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Abstract

A model for the prediction of direct and indirect (flanking) sound transmis-
sions is presented. It can be applied to geometries with extrusion symmetry.
The structures are modelled with spectral finite elements. The acoustic do-
mains are described by means of a modal expansion of the pressure field and
must be cuboid-shaped. These reasonable simplifications in the geometry al-
low the use of more efficient numerical methods. Consequently the coupled
vibroacoustic problem in structures such as junctions is efficiently solved. The
vibration reduction index of T-junctions with acoustic excitation and with point
force excitation is compared. The differences due to the excitation type obey
quite general trends that could be taken into account by prediction formulas.
However, they are smaller than other uncertainties not considered in practice.
The model is also used to check if the sound transmissions of a fully vibroacous-
tic problem involving several flanking paths can be reproduced by superposition
of independent paths. There exist some differences caused by the interaction
between paths, which are more important at low frequencies.

1 Introduction

Predictions of the direct and indirect (flanking) sound transmission are important
in order to make proper acoustic designs of buildings, ships or train wagons. But
the simulations done by means of the finite element method (FEM), the boundary
element method (BEM) or other deterministic techniques based on space discretisation
are often time consuming and computationally expensive due to several reasons: the
need to cover a wide frequency range of audible noise, the mandatory use of smaller
elements when frequency increases, the large dimensions of the physical domains to
be considered or the big number of situations to be analysed in order to understand
the problem and provide practical design rules.

∗correspondence: UPC, Campus Nord B1, Jordi Girona 1, E-08034 Barcelona, Spain, e-mail:
jordi.poblet@upc.edu
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This is especially critical in the field of building acoustics where numerical simula-
tions are often restricted to the low-frequency range and/or two-dimensional problems.
Very often the interest is focused to describe the behaviour of a single component (i.e.
sound transmission through a single wall, vibration response of a junction). However,
the problem of flanking transmission is global in the sense that it affects several acous-
tic domains and more or less complex and big structures. It causes computational
requirements to be larger and quite often unaffordable.

The use of semi-analytical models or statistical techniques such as Statistical En-
ergy Analysis (SEA) [1] which hypotheses are valid only at high frequencies is very
common in order to complement and cover the whole frequency range of interest. An
important example is the global model proposed in the EN-12354 [2]. It accounts
for all transmission types (direct and flanking) and it is based on a first order SEA
formulation [3, 4]. The main input required by the model in order to deal with flank-
ing transmissions is the vibration reduction index. Recent researches try to provide
practical design data by studying the structural junctions in the laboratory [5, 6], by
means of finite element models [7], using wave approach [8], or wave-based or spectral
finite elements (SFEM) [9, 10, 11]. All of them are restricted to the study of vibration
transmissions through the junction.

In the present work, a model is formulated and implemented in a computer software
in order to complement these simulations but including now the acoustic part of the
problem (i.e. rooms that are separated by the junction). The starting point is the
model developed in [9]. The vibroacoustic problem to be analysed is restricted to
geometries with extrusion symmetry where the acoustic domains are cuboid-shaped.
This allows the attainment of a computationally efficient formulation. It uses spectral
finite elements [12, 13, 14] for the structure part and expand the pressure field in the
acoustic domains in terms of the analytical expression of the eigenfunctions. All these
keep the model general enough to deal with a great variety of junctions and structures.
The results obtained are fully equivalent to a FEM simulation. So, they are valid for
all frequencies and are not subjected to hypotheses of physical nature such as the ones
required by SEA (they are only satisfied when the frequency is high enough in order
to guarantee large modal density of each subsystem among other aspects). Since the
model is oriented to reduce the computational costs of FEM or BEM for problems
satisfying the restrictions mentioned above, a larger frequency range can be simulated.
Moreover, an ensemble of situations can be considered as an attempt to reproduce
the uncertainty and statistical nature of the physical phenomenon at mid frequencies
where the modal overlap starts to be important.

The contributions of the research are:

• Formulation, implementation and testing of a deterministic model accounting
for extrusion symmetry vibroacoustic problems in a wide frequency range with
smaller computation costs than other element-based methods

• Coupling of the SFEM for shells with the modal expansion of cuboid acoustic
domains.

• Computation of the vibration reduction indices for heavy junctions with acoustic
excitation (instead of mechanical or point forces)
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Both components of the model presented here: the use of modal analysis to de-
scribe the pressure field in acoustic cavities or rooms and the derivation of spectral
or wave-based elements are not new. However, to the best of the author knowledge
a model combining these techniques and its application to the problem of flanking
transmissions has not been presented before.

Analytical modal expansion of the pressure field in cavities is a good option when:
i)the shape of the domains to be studied is simple but the dimensions large; ii)the
computational costs must be optimised at maximum; iii)it is important to cover a
wide frequency range to gain knowledge on the physics of the problem and iv)the
coupling is weak enough in order to consider the in vacuo modes of each sub-domain
of the problem. This technique, recently reviewed in [15], has been considered in
the study of a cuboid-shaped cavity coupled with a rectangular plate [16, 17, 18],
the sound transmission between cuboid-shaped rooms separated by: a single wall
[19, 20, 21, 22, 23, 24, 25, 26, 27], a double wall [28, 29], cavities of double walls [30],
slits and holes [31] or the transmissions between continuous plates coupled to rooms
[32]. Other models combine a modal description in one plane with a description in
function of plane waves propagating in positive and negative direction normal to the
modal plane which helps in order to impose the continuity of normal velocity. See
for example [33] with an application to the sound transmission through cross sections
that can be composed of an aperture and flexible structures, [23, 34, 35] for sound
transmission problems, or [36] where in a problem of the sound transmission through
a single wall, the direction orthogonal to the wall is infinite.

The most common option is to consider normal modes (case of rigid walls or null
normal velocity in all the boundaries), see the general theory in [37]. Their analytical
expression is simple, they have interesting orthogonality properties and provide good
approximation when the absorption or damping is not very high. This is the option
chosen here. However, other options better adapted to satisfy the absorbing (Robin)
boundary conditions [38] or the pressure field around a point source [39] exist.

The dynamic stiffness methods and the SFEM are also a good option to deal with
the study of structural vibration in a wide frequency range. They have been used,
among others, to predict the vibration behaviour of structures composed of panels
[40]. Most of these methods require the assumption of some geometry simplification.
But recent formulations try to extend their use to more general structures, for example
composed of rectangular plates [41, 42, 43].

The manuscript is organised as follows. The model is presented in Section 2. The
interest is focused on the way how the SFEM and the modal expansion of the acoustic
domains are coupled. The numerical examples are shown in Section 3, including a
comparison with the finite strip method (FSM) and the parametric analysis of the
T-shaped junction. The discussion of the results and possible future improvements is
done in Section 4 and the paper is finished with the conclusions of Section 5.
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2 Method and theory

2.1 Model overview

The goal is to formulate a deterministic model that could deal with vibroacoustic
problems of quite large dimensions (which is often the situation in building acous-
tics), in a wide frequency range, with reduced computational costs and considering
structures a bit more complex than a single or double wall. The price to satisfy this
requirements is to assume some simplifications in geometry and boundary conditions
in order to use numerical techniques less generic but more efficient than FEM or
BEM. SFEM allows the description of the structure with few nodes and elements.
The modal expansion of the acoustic domains provides a quite accurate estimation
of the pressure field with few modes (much less than nodes in the equivalent FEM
discretisation).
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Figure 1: Sketches and notation: (a)Model of a T-shaped junction with three spectral
finite elements. Red circles indicate the used nodes (4). X, Y, Z are the global coor-
dinates with displacements U, V,W . The length in the extrusion direction is Ly. The
spectral finite element with dimensions lx ×Ly has local coordinates x, y, z with local
displacements u, v, w; (b)A single spectral element separating two acoustic domains,
one at each side.

