2P1,m = S0,m−2 + α1T
m−1 + α2

(

(1− α1)T
m−1 + α1T

m

)

=
m−2∑

k=0

Tk +
[
α1 + α2(1− α1)

]
Tm−1 + α2α1T

m

=
m−2∑

k=0

Tk + 2
1−ℜ(λ1)

1− 2ℜ(λ1) + |λ1|2
Tm−1 +

1

1− 2ℜ(λ1) + |λ1|2
Tm

(31)

Note that, as expected, the weights are again real. The same argument applies if T
has more pairs of complex conjugate eigenvalues.

3.3.2 Complex transfer matrix

If the transfer matrix T is complex, all the relevant objects are also complex (i.e. the
eigenvalues λi, the parameters αi, the weights in the weighted sum of powers of T,
matrix I−T and its inverse...).

3.4 Recursive method

The modified partial sums of order j can be computed once the modified partial sums
of order j − 1 and the correction parameter αj are known. From the definition in
Eq. (16),

Sj−1,m =
m−1∑

k=0

Pj−1,k +Pj−1,m = Sj−1,m−1 +Pj−1,m (32)

from wherePj−1,m can be obtained and substituted in the definition of Sj,m in Eq. (24):

Sj,m = αjSj−1,m + (1− αj)Sj−1,m−1 (33)

3.5 Explicit expression

An explicit expression of the solution can be obtained now by means of the repeated
use of Eq. (33). It must be first particularised for j = 1,

S1,m = α1S0,m + (1− α1)S0,m−1 (34)

For j = 2 one gets

S2,m = α2S1,m + (1− α2)S1,m−1

= α1α2S0,m + [α1 (1− α2) + (1− α1)α2]S0,m−1 + (1− α1) (1− α2)S0,m−2

(35)

and, for j = 3

S3,m = β3,0S0,m + β3,1S0,m−1 + β3,2S0,m−2 + β3,3S0,m−3 (36)
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where

β3,0 =α1α2α3

β3,1 =α1α2 (1− α3) + α1 (1− α2)α3 + (1− α1)α2α3

β3,2 =α1 (1− α2) (1− α3) + (1− α1)α2 (1− α3) + (1− α1) (1− α2)α3

β3,3 = (1− α1) (1− α2) (1− α3)

(37)

Inspecting the structure of Eqs. (35), (36) and (37) carefully, it is possible to derive
a generic expression for Sj,m and coefficients βj,i:

Sj,m =

j
∑

i=0

βj,iS0,m−i (38)

with βj,i expressed, in multi-index notation, as

βj,i =

(ji)∑

k=1

α
ωk(1−α)1−ωk (39)

Eq. (39) has a conveniently compact expression thanks to the use of multi-index
notation. For instance, for coefficient β3,1 shown in Eq. (37),

β3,1 = α1
1α

1
2α

0
3 (1− α1)

0 (1− α2)
0 (1− α3)

1

+ α1
1α

0
2α

1
3 (1− α1)

0 (1− α2)
1 (1− α3)

0

+ α0
1α

1
2α

1
3 (1− α1)

1 (1− α2)
0 (1− α3)

0

= α
ω1(1−α)1−ω1 +α

ω2(1−α)1−ω2 +α
ω3(1−α)1−ω3

(40)

with α = (α1, α2, α3) and ω1 = (1, 1, 0), ω2 = (1, 0, 1), ω3 = (0, 1, 1).
Finally, Eq. (38) can be reorganised in order to express the partial sum in terms

of the powers of the transfer matrix T. This is, in fact, the main goal of the research:
to show that the solution of the mechanical problem can be expressed as a linear
combination of transmission paths. Indeed,

Sj,m =

m−j
∑

k=0

Tk +

m∑

k=m−j+1

γm−kT
k (41)

with

γp =

p
∑

i=0

βj,i p = 0, . . . , j − 1 (42)

Note that the first m − j + 1 terms of Sj,m are those of the original Neumann
series, whereas the last j terms are weighted with the correction factors γ. These
modifications are the higher-order paths.

A possible physical interpretation of Eq. (41) is that the first sum (lower-order
paths) represents the action of the forces on the system, while the second sum (cor-
rected higher-order paths) represents the reaction of the system. The important aspect
here is that both response types have been expressed as addition of paths within the
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system. The whole Eq. (41) represents the steady equilibrium state of the mechanical
system. At that point the external excitation and the movement of the mechanical
system are coordinated in such a way that the excitation does not cause an increase
of response.

