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Abstract 
 

A salient feature of neural networks is the maintenance of a balance 

between excitation and inhibition. This trait is crucial for rapid transmission 

of information as well as for preventing runaway excitation during, for 

example, epileptic seizures. There are, however, spontaneous events where 

this balance appears to be broken. Previous theoretical and experimental 

studies reveal the emergence of spontaneous population-wide intermittent 

bursts of coordinated neural activity interrupting asynchronous dynamics. 

Assuming population bursts are due to transient imbalances between 

excitation and inhibition, we combined computer simulations with 

electrophysiological recordings on live neurons in cultures to measure the 

variables responsible for this synchrony. Our results suggest that the bursts' 

properties are determined by those of the network, as highly dense and 

clustered cultures exhibit bursting behaviors while others do not. Moreover, 

we provide preliminary evidence that bursts may be generated locally within 

a region of the network where the balance of excitation and inhibition first 

breaks.    

 

Keywords: excitatory-inhibitory balance, asynchronous dynamics, population 

bursts, electrophysiological recordings, cultures of neurons. 
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Introduction 
 

The neural cortex is composed of recurrent coupled networks of 

excitatory (E) and inhibitory (I) neurons which interact strongly through 

local synaptic circuits10. The functionality of a synapse is generally defined 

upon whether the activation of a presynaptic action potential causes a 

positive (E) or a negative (I) deflection on the postsynaptic potential21,38. In 

other words, E neurons drag the membrane potential towards its firing 

threshold, whereas I lower the likelihood for the neuron to fire.  

 In neurophysiology, the concept of excitatory-inhibitory balance refers 

to the relative contributions of each type of synaptic inputs during a 

neuronal event. While inhibitory neurons are known to comprise less than the 

25% of the population of cortical neurons2,27, it is believed they play an 

important role in counterbalancing excitation. There are certain conditions 

where an excess of excitation is beneficial during, for example, sensory 

stimuli15,36. On the other hand, abnormally excessive excitatory activity in 

neural networks is known to be at the origin of epileptic seizures6 and 

neuropathologies.  

 

Classical theory of balanced networks 

Over the past decade, numerous studies have provided strong evidence 

for closely balanced E and I. Early models on sparsely connected recurrent 

networks conjecture that this proportionality emerges naturally and is 

necessary in order for synaptic variability to be high and the cells not to 

remain in an inactive or abnormally saturated state39. This hypothesis is 

supported by experiments. In vitro electrophysiological recordings suggest 

that balance occurs due to the close and fast tracking of inhibition upon 

excitation4,11,27,31,36,42. Furthermore, in vivo experiments showed the spiking 

activity of I neurons is timed to balance E and plays an important role in 

damping excitation10,27. An important consequence of this balance is that an 

asynchronous state5,11,31,43 is obtained with near-zero pairwise correlations of 

the membrane potentials. 

 

Evidences of excitatory-inhibitory imbalance 

However, balance is not always maintained and theoretical studies 

speculate that neurons sharing a great amount of inputs can occasionally 

synchronize their spiking patterns37 which may be important for  propagating 
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precise action potentials through cortical layers7. In the same vein, gain 

mechanisms that shift the balance towards overriding excitatory activity arise 

during sensory stimuli15: inhibition becomes slower and adapts more than 

excitation.  

Previous measurements of the Reyes group on spontaneously active 

slices of auditory cortex11,28,29, show evidence of intermittent population-wide 

bursts of synchronized activity interrupting asynchronous cortical dynamics. 

Population bursts can be defined as brief but prominent irregular epochs of 

generalized spiking activity and neural depolarization24,27. The emergence of 

self-sustained collective dynamics like population bursts are indicative of 

network-wide correlated activity35 and reflect the underlying functional 

architecture of recurrent circuitry4,24,37,42. Unfortunately, the classical theory of 

balanced networks is unable to reproduce population bursts31.  

 

Objectives and outline 

Our aim is to get an insight on the possible mechanisms at the origin 

of breaking the E-I balance in recurrent networks. Our hypothesis are: 1) the 

bursts originate from a group or cluster of neurons in the network where E/I 

imbalance and bursts first occur, which then spread throughout the network; 

2) the bursts vary with the density or number of neurons in the network. We 

based our analysis upon the fact that population-wide bursts are due to 

transient imbalances between E and I. To test these hypotheses, we use a 

combination of computer simulations and electrophysiological recordings in 

live neurons in cultures. 

This thesis is divided into 5 chapters. First, I will give a brief review of 

spiking neuron models that give rise to the diverse spiking patterns. Then, 

after a short description of the experimental methods, I will describe in vitro 

electrophysiological recordings in cultures of cortical neurons2 during 

spontaneous and optogenetic stimulation in order to measure the variables 

underlying burst generation and E-I imbalance. Finally, I will incorporate the 

experimental data into a numerical computer simulation of a neural network 

that consists of coupled E and I neurons, in order to elucidate the 

mechanisms for breaking the E-I balance. 
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Chapter 1 

Spiking neuron models  
 

Through a mathematical description of the biological properties of 

neurons, spiking neuron models aim to elucidate the mechanisms at the origin 

of the dynamics of the central nervous system38. Unfortunately, because of 

computational time, it is often necessary to compromise between 

computational simplicity and biological accuracy18. To simplify the models in 

a principled manner, we first examine single-compartment membrane voltage 

models and compare the results to more biologically realistic Hodgkin-Huxley 

models. While the simple models are used for the network simulations, the 

Hodgkin-Huxley models are useful for interpreting some of the experimental 

results in Chapter 3. 

 

1.1 The neuron as an electronic circuit 

Neurons are cells highly specialized for generating electric signals in 

response to chemical or sensory inputs and transmitting them to other cells20. 

Neurons have a soma (cell body), dendritic trees and an axon. Dendrites can 

receive up to a thousand inputs from other cells and axons transmit the 

neuronal signal to other dendrites across synapses21. As a result of the 

depolarization of the membrane above a threshold, neurons actively fire 

action potentials in an all-or-nothing fashion. The action potentials then 

propagate to other parts of the brain through the axon.  

1.1.1. Equivalent circuit  

It is a typical assumption to model the neural membrane as an 

electronic circuit driven by an external current and consisting on a 

capacitance and a set of time and voltage-dependent parallel conductances 

(Fig. 1.1). The neural membrane is a lipid bilayer impermeable to most 

charged particles20. It acts as a capacitor and separates ions along its interior 

and exterior surfaces. The intracellular potential is approximately -70 mV 

lower than the extracellular. The passive channels account for the membrane 

resistance  Rm  or alternatively the leakage conductance gL (=
1

Rm
� ). The 

membrane time constant τm=RmCm is often used to characterize the time 

scale  of the neuron’s passive response to changes in its input38.  
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Figure 1.1. Electrical equivalent circuit of a neuronal membrane. Intra and 

extracellular mediums are separated by the cell membrane, modeled as an electrical circuit of 

parallel impedances. 

Neural membranes have a wide variety of voltage-dependent selective 

ion channels that control the flow of ions across the membrane and are 

responsible for active-state dynamics. A time and voltage dependent 

conductance g
n
(t,Vm) accounts for the dynamics of such channels. 

Additionally, a synaptic conductance can be included in this term to account 

for synaptic inputs. 

 

1.1.2. Total current through the cell membrane 

The total current through the neuron’s membrane is the sum of the 

currents due to the different types of channels, the synaptic inputs and the 

external stimulus. The dependence of the membrane potential with time is 

implicit in all of the equations. 

Cm

dVm

dt
=Iext�t�+I

leakage
�t� + Iions�t�+Isyn�t�                    (1.1) 

Conductance-based models associate a conductance g
j
		and reversal 

potential Vj to each contribution of the current, the total resulting from the 

algebraic sum of conductance-driving force products. 

Itot= � gj�V-Vj�
K

j

                           		         (1.2) 

Synapses will also be described by conductance-based currents, their 

reversal potential being above the threshold for E (Ve=0mV) or below it for I 

(Vi=-80mV). 

 

1.1.3. The synaptic current  

The majority of neurons are bombarded by thousands of synaptic 

inputs coming from the presynaptic cells to which they are connected36,43. 
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Immediately after the arrival of an action potential at the presynaptic 

terminal, neurotransmitters are released and bind to postsynaptic receptors, 

causing a change in the membrane’s conductance for one of more ions. The 

consequent excitatory or inhibitory postsynaptic current (EPSC/IPSC; see 

eq. 1.2) into the cell membrane evokes a positive or negative deflection of the 

postsynaptic potential with respect to its resting value. From now on, we will 

refer as those as excitatory postsynaptic potentials (EPSPs; Fig. 1.2C green) 

and inhibitory postsynaptic potentials (IPSPs; Fig. 1.2C red).  

 

      

Figure 1.2. Synaptic transmission of an action potential. All amplitudes correspond 

to the ones used in the computational model in Chapter 5. A. Spikes at an excitatory (green) 

and inhibitory (red) presynaptic neuron. B. Evoked EPSC and IPSC. C. Evoked EPSP and 

IPSP. A convention establishes the EPSC current to be defined as negative, causing a 

depolarization of the cell, and the IPSC to be positive. 