The problem is solved in the frequency-domain (steady harmonic linear elastic
structures and acoustic fluids). A pressure-displacement formulation is used. The
interaction between the acoustic fluid and the structure is considered only in the
normal direction (as usual, the tangential friction is neglected). The implementation
allows the control of the coupling and it can be decided if the contact surfaces between
fluid and structure interact or not. If nothing is specified, fully coupled situations are
considered (all the coincident surfaces allow fluid-structure interaction in all senses,
without a priori hypotheses).

The geometries must have extrusion symmetry due to the spectral elements con-
sidered and the shape of the acoustic domains. An example is the T-shaped junction
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of Fig. 1(a) (with extrusion symmetry along the Y ≡ y direction). All the structures
analysed are supported on a roller at the planes Y = 0 and Y = Ly where the blocked
displacements are U = 0 and W = 0 (V is free there). It must be noted that diffusors
have not been included in the model. They are required by the standard [44] but
would complicate the formulation. The effect of the diffuse field is reproduced by
providing averaged results in the third-octave frequency bands. Moreover, when the
output is pretended to be more general, the results obtained with different problem
dimensions are averaged.

The variation along the Y direction is described by means of trigonometric func-
tions (sine series are used here). It affects not only the pressure description but also
all other room variables: excitations, wall absorption, etc. This leads to an impor-
tant advantage of the method: each contribution n is solved independently from the
others. On the contrary, the use of sine series in the Y direction forces the type of
boundary conditions to be considered at Y = 0 and Y = Ly in both the structure and
the acoustic domains. For the structure, it implies that U = W = 0, which is quite
usual. However, for the acoustic domains it implies the assumption of the non very
realistic condition of zero pressure at walls. With the positive aspect that the acoustic
intensity through the surfaces at Y = 0 and Y = Ly, which is required to calculate the
sound reduction index, is known (null). This enforcing of boundary condition in the
fluid domains is probably the most important drawback of the model but a required
assumption in order to simplify the formulation and reduce the computational costs.
These types of assumptions that sacrifice realism for the sake of better efficiency are
quite usual in vibroacoustic models. Unfortunately it is a cost to pay in order to
derive less complex formulations and adapt the computational costs to the available
resources. The latter is essential, otherwise the computation limitations can lead to
more undesired consequences that could be important for the final results (such as the
derivation of wrong conclusions in the mid frequency range due to the small number
of problem frequencies to be averaged). The physical implications will be shown latter
in Section 4. All other boundary conditions in the other zones can be imposed as it
is done in spectral elements and modal expansions. In the remainder of the section
the formulation is presented for each harmonic ‘n’ but the subscript is omitted for
clarity (except for the parameter ξn = nπ/Ly). In order to obtain the final result a
combination of each uncoupled component ‘n’ must be done.

The structural elements are shells. The in-plane behaviour (local displacements
u, v) is considered as described in [9]. It is decoupled from the out-of-plane displace-
ments (w). The formulation exposed here focuses the interest on the out-of-plane
displacements (bending) and the interaction with the fluid domains. The remainder
of the section explains how a spectral finite element is coupled with cuboid-shaped
fluid domains (see for example the single element of Fig. 1(b)). This must be, after-
wards, combined with the in-plane part of the structural element, a global assembly
process (that is standard) and the inclusion in the global solution of the coupled
problem.

5



2.2 Fluid→structure interaction: acoustic loading of the struc-

ture

The out-of-plane displacements must be of the form

w (x, y) = ŵ (x) sin(
nπ

Ly
y) (x, y) ∈ [0, lx]× [0, Ly] (1)

where x, y are the local coordinates in the element plane, lx is the element length in
the x direction, Ly is the problem/element length in y−direction. Note that due to the
extrusion symmetry ŵ is always parallel to the X−Z plane (the ‘hat’ is reserved here
for the variables reduced to the X −Z plane, when the treatment of the y−direction
has been separated).

The out-of-plane displacements are governed by the thin plate equation

∂4w

∂x4
+

∂4w

∂x2∂y2
+
∂4w

∂y4
− β2w = −q (x, y)

D
(2)

with

β =

√

ρvtω2

D
D =

t3E(1 + iη)

12(1− ν2)
. (3)

Here ρv is the volumetric density of the shell, t its thickness, ν the Poisson’s ratio, E
the Young’s modulus, η the hysteretic damping coefficient, ω = 2πf the pulsation of
the problem and i =

√
−1 the imaginary unit. q (x, y) is the external load per unit

surface in the direction of w. If it can be expressed as

q (x, y) = q̂ (x) sin(
nπ

Ly
y) (4)

then the formulation of the element is one-dimensional instead of two-dimensional
and Eq. (2) can be rewritten as

d4ŵ

dx4
− 2ξ2n

d2ŵ

dx2
+
(
ξ4n − β2

)
ŵ = − q̂

D
(5)

which is an Ordinary Differential Equation (ODE) (instead of a Partial Differential
Equation, PDE) on x. It allows solutions of the form:

ŵ = ŵH + ŵP (6)

accounting for the homogeneous (H) and particular (P) parts. The roots of the char-
acteristic polynomial are ±

√

ξ2n − β and ±
√

ξ2n + β. So, the homogeneous solution is
of the form

ŵH (x) = A1e
−ik1x +B1e

−ik2x + C1e
−ik1(lx−x) +D1e

−ik2(lx−x) = NSEM ·AT (7)

with k1 and k2
k1 =

√

β − ξ2n k2 = −i
√

β + ξ2n; (8)

and

NSEM =
[
e−ik1x, e−ik2x, e−ik1(lx−x), e−ik2(lx−x)

]
A = [A1, B1, C1, D1] (9)
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The key here is how to introduce the particular solution in the formulation of the
spectral element with minor modifications. Similar procedures can be found in [45]
where random excitation is introduced along the elements of a beam framework, in
[46] where the axial and bending load in beam elements is described by means of
finite element discretisation type or in [47] where spectral elements for rectangular
plates subjected to turbulence excitation are formulated or [48] with an application
for pipes.

In the current model the excitations caused by the acoustic pressure on the contour
of the cuboid-shaped domains are of the form

q̂ (x) =

1 or 2∑

s

σs
∑

j

Ps,j cos (κs,jx+ ϕs,j) (10)

with ϕs,j = L0κs,j according to Fig. 1(b) and κs,j the wavenumber of the imposed
pressure on the s-side of the element. σs = ±1 accounts for the sign criterion related
with the local coordinates of the spectral element. In Fig. 1(b), σ1 = 1 and σ2 = −1.
Ps,j is a constant that will be related latter with the modal contribution of the pressure
field.

With this excitation, the particular solution of the ODE in Eq. (5) is

ŵP (x) =
1

D

1 or 2∑

s

∑

j

ŵP
s,j (x) =

1

D

1 or 2∑

s

σs
∑

j

Ψs,jPs,j cos (κs,jx+ ϕs,j) (11)

with

Ψs,j =
1

(ξ4n − β2) + 2κ2s,jξ
2
n + κ4s,j

(12)

A bending dynamic stiffness matrix for the spectral element can be obtained by
means of two steps: i) Express the boundary strengths (bending moment and shear
force) in terms of the constants A1, B1, C1 andD1 and the parameters of the particular
solution; ii) Express the constants A1, B1, C1 and D1 and the parameters of the
particular solution in terms of the nodal displacements and rotations.