If the spectral radius is larger than one, it leads to two infinites that compensate
each other. If the spectral radius is less than one, the second sum is not relevant
anymore. This agrees well with the fact that if the response is controlled by damping
(which in general leads to spectral radius less than one), the high-order paths can
be neglected because energy is lost in the passage through every path. In terms
of Eq. (41) this means that the correction (second sum) is not required to ensure
convergence.

If j = n terms of the series are modified (n is the problem dimension), the series
convergence is ensured,

lim
m→∞

Sn,m = (I−T)−1 (43)

This is because in the worst scenario all the matrix eigenvalues have a module larger
than one. In this critical situation n modified terms of the series need to be added in
order to treat the n eigenvalues. In practice, the inverse of (I − T ) is approximated
by the partial sum Sn,m for a finite value of m.

4 Numerical examples

The results of Section 3 are illustrated here by means of the simple system of Fig. 2.
It is a one-dimensional mechanism composed of eight masses: m1 = 100 kg, m2 = 200
kg, m3 = 300 kg, m4 = 400 kg, m5 = 500 kg, m6 = 630 kg, m7 = 700 kg, m8 = 800
kg. They are linked by means of springs with stiffnesses: k1 = 109 N/m, k2 = 3 109

N/m, k3 = 1.1 109 N/m, k4 = 4 109 N/m, k5 = 109 N/m, k6 = 5 109 N/m, k7 = 109

N/m, k8 = 3 109 N/m and k9 = 4 109 N/m. The frequencies at which matrix D is
singular are listed in Table 1. They can be understood as the vibration frequencies
of each single mass when all the others are blocked. Table 1 also shows the coupled
eigenfrequencies of the mechanical system (matrix A). The dynamic stiffness matrix
of the mechanical system is








m1ω
2
−(k1+k2+k5) k2 0 0

k2 m2ω
2
−(k2+k3) k3 0

0 k3 m3ω
2
−(k3+k8+k4) k4

0 0 k4 m4ω
2
−k4

k5 0 k8 0
0 0 0 0
0 0 0 0
0 0 0 0

. . .

. . .

0 k5 0 0
0 0 0 0
k8 0 0 0
0 0 0 0

m5ω
2
−(k5+k8+k6) k6 0 0

k6 m6ω
2
−(k6+k7) k7 0

0 k7 m7ω
2
−(k7+k9) k9

0 0 k9 m8ω
2
−k9








(44)
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Figure 2: Sketch of the discrete system with eight masses.

matrix 1 2 3 4 5 6 7 8
D 355.9 425.4 491.2 503.3 675.2 720.6 827 1125
A 61.91 167.5 369.9 489.5 542.9 743.4 953.3 1250

Table 1: Eigenfrequencies of matrices D and A (in Hz).

The accuracy of the iterative procedure described in Section 3.5 is measured by
means of the error parameter

e =
||A−1

approxA− I||F

n
=

||Sj,m(I−T)− I||F
n

(45)

where || • ||F is the Frobenius norm.
The reduced dimension of this toy problem allows a detailed study of its spectral

properties. Their evolution with frequency f (with f a real number) is shown in Fig. 3
for the undamped case. A can always be inverted (rank equals n = 8) except for the
eigenfrequencies shown in Table 1. Matrix T is only singular if one node is completely
detached from the others.

Another relevant aspect is the number of eigenvalues of the matrix T with modulus
larger than one. In practice, it means that the spectral radius of matrix T is also larger
than one and the Neumann series does not converge. In this system, it happens for a
frequency range between 61.91 Hz and 1250 Hz. Fig. 3 also provides information on the
number of conjugate pairs of eigenvalues, linked with the modification of parameters
of Section 3.3.1.

The results in Fig. 4 illustrate how the solution of the mechanical problem can be
obtained by the modified series proposed in Section 3. This means that the solution
can be computed as a linear superposition of paths. The error measure e, defined in
Eq. (45), is shown for several series depending on the number of modified parameters
(0, 4 or 8). The total length m+ 1 of the series is 13.

The first thing to be noted is a strong correlation between the convergence of the
series (small values of e) and the fact that the number of modified parameters is equal
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Figure 3: Description of the spectral properties of matrixT: number of conjugate pairs
of eigenvalues (top); number of eigenvalues with modulus larger than one (bottom).
Undamped case.

to or larger than the number of eigenvalues with modulus larger than one. See for
example, the improvement obtained for the series with four modified parameters below
350 Hz and above 900 Hz. This is in agreement with the fact that in this frequency
range four eigenvalues of matrix T have modulus larger than one. When (all) eight
parameters are modified, the convergence is improved in the whole frequency range.
Note, however, that the error is large around the frequencies where D is singular.
For larger frequencies all the series converge as expected, even if no parameter is
modified. However, even modifying only some parameters largely reduces the error at
high frequencies where e has a very small value close to the numerical tolerance. The
non-convergent frequencies are also improved.