The alpha-function13,16,25,33,38 (eq. 1.3) may be used to describe a 

synaptic conductance with finite duration of its rising phase and correlated 

rising and decay time courses. The total E and I changes in the postsynaptic 

conductance is the algebraic sum of time-shifted alpha-functions over all the 

spike times of the presynaptic cell. 

gj
�t�= �   g0j

t

τj
e

t
τj             	 t	≥0

   0             	  otherwise

           ,      j=	e,i
           (1.3) 

  

1.2    The leaky integrate-and-fire (LIF) 

model  

Although ion flows are responsible for the generation of action 

potentials, there are simpler models that do not include those mechanisms. 

The integrate-and-fire model (Lapicque, 1907) only studies subthreshold 

voltages, while spiking activity is modelled by a reset condition activated 

whenever the potential reaches a threshold. These models are widely used for 

studying the response of a neuron to a large number of inputs or to study the 

dynamics within a neural network of interconnected cells due to their 

computational simplicity32,38. 

(A) (B) (C) 
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1.2.1. LIF master equation 

LIF models the subthreshold dynamics of the neuron as those of a 

typical RC circuit. Passive membrane dynamics rely on the membrane 

capacitance Cm	 and the leakage time-independent conductance is responsible 

for the resting membrane potential43 (see Section S1 of the Supplementary 

material). 

Cm

dVm

dt
=Iext�t�	-	gL

�V-VL�               	               (1.4) 

In a more realistic situation, like the one we model in Chapter 5, 

integrate-and-fire neurons are part of a larger network where the input 

current is mainly due to the activity of presynaptic neurons. A synaptic input 

current (eq. 1.2) will then be added to the LIF master equation. 

 

1.2.2. Membrane potential response to input currents 

 In this chapter, we want to describe the voltage response of a LIF to 

different inputs. These inputs could either represent an external stimulation 

or synaptic E and I inputs.  

(A)  

(B)   

(C)  

Figure 1.3.  Leaky integrate-and-fire integration. A. Input noisy step current. B. 

Evoked membrane potential as a response to the step current in A. C. Same as B but with 

inactivation of the above-threshold reset mechanism. 

Different step currents composed with noise (Fig. 1.3A) were used as 

inputs to a LIF neuron to study its reaction. For negative current steps, the 

membrane potential decreases down to a steady-state value whereas small 

positive currents cause repetitive firing. Larger inputs cause more vigorous 

and periodic firing (Fig. 1.3B). Fig. 1.3C reflects the same evolution but 

without action potentials (the reset mechanism was inactivated). As
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expected, injecting a practically constant current into a neuronal cell causes 

the membrane potential to vary gradually with a time course governed by 

the membrane’s passive properties. 

The LIF is the simplest model that accounts for the effects of input 

current on output voltage. Mainly, one can see the firing rate increases 

accordingly with the input current above the threshold. The LIF model  

reproduces the basic firing properties of neurons.  

 

1.3     The Hodgkin-Huxley model  

Based on the analysis of the giant squid axon, the Hodgkin-Huxley 

model17 (1952) is one of the first mathematical models which succeeded in 

reconstructing the generation of an action potential using biologically 

relevant parameters. It assumes that the neuron membrane has three types of 

independent channels: the leakage channels, the potassium channels and the 

sodium channels. Cycles of hyperpolarization or depolarization of the cell as a 

consequence of ion flows are responsible for the generation of action 

potentials. 

1.3.1. HH variables and equations 

Supposedly, all channels are composed of individual gates, following 

first order kinetics, that must be open simultaneously in order for a channel 

to be open. Activation gates open with depolarization whereas inactivation 

gates open upon hyperpolarization. Na+ channels are composed by 3 fast 

activation m-gates and a slow inactivation h-gate, while K+ channels are 

composed by 4 fast activation n-gates. Voltage-dependent variables n, m and 

h describe the probability of the gates to be open. As they all must be open 

at the same time, the overall probability of a channel to be open is the 

product of single probabilities, leading to voltage-dependent conductances of 

K+ and Na+ channels41. 

Cm

dVm

dt
=I�t�-gL

�Vm-VL�- gK���n4�Vm-VK�- gNa����m3h�Vm-VNa�             (1.5) 

g
K

��� and g
Na

���� are the maximum membrane conductances to K+ and Na+ 

ions.  The temporal evolution of n, m and h is given by the rate equation 1.6, 

where αi and β
i
 correspond to the opening and closing rates respectively. 

Dependence of the opening and closing rates and values of the parameters are 

given in Section S2 of the Supplementary material. 
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di

dt
=αi�Vm� �1-i - β

i
�Vm�i       ,    i = 	n,m,h
       		       (1.6)  

1.3.2. Steady-state gate variables and timescales 

At equilibrium and when no external current is applied, the inwards 

and outwards ion flows must compensate each other, leading to the 

equilibrium equations 1.7 and 1.8. The latter is obtained rearranging terms in 

equation 1.6. It is straightforward to appreciate the mechanisms for the 

generation of an action potential from the analysis of the dependence of the 

gate variables on the membrane potential (Fig. 1.4A, B). 

αi�Vm� �1-ieq - β
i
�Vm�ieq=0  ,    i = 	n,m,h
                   (1.7) 

τi�Vm�= 1

αi�Vm�+β
i
�Vm�    ,     i = 	n,m,h
                   (1.8) 

At resting potential, both types of channels are most probably shut. 

Upon depolarization, the m-gates rapidly open and the neuron’s membrane 

conductance for Na+ ions increases. When the activation threshold is reached, 

depolarization is actively driven by the cell up to +30 mV. Then, the opening 

of the n-gates at a relatively slower rate as well as the slowly shut h-gates 

favor the repolarization of the membrane potential. The relatively slow rate 

at which n-gates shut is responsible for the hyperpolarization of the potential 

under its resting value during the relative refractory period. Slow dynamics of 

the h-gates make Na+ channels remain inactive during the absolute refractory 

period and cannot respond to depolarization.  

(A)    (B)   

Figure 1.4.  Voltage dependency of the gating variables. A. Steady-state activation 

and inactivation variables as a function of the relative membrane potential. B. Time 

constants associated to each gate variable for the same range of membrane potentials as A. 

 

1.3.3.  Output membrane potentials to different input 

currents 

A HH neuron was stimulated with a series of currents. First, the 

membrane responds to a negative input hyperpolarizing and the gate
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variables shift towards the inactivation state. As expected, the afterwards 

shutting-down of the inputs drags the potential to its resting value. However, 

a postinhibitory rebound spike is fired immediately after the membrane’s 

abrupt depolarization. This takes place whenever a long enough 

hyperpolarization is suddenly terminated1. Briefly, the net sodium 

conductance increases due to a fast increase of m and a slow variation of h 

upon depolarization. The input Na+ current reaches the threshold and an 

action potential is fired. Then, increasingly positive currents show evidence of 

two phenomena. First, firing rate increases with the input. However, the fact 

that oscillations become faster damps the amplitude of the spikes. This is 

because gate variables do not have enough time to recover their original 

resting values for big inputs, which can eventually lead to extinguish the 

oscillations.  

(A)   (B)  

Figure 1.5.  Voltage response of  a HH neuron upon steps of current. Successive 

values of the current, changing each 100 ms, where -10, 0, 20 and 50 nA/cm2. A. Time-

evolution of the three gate variables during stimulation. B. Voltage response of the cell 

membrane. 
  

1.4    Conclusion 

Spiking models combine passive and active properties of neurons, their 

complexity arising from the number and types of inputs taken into account. 

The leaky integrate-and-fire is simple but rather unrealistic, as it only models 

subthreshold activity. On the other hand, the Hodgkin-Huxley model is 

biologically very accurate but inefficient for computing large-population 

dynamics. Other versions of the LIF neuron, such as the adaptive exponential 

LIF3,26, account for more complex synaptic adaptive dynamics18 that will not 

be covered in this project.  



Chapter 2                                                                                Experimental methods 

14 

 

Chapter 2 

Experimental methods 
 

Previous research of the Reyes group is based on experiments on 

active cortical slices22,28,29 rather than in vitro grown cultures. Many 

advantages come from culture preparation for the analysis of network 

recurrent dynamics. The fact that the culture can be practically considered 

monolayer thus allowing precise localization of the neurons and the stimulus 

is one of them. This section focuses on the experimental methods used during 

the project. However, as the entire experimental set-up was put together by 

Dr. Jérémie Barral2, only an introductory description of the instrumental 

devices and culture preparation will be provided here.  

 

2.1    Introduction to culture preparation  

Neuron cultures were made from dissociated cortical neurons taken 

from postnatal day P0-P1 mice cortex. Briefly, the mouse cortex is dissected 

in cold dissection solution (Ca2+ and Mg2+ Free Hank’s balanced salt 

solution), the meninges (containing glial cells) removed and the remaining 

tissue enzymatically dissociated in papain (containing DNase). After 

enzymatic inactivation, tissue pieces are mechanically fragmented with a 

pipette and cells are plated on a glass coverslip inside a Petri dish filled with 

neurobasal medium. Cultures are let to grow in a humidified incubator (at 

37ºC, 5% CO2) for approximately 15 days, up to when the neuronal 

properties and network connectivity are supposed to have reached a steady-

state value28,29 and electrophysiological recordings are reliable.  