The forces and moments per unit length at the nodes of the element are expressed
as

Fz(x = 0, y) = D

(
d3w

dx3

∣
∣
∣
∣
x=0

− ξ2n(2− ν)
dw

dx

∣
∣
∣
∣
x=0

)

(13)

M(x = 0, y) = D

(

− d2w

dx2

∣
∣
∣
∣
x=0

+ ξ2nν w|x=0

)

(14)

Fz(x = lx, y) = D

(

−d
3w

dx3

∣
∣
∣
∣
x=lx

+ ξ2n(2− ν)
dw

dx

∣
∣
∣
∣
x=lx

)

(15)

M(x = lx, y) = D

(
d2w

dx2

∣
∣
∣
∣
x=lx

− ξ2nν w|x=lx

)

(16)

Using the displacement defined in Eq. (6), the forces can be written as

fe =







Fz(x = 0, y)
M(x = 0, y)
Fz(x = lx, y)
M(x = lx, y)






= Be







A1

B1

C1

D1






+

1 or 2∑

s

σs
∑

j

Ψs,jPs,jF
p
s,j (17)
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with Be detailed in A and the contribution of the particular solution to the nodal
forces

F
p
s,j =







(
ξ2n(2− ν) + κ2s,j

)
κs,j sin(ϕs,j)(

ξ2nν + κ2s,j
)
cos(ϕs,j)(

−ξ2n(2− ν)− κ2s,j
)
κs,j sin(κs,jlx + ϕs,j)(

−ξ2nν − κ2s,j
)
cos(κs,jlx + ϕs,j)







(18)

Next step is to express the nodal displacements and rotations in terms of the
constants A1, B1, C1 and D1, and the parameters related with the particular solution.
A 4 × 4 system of linear equations is obtained by the evaluation of Eq. (6) at x = 0
and x = lx

ue =







w|x=0
dw
dx

∣
∣
x=0

w|x=lx
dw
dx

∣
∣
x=lx






= S







A1

B1

C1

D1






+

1

D

1 or 2∑

s

σs
∑

j

Ψs,jPs,j







cos(ϕs,j)
−κs,j sin(ϕs,j)

cos(κs,jlx + ϕs,j)
−κ sin(κs,jlx + ϕs,j)







︸ ︷︷ ︸

u
p
s,j

(19)
S, also detailed in A, is a small matrix that can be inverted in order to compute the
bending dynamic stiffness matrix Kbending

e such that

Kbending
e = BeS

−1 (20)

and finally the matrix formulation at element level that accounts for possible coupling
is

Kbending
e ue +

1 or 2∑

s

∑

j

σsΨs,j

(

F
p
s,j −

1

D
Kbending

e u
p
s,j

)

︸ ︷︷ ︸

(Cs
FS

)
·,j

Ps,j = fe (21)

with Cs
FS the coupling matrix that accounts for the coupling force applied to the s

side of the spectral element and fe is the vector of nodal forces defined in Eq. (17).

2.3 Structure→fluid interaction: imposed velocity on the fluid

contour

The weak form used in [31] for the acoustic domains is considered. It must be adapted
in order to account for the coupling with the spectral element. Moreover, the modes
of the cuboid must be modified in order to have the same trigonometric description
of the pressure field in the extrusion direction as the shell spectral element. So, the
pressure field is expanded in terms of modes as

p (x, y, z) = Yn (y)

nmodes∑

j=1

pjψj (x, z) (22)

with

ψj = cos

(
nxjπ

lx
x

)

cos

(
nzjπ

lz
z

)

nxj , nzj = 0, 1, 2, . . . , j, . . . (23)
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and
Yn (y) = sin (nπ/Lyy) (24)

pj is the contribution of mode j.
The weak form can be written as

(
k2 − k2i

)
∫

Ω

υp dΩ− iρω

∫

ΓR

A υp dΓ + ρω2

∫

ΓFS

υŵn dΓ =

= iρω

∫

ΓN

υvn dΓ−
∑

r

ρiωqr

∫

Ω

δ(xxxr,xxx)υ dΩ (25)

where υ is the test function, k = ω/c, c is the speed of sound in the fluid, ρ the fluid
density, ki is the wavenumber of the mode i, Ω is the acoustic domain with boundaries:
ΓR (Robin boundary, absorbing with admittance A), ΓN (Neumann boundary with
an imposed velocity vn) and ΓFS the coupling surface with the solid. Point sources
at xxxr can generate pressure in the acoustic domains.

Considering test functions of the type υi = Yn (y)ψi (x, z), each equation i is as
follows

∑

j

pj

(
(
k2 − k2i

)
I2

∫

Ωxz

ψiψj dΩxz − iρωI2

∫

ΓR

A ψiψj dΓxz

)

+

+ρω2I2∗

∫

ΓFS

ψiŵn dΓxz = iρωI1

∫

ΓN

ψivn dΓxz −
∑

s

ρiωqsYn (ys)ψi (xs, zs)

︸ ︷︷ ︸

(fmod)i

(26)

with

I1 =

∫ ymax=ly

ymin=0

Yn (y) dy I2 =

∫ ymax=ly

ymin=0

(Yn (y))
2 dy (27)

that depend on the interpolation type in the fluid domain and

I2∗ =

∫ ymax=ly

ymin=0

sin

(
nπ

Ly

y

)

Yn (y) dy (28)

that accounts for the fluid-structure coupling. If the function Yn (y) coincides with
the equivalent function for the solid element in the extrusion direction, here sine
interpolation, then I2 ≡ I2∗.

The part in Eq. (26) that needs to be modified due to the coupling with SFEM is
the integral on ΓFS. Depending on the orientation of the local coordinate system in
the spectral element with respect to the outward normal of the acoustic domain we
have (acoustic normal vector pointing outwards)

ŵn = σ′

sŵ (29)

σ′

s ≡ σs but the prime is used here to distinguish which σ is due to the orientation of
the structural displacement with respect to the fluid normal vector pointing outwards
when coupling the fluid and the structure in Eq. (29) (this uses σ′), and which one
comes from the definition of the structural displacement in Eq. (19) (this uses σ
without prime).
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The structural displacement ŵ of Eq. (6) can be expressed as

ŵ = NSEM ·AT +
1

D

1 or 2∑

s

σs
∑

j

Ψs,jPs,j cos (κs,jx+ ϕs,j) (30)

and AT can be computed from Eq. (19) as

AT = S−1

(

ue −
1

D

1 or 2∑

s

σs
∑

j

Ψs,jPs,ju
p
s,j

)

(31)

Now it can be used to compute
∫

ΓFS
ψiŵn dΓxz which in practise implies the

computation of the following integrals on the structural element

∫

ΓFS

ψ
(r)
i ŵn dΓxz = σ′

r

∫

ΓFS

ψ
(r)
i NSEM dΓxzS

−1

︸ ︷︷ ︸

(CSF )i,·

ue

− σ′

r

1

D

1 or 2∑

s

σs
∑

j

Ψs,j

∫

ΓFS

ψ
(r)
i NSEM dΓxzS

−1u
p
s,j

︸ ︷︷ ︸

(C
(r,s)
FF

)i,j

Ps,j

+ σ′

r

1

D

1 or 2∑

s

σs
∑

j

Ψs,j

∫

ΓFS

ψ
(r)
i cos (κs,jx+ ϕs,j) dΓxz

︸ ︷︷ ︸

(C
(r,s)
FF

)i,j

Ps,j

(32)

where the subscript i and superscript r in the mode ψ
(r)
i mean that it is the modal

function i in the acoustic domain of the side r of the structural element. The same
criterion is used for the subscript r in σ′

r which is required due to Eq. (29). (CSF )i,· is
a row matrix that couples the mode i with the spectral element, and the coefficient i, j
of the matrix C