The same mechanical system but with a hysteretic damping of 4% in all the springs
is considered. Fig. 5 shows the spectral characteristics of the damped transfer matrix.
Two important differences must be noted: i) the matrix is not singular at any real
frequencies; ii) the eigenvalues are not complex conjugate. The frequency range where
some eigenvalues have modulus larger than one is very similar to the undamped case.

Fig. 6 shows the influence of damping in the results. The general trend is similar
to the undamped case. However, the effect of the eigenfrequencies of the matrices D
and A is less important.

Fig. 7 shows a comparison between the exact value of the global transfer matrix
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Figure 4: Difference between the exact solution and the solution obtained with the
series. Influence of the number of modified parameters: 0 (unmodified Neumann
series), 4 and 8. The total length m+ 1 is 13. The system is undamped.

TG and the approximation obtained with the unmodified Neumann series and the
Neumann series with all required correction parameters (n = 8). The coefficient tG14
is shown. It represents the displacement of mass number 4 for an unity force at mass
1. The exact value is obtained as detailed in [9]. The unmodified Neumann series
diverges in the frequency interval where the spectral radius of the system matrix is
larger than one. On the contrary, the modified Neumann series performs a very good
reconstruction of the exact value. The inaccuracies of the modified series are mainly
found at the frequencies where the matrix D is singular and the system is undamped.
The error peaks around the eigenfrequencies of the mechanical system (matrix A
singular) are smaller. Damping drastically reduces the error peaks of both types.

The error measure of Eq. (45) is global. However it is interesting to note that for
most of the cases with large error, it is caused by only a few entries of the matrix TG

while the approximation of the others remains good enough. See for example Fig. 8
where only the coefficients with significant error have been highlighted with a grey
square.
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Figure 5: Description of the spectral properties of matrixT: number of conjugate pairs
of eigenvalues (top); number of eigenvalues with modulus larger than one (bottom).
With an hysteretic damping of 4% in all the springs.

5 Conclusions

The main interest of this research is theoretical and focused on the possibility of fully
describing the solution of a mechanical problem by means of the superposition of
transmission paths. It is conceived in the field of mechanics but the results, could be
used in other fields of science because the framework of analysis is very general. It is
only required that the problem remains linear, formulated in terms of a linear system
of equations and where the path concept has some physical meaning.

In the current form, the final results cannot be taken as a calculation tool. Some
aspects such as the matrix powers and series are very useful for theoretical proofs but
may have some numerical drawbacks (i.e. rounding errors, large number of operations,
filling of matrices). For this reason, a way to apply the main theoretical conclusions
to the practical use in systems with a large number of unknowns is required. The
algorithms can only be directly applied for calculation in mechanical systems with
not many unknowns or in the low-frequency range. The applicability depends on the
specific physical problem and the modelling technique used (it is not the same if the
signals are the unknowns in every node of a FE mesh or just a few measurements in
key points of a structure to generate a direct or global transfer matrix).

The main achievements of the work are the formal definition of path and the proof
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Figure 6: Difference between the exact solution and the solution obtained with the
series. Influence of the number of modified parameters: 0 (unmodified Neumann
series), 4 and 8. The total length m+ 1 is 13. The system has hysteretic damping of
4% in all the springs.

of completeness of the description of the system behaviour by means of paths. The
former establishes a framework where other modelling techniques can be identified;
it is not only valid when working with transfer matrices. The latter leads to a gen-
eralisation of the Neumann series that converges whatever the spectral radius of the
transfer matrix is. Moreover, a simplified recursive expression of the generalised series
is provided.

The theoretical findings presented here are important by themselves because it
was not clear that any solution of a mechanical system could be described by means
of paths. Moreover, they also open a door for improvement of simulation techniques
in mechanics.
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(a)

(b)

Figure 7: Value of the entry t14 of the global transfer matrixTG. Comparison between:
exact computation; approximation obtained with the unmodified Neumann series; and
approximation obtained with the modified Neumann series including all the required
correction parameters (n = 8): (a) undamped mechanical system; (b) mechanical
system with hysteretic damping of 4% in all the springs.