Some of the cultures are infected virally with Channel rhodopsin-2 

(ChR2) so as to use optogenetic techniques to photostimulate the network. 

The cultures in question are injected with 1µl of ChR2 at three days in vitro. 

ChR2 can be expressed in both E and I neurons. The expression of ChR2 is 

mature enough when the cultures have grown so as to allow consistent 

photostimulation (see Section 2.4). 
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2.2    Visualization of neurons in culture 

Neurons in culture are visualized through an Olympus water-

immersion objective in ACSF (x10 magnification). Cells are viewed, counted 

and patched under infrared differential interference contrast videomicroscopy 

(Fig. 2.1; IR-DIC). Neurons expressing ChR2 are viewed using fluorescence 

microscopy (Fig. 2.3B). 

(A)        (B)    

Figure 2.1.  Visualization of neurons in culture with IR-DIC microscopy. A. 

Neurons in a dense culture. B. Neurons in a sparse culture. It is easy to distinguish healthy 

neurons (big and with dark edges) with dead ones (small and shiny or big and with diffuse 

edges). 

The interelectrode distance, which is an important piece of data for 

our analysis, was measured with image treatment software ImageJ. All 

pictures were calibrated with reference to a known 1 mm object. 

 

3.3     Patch clamp techniques 

Recordings from neurons in culture via a patch electrode are made at 

room temperature in oxygenated artificial cerebrospinal fluid (ACSF). The 

recording electrode is put into a hollow borosilicate micropipette filled with 

an electrolyte similar to the intracellular medium. The pipette’s resistance 

varies from 6 to 12 MΩ and can be measured when a step voltage is applied 

in voltage clamp mode. Upon approaching the cell, a negative offset sets the 

electrode voltage near the cell’s resting potential. Immediately after touching 

the cell, a slight increase in the resistance measured by the electrode is 

noticeable, as a combined effect of the membrane channels. Applied negative 

pressure sucks a small patch of the membrane into the pipette. The 

membrane can be ruptured by brief pulses of suction once the seal reaches a 

value around 1 GΩ (whole-cell, Fig. 2.2C) or maintained attached to the 

pipette if it remains lower (cell-attached, Fig. 2.2B). Finally, the mode is 

switched to current clamp, allowing to measure variations in the membrane 

potential of the neuron. 
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(A)    (B)     (C)  

Figure 2.2.  Schematics of the configuration for patch clamp. A. Location of the 

electrode on the neuron to patch. B. Cell-attached (CA) current clamp and  C. Whole-cell 

(WC) current clamp techniques40.  

The rupture of the membrane for whole-cell recordings establishes a 

direct electrical connection with the intracellular medium30,34. Consequently, 

the current measured by the micropipette is due to all of the cell’s ion 

channels. The effect of the series resistance of the pipette is negligible for cells 

as small as the ones in culture, for they have high membrane resistances.  

Another recording mode, the so-called cell-attached recordings, are 

similar to whole-cell except that the membrane is not ruptured. This 

extracellular recording allows detection of only large action potentials. Being 

so, ion flows between the interior of the cell and the pipette’s solution can 

only occur through the ion channels that lie on the patch of membrane.  

 

2.4     Set-up for optogenetic stimulation  

Some of the cells in culture express Channel rhodopsin-2 (ChR2), a 

transmembrane protein that is sensible to blue light, its maximum peak of 

absorption being around 480 nm. The absorption of a photon induces two 

consecutive conformational changes of the protein, opening the ion channel 

and allowing the flow of ions. This makes cellular depolarization 

straightforward and very useful for photostimulation2. 

(A)     (B)  

Figure 2.3. Visualization of fluorescent cells expressing ChR2. A. Set-up for 

stimulation and visualization of fluorescent cells. B. Example of ChR2-expressing culture 

visualized with fluorescence microscopy. 
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Our cultures can be stimulated using optogenetic techniques, a 

photostimulation method that involves the use of light to control cells that 

have been genetically modified to express light-sensitive ChR2 ion channels. 

A Digital Light Processing projector (DLP; see Fig. 2.3A) is used to deliver 

spatiotemporally accurate light pulses centered at 460 nm. When a small 

diameter light beam is presented to the cell, action potentials are generated. 

We stimulate cells within a region of interest (named ROI, dimensioned 

1.73mm × 0.96mm) with Poisson train pulses at a rate of 5Hz and 0% 

temporal correlation. Recordings are registered from neurons that do not 

express ChR2, so as to avoid any correlation coming from the input. 

However, we hold no knowledge whether the stimulated neurons are 

excitatory or inhibitory.  

 

2.5     Conclusion  

Our experimental approach consists on performing electrophysiological 

recordings of membrane potentials of live cortical neurons in in vitro cultures 

during spontaneous activity and optogenetic stimulation via whole-cell and 

cell-attached patch clamp measurements. The membrane potentials recorded  

with patch clamp techniques have a temporal resolution in the range of the 

ms. Also, as we mentioned before, in vitro cultures of neurons can be 

practically considered monolayer and glia free, allowing to count cells with an 

easy tactic. Studying the cells in cultures will allow us to, first, carry on a 

thorough characterization of the neurons and their connectivity. The detailed 

analysis of electrophysiological data will, on the other hand, provide valuable 

information about network activity and the mechanisms at the origin of 

population bursts. 



Chapter 3                                                         Characterization of networks’ properties 

18 

 

Chapter 3 

Characterization of networks’ 

properties 
 

A preliminary analysis of the neurons in culture permits the 

documentation of some of the network’s properties. Although the neurons’ 

intrinsic properties such as their membrane resistance or time constant have 

been widely documented in other preparations2,22,28,29,31, we repeat these 

measurements in cultures for comparison and for getting useful parameters 

for the simulations. The parameters needed for the model include, besides 

from the intrinsic properties, the density, the patterns of connections and the 

synaptic properties.  

 

3.1    Culture density and spatial structure 

Cultures of neurons with different density of cells/mm2 were prepared. 

Density can be controlled at the early stage of culture preparation when the 

cells in suspension have to be diluted into neurobasal medium. It was 

calculated for each culture of neurons (Fig. 3.1) using Adobe Photoshop by 

counting single neurons on different spots of the culture. Although neurons 

are clearly heterogeneously distributed in the cultures (see Fig. 3.2B), bars in 

Fig. 3.1 represent the mean and standard deviation of a number of densities 

calculated for each culture. 

 

Figure 3.1. Density of the cultures of neurons. Bar chart with error bars documenting 

the calculated network densities for a total of 12 cultures. For some cultures, density was 

calculated based on a single picture, thus the variance was considered null.  

Then, a superposed layer was created so as to mark the center of each 

cell and obtain the geometrical distribution of the nodes (the neurons) in the  

network. One can notice that the spatial distribution of the cells ranges from 

random (Fig. 3.2A, C) to increasingly grouped at higher culture density (Fig. 
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3.2B, 3.2D). Although Fig. 3.2B and D are only two examples, the presence 

of these groups of neurons was a generalized characteristic of dense cultures. 

We will call these groups “clusters” of neurons. There is, however, a large 

fraction of cells that do not belong to any cluster even when the density is 

high. Simulations in Chapter 5 will try to reproduce this architecture. 

(A)   (B)  

 (C)  (D)  

Figure 3.2. Visualization and spatial distribution of the neurons in culture. A. 

Very sparse culture (70 cells/mm2) and B. very dense culture (300 cells/mm2) observed via 

infrared microscopy. C. Geometry of a sparse culture of neurons and D. a highly dense 

culture of neurons.  

Theoretical studies based on clustered networks of E and I neurons 

suggest they exhibit transitions between low and high activity states23 .Thus, 

heterogeneity in network structure could account for neural variability in 

both spontaneous and stimulated regimes. As non-clustered networks would 

only lead to asynchronous dynamics, clustering could be a mechanism for the 

generation of population bursts.  

 

3.2    Synaptic connectivity 

It is the recurrence of the connections in the network created after 

culture maturation that allows for internal dynamic states of spontaneous 

activity. To determine whether two neurons are connected, we stimulate one 

neuron with steps of current (Fig. 3.3A) while measuring the voltage response 

of other cells (Fig. 3.3B). The result is very straightforward, as an evoked 

unitary postsynaptic potential will appear only if the neurons are connected 
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to each other. We examined the connectivity profile of a number of cultures 

and extracted their synaptic properties. Finally, we classified as many 

patched neurons as possible as being excitatory or inhibitory. The color of the 

voltage and current traces (see Fig. 3.3) simply refer to the electrode used to 

record them (black, red, blue or green). 

    (A)   (B)   (C) 

Figure 3.3. Successful test of neuronal connectivity. A. A step current is injected to 

the green neuron. B. Induced spike in the green neuron due to the input current and evoked 

EPSP in the blue neuron. C. Schematics of the situation in B: the blue neuron is connected 

to the presynaptic excitatory green neuron. The sketch assumes the connection is 

monosynaptic and other neurons in the network are not depicted. 