(r,s)
FF couples a mode i of side r with a mode j through the structural

element. The modes can be both on the same side of the element or on different sides.
For this reason a spectral element with acoustic fluid in only one side needs only one
matrix CFF and when the element is in contact with the fluid on both sides, it implies
four matrices CFF : for each side of the element, interaction of the fluid with itself
(C

(1,1)
FF and C

(2,2)
FF ) and with the fluid on the other side through the forced vibration

of the element (C
(1,2)
FF and C

(2,1)
FF ). The calculation of the matrix coefficient is done by

considering the two indicated integrals in Eq. (32).
The simple problem of two cuboid-shaped acoustic domains (rooms) separated by

a single wall (one spectral element), see Fig. 1(b) is considered in order to illustrate
the way how the fluid-structure coupling is represented and the organisation of the
matrices is done (creation of the coupled system of linear equations). The lower room
is denoted by the side number s = (1) and the upper room by the side number s = (2).
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It must be also noted that Ps,j represents the amplitude of acoustic pressure on
the element side. It depends on the value of modal contribution and the evaluation
of the mode shape. So, it can be written that

Ps,j = pj cos

(
nzjπ

lz
z

)

(33)

for the lower acoustic domain in Fig. 1(b) z = lz. And κs=1,j = nxjπ/lx. For the
upper acoustic domain, z = 0. And κs=2,j = nxjπ/lx. pj is the contribution of mode
j for the harmonic nzj.

Similar, expressions could be used for the spectral element placed in some of the
other three sides of the acoustic domain. The global system of equations is






Mmod
(1) + ρω2I2C

(1,1)
FF ρω2I2C

(1,2)
FF ρω2I2C

(1)
SF

ρω2I2C
(2,1)
FF Mmod

(2) + ρω2I2C
(2,2)
FF ρω2I2C

(2)
SF

C
(1)
FS C

(2)
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e










p(1)

p(2)

u



 =





f
(1)
mod

f
(2)
mod

fSFEM





(34)
with Mmod the modal matrix accounting for the integrals in the first row of Eq. (26),
fmod the modal force vector defined in Eq. (26), fSFEM the vector of external nodal
forces for the spectral element (with the same structure as the nodal force vector
defined in Eq. (17)), p the vector of modal contributions, u the vector of nodal
displacements and rotations. The superscripts indicate the side of the element which
is equivalent for this simple case, to the acoustic domain number ((1) for the lower
and (2) for the upper).

For more complex structures, the matrices for each structural element and the
coupling matrices must be assembled by means of a standard FEM procedure. Note
that the size of this linear system of equations is smaller than the dimension of the
linear system of equations required by the solution of the same problem by means of
a FEM or FSM formulation.

3 Numerical results and analysis

The numerical model is applied to the study of the vibration and sound transmission
between two rooms separated by a T-shaped structure (Sections 3.1 and 3.4) or a
single wall (Sections 3.2 and 3.3), and four rooms separated by a X-shaped junction
(Section 3.5). First, in Section 3.1, the results obtained by means of the modal-spectral
model are compared with the results obtained with the finite strip method (FSM) [49].
A single junction (one set of dimensions and material properties) is considered.

Section 3.2 deals with the major numerical drawback of the model. In some
situations, S is very ill-conditioned which causes poor quality of the solutions. It is
illustrated with the study of the sound transmission through a single wall. A remedy
is also proposed.

In Section 3.4 a parametric analysis to gain knowledge on the general behaviour
of the T-junction is performed. It requires a large number of computations and
consequently any saving of time is very important. The efficiency is one of the main
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advantages of modal-spectral model with respect to other element-based approaches
(like FEM or FSM).

Finally, in Section 3.5 the assumption of path independence is checked for an X-
junction. The solution of the global problem is compared with the combination of
results obtained by simulation of all paths separately.

In all the examples shown here c = 340 m/s and ρ = 1.18 kg/m3. The real values
of admittance A for the absorbing (Robin) boundaries are taken from Table 1.

1/Aρc 20 32.5 70
α(%) 30 20 10

Table 1: Values of normalised admittance and random incidence absorption coefficient
for the Robin boundary condition (calculated as proposed in [50]).

In the T-junction and X-junction cases, each acoustic domain has two rectangular
surfaces in contact with the structure, two rectangular surfaces with null pressure
(Y = 0 and Y = Ly) and two rectangular surfaces (ΓR) where an acoustic absorption
can be imposed by means of the admittance value A. The surfaces of null pressure are
a consequence of the interpolation functions chosen in the extrusion direction (that
are sines, see Eqs. (1) and (24)). Null acoustic intensity passes through them.

In all the simulations the full vibroacoustic problem is solved. It means that
in-plane and out-of-plane wave motion in the structure is always possible and fully
coupling with all the acoustic domains is considered.

3.1 Comparison with the FSM

As detailed in Section 2, the proposed model has some geometrical limitations: ex-
trusion symmetry and use of sine function as harmonic interpolation in this direction.
FSM can exactly reproduce these limitations in order to make a fair comparison. For
this reason, the FSM [49] is chosen in order to compare the combination of modal-
spectral interpolation with an element-based approach. The treatment of the Y -
direction is the same in both models while the difference relies on the X−Z plane. It
must be noted that FSM is more flexible in the treatment of the extrusion direction
because different interpolation functions in the fluid and the structure can be used
without major modifications in the formulation. As detailed above, the proposed
model requires equal interpolation functions in the fluid and the solid parts. An ad-
ditional drawback of FSM with respect to the spectral-modal model is that it still
requires the use of a fine discretisation in the two-dimensional plane.

A single T-junction structure that separates a sending and a receiving room is
considered. It is made of concrete (see Table 3) with a thickness in each zone of 0.1
m. The total damping ηtotal = ηint + ηboundary is composed by the internal damping
(ηint) plus the boundary losses considered with ηboundary = f−0.5 according to [51].

The length of the problem in the extrusion direction is Ly = 4.0 m, the sending
room has dimensions Lx,s = 3.5 m ×Lz,s = 2.5 and the receiving room Lx,r = 4.5
m ×Lz,r = 2.5. A point source (qs = 0.01 m3/s) is placed in bottom left corner of
the sending room, separated 0.5 m from the boundaries. More precisely, it is a point
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source in the X−Z plane, described by means of a triangular mesh (FSM) or a modal
expansion. In the FSM, a node of the triangular mesh is placed in the position of
the source which is represented by a non-null term of the force vector corresponding
to that node. On the contrary in the modal expansion, the force vector related to
each modal contribution is not null. It means that the spatial description of the point
source in the X − Z plane, which is of the Dirac delta form, is done through all
the modes. Ideally, infinite modes would be required to approximate a Dirac delta
function and the truncation of the modal base introduces some additional error in
the spatial description of the source. In addition, an element-based interpolation
is more adequate than a mode-based to describe the variation of the pressure field
around the point source. In the Y -direction, the point sound source requires also
the representation of a Dirac delta function. The accuracy depends on the number
of harmonics considered. Ideally, infinite sine functions should be required, which is
never the case. This number and other model parameters are shown in Table 2 for
each third-octave frequency band.

For each frequency f all modes with wavenumber

k =

√
(
nπ

Ly

)2

+

(
nxjπ

lx

)2

+

(
nzjπ

lz

)2

(35)

in the range (0, 2π(max (1.3f, f + 200))/c) have been considered. This aspect
can be of course optimised, see for example [22, 52]. However, some of the available
strategies lose its sense here because solutions are obtained in separate harmonics.
This makes in practise not so clear how to neglect the less important modes and keep
the efficiency of the implementation. On the contrary, it is an important advantage
from the efficiency point of view to split the problem in smaller sub-problems. Each
harmonic leads to a linear system of equations with a matrix that is full but has a
much smaller dimension than FEM matrices or when the problem is considered as
true three-dimensional.