A A link with iterative solvers: the acceleration of

the Jacobi method

The Jacobi method [33] for the iterative solution of linear systems of equations is:

xk+1 = D−1b+D−1 (−L−U)xk (46)
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(a)

(b)

Figure 8: Representation of the 64 global transfer matrix TG coefficients with an error
larger than one (grey squares) in the comparison between the exact computation and
approximation obtained with the modified Neumann series. Reconstruction of the
matrix done for a frequency of 351.6 Hz: (a) Undamped mechanical system; (b) The
mechanical system has hysteretic damping of 4% in all the springs.

It can be seen how its algebraic structure is the same as Eq. (5) and T plays the role
of iteration matrix. A parallelism between the developed theory in the frame of the
GTDT and the Jacobi method can be established.

The approximation xk+1 at the k iteration in the Jacobi method can be obtained
directly from a Neumann series like in Eq. (10). So, the correction of the series pro-
posed in Section 3.2 can be applied in order to modify the Jacobi iteration algorithm.

The method is applied to the solution of linear systems with matrices of dimension
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300 that have the second largest eigenvalue not close to one. So, the discussion can be
done by comparison of the standard Jacobi method with the proposed modification
with only one parameter. As an example, see the results in Fig. 9. There is a
comparison between the conventional Jacobi method and its modification, taking into
account the dominant eigenvalue in a one-parameter correction. The solution obtained
with a direct solver is used as reference in order to compute the relative error. We
can see how the correction always accelerates the convergence. This is more relevant
when the dominant eigenvalue is close to one because in that case, the convergence of
the Jacobi method is very slow and it makes the practical applicability of the solver
very poor.

(a) (b)

Figure 9: Convergence of the Jacobi method compared with its one-parameter modifi-
cation. The dimension of the matrix is 300 and the two eigenvalues of largest modulus
are:(a) |λ1| = 0.89012 and |λ2| = 0.66415|; (b) |λ1| = 0.99129 and |λ2| = 0.78518.
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[14] O. Guasch, C. Garćıa, J. Jové, and P. Art́ıs. Experimental validation of the
direct transmissibility approach to classical transfer path analysis on a mechanical
setup. Mech. Syst. Signal Proc., 37(12):353–369, 2013.

[15] M. Van Der Seijs, D. de Klerk, and D. J. Rixen. General framework for transfer
path analysis: History, theory and classification of techniques. Mech. Syst. Signal
Proc., 2015.

[16] E. Luzzato and E. Ortola. The characterization of energy flow paths in the study
of dynamic systems using S.E.A. theory. J. Sound Vibr., 123(1):189–197, 1988.

[17] R. Craik. Sound transmission paths through a statistical energy analysis model.
Appl. Acoust., 30:45–55, 1990.

[18] F. X. Magrans. Definition and calculation of transmission paths within an S.E.A.
framework. J. Sound Vibr., 165(2):277–283, 1993.

[19] A. Aragonès, L. Maxit, and O. Guasch. A graph theory approach to identify
resonant and non-resonant transmission paths in statistical modal energy distri-
bution analysis. J. Sound Vibr., 350:91–110, 2015.

[20] O. Guasch and A. Aragonès. Finding the dominant energy transmission paths in
statistical energy analysis. J. Sound Vibr., 330(10):2325–2338, 2011.

[21] David Wilson. Prediction of bending wave transmission across coupled plates
affected by spatial filtering and non-diffuse vibration fields. PhD thesis, University
of Liverpool, 2014.

[22] J.W. Demmel. Applied Numerical Linear Algebra. EngineeringPro collection.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street,
Floor 6, Philadelphia, PA 19104), 1997.

[23] L.N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, 1997.

[24] F. X. Magrans. Direct transference applied to the study of room acoustics. J.
Sound Vibr., 96(1):13–21, 1984.

[25] O. Guasch and L. Cortés. Graph theory applied to noise and vibration control in
statistical energy analysis models. J. Acoust. Soc. Am., 125(6):3657–3672, 2009.

[26] F. Bessac. Investigating the vibroacoustic behaviour of coupled systems through
the coupling eigenvalues and eigenvectors. Theses, INSA de Lyon, May 1996.

[27] S. Finnveden. A quantitative criterion validating coupling power proportionality
in statistical energy analysis. J. Sound Vibr., 330(1):87–109, 2011.

[28] P. Gajdatsy, K. Janssens, Wim Desmet, and H. Van der Auweraer. Application
of the transmissibility concept in transfer path analysis. Mech. Syst. Signal Proc.,
24(7):1963–1976, 2010. Special Issue: ISMA 2010.

24



[29] C. Hopkins. Sound insulation. Routledge, 2012.
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