A connectivity profile from all the recorded cultures was computed 

(Fig. 3.4). As there is a clear preference for neurons to be connected if they 

are nearby each other, this result supports previous findings stating 

connection probability decreases with the distance2,22. Also, this result proves 

that neurons in cluster are probably connected to each other 

 

Figure 3.4. Connectivity profile within all cultures of neurons. The number of 

connections between a pair of neurons (with known interneuron distance) can either be 0, 1 

or 2. 

 

3.2.2. Synaptic properties 

a) Testing the neurons’ functionality 

It is also very useful to determine the identity of the patched neurons. 

A priori, neurons cannot be classified as I or E on the basis of action 

potential waveform alone10. However, neurons can be classified based on 

whether an EPSP (see Fig. 3.6A) or an IPSP (see Fig. 3.6B) is induced in the 
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neighboring neuron. Using this criterion, a total of 3 inhibitory and 7 

excitatory neurons were classified, which is close to the approximate 25% 

ratio of the number of inhibitory over excitatory cells in cortical networks2,27. 

 

b) Amplitude and delay  

For neurons that are separated by long distances, it is possible that 

the evoked PSPs were mediated via intermediate neurons (polysynaptic as 

opposed to monosynaptic). We therefore measured the time delay between 

the start of the stimulus and the response PSP. Although the amplitude of 

both EPSPs and IPSPs is decreased slightly at long distances (Fig. 3.5A), our 

limited number of data are still inconclusive. The same applies for the time 

delay (Fig. 3.5B). IPSPs seem indeed to appear later when the distance 

between stimulated and measured neurons grows, but nothing can be 

extracted for the excitatory neurons. 

(A)       (B)  

Figure 3.5. Synaptic strength and time delay. A. Amplitude of the evoked PSPs as a 

function of interneuron distance. B. Time delay between the start of the stimulation and the 

initiation of the evoked PSP. Data was recorded from 3 inhibitory neurons and 7 excitatory 

neurons. 

 

 c) Synaptic depression 

 Finally, the connectivity test reveals the effects of short-term synaptic 

depression, which is a type of synaptic adaptation. Both E and I synapses 

lose their efficiency due to repetitive firing activity but it recovers after a 

sufficiently long delay (Fig. 3.6). Three pulses were delivered in rapid 

succession and the ratios of the amplitudes of the 1st/2nd and 1st/3rd PSPs 

were documented. On average, EPSPs decreased a 22% from 1st/2nd and a 

42% from 1st/3rd while IPSPs were reduced by a 43% and a 41%. Thus, 

adaptation is more significant for inhibition than for excitation. 
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                (A)     (B)    

Figure 3.6. Evidence of synaptic excitatory and inhibitory depression. A. The 

green neuron’s excitatory synaptic strength is depressing after firing the first action 

potential. The amplitude of the evoked EPSPs in the blue neuron becomes smaller. B. Same 

than for A but in the inhibitory case scenario. The evoked IPSPs in the dotted box region 

were magnified so as to appreciate the scale of inhibitory depression. 

Simulations in Chapter 5 account for this phenomenon, as it is 

thought to play an important role in damping excitation and thus limiting 

the duration of population bursts. Differences in the adaptation of EPSPs 

and IPSPs may be a mechanism of E/I imbalance.  

 

3.3    The V/I test 

The V/I test is conducted in current clamp mode once the cellular 

membrane has been ruptured. It consists on stimulating a neuron with 

increasing steps of current (upper-left panel, Fig. 3.7) and measuring the 

voltage response (upper-right panel, Fig. 3.7). Not only this is a very effective 

way to check whether the patch holds, but it is also a reliable technique to 

calculate cell parameters such as the membrane resistance or the time 

constant. Data fittings were performed with Matlab (polyfit and fit 

toolboxes). 

 

3.3.1. The GUI interphase 

In order to make the data analysis of the V/I tests interactive and 

more effective, I developed a GUI Matlab graphic interphase. The program 

allows the user browsing a file containing the data, plotting, saving and 

treating it to withdraw cell parameters. 
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Figure 3.7. Graphic GUI interphase of the I/V test. All panels include options for 

plotting and saving the data. Panel (1) allows the user to select the trials he wants to 

calculate intrinsic parametrs, the lowest current value corresponding to trial 1. Calculations 

become more accurate when spiking signals are rejected. Panel (2) calculates the membrane 

resistance with a linear regression. Panel (3) calculates the membrane time constant �	and 

capacitance, appart from allowing the user to chose the number of bins in the �-histogram. 

 

3.3.2.  Calculation of intrinsic membrane properties 

The cell membrane intrinsic parameters can be withdrawn from 

averaged results over tests.  

In most of the tests, the voltage response of the cell reaches 

equilibrium after a lapse of time related to the membrane time constant and 

which value depends on the injected current. One can easily notice there is a 

linear dependence between the steady-state voltage and the input current 

(Fig. 3.7, bottom-left panel), the slope being the membrane resistance. In 

order to obtain an estimate of the time constant, an exponential fit of the 

selected tests was performed assuming a saturating exponential growth. 

Gaussian fits of the obtained resistance and time constant histograms (Fig. 

3.8) gave mean parameters Rm=196±64 MΩ and τm=22±10 ms. 

(A)   (B)  

Figure 3.8.  Intrinsic cell parameters. Histograms and Gaussian fittings of membrane 

resistances (A) and time constants (B) for 44 patched cells.  
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3.3.3. Comparison to the HH model 

The voltage response upon increasingly positive currents creates firing 

patterns that strongly remind of those obtained with the HH model (Fig. 

3.9B). The neuron starts firing once the threshold is reached, and oscillations 

become faster and drastically damped for high values of the current.  

Note from these and the previous analyses that the voltage response of 

a single cell to current steps does not initiate the propagation of population 

bursts within the network, indicating it has to be a “population-wide” event. 

(A)   (B)  

Figure 3.9. Voltage response to successive step currents. A. Experimental results for 

a cell with 450 MΩ membrane resistance for input currents in nA. B. Results from the HH 

model for input currents in nA/cm2  and a leakage conductance of 0.3 µS/cm2.   

 

3.4    Conclusion 

Overall, results in this chapter are comparable to previous research. 

The spatial distribution of E and I neurons in the culture becomes 

increasingly clustered at higher network density. As for synaptic depression, 

it appears inhibition adapts more than excitation upon successive firing, 

which could be a mechanism underlying E-I imbalance. Neuron intrinsic 

parameters and E/I proportion seem similar to those measured previously in 

cortical slices2,22,28,29. However, we did not specify excitatory and inhibitory 

parameters due to the poor information we had on cells’ identities. Finally,  

the fact that the stimulus of a single cell did not evoke the generation of a 

population-wide burst indicates these events must be due to network activity. 

This will be exhaustively studied in the next chapter. 
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Chapter 4 

Characterization of population 

bursts during spontaneous and 

stimulated activity 
 

Neurons exhibit spontaneous firing that is often noisy. Typically, 

single action potentials occur infrequently and to a first approximation follow 

Poisson-like statistics14. However, spontaneous bursts are observed in some of 

the whole-cell and cell-attached recordings. This chapter focuses on an 

exhaustive analysis of electrophysiological recordings in neural cultures. After 

enumerating the main characteristics of spontaneous population bursts that 

make them stand out from asynchronous dynamics, we will try to elucidate 

some of the mechanisms responsible for their emergence. We hypothesize that 

the bursts result from a breaking of the excitatory-inhibitory balance in the 

network and from there investigate which mechanisms could be at the origin 

of the rupture.  

 To analyze the data from electrophysiological recordings, I developed a 

GUI Matlab graphic interphase. The program inputs the voltage trace 

automatically and allows to calculate pairwise correlations of membrane 

potentials. 

 
Figure 4.1.  GUI graphic interphase for the analysis of electrophysiological 

recordings. Panel (1) allows to read, plot and save the data while indicating the measuring 

electrodes. Panel (2) allows to choose an initial and final iteration to zoom the data. Panel 

(3) calculates pairwise cross-correlations and correlation coefficients of the zoomed membrane 

potentials.
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4.1    Differences between the asynchronous 

and bursting states 

4.1.1. Bursts are “population-wide” events 

During a burst, multiple action potentials often occur in rapid 

succession over approximately 1s (Fig. 4.2). Shorter and subthreshold bursts 

were also recorded, so an added criterion for classifying a neural event as a 

population burst is that all of the recorded neurons undergo a protuberant 

collective burst oscillation24,36. This excludes bursts generated spuriously in 

single cells due to, for example, a sudden change in the dynamics of its ion 

channels. For instance, in Fig. 4.2, two single action potentials (black stars) 

occur in the black neuron that were not exhibited in the others. In contrast, 

the long duration burst (red star) was present in all neurons. 

 
Figure 4.2. Spontaneous asynchronous and bursting activities. The red and blue electrodes 

were cell-attached, the green and black ones were whole-cell and at rest. Spikes are detected on the 

blue and red electrodes when a population burst occurs. Black and green electrodes also record 

subthreshold activity during this collective neural event. The red star indicates the beginning of the 

population burst and the black stars single action potentials. 