Several transmission paths are taken into account. They are enforced by allowing
or not the contact between the structure and the acoustic domains. For example, in
the path 13, straight transmission, the sound is generated in the source room which
is in contact only with the zone 1 of the T-junction and not with the zone 2. The
receiving room is in contact with the zone 3 of the T-junction and not with the zone
2. The model is in the same way adapted to deal with other transmission paths.

Figs. 2 and 3 show pressure levels in each of the rooms

Lp = 10 log10

(
< p2rms >

p20

)

(36)

and velocity levels in each zone of the T-shaped structure

Lv = 10 log10

(
< v2rms >

v20

)

(37)

with the reference values of pressure p0 = 2× 10−5 Pa and velocity v0 = 5× 10−8m/s.
< p2rms > and < v2rms > are respectively the spatial averaged pressure in a room
and the spatial averaged velocity in a zone of the structure (the zones are the entire
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f0 (Hz) num. of harmonics ∆f (Hz) hfluid hsolid
50 3 1.0 0.4 0.1
63 3 1.0 0.4 0.1
80 4 1.0 0.3 0.1
100 4 2.0 0.3 0.1
125 5 2.0 0.3 0.1
160 6 2.0 0.2 0.1
200 7 2.0 0.2 0.1
250 8 3.0 0.15 0.1
315 10 3.0 0.1 0.1
400 12 4.0 0.1 0.1
500 15 5.0 0.1 0.1
630 18 6.0 0.08 0.1
800 23 10.0 0.06 0.1
1000 28 15.0 0.05 0.1
1250 35 20.0 0.04 0.1

Table 2: Third-octave frequency-band values for several model parameters: f0 is the
central frequency of the band, ‘num. of harmonics’ is the number of harmonics con-
sidered (always starting from 1), ∆f is the frequency step or the separation between
the considered calculation frequencies, hfluid and hsolid are the element sizes used in
the fluid and solid part respectively for the FSM cross-sections.

rectangular plates shown in Fig. 1(a)). The nodal points used to make the spatial
average are similar in both models and uniformly distributed all around the structure
zone or the acoustic domain. The Figs. 2 and 3 are just representative examples of
the results obtained for two of the paths.

In both Figs. 2 and 3 the acoustic absorption is 20%. With this value and the
mentioned room dimensions, the Schroeder frequency of the rooms is around 350 Hz.
The simulations have also been done with acoustic absorption of 10% and 30%, leading
to similar conclusions.

The results for all of them show that both models are fully equivalent from the
engineering point of view, with the difference that modal-spectral is much faster.
This conclusion is valid for all the output types and zones. A difference of 0.4 dB
in Fig. 3 is equivalent to a difference of 10% in the spatial averaged output. They
are mainly caused by the different discretisation of the point source and treatment of
boundaries (absorbing and coupling). In the acoustic domains described by means of
the modal expansion, the boundary effects are taken into account through the weak
form Eq. (26). This represents just a good approximation but limited by the type of
modes used, with null normal derivative at the boundary (for more details see [53]).

The modal behaviour is described in a very similar way for both models in Fig. 2.
Only above the 250 Hz the curves start having a small random component without the
deeply pronounced peaks due to the resonances. This is coherent with the mentioned
value of the Schroeder frequency of the rooms.
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Figure 2: Example of the frequency-dependent output obtained with the finite strip
method (FSM) and the spectral-modal model (Modal-SFEM) with a room absorption
of 20%: (a) Pressure levels in sending and receiving rooms for the 12 (right angle)
transmission path; (b) Velocity levels for the 13 (straight) transmission path.

3.2 The conditioning problem

The matrix S, for an undamped spectral finite element of length ℓ, is singular if the
following equation is satisfied

8k1k2e
i(k2+k1)ℓ +

((
k22 − 2k1k2 + k21

)
e2i(k1+k2)ℓ

)
+

+(−k22 − 2k1k2 − k21)(e
2ik1ℓ + e2ik2ℓ) + (k22 − 2k1k2 + k21) = 0 (38)

This is a purely numerical phenomenon not related with any physical resonance of the
structure. It is important to note that Eq. (38) depends on the physical parameters
of the structure but also on the element length. And the element length depends on
the discretisation which is independent of the structure dimensions.
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Figure 3: Measure of the differences between the finite strip method and the spectral-
modal model. Absolute difference of the third-octave frequency band outputs: (a)
pressure levels for several transmission paths; (b) velocity levels for the 13 (straight)
transmission path.

The roots of Eq. (38) can be found by successive application of the Newton-
Raphson method using different first guesses that cover the whole frequency range of
interest. It is not usual to deal with parameters that precisely satisfy this singularity.
However, similar situations (lightly damped elements or frequencies that are close to
the Eq. (38) roots) can be of interest. In these cases, the matrix S−1 can be very
ill-conditioned. See, for example, Fig. 4 that shows the condition number of S−1 for
a 0.1 m thick spectral element made of concrete (material properties of Table 3).

The ill-conditioning of S−1 does not affect the performance of the spectral elements
for the uncoupled structural problem. However, it can have undesirable consequences
for the quality of the numerical solution in the coupled vibroacoustic problem pre-
sented here. The propagation of numerical errors is mainly important at low frequen-
cies and for those situations when some spectral element is coupled to the fluid in
both sides. It excludes the 12 and 13 transmissions for the T-junction of Section 3.1
but not a simple case of sound transmission through a single wall.

The remedy adopted here in order to overcome this numerical drawback is as
follows:

• Make the discretisation of the structure by using the largest spectral elements.
In the case of a T-junction, three spectral elements is enough. This saves some
computation time.

• Compute all the spurious frequencies as roots of Eq. (38) in all the frequency
range of interest and for all the harmonics involved in the solution of the problem.
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Figure 4: Condition number of the matrix S−1 for several harmonics n in an spectral
element made of concrete: (a) 2.5 m length; (b) 1.25 m length.

• For those situations around the spurious frequencies use an alternative mesh.
This mesh can be as simple as divide the problematic spectral element by two.
It must be checked that no problems related with the modified discretisation
appear around the studied frequency. Fig. 4 shows how the condition number
of S−1 varies when modifying the element length. It seems reasonable to define
security bands of 10 Hz around the spurious frequencies to activate this remedy
(if the calculation frequency falls inside this security band, the probability of
obtaining a numerical result affected by the ill-condition problem is important
and the remedy is activated). This band can be smaller at high frequencies.

It must be noted that not all the spurious frequencies cause the propagation of numer-
ical errors. But no consistent procedure to determine which of them are problematic
has been found.

A model problem is built by considering all the material and geometrical param-
eters used in Section 3.1 but replacing the T-junction with a single leaf on zone 2.
This allows the discussion to be focused in a 2.5 m length element. However, the same
comments are valid for the T-junction when the path 33 is analysed or all possible
fluid-structure contact surfaces activated. The relevant aspect is to have some of the
spectral elements with fluids on both sides.

The results in Fig. 5 illustrate the anomalous behaviour for the sound transmission
through a single wall and how the numerical difficulties have been overcome. Three
numerical models of the same physical problem are compared: A) FSM; B) modal-
spectral model where the wall is described by means of only one element; C) modal-
spectral model where the wall is described by means of an alternative discretisation
of two elements (1.25 m length each) around the spurious frequencies of model B.

Away from the spurious frequencies of the second model (shown by crosses) all the
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results are equivalent. However, around the spurious frequencies the results provided
by model B largely differ from the FSM prediction. On the contrary, the results
provided by model C always agree with the FSM prediction, independently of the
studied frequency. The two spurious frequencies around 200 Hz do not affect the
quality of the numerical solution.