 

4.1.2. Increased pairwise correlations 

A succession of alternate asynchronous (Fig. 4.3B) and bursting states 

(Fig. 4.3C) is observed in most of the intracellular recordings. Most of the 

time, the cells are silent with small fluctuations in the membrane potentials 

(dashed box). Occasionally, population bursts occur (dotted box). To 

quantify the level of synchrony, we performed pairwise correlations of the 

membrane potentials. 
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(A)           

Figure 4.3. Dual behavior of membrane potentials. A. Recording over 10s of the 

membrane potential from two patched cells separated by 1.35 mm. B. Amplified plot of the 

dashed boxed region in A. C. Amplified plot of the dotted box region in A. 

As expected, the voltage fluctuations in cells are weakly correlated 

during the asynchronous state (Fig. 4.4A, blue) but become correlated during 

the collective protuberant synchronous oscillations (Fig. 4.4A, green). 

Whether this is a general feature of bursts was confirmed by computing the 

correlation coefficients of the membrane potentials of pairs of neurons 

(recorded in whole-cell patch clamp) in two of the cultures (Fig. 4.4B). 

Pearson coefficients were always positive and noticeably higher when bursts 

occurred. 

(A)      (B)  

Figure 4.4. Pairwise correlations during bursting and asynchronous dynamics. A. 

Cross-correlation of the two signals in Fig 4.3B (blue) and C (green). B. Pairwise correlation 

(Pearson) coefficients of membrane potentials where at least a population-burst was recorded 

(red bars) and from data where no bursts appeared (green bars). 

  

4.1.3. Isolated postsynaptic potentials during bursts 

When the membrane potential is near its resting value, the neuron 

receives a combination of E and I inputs. Estimating the relative amplitude 

and timing of E and I contributions is crucial for elucidating the underlying 

E-I dynamics27.  

The following technique allows to separate either the I or E contributions 

to the total synaptic input. E may be isolated from I by injecting steady 

-0.5 0 0.5 1

(B) (C) 
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current through the electrode and hyperpolarizing the cell so that �	in 

equation 1.2 is equal to Vi(=-80mV) making Ii=0 (Fig. 4.5B). I may be 

isolated from E similarly by making V=Ve (Fig. 4.5A). Thus, isolated IPSPs 

or EPSPs respectively will be recorded. In practical terms, membrane 

potentials will (ideally) exhibit only negative or only positive polarities and 

will be biased by 0 mV and -80 mV respectively. 

 

Figure 4.5. Membrane potentials from a pair of neurons during population 

bursts. A. Both electrodes held at the reversal potential of excitation. Isolated IPSPs. 

Pearson correlation coefficient r�0.350. B. Both electrodes held at the reversal potential of 

inhibition. Isolated  EPSPs. r=0.714 . C. Hyperpolarized green electrode and depolarized red 

electrode. Isolated EPSPs and IPSPs respectively. r=-0.363.  

Figures 4.5A-C make evident all cells receive large amounts of correlated 

E and I inputs during population bursts that arise from network activity. In 

A, two simultaneously recorded cells show co-variation of large I and in B, 

two cells show co-variation in E. The classical theory of balanced networks 

predicts asynchronous potentials across pairs of neurons due to a close 

tracking of I upon E2,31,39. During tracking, the E tends to be counterbalanced 

by I in time. A closer look on asynchronous traces shows there is indeed a 

mild tracking (Fig. 4.6A, black stars) that is confirmed by a peak near the 

origin in their pairwise correlation (Fig. 4.6B). 
 

 

(A)    (B)      

Figure 4.6. Asynchronous dynamics in balanced state. A. Hyperpolarized (blue) and 

depolarized (red) membrane potentials during asynchronous activity. B. Cross-correlation of 

the pair of neurons in A. The Pearson coefficient is r=-0.008. 
 

Isolated PSPs also allow to quantify the relative amplitude and timing of 

E and I during both activity regimes. Taking traces in Fig. 4.5C as an 

example and amplifying them we see the ratio of E/I amplitudes is around 

(B) (C) (A) 
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0.83 during asynchronous behavior (Fig. 4.7A) and 1.88 during the burst 

(Fig. 4.7B). As for the time lag, the I burst starts approximately 2 ms after 

the E one. A deeper and numerical analysis should be done to get reliable 

values of these two parameters. However, this early calculation proves E and 

I are roughly balanced in cultures except during infrequent bursts when E 

massively overwhelms I. 

        

Figure 4.7. Amplitude and timing of E and I. Recordings from depolarized (red) and 

hyperpolarized (green) neurons. The green trace was flipped and put at the same level as the 

red one so as to compare them properly. A. Potentials during asynchronous regime. The 

mean amplitudes are 2.3mV for E and 2.8mV for I. The lag was not quantified. B. Potentials 

during a burst. The mean amplitudes are 15.4mV for E and 8.2mV for I. The lag was -1.9 

ms, I tracking E. 

We corroborated bursts that occasionally appear in electrophysiological 

recordings are population-wide events of synchronous activity. Whereas a 

balance between E and I is maintained during most of the dynamics, 

population bursts are characterized by a temporary rupture of this 

equilibrium that is obvious from the ratios of E/I amplitudes.  

 

4.2    Burst frequency  

 Previous measures performed by the Reyes lab observed spontaneous 

bursts occurring at a mean rate of 0.1-0.5 Hz. This result was also supported 

by another research group that performed experiments on slices of prefrontal 

and occipital cortex of ferrets36. One of our predictions was that the burst 

frequency should depend on the number of cells in the network. Should the 

network be too sparse, then the recurrent activity would be too small to 

originate any burst and none should be recorded. On the other hand, the 

denser the network becomes, the more number of connections there are and 

recurrent activity becomes more important.  

 Based on a series of recordings of bursting activity, we were able to 

gather some data to appreciate an apparent dependence of their mean rate on 

(B) (A) 
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the network’s density (Fig. 4.8). As expected, there are no or very few 

population bursts for densities below 80 cells/mm2 approximately. The 

frequency increases rapidly afterwards. Then, the dependence becomes more 

uncertain, as it remains above 0 but it is apparently lower than for 

intermediate densities. A study on neural avalanches4, which are similar to 

bursts, predicts a complete extinction of the avalanches for sufficiently large 

networks.  

 

Figure 4.8. Bursting frequency as a function of network density. Points with null 

variance are those for which no burst was recording (rate=0Hz). 

 

4.3    Burst duration 

Next, we examined the dependence of the burst duration on the density. 

For this analysis, we only took into account data where both the beginning 

and the end of the burst were recorded. Fig. 4.9 shows two example 

recordings that were discarded. As this happened mostly for dense cultures, 

the computed results for high densities (Fig. 4.10) may be lower than the real 

value because of the strict discard criterion. Also, we considered a burst any 

salient collective oscillation, despite the number of spikes or its duration. 

(A)      (B)  

Figure 4.9. Example of rejected recordings. A. The burst is so long that it lasts the 

whole recording. B. The beginning of the burst is on record but its termination is not. 

Unlike for the frequency, the burst duration appears to be clearly 

dependent on the network density, increasing linearly for the lowest densities 

in Fig. 4.10. The duration of the bursts seems to saturate for high frequencies 
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at roughly 2s. Although we cannot explain this apparent saturation at this 

point, it could be due to synaptic excitatory depression damping EPSPs and 

terminating the burst. Comparing these results with Fig. 4.8, cultures that 

burst more frequently (with a density between 80 and 150 cells/mm2 

approximately) exhibit shorter bursts than denser cultures.  

 

Figure 4.10. Burst duration as a function of the network’s density. To compute the 

burst duration as a function of network density, we calculated graphically the duration of all 

the bursts in a set of data, fit the obtained distribution with a Gaussian variable and plotted 

the mean and variance for each known density. Thus, each point summarizes the information 

from recordings on a single culture of neurons. In three cultures with low density (red dots) 

an extremely long burst was recorded. The latter was discarded to fit the data, as the 

variance reached unrealistic values. 

We have proved bursts are population-wide events which frequency and 

duration tightly depend on the network density. On average, they last about 

1s and occur at mean frequencies less than 0.1Hz for our cultures. Our next 

step is to investigate whether population bursts are generated randomly 

throughout the network or at specific locations. 

 

4.4    Burst origin  

One of the many possible mechanisms causing the imbalance between E 

and I and generating population bursts is an overwhelmingly excitatory input 

generated locally and propagated through the network.  

A first evidence of the wave-like propagation of the bursts is given by 

calcium imaging techniques. Briefly, the cells are from transgenic mice that 

express a calcium channel indicator. When an action potential occurs, it 

opens up calcium channels in the cells, which in turn cause the cells to 

fluoresce because of the indicator12. Labeled neurons allow for real-time 

fluorescence visualization of the network activity. While lacking of temporal 

resolution due to the slow timescale of calcium (around 100ms), this method 

allows to make a rough prediction of where the burst starts. For example, in 
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Fig. 4.11, there are neurons in the upper-right hand corner (circled in red) 

that are initially silent (A) but become active later (B). 

(A)   (B)   

Figure 4.11. Fluorescence microscopy of calcium imaging. A and B are two 

consecutive photograms of a calcium imaging movie. Some neurons (red circles) are silent in 

A but active in B, which indicates the burst is propagating in the right direction.  

To further support this theory, we inspected the order at which 

patched neurons started to burst. With electrophysiological recordings, we 

have temporal resolution in the ms range. Some criteria must be clarified 

before going into the detail of the results. First, only whole-cell recordings 

were analyzed, as cell-attached measurements do not reveal subthreshold 

activity. Secondly, the order in which the neurons started to burst was 

determined graphically. Finally, we always patched from 2 to 4 neurons 

relatively close to each other. Configurations in Fig. 4.12 refer to possible 

ordered combinations between neurons (for example red-green-blue-black) 

representing the chronological sequence in which they start to burst. 

 

Figure 4.12. Documentation of the burst order. Each color represents a culture. The 

number of possible combinations between cells goes from 2 to 6 depending on the number of 

patched neurons.  Bins in the bar chart represent the 6 configurations, ranked from the more 

frequent (1) to the less likely to appear (6) for each culture. 

 Indeed, results suggest that burst tend to originate in a particulate 

region of the network as a particular sequence tends to occur more often than
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others. Although the number of trials was low to run conclusive statistics, 

there is a drop of more than a 20% in the likelihood of the second 

configuration with respect to the first in all of the cultures. The propagation 

seems to become more random from there, as the second and third bins are 

more similar to each other.  

The hypothesis of the existence of a specific spatial origin of the 

population bursts is supported by this analysis. For some unknown reason, 

the neurons in this “hotspot” are more prone to burst. Once the burst occurs, 

it spreads to other parts of the network. One goal of future research is to 

determine what makes the neurons in the hotspot different from the others. 

A spatial heterogeneity of synaptic properties in the network could lead to 

regions with excessive number of excitatory cells or synapses, with slower 

inhibition or with stronger short-term synaptic depression of inhibitory cells.  

This confinement of unusually excessive excitatory activity is also known 

to be the cause for some types of seizures, concretely partial seizures that 

affect relatively isolated regions of the brain6. There currently exists a 

surgical treatment to epilepsy consisting on removing the area of the brain 

producing seizures. 

 

4.5    Evoked activity during optogenetic 

stimulation  

  Based on the above, our hypothesis is that there is a “hotspot” that 

generates excessive excitatory inputs to the other neurons, causing them to 

burst. One question is whether driving the neurons outside the hotspot can 

also cause population bursts. If not, then this supports the notion that there 

is something special about the neurons in that region.  

We want to study the patterns that arise in simultaneously recorded 

cells that do not express ChR2 when ChR2-expressing neurons are stimulated 

with repetitive uncorrelated pulse trains of light. Inputs can be treated as 

background synaptic noise due to their small correlation. All stimulated cells 

lie within a small region of interest (named ROI). Thus, optogenetic 

stimulation could mimic the effect of excitatory activity being generated at 

the location where the burst originates. Where we to illuminate the right 

region, we would expect to record population bursts occurring simultaneously 

in all the cells. Membrane potentials where recorded from two depolarized 

and hyperpolarized in whole-cell configuration and from a third one cell-

attached (Fig. 4.13). 
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(A)  

(B)  

(C)  

Figure 4.13. Patterns of evoked activity. A, B, and C represent the voltage traces 

from three simultaneously recorded neurons (black, green and blue) during three trials of the 

same input pattern. The black neuron is cell-attached, the green neuron is whole-cell and 

depolarized to 0mV and the blue neuron is also whole-cell and hyperpolarized to -80mV. 

 First of all, observing action potentials in neurons that are not 

stimulated is a proof of the recurrent activity of the network. Also, recorded 

traces varied from trial-to-trial (i.e. population-bursts were not generated), 

but more importantly, the responses of the neurons were different from each 

other, unlike the population bursts. While promising, we need to perform 

more experiments to confirm the results. The ultimate goal of our optogenetic 

stimulation of cultures is to recover the bursting patterns that we observe 

during spontaneous activity.  

 

4.1   Conclusion 

 Bursts interrupting asynchronous dynamics in neural networks are 

population-wide neural events characterized by a large synchronous 

oscillation of all the cells in the network. Their generation is a consequence of 

a combination of network recurrent activity with a temporary imbalance of 

excitation and inhibition. We proved the burst duration and frequency are 

both strongly related to the network density and in general increase for 

higher densities. We provided strong evidence suggesting population bursts 

may be generated locally within a region where the E/I imbalance was 

broken and propagate like a wave throughout the entire network. The 

mechanisms responsible for the uncompensated excitation in these specific 
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regions are yet unknown, but cells located at or near that region must be 

somehow different to the others. Some hypothesis are that there may be an 

unusually lower number of inhibitory cells, that inhibitory synapses lose their 

efficiency or that inhibition becomes slower and is overtaken by excitation. 

We perform preliminary computer simulations below to elucidate possible 

mechanisms. 
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Chapter 5 

The computational model 
 

5.1  Motivation  

Computer simulations are a popular way to model biological systems. 

Their starting point being the mere imitation of the experimental results, 

they ultimately aim to become a tool to predict the outputs of biological 

experiments. I modeled a recurrent network of coupled excitatory and 

inhibitory leaky integrate-and-fire neurons with conductance-based adaptive 

synapses and external inputs at the origin of the spiking activity. The aim is 

to produce the salient properties of the experimental results from the 

previous chapter. Further, computer simulations allow to test the effect of  

possible mechanisms for E/I imbalance in the network.  

Simulations were programmed with Python, concretely with the 

packages numpy, scipy, time, random and matplotlib. Differential 

equations were integrated using a first order Euler algorithm with 0.01 ms as 

time step. Detailed codes of the simulations are included in Section S3 of the 

Supplementary material. 

 

5.2    Single neuron model 

 I started with a model of a single LIF neuron receiving a variable 

number of E and I inputs. The total number of inputs, N, and the fraction of 

E inputs, �, are adjustable parameters. Spontaneous and stimulated activity 

of the neuron were inspected as a first approach to understand some of the 

mechanisms at the origin of spiking outputs and bursting behaviors.  

 

5.2.1. Spontaneous activity of the LIF neuron 

 To reproduce spontaneous activity of neurons observed in experiments, 

a Gaussian unbiased noise current was injected to the cells. From the 

experiments, between 20 and 30% of the neurons fired spontaneously2 (named 

SS) while the rest where silent (non-spiking or NS) but nevertheless received 

noisy inputs. For the model, the input noise into the NS neurons had a small 
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variance (Fig. 5.1A), while SS neurons received a larger one (Fig. 5.2B) that 

allowed for random occasional spiking.  

  

Figure 5.1. Patterns of the spontaneous activity of a LIF neuron. A. Spontaneously 

non-spiking (NS) neuron receiving an unbiased input Gaussian current of 0.1 nA variance. 

B. Spontaneously spiking (SS) neuron receiving an unbiased input Gaussian current of 3.0 

nA variance. 

 

5.2.2. Stimulated activity of a single LIF neuron  

 Stimulating a single LIF with discrete inputs can open a window to 

understand the mechanisms underlying the formation of varying spiking 

patterns43. Inputs can either represent synaptic inputs or an external 

stimulation of the network. Random and correlated Poisson spike trains at a 

mean rate of 5Hz and varying ratio of E/I cells entered the LIF neuron (Fig. 

5.2, left-hand column). Synaptic strength and time-to-peak values were taken 

from the data on cortical slices22,28,29 without specifying the identity of the 

postsynaptic neuron. 

   

     

     

      

Figure 5.2. Evoked activity of a LIF neuron. A-D. Excitatory (green), inhibitory (red) 

and net (black) random synaptic input currents at a rate of 5 Hz into a NS neuron for 

N=100 inputs and a 90% (A) and 20% (C) of excitation and evoked potentials (b and D 

respectively). E-H. Same color code and E-I ratios than A and C, but for Poisson-like 

(λ=200 ms) correlated excitatory and inhibitory inputs and evoked potentials. 

 As expected, the more the net current is shifted towards excitation, 

the more probable for the neuron to spike. Roughly constant E and I inputs 

(B) (A) 

(A) (B) 

(C) (D) 

(E) (F) 

(G) (H) 
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(Fig. 5.2A, C) can either lead to regular spiking if the net current is high 

enough to drag the potential above threshold (Fig. 5.2B) or to a quiescent 

state if inhibition counterparts excitation (Fig. 5.2D). However, neither of 

those mechanisms lead to transient bursts of high firing rates. On the other 

hand, nearly synchronous E and I inputs (Fig. 5.2E, G) can lead to 

intermittent overriding of excitation upon inhibition that drives the 

membrane potentials over short periods of solid depolarization (Fig. 5.2F) if 

E is strong enough. Although these results seem predictable, they make a 

good and visible proof that the E-I imbalance leading to bursts must be 

temporarily bounded. 

 In the next section, we construct a full network so that the E/I inputs 

arise from the induced dynamics of the network rather than artificially 

specified as above. 

 

5.3    Characteristics of the network 

 A thorough characterization of the neural network in in vitro cultures 

was conducted in Chapter 3. As this model tries to be as biologically accurate 

as possible without sacrificing speed (see discussion in Section 5.6), 

experimental results on the neuron’s intrinsic and synaptic properties as well 

as the network’s spatial distribution were replicated. All neurons have 

slightly different membrane resistance, time constant and threshold voltage 

that are normally distributed around the values obtained in Section 3.3.2. 