This is a case where the effect of spurious frequencies is important and affects
a quite wide band. In other situations the error peak is more localised around the
spurious frequency.
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Figure 5: Effect of the spurious frequencies on the sound transmission through a
single wall. The acoustic absorption in both rooms is 20%. The ‘*’ indicates that
modal-spectral model uses correction due to ill conditioning (two elements for the
wall instead of one). The mean pressure levels in the sending and receiving rooms are
shown: (a) frequency-dependent value in each room; (b) difference between FSM and
modal-spectral for the third-octave band values.

The ill-conditioning problems caused by the use of ‘special’ interpolation functions
are more important in other numerical techniques: the Wave Based Method [54], the
Fundamental Solutions Method [55] and the Partition of Unity Method [56]. Alterna-
tives to the methodology proposed here and based on the scaling of the interpolation
functions (especially in the case of evanescent waves), special integration or selective
use of wave directions could probably be also derived.

3.3 Influence of boundary conditions in the extrusion direc-

tion

As mentioned in Section 2, the model requires sine interpolation in the Y direction.
This limits the boundary conditions to be considered at Y = 0 and Y = Ly. The
single wall problem of Section 3.2 is taken as benchmark test in order to study the
possible influence of boundary conditions in the acoustic domains.

Sine interpolation is always used for the wall but two options are considered for
the acoustic domains: i) cosine interpolation which represents that the walls at Y = 0
and Y = Ly are rigid (null normal derivative of the acoustic pressure field); ii) sine
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interpolation that implies the assumption of zero pressure at Y = 0 and Y = Ly.
The first case is solved by means of the FSM [49] and with a fully modal approach
where both the acoustic domains and the plate are described by means of a modal
expansion as done in [19, 22]. This modal-modal model allows the simulation of
higher frequencies than the FSM. For the second case, both models are adapted in
order to use sine interpolation in the Y direction. This allows a comparison with the
Modal-SFEM model presented here.
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Figure 6: Sound transmission through a single wall. Influence of boundary conditions,
sine or cosine interpolation is used in the Y direction of the acoustic domains. The
labels for the models are as follows: ‘FSM cos’ and ‘FSM sin’ denote the finite strip
method with cosine or sine interpolation in the Y direction respectively; ‘Modal cos’
and ‘Modal sin’ is used for the fully modal expansion (acoustic and solid domains)
with cosine or sine interpolation in the Y direction respectively; ‘Modal-SFEM*’ is
the Modal-SFEM model presented here with the correction mentioned in Section 3.2.
(a)Sound pressure level (The labels ‘S’ and ‘R’ mean sending and receiving room
respectively); (b) Velocity level.

Fig. 6 illustrates the effect that the modification of the acoustic boundary condi-
tions have on the final outputs. As expected, this is more important at low frequencies.
The pressure field of the modes with small n = 0, 1, 2, . . . is very different (the spatial
distribution of pressure in the Y direction differs a lot).

The differences are less important at mid frequencies and larger values of n where
even if the pressure field in the Y direction can still be different, the spatial wavenum-
ber is similar and we have different pressure waves that produce a similar excitation
on the structure.
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3.4 Parametric T-shaped junction

The main advantage of the modal-spectral model is the efficiency. This is illustrated
here with the parametric analysis of a T-shaped junction in the framework of a vibroa-
coustic problem. Recent researches [8, 7, 9] are trying to develop simple but general
design rules for the vibration behaviour of some common structural components. A
large number of simulations is required in order to make the final prediction formulas
independent of the less influencing parameters.

The remainder of the section, is an illustration of how the modal-spectral model
can be a useful tool to perform this type of massive vibroacoustic simulations not only
at low-frequencies but also at mid-frequencies.

A population of T-junctions is considered. They are generated with the material
parameters of Table 3 considering: i) homogeneous junctions made of concrete, aer-
ated concrete blocks and calcium silicate blocks; ii) junctions made of concrete in the
zone 2 and other material in zones 1 and 3 (aerated concrete blocks, bricks or dense
aggregate blocks). The thicknesses of each zone can be 0.1, 0.2 and 0.3 m with a
total of 9 possible combinations (zones 1 and 3 have always the same thickness). A
range of mass ratios according to common junctions found in heavyweight buildings
is covered.

The dimensions of the T-junction and rooms are: Ly = 4.0, 5.0 or 6.0 m in the
extrusion direction, Lx = 3.5, 4.5 or 5.5 m and Lz = 2.5 m for both sending and
receiving rooms. It makes a total of 27 sets of T-junctions and rooms with different
dimensions. The result for each junction type (thicknesses and material combination)
is provided as the average of these 27 sets of dimensions with the standard deviation.
The goal is to obtain a general trend, independent of the problem dimensions.

The main output of interest is the vibration reduction index as defined in [2, 5, 9]

Kij = Dν,ij + 10 log10

(
ℓij√
aiaj

)

with ai =
2.2πSi

cTi

√

fref
f

(39)

where Dν,ij is the direction averaged vibration level difference, ℓij is the length of the
junction, ai is the equivalent absorption length of the plate i, Si its surface, c the speed
of sound in the air, fref = 1000 Hz is a reference frequency and Ti the reverberation
time of the wall i that can be calculated as Ti = 2.2/ (ηtotalf). ηtotal = ηint + ηboundary
is the total loss factor that accounts for the internal damping (ηint) and the boundary
losses, considered as ηboundary = f−0.5 according to [51].

For the case of point force excitation, an alternative to compute the spatial average
of the velocity level Lv is considered by excluding the zone of 1 m around the point
force. This option is indicated in the figures with the symbol ‘*’. This spatial average
tries to neglect the effect caused by the near field around the force application zone
and is more coherent with the measurement procedure described in [57].

The coupling surfaces are modified as explained in Section 3.1 in order to allow
only one possible transmission path. Ki,j is direction averaged. In practise for each
junction two situations are considered, sending room on the left and vice-versa. In
every situation a point (in the X − Z plane) source is placed in bottom corner, away
from zone 2 and separated 0.5 m from the walls. The main difference with previous
works[9] is that Ki,j is now obtained by means of acoustic excitation instead of point
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forces. The effect of the receiving room on the structure can probably be neglected for
most of the frequencies if just the Ki,j with acoustic excitation needs to be computed.
However, at some resonances of the receiving room this hypothesis can be false. It
is not easy to determine a priori when this can happen. For this reason and thanks
to the versatility of the implementation, it is easier and more realistic to consider the
receiving room in all the cases.

The mass ratio between the surface density of the orthogonal structural zone and
the current one (see [2]) is used as the parameter that characterises the junction.

Material ρv (kg/m3) ν E (Pa) ηint
Concrete 2200 0.2 3.05 · 1010 0.005
Aerated concrete blocks (1) 400 0.2 1.39 · 109 0.0125
Aerated concrete blocks (2) 800 0.2 2.77 · 109 0.0125
Dense aggregate blocks 2000 0.2 1.97 · 1010 0.01
Bricks 1750 0.2 1.22 · 1010 0.01
Calcium silicate blocks 1800 0.2 1.08 · 1010 0.01

Table 3: Material properties (frequency independent) of the parametric analysis.
Same materials as [8] have been considered.

For each set of 27 junctions, two single values of Ki,j are obtained. One is for
the low frequencies (average of third-octave frequency bands between 50 Hz and 200
Hz) and the other for mid frequencies (average between 250 Hz and 1000 Hz). The
standard deviation of these 27 junctions is also provided. Even if performing single
simulations up to 2000 Hz with the mentioned problem dimensions is reasonable, to
obtain a high-frequency value (up to 4000 Hz) from a parametric analysis is currently
out of the possibilities of the presented model.