The mean threshold voltage is -46mV. The cultures’ dimensions are 1.3mm × 

1.3mm. The total number N of cells is obtained with the network density n, 

in cells/mm2. 

 

5.3.1. Clustered spatial distribution  

Experimental results in Chapter 3 showed that the network’s 

architecture tends to range from random to clustered depending on the 

density. One of the advantages of in vitro cultures is the thinness of the layer 

of cells. For simplicity, the network is considered 2-dimensional. The 

percentage of excitatory (re) and inhibitory (ri) neurons belonging to clusters 

are two separate inputs to the subroutine, allowing to obtain a wide number 

of geometrical configurations. The total number of clusters is chosen 

randomly for each trial, so are the coordinates of their centers and the 

numbers of E and I neuron belonging to each one of them. E and I neurons 

are distributed sequentially in clusters (see Section S3.4 of the Supplementary 
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material). Finally, the resting neurons are placed randomly through the 

network. Boundary conditions are always applied.  

 One can obtain a wide range of geometrical distributions, from a 

uniformly distributed network (Fig. 5.3 A, D) to a totally clustered one (Fig. 

5.3 B, E) by simply varying the values of re and ri. The more realistic 

configuration is a balance of the two previous (Fig. 5.3 C, F), which is the 

one we used in most all the simulations. 

 

Fig. 5.3. Network geometries. All results are for a 40% of inhibitory neurons. 

Black dots represent excitatory neurons, white dots represent inhibitory ones. A 

and D. Completely random network distribution (re=ri=0� for a sparse 

(n=100 
cells

mm2�  and a dense (n=500 
cells

mm2� network. B and E. Completely clustered 

network distribution (re=ri=1� for the same network densities than before. C and 

F. Equilibrated random and clustered network (re=0.3 , ri=0.4� for the same 

network densities. 

 

5.3.2. Synaptic properties and connectivity 

 

a) Connectivity profile   

The non-symmetric connections between neurons are based on 

previous results on slices and cultures2,22. They model the connection 

probability as a Gaussian distribution decreasing with the distance with 

characteristic length around 600µm between neurons and peak probabilities 

that are specific to each type of synapse2. This profile is attributed to the 

connections between randomly distributed neurons, neurons in the same 

cluster or random neurons with neurons in clusters. However, the number of 

interconnected neurons between clusters is increased to favor the propagation 

of signals within these enclosed structures.  

200μm 

200μm 200μm 200μm 
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b) Heterogeneity of the coupling  

Synaptic properties in the central nervous system can depend on an 

elevated number of parameters33, such as the identity of the pre and 

postsynaptic neurons, their location or synaptic plasticity. The time courses 

of the conductance and the induced PSPs depend on the type of synapse 

(Fig. 5.4).  

(A)    (B)  
Figure 5.4. Synaptic conductances and evoked PSPs. A. Postsynaptic conductance 

for the four types of couplings. B. Evoked excitatory and inhibitory postsynaptic potentials. 

Amplitude in mV and time to peak in ms of PSPs are �τpeak=10.1 ; VPSP=2.3	� for E-E, 

(τ
peak

=6.8  ; VPSP=2.7	) for E-I,  (τpeak=21.8 ; VPSP=-2.1	) for I-E and (τpeak=12.6 ; 
VPSP=-2.6� for I-I. Conductance parameters were chosen to get PSPs with the previous 

characteristic parameters for a neuron with Rm=200MΩ and τm=22 ms. Values for the 

amplitude and time-to-peak of PSPs were taken from unpublished research of the Reyes 

group
2
. 

 

c) Short-term synaptic depression  

Synaptic fatigue is an indispensable feature of synaptic plasticity for the 

generation of stable population bursts, as it is thought to be a form of 

negative feedback to overwhelming synaptic activity. Short-term synaptic 

depression (STD) denotes the changes in synaptic efficiency depending on the 

firing history of the neuron (see Section 3.2.2). STD is attributed to the 

depletion of the readily releasable vesicles after synaptic activity. Its 

electrophysiological implication is a decrease in the synaptic strength that 

recovers after a delay that depends on the type of neuron. The effective 

synaptic conductance that accounts for STD is obtained as a product with a 

defined synaptic variable. The latter is maximum and unitary when the 

neuron is fully active and is reduced by a 30% whenever the neuron spikes. 

Recovery is exponential (eq. 5.1) with a characteristic time constant that 

depends on the type of neuron. Fig. 5.5A and B show the synaptic variables 

associated to two example excitatory and inhibitory neurons firing 

synchronously. 

1

τj

dIsyn

dt
=1-Isyn        ,     j=	e,i
                          			(5.1)



Chapter 5                                                                            The computational model 

41 

 

(A)  

(B)  

Figure 5.5. Short-term synaptic depression. (Synchronized) Spike times correspond to 

instants where a dramatic decrease in  Isyn is noticeable. A. Synaptic variable of an excitatory 

(green) and an inhibitory (red) presynaptic neuron. B. Evoked EPSP (green) and IPSP 

(red). STD is obvious from the changes in the amplitudes of successive PSPs. The original 

shape is yet not recovered even 0.9 s after the last spike in the initial triplet. The time 

constant of depression is 400ms for I and 800ms for E, according to data on neural cultures2. 

 

5.4    Analysis of the spontaneous activity 

 The spontaneous activity of the network was generated as described in 

Section 5.2.1. SS neurons are chosen randomly by picking an adjustable 

percentage of E neurons within a region that is selected with an interactive 

window. We will call that region the overexcited area (OA; often a cluster) 

that represents the “hotspot” we described in Section 4.4. The rest of the 

cells are NS. We tested the effect that network density (for a particular 

connectivity profile) and the architecture have on the emergence of 

synchronous dynamics. The first 250ms of simulations are usually cut-off as it 

is where the transient occurs and artificial onset effects often appear. 

 

5.4.1. Dependence on the network density 

The model exhibits similar behaviors as the experiments: no bursts are 

observed for lower densities (Fig. 5.6A) and one appears when the network is 

denser (Fig. 5.6C). Both networks exhibit periods of quiescence, during which 

only the SS fire asynchronously approximately following Poisson-like 

statistics (Fig. 5.6B). For the highest density, this long period is interrupted 

by a population burst that lasts about 20ms and involves all the cells in the 

network (red star).  
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Figure 5.6. Dependence of bursting dynamics on network density. A. Raster plot of 

the network activity for a network of 200cells/mm2. The neuron number is in the y-axis and 

dots represent firing times for each neuron. B. Exponential interspike interval (ISI) 

distribution with parameter  λ=0.007ms-1 for the network in A, that proves the spike times 

are Poisson-like variables. C. Raster plot for a network of 500 cells/mm2. The red star 

indicates the beginning of the burst. D. ISI distribution for the network in C. It cannot be fit 

with an exponential because of the prominent peak at 0, consequence of the burst. 

 

5.4.2. Role of the architecture 

The architecture of both networks is depicted in Fig. 5.7A and C. The 

configuration is set so as to make sure that 70% of the E and 20% of the I 

neurons in clusters are connected to each other. The “hotspot” is surrounded 

by other neurons and clusters in both cases. Neurons in the hotspot are 

driven by the same spontaneous dynamics. However, in one case only SS fire 

(Fig. 5.7B) while the architecture of the second one and the greater number 

of SS neurons allows for the burst to start and to be propagated. From Fig. 

5.7D, we can see all neurons are activated and that it is the ones in clustered 

structures that fire the most (apart from the ones in the OA).   

 

      

Figure 5.7. Spatial structure and spike count. A. NS neurons (pink) and SS ones 

(white) in the network of 200 cells/mm2. B. Active neurons and number of spikes. C. Same 

than A but for 500cells/mm2. D. Active neurons and number of spikes. All neurons in the 

network are active (it happens during the burst) and neurons in clusters fire more vigorously.

(A) (B) 

(C) (D) 

(A) (B) (C) (D) 

200 μm 200 μm 200 μm 200 μm 
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4.2.3. Dynamics at the ‘hotspot’ 

When taking a closer look at the spiking patterns of the SS neurons in 

the OA (Fig. 5.8A), neurons fire spontaneously until they get synchronized 

for some reason and generate the population burst (red star) followed by a 

period of complete quiescence. To check that this happened stochastically 

and not systematically, two other simulation were run and only one of them 

exhibited a burst. One can see by comparing the timing in Fig. 5.8 and B 

that the burst starts slightly later in the NS neurons than in the SS. This 

confirms the burst is generated within the OA and then propagates to the 

rest of the network. This can also be deducted from the low subthreshold 

activity of the NS neurons. 

 

Figure 5.8. Dynamics of the ‘hotspot’ and the rest of the neurons. A. Dynamics of 

all of the SS neurons in the OA. B. Dynamics of a few NS neurons. 

These results suggest two things. First, a “hotspot” containing a 

number of spontaneously firing excitatory neurons can generate population 

burst. Neurons within that region exhibit random (probably Poisson-like) 

spiking times and get, sometimes and somehow, synchronized to produce the 

burst that is afterwards propagated to the rest of the cells. Secondly, these 

dynamics are possible in clustered networks provided they are dense enough 

so as to have architectures that enable the propagation of the bursts. More 

enigmatic is the fact that bursts are not generated (not even in the OA) for 

lower densities. This may be due to the fact that less neurons were SS, or 

that the cluster was too small to get to synchronize their dynamics. 