The low-frequency results are shown in Fig. 7 for the right-angle transmission (12)
and Fig. 8 for the straight transmission (13). Apart from the Ki,j values obtained with
the vibroacoustic modal-spectral simulations (Modal SFEM), the following data is also
plotted: the sameKi,j values obtained with the FSMmodel (for some of the junctions);
the Ki,j for the same junctions but considering point force excitation (average of three
different positions) using the SFEM model described in [9] ,considering spatial average
all around the excited plate (SFEM Point Force) or excluding the zone around the
force (SFEM Point Force*); the prediction formula proposed in the annex of the EN-
12354 regulation [2]; the simplified formula obtained in [8] by statistical regression of
a cloud of Ki,j data generated by means of a wave approach model (Hopkins).

The predictions done with FSM and modal-spectral are very similar. However,
FSM takes much more time. In the low-frequency range, Ki,j values obtained with
acoustic excitation are in most of the cases 1 or 2 dB larger than their equivalent
obtained with point force excitation. However, this trend seems to be inverted for
the junctions with the largest mass ratio. In both cases, right angle and straight
transmission, the general trend shows the same differences with EN-12354 that are
described in [8] or [9]. They are more relevant for the right angle transmission in
junctions with a mass ratio different than 1.
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The modification in the spatial average of the results obtained with point force
excitation causes a reduction of the Ki,j values in all cases: low and mid frequencies,
straight and right angle transmission. This is explained because the exclusion of the
zone around the force application diminished the velocity level in the source plate.
The velocity level in the other plates remain the same and consequently the vibration
level difference also diminishes. This variation is more important at low frequencies.
In the mid frequency range, the values with the modified spatial average are closer to
the values obtained with acoustic excitation. This makes sense because the exclusion
of the near field produces a more uniform vibration field which is the case of acoustic
excitation.
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Figure 7: Low-frequency averaged vibration reduction index for a T-shaped junction,
right angle transmission (12): (a) Vibration reduction index for each mass ratio value;
(b) Standard deviation of each data point due to the change of junction and room
dimensions.

Figs. 9 and 10 are the results for the mid-frequency range. They do not include
the FSM data points due to their high computational costs.

The main difference with the low-frequency values is that, now, the Ki,j values
obtained with acoustic excitation are in most of the cases at least 2 dB smaller than
their equivalent obtained with point force excitation (this difference is much smaller
if the spatial average excluding the near field is used). With this variation, they are
closer to the wave-based prediction formula. This may be caused by the deformation
shape at mid frequencies, more affected by damping. When point force excitation is
used, damping localises the effect of the force creating a zone around the application
point with larger vibration levels. It increases the vibration level of the zone where
the point force is applied. If this zone is excluded from the average, the results with
acoustic and mechanical excitation are almost equivalent. With acoustic excitation,
no local effect is possible and the vibration is more or less uniform (like the excitation
is). The standard deviation due to the variation of the junction dimensions is around
1 dB smaller than in the low-frequency range.
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Figure 8: Low-frequency averaged vibration reduction index for a T-shaped junc-
tion, straight transmission: (a) Vibration reduction index for each mass ratio value;
(b) Standard deviation of each data point due to the change of junction and room
dimensions.
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Figure 9: Mid-frequency averaged vibration reduction index for a T-shaped junction,
right angle transmission: (a) Vibration reduction index for each mass ratio value;
(b) Standard deviation of each data point due to the change of junction and room
dimensions.

23



 0

 10

 20

 30

 40

 0.1  1  10

K
ij 

(d
B

)

m⊥ /mi

 EN-12354 
 Hopkins (0.33< m⊥ /mi <16.59) 
 Modal SFEM 

 SFEM Point Force 
 SFEM Point Force* 

(a)

 0

 0.5

 1

 1.5

 2

 0.1  1  10

σ K
ij (

dB
)

m⊥ /mi

(b)

Figure 10: Mid-frequency averaged vibration reduction index for a T-shaped junc-
tion, straight transmission: (a) Vibration reduction index for each mass ratio value;
(b) Standard deviation of each data point due to the change of junction and room
dimensions.

The largest differences between acoustic and mechanical excitation are found in
the low-frequency range. This may be caused, on the one hand, by the less efficient
excitation of the vibration field when the acoustic pressure is not a reverberant field
[58]. On the other hand, at low frequencies, the vibration response can be dominated
by few modes. The coupling efficiency between the excitation and the mode depends
on the interaction between the sound waves and the modal shape [59]. This can have
a considerable variation from mode to mode and consequently a variability in the
vibration levels of the structure.

3.5 Flanking paths superposition

Typical flanking transmissions problems can be solved in a reasonable frequency range
by means of the spectral-modal technique. Some of the usual assumptions and sim-
plifications can now be avoided because the fully coupled vibroacoustic formulation
of the problem is considered. The fact that the global sound transmission between
rooms is modelled by considering independent first-order transmission paths is now
verified.

The X-shaped junction of the Fig. 11 is considered. It has the same material
properties and dimensions as the T-junction of the Section 3.1 (and Lz2 = Lz4 = 2.5
m in the upper and lower parts). The reason to chose the X-junction is that while in
the T-junction the sound transmission between rooms involves always a direct path, in
the X-junction there exist the transmission between the two diagonal (non adjacent)
rooms that is done only through flanking (indirect) paths. On the one hand, it makes
clearer the role of flanking transmission paths through the structure. On the other
hand, it makes easier to check the correctness of the superposition of independent
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flanking paths.

For the material and geometrical properties of the junction, the direct path is
usually dominant and the effect of one flanking path tends to be marginal. This can
be very different in a fully three-dimensional building geometry where the number of
indirect paths is increased while the direct path is always one. For example, for a
rectangular single wall that separates two rooms and have lateral walls at Y = 0 and
Y = Ly and upper and lower floors at Z = 0 and Z = Lz, there are three indirect
paths (1 − 3, 1 − 2, 2 − 3) at each side of the rectangle. It makes a total of twelve
indirect paths and only one direct path. This makes clear the potential importance
of flanking transmissions in real buildings.

LZ4

LZ2

h2

LX1
LX3

h1

2

4

31

Receiving

1−4

Sending

1−3
2−4

2−3
2

4

31

Receiving

1−4

Sending

Figure 11: Sketch of a X-shaped junction. On the left, notation used in a situation
where all the coupling surfaces are active (dashed lines) and all transmission paths
(acoustic and structural) are possible. On the right, problem where the structural
transmission path 1− 4 is simulated with only some active coupling surfaces.

The sound reduction index of a flanking path is computed from the numerical
simulation as [60, 61]

Ri,j = LS
p − LR,ij

p + 10 log10

(
Si

AR

)

(40)

where LS
p is the sound pressure level in the sending room, LR,ij

p is the sound pressure
level in the receiving room when the transmission path from the zone i to the zone
j is allowed, AR is the total absorbing area in the receiving room and Si is the area
of the structural zone i. When there is direct transmission of sound, Si is taken as
the surface of the wall through which sound is directly transmitted. When there is
no direct transmission, like in the case considered here, Si can be taken as a reference
value (10 m2).

Fig. 12(a) shows the sound reduction indices of the four flanking paths through
the diagonal. Apart from the low-frequency zone where the modal behaviour and
particular dimensions are important, the general trend of the four paths is very similar.
Above the 125 Hz the differences between them are not larger than 8 dB.
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Figure 12: Flanking transmissions through a X-shaped junction: (a)Sound reduction
index (R) of each flanking path through the junction ; (b) Comparison between the
overall sound reduction index considering that each indirect flanking path is indepen-
dent (Indep.), the result when all the structural paths are active at the same time
(Struct.), and when all paths (structural and acoustic) are active (All).

The global sound reduction index, taking into account the effect of all the flanking
paths is computed as

Rtotal
i,j = 10 log10

(
N∑

i=1

Si

)

− 10 log10

(
N∑

i=1

Si10
−Ri,j/10

)

(41)

where N is the number of paths.
Fig. 12(b) shows the global sound reduction index computed in three different

ways: i)‘Indep.’: by superposition according to Eq. (41) of all possible transmis-
sion paths, each of them is the result of an individual simulation where the interface
conditions between fluid and structure has been properly adapted (see Fig. 11 that
illustrates the flanking path 1−4 with only two coupling surfaces: sending room - zone
1 and receiving room - zone 4); ii) ‘Struct.’: by considering active all possible flanking
paths through the X-junction at the same time but not the airborne paths through
contiguous rooms (only the sending and receiving rooms are modelled); iii)‘All’: con-
sidering the whole problem involving four rooms and all possible transmission paths
(acoustic and structural).

A first aspect to be noted is that curves ‘Struct.’ and ‘All’ are quite similar.
This means that flanking paths through the structure are dominant with respect to
the airborne paths between contiguous rooms in the sound transmission through the
diagonal. This is not the case in the transmission between adjacent rooms (i.e. in a
T-junction) where the airborne (direct) path is clearly dominant. But now, this is a
second order path because it needs to pass through two walls (left to right and bottom
to top). It drastically penalises the airborne transmission between diagonal rooms.
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Except for the low-frequency bands (below 160 Hz), the difference between the
‘Struct.’ and ‘Indep’ curves are not very large but it still exists. It means that the
superposition of paths is a quite good approximation but not exact. Some interaction
between the paths should exist. This observation is based on a meaningful but single
example. Most probably a systematic analysis would lead to a more solid conclusion
regarding the path superposition.

4 Discussion

The results presented in Section 3 illustrate the potentialities and drawbacks of the
proposed model. Section 3.1 shows that it is in practice equivalent to a more versatile
method based on polynomial interpolation (i.e. FSM). This is a very positive aspect,
which in fact was the main goal of the research. Some of the critical aspects as well
as possible improvements and future developments are discussed next.

4.1 Computational efficiency

The formulation of this alternative method makes sense only if the final implementa-
tion is more efficient than standard approaches such as FEM or BEM, which is the
case. The advantages (in terms of computational cost reduction) of using a modal
expansion technique with respect to FEM were studied in [53](Section 5.3) for the case
of a single wall modelled with structural FEM elements that separates two cuboid-
shaped acoustic domains described by means of a modal expansion, and in [31] for the
case of rooms connected through holes, slits or openings. In both cases the advantages
of using a modal expansion was clear and expressed in terms of memory requirements,
number of degrees of freedom and number of operations. The modal expansion affects
to the acoustic part of the problem (rooms) and this advantage is inherited here.

What is improved here is the cost of discretisation of the structure (wall or junc-
tion). In [53] it was done by means of finite elements. Even if the use of FEM for the
structure is a much smaller penalty than the use of FEM for the rooms, the cost of
structural FEM can still be important. Especially if it is compared with the cost of a
properly optimised modal description of the rooms. Now, the structural part of the
problem is solved with almost marginal costs thanks to the use of spectral elements.
For a single wall (one element) it represents eight unknowns (four per node) and for a
T-shaped structure three spectral elements and 16 unknowns. And all these is before
the elimination of the imposed or blocked displacements. So, it can be said that even
if the structural matrices are full in the SFEM the costs associated to the structural
part of the problem become almost null.

The matrices lose any specific structure but are very small. The ones associated
with the structural part and the coupling are full and those associated with the modal
expansion can be diagonal or banded (depending of the treatment of the surfaces with
absorption, see the details in [53]). For this reason, a direct solver for full matrices is
used here.

The costs associated with the Y direction are equivalent to those described for the
FSM in [49]. The convergence analyses presented there, are valid here because the Y
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direction is also described by means of trigonometric functions. The most important
aspect is the use of the same functions for the structure and acoustic domains that
allows the solution of the problem by means of decoupled blocks. This is an important
issue from the computational point of view and also from the modelling side (as shown
in Section 3.3).

4.2 Weak coupling

Another aspect to be considered is the improvement of the modal expansion used
for the acoustic domains with some technique more oriented to the vibroacoustic
problems. In the current form, the model is conceived for situations of weak coupling
as it is the transmission of sound through walls separating air rooms. This limitation
is mainly caused by the use of normal modes (in vacuo, see Eq. (23) afterwards) and
the lack of normal velocity in the acoustic field but not due to the solution procedure
(which is fully coupled). However, this modal expansion is the simplest allowing an
analytical treatment of the coupling and has been largely used [62]. Their drawbacks
when used for coupled problems (heavy loaded structures or dense fluids) with non-
null normal velocity at the fluid boundary are quite well know and some remedies have
been proposed. A physical-oriented a priori criterion to select the most important
modes is used in [52]. A pseudo-static correction of the large numerical errors caused
by the truncation of the modal base in strongly coupled problems is proposed in [63].
Another technique that combines a pre-selection of modes and double enrichment of
the solutions with information from the coupling forces and final residuals is presented
in [64] where an interesting comparison with existing methods is done. The mitigation
of truncation errors can also be done in the post-processing stages [65].

The ideas and formulation exposed here could be adapted to account for some of
the techniques mentioned above. This could be useful to extend the spectral-modal
model presented here to strongly coupled problems (i.e. with heavier fluids). In any
of the cases, normal modes are valid for a wide range of situations of interest.

5 Conclusions

The main conclusions of the research are summarised here below:

1. A spectral(structure) and modal (acoustic) model has been developed. The main
feature of the formulation is the coupling between both methodologies. The
results show a good agreement with the FSM. Moreover, the final model is more
efficient (than FSM or three-dimensional FEM) as a result of the combination
of more efficient techniques and simplifications of the geometry.

2. Poor quality of the numerical solution around some spurious frequencies is ob-
served. The cause is the ill-conditioning of the matrix S. It is mainly important
when some spectral element contacts modal acoustic domains at both sides. This
drawback can be overcome by using a slightly different discretisation where the
length of the problematic spectral elements is changed.
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3. A first application to the study of sound and vibration transmission through a
T-junction is done. Some differences in the vibration reduction index computed
with point force excitation and with acoustic excitation are observed. They
are more important at low frequencies where acoustic excitation systematically
provides larger Ki,j values. These differences are less important at mid frequen-
cies especially if spatial average that excludes the zone around the point force
excitation is considered.

4. The model has also been used to check the hypothesis of flanking path inde-
pendence. The analysis of a X-shaped junction reveals that some differences
between individual path superposition and the global problem exist. They are
more important at low frequencies.

A SFEM matrices related with bending

S =







1 1 e−ik1lx e−ik2lx

−ik1 −ik2 ik1e
−ik1lx ik2e

−ik2lx

e−ik1lx e−ik2lx 1 1
−ik1e

−ik1lx −ik2e
−ik2lx ik1 ik2







(42)

Be

D
=







(γn + k21) ik1 (γn + k22) ik2 (−γn − k21) ik1e1 (−γn − k22) ik2e2
γ′n + k21 γ′n + k22 (γ′n + k21) e1 (γ′n + k22) e2

−(γn + k21)ik1e1 −(γn + k22)ik2e2 (γn + k21)ik1 (γn + k22)ik2
− (γ′n + k21) e1 − (γ′n + k22) e2 − (γ′n + k21) − (γ′n + k22)







(43)
with γn = (2− ν)ξ2n, γ

′

n = νξ2n, e1 = e−ik1lx and e2 = e−ik2lx .
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