What follows is to test whether population bursts can be reproduced 

during stimulated activity that mimics photostimulation of our in vitro 

cultures.

(A) 

(B) 
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5.5    Analysis of the stimulated activity  

5.5.1. Shape of the stimulus 

 We stimulate the network with uncorrelated Poisson spike trains at a 

rate of approximately 7Hz (Fig. 5.9B). The stimulus starts at t=500ms and 

lasts for 5s (see Section S3.6 of the Supplementary material). Random E and 

I neurons are stimulated within a region of interest (named ROI; Fig. 5.9A) 

that can be defined in an interactive Python window.  

(A)  (B)  

Figure 5.9. Photostimulation of the computational network. A. Random E and I 

neurons are stimulated within a region of interest. E cells are pink, I cells are black and 

stimulated E and I cells are white. B. Superposition of all the train pulses driving the cells in 

A. Pearson coefficients of different pulse trains are of the order of 10-5, thus they can be 

considered completely uncorrelated. 

 

5.5.2. Stimulated activity in a network without an OA 

 First, we stimulate a network where no OA has been defined, meaning 

neurons do not fire spontaneously and membrane potentials only show small 

variations due to their noise current. One can see in Fig. 5.10 A and B that 

the stimulus starting at t=500ms (black arrow) is not strong enough so as to 

drive the neurons over their threshold.  

 

Figure 5.10. Evoked membrane potentials in a network without OA. A. Raster 

plot of the network. Only the stimulated neurons fire at the times they are stimulated. B. 

Dynamics of the membrane potentials of some NS neurons in the network. EPSPs are visible 

but do not reach threshold. Black arrows indicate the beginning of the stimulus.  

(A) 

(B) 
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5.5.2. Stimulated activity in a network with an OA 

 Then, we stimulate a network where a “hotspot” has SS neurons. The 

region of interest is different than the OA to separate the effect of the two 

spiking mechanisms (white and orange spots in Fig. 5.12A).  In this case, the 

beginning of the stimulus (black arrows) triggers a burst that is most 

probably due to onset effects. This is followed by five more population-wide 

burst oscillations (red stars) that arise from the synchronization of the SS. 

Note that, in this case, the stimulated neurons are not in the OA but they 

still have an effect on their synchronization. Unless bursts in Fig. 5.11A are 

by any chance only due to the spontaneous activity of the SS neurons, it 

seems the external stimulation can act as a synchronization mechanism. More 

simulations should be run to confirm this outcome. 

 

Figure 5.11. Evoked membrane potentials in a network with OA. A. Raster plot of 

network activity. B. Dynamics of the SS neurons in the OA. They fire spontaneously and 

are suddenly synchronized after the stimulus. C. Dynamics of several neurons. The yellow 

neuron is SS, the blue and red cells are stimulated and the rest are neither stimulated or SS. 

Red stars represent population bursts that are not due to onset effects. 

  

As for the activation of the network, all neurons are activated during 

these bursts, but, again, it is the ones that are in clusters that fire the most. 

OA and ROI are as far from each other as possible (Fig. 5.12A) and still, the 

one feels the effect of the other. This is, of course, because they both contain 

clusters that are connected to each other. 

(A) 

(B) 

(C) 
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(A)   (B)  

Figure 5.12. ROI, OA and network activity. A. Stimulated (orange), SS (white) and 

NS (blue) neurons. B. Active neurons and spike count. 

 Our second analysis of the network model proved that an external 

excitation is not enough to generate population bursts unless there already is 

an existing noisy activity within it. We managed to stimulate a ROI 

separated from the OA and still appreciate the emergence of these 

population-wide neural events.  

 

5.6     Conclusion  

 Building a computer model of a network of LIF neurons allowed us to 

test some mechanisms for breaking the E-I balance that we could not 

investigate with the experiments (yet).  

 First, a simpler model of a single neuron receiving a large number of 

inputs showed that transient epochs of excessive excitation lead to bursting 

patterns. Then, we analyzed the spontaneous activity of an entire network of 

E and I neurons where a “hotspot” containing a few number of excitatory 

neurons that fired spontaneously. Whereas low densities did not favor the 

generation of population bursts and interspike intervals remained Poisson-

like, higher densities produced an architecture that allowed bursts to emerge 

and to be propagated. SS neurons fired randomly for most of the simulation 

until, somehow, they synchronized their activity and by that produced an 

excess of excitatory activity that activated population burst. Finally, we 

studied the effect of stimulation on the network by occasionally activating 

some cells within a region of interest (ROI) with Poisson pulse trains. The 

stimulus did not trigger any population bursts when the network did not 

have a hotspot, while several synchronous events happened when there was 

one.  

 Unfortunately, our model has some limitations. First, LIF neurons are 

the simplest model and have imperfect biological realism while being optimal 

for large-scale networks simulations. Still, the computation time of the 

simulations is too long and would have to be lowered in an enhanced version 

200 μm 

200 μm 
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of the program. Also, the population bursts that we get are too short 

compared to the experimental results: they last around 20 ms while those 

characterized in Chapter 4 lasted on average 1s. Finally, the model does not 

take into account many properties that would most probably give rise to 

other spike patterns. For example, we considered the synaptic depression of E 

and I to be equal in amplitude. The connections between clusters are also 

unrealistic as they were set to be particularly probable to enhance the effect 

of this architecture. 
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Final discussion 
 

The combination of analyses on electrophysiological recordings in cultures 

of live neurons and computer simulations allowed us to study the 

characteristics of population-wide bursts in neural networks and gave us an 

insight into E-I imbalanced dynamics.  

The preparation of in vitro cultures of cortical neurons and patch clamp 

techniques allowed to, first, document the characteristics of the cultures. We 

found neurons’ intrinsic properties that are comparable to previous 

measurements on cortical slices22,28,29. As for the geometry, dense networks 

were found to be organized in groups of clusters. Theoretical studies23 and our 

computer model suggest these structures are a key feature of neural network 

for the emergence of states of collective synchronous activity. As these are 

only early results, we should run more simulations where the architecture and 

connectivity profile of the network would vary in order to appreciate their 

effect on the emergence of population bursts. Finally, besides from recovering 

a connectivity profile that is in agreement with previous experiments22, we 

showed that short-term synaptic depression seems more important for 

inhibition than for excitation. Again, this could be a mechanism for breaking 

the E-I balance and the simulations could provide the perfect tool to test it.   

A thorough analysis of electrophysiological data followed. First, we 

confirmed that population bursts emerge due to network activity and not 

within a single cell, as strongly correlated oscillations of the membrane 

potentials are recorded simultaneously in all the neurons. Then, by studying 

cultures of different densities, we were able to determine that the frequency 

and duration of the bursts are strongly related to this parameter, confirming 

one of our initial hypothesis. Indeed, low densities, thus low recurrent 

network activity, are not enough to generate collective events. It is in denser 

networks that population bursts interrupt asynchronous dynamics.   

Moreover, a rigorous inspection of recorded voltage traces suggests that 

bursts may be generated at a “hotspot” and then propagated like a wave 

through the network. We hypothesize that cells within that specific region 

must somehow be different than the others in order for an E/I imbalance to 

appear. As a first endeavor to test this conjecture, we were able to run some 

simulations in which an enclosed region of the network stood out from the 

others for having a number of excitatory neurons that fired spontaneously. 

When the network was clustered and dense enough, these neurons that 

usually spiked in random patterns somehow coordinated their activities and
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generated one or more population bursts. The stochasticity of their 

synchronization could actually be reproducing what is happening in the 

cultures. What comes next is to associate this overwhelming excitability that 

in the model is represented by nearby cells firing spontaneously with 

properties that can be measured on real neurons in the cultures.  

Finally, we have made a first attempt to study the effects of external 

stimulation on evoked network dynamics. The experimental approach was to 

use optogenetic techniques to stimulate a number of ChR2-expressing 

neurons with spatiotemporally accurate pulses. Apparently, results support 

the idea of a spatial heterogeneity of neural and synaptic properties being at 

the origin of population bursts, as no collective events emerged when we 

illuminated a random area of the network. On the other hand, in the model, 

the stimulation of a region of interest differing from the “hotspot” seemed to 

have an effect on triggering the synchronization of the spontaneous firing 

within that region and recover the population bursts.  

 This short yet promising work is the outset of a wider project that will 

be a collaboration between the Reyes group and another laboratory. Some of 

the hypothesis they made on burst frequency and origin were confirmed in 

this early version. However, more data has to be collected to confirm and 

determine all the dependences that we found in this project. Now, further 

research aims to: 1) narrow the location of the “hotspot” via patch clamp and 

optogenetic techniques; 2) reveal the properties that make neurons within 

this area be different than the rest of the culture; 3) improve and extend the 

computer simulation so as to sort out its actual limitations and achieve to 

elucidate more mechanisms for the E/I imbalance. These studies will lead to 

a better understanding of network processing as well as elucidating the 

processes that lead to neuropathologies.  
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